Skip to content
master
Go to file
Code
This branch is 67 commits ahead, 1 commit behind wsp-sag:master.

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
 
 
man
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

CRAN status Travis build status Codecov test coverage

ipfr

A package for iterative proportional fitting on multiple marginal distributions in R. The goal of this package is to make survey raking, matrix balancing, and population synthesis easier.

Installation

Install the latest official version from CRAN:

install.packages("ipfr")

Install the development version of the package:

library(devtools)
install_github("dkyleward/ipfr", build_vignettes = TRUE)

Basic Usage

(See vignettes at the bottom for advanced topics.)

A basic matrix balance task:

mtx <- matrix(data = runif(9), nrow = 3, ncol = 3)
row_targets <- c(3, 4, 5)
column_targets <- c(5, 4, 3)
result <- ipu_matrix(mtx, row_targets, column_targets)

A basic survey balance task:

survey <- tibble(
  size = c(1, 2, 1, 1),
  autos = c(0, 2, 2, 1),
  weight = 1
)
targets <- list()
targets$size <- tibble(
  `1` = 75,
  `2` = 25
)
targets$autos <- tibble(
  `0` = 25,
  `1` = 50,
  `2` = 25
)
result <- ipu(survey, targets)

Creating synthetic households from the ipu() result:

synthesize(result$weight_tbl)

Vignettes

Using ipfr: https://cran.r-project.org/web/packages/ipfr/vignettes/using_ipfr.html
Common ipf problems: https://cran.r-project.org/web/packages/ipfr/vignettes/common_ipf_problems.html

About

Generic expansion of seed distribution to marginal targets

Resources

Packages

No packages published

Languages

You can’t perform that action at this time.