Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 40 million developers working together to host and review code, manage projects, and build software together.
Sign up
Fetching contributors…

{-# OPTIONS --type-in-type --without-K #-} | |
open import lib.Prelude | |
open Truncation | |
open Int | |
open LoopSpace | |
open Suspension | |
open import homotopy.Freudenthal | |
import homotopy.FreudenthalIteratedSuspension1 | |
open import homotopy.HStructure | |
open import homotopy.PiLessOfConnected | |
open import homotopy.Pi2HSusp | |
open import homotopy.KG1 | |
module homotopy.KGn where | |
-- KGn when G is π1(A) | |
module N+1 (A : Type) | |
(a0 : A) | |
(A-Connected : Connected (S (S -2)) A) | |
(A-level : NType (tl 1) A) | |
(H-A : H-Structure A a0) where | |
module FS = homotopy.FreudenthalIteratedSuspension1 A a0 A-Connected | |
KG : Positive → Type | |
KG n = Trunc (tlp n) (FS.Susp'^ n) | |
KG-Connected : ∀ (i : Nat) → Connected (tl i) (KG (i +1np)) | |
KG-Connected n = Connected.Trunc-connected _ _ _ (FS.Susp'^-Connected n) | |
KG-Connected'' : (n : Positive) → Connected (tlp n) (KG (n +1)) | |
KG-Connected'' n = coe (ap (NType -2) (ap2 Trunc (tl-pos2nat-tlp n) (ap KG (pos2nat-+1np n)))) (KG-Connected (pos2nat n)) | |
base^ : ∀ n → KG n | |
base^ n = [ FS.base'^ n ] | |
module Stable (k : Positive) | |
(n : Positive) | |
(indexing : Either (tlp k <tl tlp n) ((tlp k ≃ tlp n) × (tl 1 <tl tlp n))) where | |
stable : π k (KG n) (base^ n) ≃ π (k +1) (KG (n +1)) (base^ (n +1)) | |
stable = π k (KG n) (base^ n) ≃〈 π<=Trunc k n (lte indexing) (FS.base'^ n) 〉 | |
π k (FS.Susp'^ n) (FS.base'^ n) ≃〈 FS.Stable.stable k n (k<=n->k<=2n-2 k n indexing) 〉 | |
π (k +1) (FS.Susp'^ (n +1)) (FS.base'^ (n +1)) ≃〈 ! (π<=Trunc (k +1) (n +1) (<=SCong (lte indexing)) (FS.base'^ (n +1))) 〉 | |
π (k +1) (KG (n +1)) (base^ (n +1)) ∎ where | |
lte : (indexing : Either (tlp k <tl tlp n) ((tlp k ≃ tlp n) × (tl 1 <tl tlp n))) → tlp k <=tl tlp n | |
lte (Inl lt) = Inl lt | |
lte (Inr (eq , _)) = Inr eq | |
-- for talk | |
KG1 = A | |
stable2 : π (k +1) (KG (n +1)) (base^ (n +1)) ≃ π k (KG n) (base^ n) | |
stable2 = π (k +1) (KG (n +1)) (base^ (n +1)) ≃〈 (π<=Trunc (k +1) (n +1) (<=SCong (lte indexing)) (FS.base'^ (n +1))) 〉 | |
π (k +1) (Susp^ (S n -1pn) KG1) (FS.base'^ (n +1)) ≃〈 ! (FS.Stable.stable k n (k<=n->k<=2n-2 k n indexing)) 〉 | |
π k (Susp^ (n -1pn) KG1) (FS.base'^ n) ≃〈 ! (π<=Trunc k n (lte indexing) (FS.base'^ n)) 〉 | |
π k (KG n) (base^ n) ∎ | |
where | |
lte : (indexing : Either (tlp k <tl tlp n) ((tlp k ≃ tlp n) × (tl 1 <tl tlp n))) → tlp k <=tl tlp n | |
lte (Inl lt) = Inl lt | |
lte (Inr (eq , _)) = Inr eq | |
-- end for talk | |
module BelowDiagonal where | |
π1 : (n : Positive) → (π One (KG (n +1)) (base^ (n +1))) ≃ Unit | |
π1 n = π1Connected≃Unit (tlp n) _ (base^ (n +1)) (KG-Connected'' n) (1<=pos n) | |
πk : (k n : Positive) → (tlp k <tl tlp n) → π k (KG n) (base^ n) ≃ Unit | |
πk One One (ltSR (ltSR (ltSR ()))) | |
πk One (S n) lt = π1 n | |
πk (S k) One lt = Sums.abort (pos-not-<=0 k (Inl (lt-unS lt))) | |
πk (S k) (S n) lt = π (k +1) (KG (n +1)) (base^ (n +1)) ≃〈 ! (Stable.stable k n (Inl (lt-unS lt))) 〉 | |
π k (KG n) (base^ n) ≃〈 πk k n (lt-unS lt) 〉 | |
Unit ∎ | |
module OnDiagonal where | |
π1 : π One (KG One) (base^ One) ≃ π One A a0 | |
π1 = τ₀ (Path {Trunc (tl 1) A} [ a0 ] [ a0 ]) ≃〈 ap τ₀ (ap-Loop≃ One (UnTrunc.path _ _ A-level) (ap≃ (type≃β (UnTrunc.eqv _ _ A-level)))) 〉 | |
τ₀ (Path {A} a0 a0) ∎ | |
Two : Positive | |
Two = S One | |
π2 : π Two (KG Two) (base^ Two) ≃ π One A a0 | |
π2 = π Two (KG Two) (base^ Two) ≃〈 id 〉 | |
Trunc (tl 0) (Loop Two (Trunc (tl 2) (Susp A)) [ No ]) ≃〈 ap (Trunc (tl 0)) (Loop-Trunc0 Two) 〉 | |
Trunc (tl 0) (Trunc (tl 0) (Loop Two (Susp A) No)) ≃〈 FuseTrunc.path (tl 0) (tl 0) _ 〉 | |
Trunc (tl 0) (Loop Two (Susp A) No) ≃〈 π2Susp A a0 A-level A-Connected H-A 〉 | |
Trunc (tl 0) (Loop One A a0) ≃〈 id 〉 | |
π One A a0 ∎ | |
πn : (n : Positive) → π n (KG n) (base^ n) ≃ π One A a0 | |
πn One = π1 | |
πn (S One) = π2 | |
πn (S (S n)) = πn (S n) ∘ ! (Stable.stable (S n) (S n) (Inr (id , >pos->1 n (S n) ltS))) | |
module AboveDiagonal where | |
πabove : (k n : Positive) → tlp n <tl tlp k → π k (KG n) (base^ n) ≃ Unit | |
πabove k n lt = Contractible≃Unit (use-level { -2} (Trunc-level-better (Loop-level-> (tlp n) k Trunc-level lt))) | |
module Explicit (G : AbelianGroup) where | |
module KG1 = K1 (fst G) | |
module KGn = N+1 (KG1.KG1) KG1.base KG1.Pi0.KG1-Connected KG1.level (H-on-KG1.H-KG1 G) | |
KG : Positive -> Type | |
KG One = KG1.KG1 | |
KG (S n) = KGn.KG (S n) | |
KGbase : ∀ n → KG n | |
KGbase One = KG1.base | |
KGbase (S n) = KGn.base^ (S n) | |
πn-KGn-is-G : ∀ n → π n (KG n) (KGbase n) ≃ (Group.El (fst G)) | |
πn-KGn-is-G One = KG1.Pi1.π1[KGn]-is-G | |
πn-KGn-is-G (S n) = KG1.Pi1.π1[KGn]-is-G ∘ KGn.OnDiagonal.πn (S n) | |
πk-KGn-trivial : ∀ k n → Either (tlp k <tl tlp n) (tlp n <tl tlp k) | |
→ π k (KG n) (KGbase n) ≃ Unit | |
πk-KGn-trivial k One (Inl k<n) with pos-not-<=0 k (lt-unS-right k<n) | |
... | () | |
πk-KGn-trivial k (S n) (Inl k<n) = KGn.BelowDiagonal.πk k (S n) k<n | |
πk-KGn-trivial k One (Inr n<k) = Contractible≃Unit (use-level { -2} (Trunc-level-better (Loop-level-> (tlp One) k KG1.level n<k))) | |
πk-KGn-trivial k (S n) (Inr n<k) = KGn.AboveDiagonal.πabove k (S n) n<k | |
-- todo: | |
-- spectrum: | |
-- Path (KG n+1) No No ≃ KG n | |
-- set k = n, and cancel redundant truncations | |