
Power Iterations
MAHOUT-796

November 28, 2011

1 Formulae

1.1 Modified approach to power iter-
ations formula

Original formula

Q = qr
[(

AA>
)q AΩ

]
.Q,

B = Q>A.

Modified version

Y = AΩ,

B0 = [qr (Y) .Q]>A,

Bi =
[
qr
(
AB>i−1

)
.Q
]>

A, i ∈ [1..q] .

Notation qr (·) .Q means "compute QR decomposi-
tion of the argument and retain Q as a result".

Current combination of QJob and BtJob is essentially
producing B>0 = A>qr (AΩ) .Q. Intermediate QJob
results are QR blocks, not a final Q, so QJob is not
terribly meaningful without BtJob.

See also section §2 for quick recap of B0 pipeline de-
tails. B pipeline takes 2 tasks with only one global

sorter (map + map + combiner + shuffle-sort + re-
ducer).

It seems that the task boils down to figuring out al-
ternative pipeline modifications necessary to produce
B>i . After that, algorithm proceeds as before with
assumption of B ≡ Bq.

the existing processing will be equivalent to q = 0.

(Ted Dunning points out: Note that the QR de-
composition is not strictly necessary with q = 0 (see
https://issues.apache.org/jira/browse/MAHOUT-
792). Instead, the Cholesky decomposition can be
applied to Y′Y and the resulting triangular matrix
can be used to expose chunks of Q as required).

1.2 Bi pipeline (some new code)

Bi pipeline produces B>i = A>qr
(
AB>i−1

)
.Q.

This is very similar to B0 pipeline with specfics being
full multiplication of AB> in the first job and first
pass qr pushdown to the reducer of the first job:

• map1: AB>vertical blocks of outer products
are produced

• combiner1: presumming vertical blocks of
outer products of AB>.

• reducer1: finalizes summing up outer prod-
ucts of AB> and starts qrFirstPass

(
AB>

)
→

qr blocks.

1

https://issues.apache.org/jira/browse/MAHOUT-796
https://issues.apache.org/jira/browse/MAHOUT-792
https://issues.apache.org/jira/browse/MAHOUT-792


• mapper2, combiner2, reducer2 proceed ex-
actly as mapper2, combiner2, reducer2 in B0
pipeline]] and output final B>i with blocks cor-
responding to initial splits of A input.

Thus, this pipeline is 2 MR jobs with 2 sorts (map1
+ combiner1 + shuffle and sort + reducer1 + map2
+ combiner2 + shuffle and sort + reducer2).

1.3 Integration of Cholesky trick
route for computing power itera-
tions∗

Also note that whatever route is chosen to calculate
Bi = g(Yi), mathematically it should still be valid
∀i ∈ [0..q] for as long as we assume

Yi =
{

AΩ, i = 0;
AB>i−1, i > 0.

So, if Cholesky trick allows to produce B0 efficiently,
I see no reason why it could not be applied to pro-
ducing the Bi.

2 Quick recap of the B0
pipeline

2.1 QR

QR takes more than one map-only steps, but current
implementation requires only 2 map jobs and that
is thought to scale to a few billion rows assuming
k+p=500 and with upper limit on RAM in mappers
at 1G.

First QR step may also be pushed down to reducers
of previous job (something i have plans to have as an
option in B0 pipeline as well). Last QR step may be
optimized to be first part of further execution tree
in a MR job thus last Q product output may not be
required (and it is not in B0 pipeline).

∗Will cover in MAHOUT-797

2 QR steps do output intermediate blocks of Q and
R, but this from I/O standpoint is basically as effi-
cient as 1 MR multiplication job, if not even better,
because full MR outputs map results too and sends
them to reducers, but it also incurs sorts, which 2
map-only jobs do not incur.

The only I/O deficiency of 2 map-only jobs vs. 1 MR
job is that intermediate output would be replicated
thus increasing I/O but that can be addressed by
forcefully reducing replication factor on the output
of intermediate QR blocks.

2.2 Multiplications

• Q>A. This is a generic multiplication that
requires full MR jobs with significant pressure
on combiners that combine intermediate outer
products.

• There are exceptions that do not require com-
biners when accumulator of the result can be
fit in memory and accumulated in mappers
in line (These are BB> and potentially Y>Y
which require only upper-triangular accumula-
tor of (k + p)× (k + p) geometry).

• The product AΩ is of course much simpler since
the entire matrix Ω is always available without
taking any memory, so this is can be done inline
in either mapper or reducer.

2.3 Execution plan of the B0 pipeline

This, execution plan of the B0 pipeline is:

Map1: qrFirstPass (AΩ)→ intermediate qr blocks

Map2: [qrLastPass (qr blocks) .Q]>A → vertical
blocks of the outer products of B>0
Combiner2: summing up intermediate outer prod-
ucts of B>0 .

Reducer2: final sums of all outer products → B>0 .

Thus, currently it takes 1 map-only job + 1 MR job
to get to B0. (In other words, 2 jobs + 1 sorter).

2



The caveat is that this process is not currently terri-
bly performant while handling supersparse matrices
as Q blocks are treated as dense.

3


	Formulae
	Modified approach to power iterations formula
	Bi pipeline (some new code)
	Integration of Cholesky trick route for computing power iterationsWill cover in MAHOUT-797 

	Quick recap of the B0 pipeline
	QR
	Multiplications 
	Execution plan of the B0 pipeline 


