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I. INTRODUCTION

Magnetic resonance imaging (MRI) is a widely used tool
for diagnosis in the medical field. However, it can take a
long time to generate a clear high resolution MRI. This
is because the process requires a period of waiting for the
protons to resume precessing. It is not possible for a hospital
to take a full day to scan a patient. In severe cases, scans
must be done as quickly as possible. An example of such a
severe case would be getting scans for potentially lethal head
traumas. There are many ailments that could be treated more
reliably with imaging data available, but that cannot spare
the time required to produce such imaging data. Another
common problem is generating quality MRIs of children.
Children are not naturally inclined or easily convinced to
remain motionless for long stretches of time. Thus, MRIs
of children are difficult for practitioners. The common issue
in both of the aforementioned cases is the lack of the time
required to generate high resolution, reliable MRIs. Time is
not malleable, but pixels are.

Super resolution (SR) is the the process of increasing the
resolution of a given image via transformations. The goal is
to create a reliable mapping of low resolution images to their
higher resolution counterparts. Certain SR methods, like the
ones used to enhance pictures taken with mobile phones[3],
use an array of images for input during scaling. In this paper,
only single image super resolution (SISR) methods will be
discussed. This means that the mapping will only consider a
single image for its input.

There are many super resolution techniques. Some com-
mon ones are nearest neighbor, bilinear, and bicubic inter-
polation. The strategy for each of these methods is to create
new pixels with reasonable intensity or color by using the
values of surrounding pixels. The quickest of these methods
is nearest neighbors. This algorithm only considers the pixel
nearest to the interpolation point. Bicubic and bilinear inter-
polation consider the surrounding 2x2 or 4x4 (respectively)
grid of pixels[7]. They use the weighted average of these
pixels to generate the value of the newly added pixel.
These algorithms are functional, but limited by artifacts[6].
Interpolation techniques do not differentiate between features
in an image; they apply an identical transformation to every
part of the image. Such a uniform approach is unable to
account for intricacies in an image and thus is limited in
effectiveness.

In recent years, deep learning techniques have been ap-
plied to super resolution. These approaches to super resolu-
tion have outperformed the previously mentioned techniques.
In this domain, performance is measured in peak signal-to-
noise ratio (PSNR). This metric measures the difference in

true pixel value and computed pixel value, weighted by the
maximum value a pixel could take. The most common deep
learning models applied to super resolution are based on the
ResNet[10] architecture. This architecture allows for very
deep networks to be trained. This is done by passing the
activation of shallower layers to deeper layers in the network
via skip connections. In this paper, we will explore enhanced
deep residual networks (EDSR)[9] and wide activation deep
residual networks (WDSR)[8]. We will also compare them
to rapid and accurate imaging super-resolution (RAISR)[2]
method. All of these networks will be trained and validated
on a dataset of MRI images.

II. RELATED WORK

Pixel Shuffling

During interpolation, filler pixels with value zero are added
to the image and then replaced with values inferred from
the surrounding pixel values. This process is not compatible
with deep learning models because the addition of zero is
not a differentiable operation. Thus, this process cannot be
applied within a deep learning model. Several deep learning
architectures still use interpolation on the image before any
learning is done. The RAISR algorithm applies interpolation
at the beginning[2]. As did early super resolution networks.
As the authors of the WDSR paper note, this choice is
computationally inefficient because it increases the size of
the input to the model by the square of the scaling factor[8].
Instead, both EDSR and WDSR rely on pixel shuffling (or
sub-pixel convolution). For some scaling factor s, this takes
the HxWxC image and performs a convolution to get a
HxWxs2C result. This result can then be reshaped to a
sHxsWxC image[16]. Thus, the image has increased by
a factor s from a learnable operation.

Loss Functions

Both EDSR and WDSR opted to use the mean absolute
error functions (L1). This decision was made as a result
of the findings of H. Zhao et al [11], which claimed that
the L1 loss performed better for image processing than the
L2 counterpart. We tested the validity of this claim in the
implementations of both EDSR and WDSR.

Batch Normalization

Batch normalization forces each layer to have mean zero
and a variance of one. This is meant to improve the stability
of training in deep learning networks. EDSR’s authors found
that this process contributed to worse performance. They
attribute this finding to less flexible feature ranges imposed



by normalization[9]. WDSR’s authors were in agreement
with this conclusion. However, they find that weight nor-
malization is a strong alternative to batch normalization
and no normalization[8]. We explore different normalization
techniques for both EDSR and WDSR.

III. METHODS

Dataset

It was necessary to train the models on a dataset that was
consistent with the potential use case we chose to explore.
Thus, the IXI brain development dataset [11] was used.
This dataset consists of sets of 600 MR scans from three
different hospitals. The data comes in the NIFTI format. For
each of the images in the dataset, three slices where taken
from the middle of the head. The resulting slices were then
formatted as 256x256 images. From those images, roughly
1, 000 images were taken from the three hospitals, evenly
distributed. These images were then resized to be 64x64,
using bicubic interpolation. Finally, 900 of these images are
used in our training set and 100 are used in our testing set.

RAISR

The RAISR method generates a hash table of patch filters
by solving a least squares minimization between a cheaply
upscaled low resolution (LR) patch and the true high reso-
lution (HR) patch. The ”cheap” upscaling method is up to
the implementer, but the authors chose bilinear interpolation.
This method allows for a filter to be constructed without con-
sidering every possible patch in the LR image. This feature
combined with some algebraic tricks improves training time.
A hash table is used to efficiently cluster the filter patches.
The keys are generated by considering the direction, strength,
and coherence of a patch via its gradient. To prevent over
sharpening a locally weighted blending method is used on the
image at the end of the upscaling process[2]. To summarize,
traditional methods apply cheap upscaling, which smooths
the sharp pixel contrast on edges, and creates more natural
lines. RAISR applies this traditional method and then learns
additional filters to be applied to patches of the image.
It does this efficiently by utilizing clustering of similar
patches and algebraic tricks to increase parallelization. In
our implementation, we referenced previous work from Jalali
Laboratory at UCLA [15].

Hashing in RAISR

Hashing is the core of RAISR. A well established hash
table in RAISR contains functions of local gradients as
keys, and corresponding pre-learned filters as entries. We use
eigenanalysis to compute the attributes of the gradient keys.
For every pixel value k, the neighboring

√
n pixels in each

of the four directions are considered for calculation. We then
combine the horizontal and vertical

√
n neighbors, and form

a nx2 matrix Gk, where n denotes the span of surrounding
pixels and 2 denotes number of axis. Next, we decompose the
eigenvector by performs matrix multiplication on GT

kGk to
create an 2x2 output matrix. In addition, we uses a Gaussian

2D filter [13] to generate a weight matrix and apply the
weight matrix to form a new matrix GT

kWkGk. From this
matrix, we can then obtain the largest eigenvector to compute
the three attributes of gradient key: gradient angle (θk), gra-
dient strength (λk), as well as coherence (µk) from equations
described in [2] and [14]. In out implementation, we used
24 for quantization factor of angle, 3 for quantization factor
of strength, and 3 for quantization factor of coherence.

Residual Blocks

Both EDSR and WDSR are residual networks. This means
that both networks use the residual block structure. Residual
networks are an evolution of convolutional networks. In both
cases, each layer feeds into the subsequent layer, but residual
networks also feed directly into deeper layers of the network.
In a typical network, the goal is to learn the the true output
Y . Given some input X it will produce an approximate of
the truth Y ′. In a residual network, the goal is to learn the
residual R. Given an input X the network will produce an
approximate of the truth in the form X +R.

Image Normalization

For the EDSR and WDSR models, normalization is ap-
plied to images before they are put into the network. This is
to ensure that the range of output values is consistent for any
given input in the dataset. Without this step, a difference in
scanning intensity has the potential to inhibit learning. This
is done for every input x as follow:

x = (x− Î)/127.5

where Î denotes average intensity. The reverse operation
(denormalization) is applied at the end of the network.

EDSR

The EDSR approach uses a convolutional layer followed
by a variable number of residual blocks. The structure of the
residual blocks used in EDSR is identical to that of ResNet
with the exception that batch normalization is removed. The
residual block ends with the input weights being added to
the output of a final convulational layer. In order to upscale
the image, an additional convolution is performed and then
pixel shuffling is used as a learnable interpolation alternative.

In our initial training attempts, weights pre-trained on
div2k were used[16]. For these trials, we used 16 residual
blocks and 64 feature maps per convolutional layer. After
this, the model was trained without any starting weights.
We followed the specifications used in by the EDSR paper’s
authors and used 32 residual blocks with 256 feature maps
per convolutional layer[9]. Of course, we expected better
performance because of the increased size. Below are the
details of the different EDSR specifications that were trained
(provided by keras model summary function).

batch norm residual blocks filters parameters
no 16 64 1.5M
no 32 256 43.1M
yes 32 256 43.2M



The author’s of the EDSR paper do not use batch normaliz-
tion because they found it performed worse. We wished to
confirm that batch normalization had a detrimental effect. We
ran training sessions with and without batch normalizaiton.
With batch normalization we had to use a batch size of 10
because of memory limitations. Without it we could use a
batch size of 16. However, we opted to use a batch size
of 10 because it would make plotting both together easier.
Both training sessions were 500 epochs. One final session
was run to generate the results to compare to WDSR. This
model had a batch size of 16, 32 residual blocks, and 256
filters per convolutional layer. This model was trained for
1,000 epochs.

Wide Activation

The idea that the authors of the WDSR paper had was
to expand the features more before the relu activation in
the residual blocks. They suspected that information from
the shallow layers was not flowing to deeper layers. It is
not clear why relu is restricting the flow of information.
However, the solution is to simply supply a higher volume
of information so that more gets through. To do this, the
author’s increased the number of filters before activation.
This can be implemented by multiplying the number of
filters by some expansion factor. For our trials we kept this
expansion factor constant at six. However, this expansions
factor is reported to decrease the accuracy of the model
unless the large convolutional kernel is broken into two
lower rank convolutional kernels[8]. Due to time constraints,
we could not test differences in performance with variable
expansion factors.

Weight Normalization

One of the original problems with neural networks was
the vanishing gradient problem. Weight normalization is one
of several methods used to address this issue. This process
sets the weights according to the following:

w =
g

||v||
· v

This has the effect of separating the magnitude of the weight
vectors from their direction. Then instead of minimizing loss
with respect to the weight w, we minimize with respect to g
and v are optimized using gradient descent. This separation
causes the norm of the activation to remain somewhat
constant; an effect similar to that of batch normalization.

WDSR

The WDSR model uses weight normalization. The struc-
ture is similar to the edsr model. There is a convolutional
layer followed by a series of residual blocks. Then there are
interwoven convolutions and pixel shuffling. Expansion fac-
tors are applied to the convolutions in its residual blocks. As
previously mentioned these expansion factors necessitate the
split of large convolutions into two low rank convolutions.
The difference in these two residual block structures can be
observed in figure 1.

In initial training attempts, weights from a model trained
on div2k were used[16]. For these trials, we used 32 residual
blocks and 32 feature maps per convolutional layer. Both
papers claimed that mean absolute error performed better
than mean squared error. To confirm this finding, we trained
our 32B, 32FM model with each loss. The model was
also trained from scratch using 16 residual blocks with
128 feature maps per convolutional layer[9]. Below are the
details of the different WDSR specifications that were trained
(provided by keras model summary function).

residual blocks filters parameters
32 32 615K
16 128 4.8M

Consistent with the EDSR paper, the author’s of WDSR
found batch normalization had negative effects on training.
However, unlike EDSR, the model does use weight normal-
ization. We ran training sessions with weight normalization,
batch normalization, and no normalization to confirm the
validity of their decisions. Each of these sessions was run
with 16 residual blocks and 128 feature maps. They were
trained for 500 epochs each. A final training session of 1,000
epochs was run to compare against the EDSR 1,000 epoch
trained model.

IV. RESULTS

MSE and MAE

Mean absolute error (L1 norm) is one of two error types
we will use. With this method, error is calculated according
to the following equation:

MAE =

∑
M,N |I1(m,n)− I2(m,n)|

M ∗N

Mean squared error (L2 norm) is the second error type
used. With this method, error is calculated according to the
following equation:

MSE =

∑
M,N [I1(m,n)− I2(m,n)]2

M ∗N

PSNR Computation

We derive our PSNR measurement from the MSE value.
PSNR is the ratio between a signal’s maximum power and
its noise. Higher PSNR values represents larger signal power
and thus higher reconstruction quality. PSNR is computed
using:

PSNR = 10 ∗ log10(
M2

MSE
)

where M represents the maximum potential fluctuation from
the type the input image. For example, for types such as
double and float, the max fluctuation would be 1, whereas
more commonly for 8 bit unsigned int type, the M value
would be 28 − 1 = 255.



Batch Normalization vs. No Normalization (EDSR)

The first training sessions were used to confirm the claim
that batch normalization was not suitable for super resolution
networks. The model trained without batch normalization
achieved greater accuracy than its counterpart (figure 2).
The model trained with batch normalization did have an
unexpectedly poor start as well. It is possible that the keras
implementation uses parameter initialization that effected its
performance for this task. As a result of this experimenta-
tion, we opted not to use batch normalization for our final
implementation of EDSR.

L1 vs. L2 Norm (WDSR)

When training with L1 and L2 norms we did not find a
clear better option. The L2 norm achieves slightly higher
accuracy (figure 3). However, this question should be ex-
plored more thoroughly. More trials are needed to determine
whether the L2 norm is consistently more accurate. Because
our results here were not decisive, we opted to default to
the L1 norm for our final EDSR model because it has a
smaller computational footprint and was the method used by
the paper’s authors.

Weight Normalization vs. Batch Normalization vs. No Nor-
malization (WDSR)

Our results when testing different normalization methods
were consistent with the findings detailed in the WDSR
paper. As visible in figure 4, the model trained with weight
normalization is more accurate than the others trained with
batch or no normalization. Also, similar to our finding for
EDSR, batch normalization performs worse than no nor-
malization. However, batch normalization begins at a much
lower accuracy level. Again, we suspect this is a result of
some accidental parameter initialization in keras. Nonethe-
less, the results were encouraging, so for the final training
model of WDSR, we opted to use weight normalization
instead of the alternatives.

EDSR vs. WDSR

EDSR won the NITRE 2017 award for super resolution
and WDSR took its place in 2018. It was reasonable to expect
that WDSR will outperform EDSR in our own independent
trials. In these training sessions, we ran for 1,000 epochs
( 57,000 steps) with a batch size of 16. WDSR did achieve
slightly better accuracy. With our validation test we found
that EDSR’s psnr to be 32.93 and WDSR’s psnr to be 33.17.
Also, as visible in figure 5, the WDSR model managed to
achieve higher accuracy with far fewer training epochs than
EDSR.

RAISR

We tried to change various parameters to obtain better
results. During our attempts, there are some interesting
results worth mentioning. As figure 6 indicates, with the
current implementation, lower upscaling factor creates higher

PSNR value. Higher PSNR value indicates that the model is
performing better. Thus, it agrees with the result in the sense
that the higher upscaling factor applied, the worse accuracy
it will have. An upscaling factor of 2 performs the best with
PSNR value of 28.5, as indicated in Figure 6. For consistency
with EDSR and WDSR, we kept the upscaling factor as 4
in our further experiments. Compared with the traditional
methods, RAISR computed PSNR value is better than the
bicubic counterpart.

Additionally, changing gradient size or modifying quan-
tization factor for strength does not produce a significant
effect in the output, evidenced through small change in the
amplitude of PSNR values.

Summary of Different Super Resolution Techniques
method train time PSNR
Bicubic NA 21.74
RAISR 30 minutes 22.92
EDSR 48 hours 32.93
WDSR 14 hours 33.17

V. DISCUSSION

When testing the L1 and L2 norms, we did not find
a significant difference in performance between the two.
We expected that the L1 norm would outperform the L2
norm because that is the finding reported by B. Lim et
al[9]. However, we had limited time to run trials and so
our results here should not be considered conclusive. More
models should be trained using the different norms to confirm
this finding for both WDSR and EDSR.

One of the key differences between the WDSR model
and the EDSR model is the use of weight normalization in
the former. The authors of both papers advise against batch
normalization and the authors of the WDSR paper present
weight normalization as an alternative . When performing
batch normalization, the mean and standard deviation of the
pre-activations in a batch is found at every step. These values
are then normalized. This solves the problem of exploding
and vanishing gradients. However, it has the undesirable
effect of causing each image’s output be a function of
all the other images in the batch. This is okay in some
settings because it might allow the model to generalize
more easily. However, for super resolution this can cause
features to be lost, hurting accuracy. As stated in our
results, for EDSR we found that batch normalization did
have a negative effect on accuracy. For WDSR, we found
that weight normalization performed best. Moving forward,
weight normalization seems to be a good alternative to batch
normalization for image restoration. It would be interesting
to try applying weight normalization to the EDSR model to
see if performance is improved.

We found that the WDSR model achieves the greatest
accuracy. Followed by EDSR, and then RAISR. This was
expected because WDSR had surpassed EDSR in the paper
from Yu et al[8]. However, RAISR performed worse than
expected. In previous tests, RAISR had typically performed
4x upscaling with PSNR in the range of 26 to 29 [2]. This



is likely due to dataset selections, as using different datasets
to train a model can result in different PSNR test values
[15]. The datasets used previously consisted of more typical
images. In such images, there is likely a greater variety of
common structures. MRIs tend to have curvature and very
subtle details. Additionally, the ground truth high resolution
images were only 256x256 pixels. Thus, the number of
learnable patches was far lower than typical training sets for
RAISR and mistakes in a few patches had the potential to
significantly derail results. In the future, we should rerun the
RAISR training on higher resolution MRI data to see how
an increase in information might improve results.

VI. CONCLUSION

Through our trials we tested two different deep learning
super resolution techniques. Both of these techniques outper-
formed RAISR. However, both EDSR and WDSR achieved
similar levels of accuracy. The main difference between the
two methods was in time to train. From figure 5, we observe
that the training for EDSR is more gradual than that of
WDSR.

It is hard to recommend that EDSR be used in place
of WDSR. The widened pre-activation layer combined with
weight normalization allowed WDSR to achieve state of the
art results with far fewer parameters than EDSR. However,
both of these models are not realistic for computationally
limited hospitals or users. In order to upscale an MRI using
WDSR, a doctor might have to wait for a central computer
to compute the upscaled image and foward it to their device.
However, if RAISR was the technique of choice than the
computation could be done locally. RAISR is shown to have
worked far worse on our dataset, which is at a normal
resolution for MRIs and was sampled from three different
hospitals. This suggests that while RAISR might be the
more computationally feasible option, it seems to be more
susceptible to oddities in the dataset than EDSR or WDSR.

All three of the options for super resolution output results
that outperform classic interpolation techniques. Yet, the
most computationally feasible option is only slightly more
accurate. If the resources are available, then WDSR is a good
model for this task. In the future it would be interesting to
test other super resolution techniques that are specifically de-
signed to work under computational constraints. For instance,
there are models for mobile phone super resolution tasks.
These types of models could make MRI super resolution
much more accessible.



VII. APPENDIX

Fig. 1. A comparison of the residual blocks used by EDSR and WDSR.
On the left is the residual block of the EDSR model. One the right is the
residual block of the WDSR model.

Fig. 2. PSNR during training with/without batch normalization for the
EDSR model. These values were calculated on a sample of 10 images from
the validation set at half epoch intervals. psnr-bn has batch normalization
and psnr-nn does not.

Fig. 3. PSNR during training with L1 norm vs L2 norm for the WDSR
model. These values were calculated on a sample of 10 images from the
validation set at half epoch intervals. psnr-mae is L1 norm and psnr-mse is
L2.

Fig. 4. PSNR during training with batch, weight, and no normalization on
the WDSR model. These values were calculated on a sample of 10 images
from the validation set at half epoch intervals. psnr-wn is weight, psnr-bn
is batch, and psnr-nn is none.

Fig. 5. PSNR during training for EDSR and WDSR. These values were
calculated on a sample of 10 images from the validation set at half epoch
intervals.

Fig. 6. Relationship between upscaling factor and PSNR values, and a
comparison between RAISR PSNR and bicubic PSNR.



Fig. 7. Example upscaling using the RAISR filters (4x scaling). Low
resolution image is on the left and the upscaled image is on the right

Fig. 8. Example upscaling using the EDSR model. Low resolution image
is on the left and the upscaled image is on the right

Fig. 9. Example upscaling using the WDSR model. Low resolution image
is on the left and the upscaled image is on the right
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