Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time

Deep Structured Active Contours (DSAC)

This code allows to train a CNN model to predict a good map of penalizations for the different term of an Active Contour Model (ACM) such that the result gets close to a set of ground truth contours, as presented in [1] (to appear in CVPR 2018).

A preprint of the paper can be found in https://arxiv.org/pdf/1803.06329.pdf

Datasets

Vaihingen buildings

Bing Huts

Usage

Download and unzip the datasets. Modify the dataset paths in the main files and run them with Python 3. Requires Tensorflow 1.4.

Please contact me at diego.marcos@wur.nl for questions and feedback.

[1] Marcos, D., Tuia, D., Kellenberger, B., Zhang, L., Bai, M., Liao, R. & Urtasun, R. (2018). Learning deep structured active contours end-to-end. arXiv preprint arXiv:1803.06329.

About

No description, website, or topics provided.

Resources

Releases

No releases published

Packages

No packages published

Languages