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Abstract

Eye-tracking is widely used throughout the scientific community, from vision science and 

psycholinguistics, to marketing and human-computer interaction. Surprisingly, there is little 

consistency and transparency in preprocessing steps, making replicability difficult. To increase 

replicability and transparency, a package in R (a free and widely used statistical programming 

environment) called gazeR was created to read in and preprocess two types of data from the SR 

EyeLink eye tracker: gaze position and pupil size. For gaze position data, gazeR has functions 

for: reading in raw eye-tracking data, formatting it for analysis, converting from gaze coordinates

to areas of interest, and binning and aggregating data. For data from pupillometry studies, the 

gazeR package has functions for: reading in and merging multiple raw pupil data files, removing 

observations with too much missing data, eliminating artifacts, blink identification and 

interpolation, subtractive baseline correction, and binning and aggregating data. The package is 

open-source and freely available for download and installation: 

https://github.com/dmirman/gazer. We provide step-by-step analyses of data from two tasks 

exemplifying the package’s capabilities.
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GAZER

GazeR: A package for processing gaze position and pupil size data

Introduction

Recent advances in eye-tracking technology make it a highly powerful and relatively 

inexpensive tool to gather fine-grained measures of the temporal dynamics of cognitive 

processing. Because of this, a growing number of fields from vision science and 

psycholinguistics, to marketing and human-computer interaction, have adopted this methodology.

Despite its growing presence, there is a lot of variability in how eye-tracking data are processed. 

While there are many open-source tools for processing eye-tracking data, written in a variety of 

programming languages (e.g., R, Python, or MATLAB), they implement different processing 

conventions, some of which could be sub-optimal. In addition, some of these tools are not 

accessible to all users because they require proprietary or costly software (e.g., MATLAB). In the

current climate where replicability and transparency are becoming more common, there is a need 

for a cross-platform, fully free implementation of standard practices in eye-tracking data 

processing. To this end, we have created the gazeR package in R (R Core Team 2018), which is a

free, open-source statistical programming language, to aid researchers in analyzing eye-tracking 

data that comes from visual world paradigms and pupil dilation experiments. The package is 

implemented in R because it is the dominant environment for statistical analysis and visualization

of eye-tracking data. Therefore, the gazeR package facilitates end-to-end analysis of eye-tracking

data within a single programming environment – from reading in raw data files to statistical 

analysis and generating figures. The initial release version of gazeR is designed for use with the 

SR EyeLink eye-tracker, and extensions to other eye-trackers should be fairly straightforward.
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GAZER

In this paper,  we provide a step-by-step walk through of how to use the gazeR package to 

analyze data from experiments in which the primary outcome measure is gaze position or pupil 

size. There are several conceptual or theoretical discussions on best practices when analyzing 

pupil and gaze data available elsewhere (see Mathôt et al., 2018; Winn, Wendt, Koelewijn, and 

Kuchinsky, 2018; Salverda & Tanenhaus, 2018). The main aim of the present paper is to 

illustrate and explain how to analyze gaze and pupil data in a more standardized way using 

gazeR, such that it may be used by researchers to analyze their own data. While there exist 

various packages and online resources to get started with eye-tracking, such materials are limited 

to the analysis of a single subject and do not represent what researchers actually want to do with 

their data.  A secondary aim is to facilitate reproducible and transparent preprocessing of these 

types of data, using conventional practices in eye-tracking data processing, and smoothing the 

transition from data preprocessing to data analysis and visualization. In the remainder of this 

report, we provide a step-by-step walk through of the installation and core functionality of the 

gazeR package.

Package Installation and Setup

Raw Data

At the time of this writing, the gazeR package supports processing of data collected using 

an SR Research EyeLink eye tracker and exported using SR Research Data Viewer software, 

which generates a comma-separated text file consisting of either the full set of individual samples

(“Sample Report”) or parsed fixations (“Fixation Report”).
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GAZER

Package Installation

The gazeR package can be installed along with helper packages using the remotes  

package:

library(remotes)
remotes::install_github("dmirman/gazer") #installs package from github

Once this has been completed, gazeR can be installed by typing the following into the 

command line:

library(gazer)
library(tidyverse)
library(zoo)
library(knitr)

Once the gazeR package has been installed you are now ready to start preprocessing data!

Preprocessing Gaze Position Data from the Visual World Paradigm

In a typical instantiation of the Visual World Paradigm (VWP), participants hear spoken 

instructions to manipulate or select one of several images on a computer screen or objects in the 

real world (Cooper, 1974; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). Decades of 

research have shown that the time course of fixation proportions – that is, the probability of 

fixating a particular object at a particular time – reflect the activation of that object’s mental 

representation. Figure 1 illustrates a typical VWP task. In this example (from Mirman & 

Graziano, 2012), the study examined semantic competition: the display contained a critical 

distractor that was related to the target either thematically (associates; e.g., dog-leash; shown in 

the left panel of Figure 1) or taxonomically (e.g., apple-pear). On each trial, the display 

contained a target object image, a semantic competitor (taxonomically or thematically related), 

and two unrelated distractors. The outcome measure was the probability of looks (fixation 
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GAZER

proportion) to a particular object at each point in time (example data shown in the right panel of 

Figure 1). 

Figure 1. Left: Example display from a VWP experiment. The target is dog, the critical 

semantic competitor is leash (thematically related to the target), and snowman and carriage are 

unrelated distractors. Right: Example data showing the time course of target word recognition 

(soild line) and semantic competition: the semantically related competitor (dotted line) was 

fixated more than the unrelated distractors (dashed line).

Gaze preprocessing requires three main steps:

(1) Reading in the data

(2) Assigning areas of interest

(3) Binning fixations
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GAZER

Reading in Gaze Data

Gaze data need to be read from the Fixation Report file generated by the EyeLink Data 

Viewer application. The read_fixation_report() function will read in the fixation report 

file. By default, this function will also generate two plots: (1) a scatter plot showing participant-

level proportion of time spent not in fixations and proportion of time spend with gaze outside the 

bounds of the screen (Figure 2, top), which can be used as calibration diagnostics; (2) scatter 

plots for each participant showing fixation positions and durations, along with a red rectangle that

shows the screen edges (Figure 2, bottom), which can be used to check for any systematic 

calibration issues. A pdf file is generated for all the participants and is saved in your directory. 

The non-fixation and out-of-bounds proportions can also be calculated using 

get_gaze_diagnostics() function.

Example1

gaze_path <- system.file("extdata", "FixData_v1_N15.xls", package = 
"gazer")
gaze <- read_fixation_report(gaze_path, plot_fix_scatter = TRUE)

1 The first line of code defines the path to the fixation report file included with the package. 

Because package installations differ across platforms and users, this line is necessary to define 

the user-specific path to the included data file. More generally, when a user wants to analyze their

own data set, the gaze_path variable will need to be the path to that data file. 
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Figure 2. Plots generated when reading in fixation data. Top: gaze diagnostics. Horizontal 

axis is non-fixation time, vertical axis is proportion of looking time outside of screen boundaries. 

High values on these dimensions suggest possibly poor calibration or track quality. Bottom: 

scatterplots of fixation locations. Red rectangle indicates screen boundaries, circle size indicates 

fixation duration (square-root scaled so that perceptual effect of circle size better matches fixation

duration). Most fixations should be in the corners (where the objects are) and the center cross. 

Systematic deviations or looks outside the suggest poor calibration.

For this example data set, the fixation report contains eye-tracking variables that are 

created by EyeLink (fixation duration, fixation position, pupil size, etc.) and experiment-specific 

values (positions of different objects, trial condition, participant accuracy and response time) that 

are provided by the experiment software (in this case, E-Prime).

Table 1. Visual World Data Description and Structure

Variable Class Contents Source

Subject
intege

r

Label of the data

file

SR

Eyelink

CURRENT_FIX_PUPIL double
Pupil size of the

current fixation

SR

Eyelink
CURRENT_FIX_DURATIO

N

intege

r

Duration of the

current fixation

SR

Eyelink

CURRENT_FIX_END
intege

r

Trial time when the

current fixation

ends

SR

Eyelink

CURRENT_FIX_START
intege

r

Trial time when the

current fixation

starts

SR

Eyelink
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CURRENT_FIX_X double
X coordinate of the

current fixation

SR

Eyelink

CURRENT_FIX_Y double
Y coordinate of the

current fixation

SR

Eyelink

CompPort
intege

r

Screen location of

Competitor image
E-Prime

Condition
intege

r

Trial condition

(practice, associate,

filler, taxonomic)

E-Prime

TargetLoc
intege

r

Screen location of

Target image
E-Prime

summary(gaze)

##     Subject     CURRENT_FIX_PUPIL CURRENT_FIX_DURATION 
CURRENT_FIX_END  
##  9160   :1109   Min.   :  36.0    Min.   :   2.0       Min.   :   
22.0  
##  9196   : 897   1st Qu.: 122.0    1st Qu.: 140.0       1st Qu.:  
919.5  
##  9115   : 882   Median : 165.0    Median : 210.0       Median : 
1886.0  
##  9187   : 839   Mean   : 176.3    Mean   : 279.6       Mean   : 
1958.0  
##  9061   : 787   3rd Qu.: 201.0    3rd Qu.: 328.0       3rd Qu.: 
2614.5  
##  9171   : 786   Max.   :9144.0    Max.   :2660.0       
Max.   :26184.0  
##  (Other):5616                                                      

##  CURRENT_FIX_START CURRENT_FIX_X     CURRENT_FIX_Y       CompPort  

##  Min.   :    4     Min.   :-3270.0   Min.   :-3270.0   image1:2794 

##  1st Qu.:  650     1st Qu.:  234.5   1st Qu.:  173.5   image2:2762 

##  Median : 1562     Median :  510.9   Median :  362.7   image3:2716 

##  Mean   : 1680     Mean   :  510.5   Mean   :  354.0   image4:2644 
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GAZER

##  3rd Qu.: 2334     3rd Qu.:  799.7   3rd Qu.:  522.7               

##  Max.   :25848     Max.   : 3270.0   Max.   : 3270.0               

##                                                                    

##      Condition     TargetLoc         ACC               RT       
##  associate:3059   image1:2769   Min.   :0.0000   Min.   : 2236  
##  filler   :3010   image2:2891   1st Qu.:1.0000   1st Qu.: 2957  
##  practice :1702   image3:2611   Median :1.0000   Median : 3237  
##  taxonomic:3145   image4:2645   Mean   :0.9898   Mean   : 3631  
##                                 3rd Qu.:1.0000   3rd Qu.: 3687  
##                                 Max.   :1.0000   Max.   :26105  
##                                                                 
##      Target     TargetLocation
##  barn   : 213   1:2769        
##  walker : 194   2:2891        
##  acorn  : 184   3:2611        
##  bandaid: 184   4:2645        
##  pillow : 181                 
##  falcon : 180                 
##  (Other):9780

Parsing areas of interest

The following preprocessing assumes that the interest areas (locations of objects) were 

static and that the fixation report includes columns indicating the location of each object for each 

trial. For this example, the objects were always presented in the four corners of the screen, though

which object was in which corner was randomized. The four possible image locations are labeled 

as image1, image2, image3, and image4. The TargetLoc variable identifies which of those 

locations was the target object and the CompPort variable identifies which of those locations was

the critical semantically related competitor. The gaze position was recorded in terms of (x,y) 

coordinates. In order to determine which (if any) of the objects were being fixated, first identify 

the locations of the target and competitor images, then use gaze coordinates to determine which 

image location (if any) was being fixated, then compare gaze location to target and competitor 
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GAZER

locations. If gaze location has already been coded in terms of interest areas (many experiment 

programs do this dynamically, as the data are being collected), then this step can be skipped.

First, extract the numbered location of the target and competitor in order to match the 

output of the assign_aoi function, which will assign a numbered area of interest for each 

fixation that falls within a defined area of interest (by default, 400x300 rectangles in the corners 

of the screen). This sub-step is somewhat specific to how image locations were labeled in this 

particular experiment, where the image location is the 6th character in the location string (e.g., 

image2), so that is the value that needs to be extracted:

gaze$TargetLocation <- as.numeric(substr(gaze$TargetLoc, 6, 6))
gaze$CompLocation <- as.numeric(substr(gaze$CompPort, 6, 6))

Then match fixation locations to areas of interest (AOI) based on screen coordinates:

gaze_aoi <- assign_aoi(gaze)
summary(gaze_aoi)

##     Subject     CURRENT_FIX_PUPIL CURRENT_FIX_DURATION 
CURRENT_FIX_END  
##  9160   :1109   Min.   :  36.0    Min.   :   2.0       Min.   :   
22.0  
##  9196   : 897   1st Qu.: 122.0    1st Qu.: 140.0       1st Qu.:  
919.5  
##  9115   : 882   Median : 165.0    Median : 210.0       Median : 
1886.0  
##  9187   : 839   Mean   : 176.3    Mean   : 279.6       Mean   : 
1958.0  
##  9061   : 787   3rd Qu.: 201.0    3rd Qu.: 328.0       3rd Qu.: 
2614.5  
##  9171   : 786   Max.   :9144.0    Max.   :2660.0       
Max.   :26184.0  
##  (Other):5616                                                      

##  CURRENT_FIX_START CURRENT_FIX_X     CURRENT_FIX_Y       CompPort  

##  Min.   :    4     Min.   :-3270.0   Min.   :-3270.0   image1:2794 

##  1st Qu.:  650     1st Qu.:  234.5   1st Qu.:  173.5   image2:2762 
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##  Median : 1562     Median :  510.9   Median :  362.7   image3:2716 

##  Mean   : 1680     Mean   :  510.5   Mean   :  354.0   image4:2644 

##  3rd Qu.: 2334     3rd Qu.:  799.7   3rd Qu.:  522.7               

##  Max.   :25848     Max.   : 3270.0   Max.   : 3270.0               

##                                                                    

##      Condition     TargetLoc         ACC               RT       
##  associate:3059   image1:2769   Min.   :0.0000   Min.   : 2236  
##  filler   :3010   image2:2891   1st Qu.:1.0000   1st Qu.: 2957  
##  practice :1702   image3:2611   Median :1.0000   Median : 3237  
##  taxonomic:3145   image4:2645   Mean   :0.9898   Mean   : 3631  
##                                 3rd Qu.:1.0000   3rd Qu.: 3687  
##                                 Max.   :1.0000   Max.   :26105  
##                                                                 
##      Target     TargetLocation  CompLocation        AOI       
##  barn   : 213   Min.   :1.00   Min.   :1.000   Min.   :0.000  
##  walker : 194   1st Qu.:1.00   1st Qu.:1.000   1st Qu.:0.000  
##  acorn  : 184   Median :2.00   Median :2.000   Median :2.000  
##  bandaid: 184   Mean   :2.47   Mean   :2.477   Mean   :1.721  
##  pillow : 181   3rd Qu.:3.00   3rd Qu.:3.000   3rd Qu.:3.000  
##  falcon : 180   Max.   :4.00   Max.   :4.000   Max.   :4.000  
##  (Other):9780                                  NA's   :1040

Now determine which object was being fixated by matching AOI codes with target and 

competitor locations:

gaze_aoi$Targ <- gaze_aoi$AOI == gaze_aoi$TargetLocation
gaze_aoi$Comp <- gaze_aoi$AOI == gaze_aoi$CompLocation
gaze_aoi$Unrelated <- 
      ((gaze_aoi$AOI != as.numeric(gaze_aoi$TargetLocation)) &
      (gaze_aoi$AOI != as.numeric(gaze_aoi$CompLocation)) &
      (gaze_aoi$AOI != 0) & !is.na(gaze_aoi$AOI))

Fixations to bins

Fixations can start and end at any time point, but most analysis strategies require aligned, 

equally-spaced time bins. The binify_fixations function will unpack the set of fixations into

a fixation time series consisting of standardized time bins with a size specified by the user 

(default is 20ms). In addition, it will drop columns that are no longer necessary – the fixation 
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start and end time and duration will no longer be needed, nor will the gaze position coordinates, 

since gaze position has now been recoded from coordinates to objects. The user needs to specify 

a list columns that should be kept after the binning is done. Converting fixations to bins can be 

somewhat slow.

gaze_bins <- binify_fixations(

  gaze = gaze_aoi, 

  keepCols = c("Subject", "Target", "Condition", "ACC", 

               "RT", "Targ", "Comp", "Unrelated"))

Aggregate Data

The specifics of data organization and aggregation will depend on the design and 

hypotheses of the specific study. For this example, the fixation locations need to be “gathered” 

from separate columns into a single column (see Supplemental Figure for a demonstration of this)

and “NA” values need to be re-coded as not-fixations:

gaze_obj <- gather(gaze_bins, 
                   key = "Object", value = "Fix", 
                   Targ, Comp, Unrelated, factor_key = TRUE)
# recode NA as not-fixating
gaze_obj$Fix <- replace(gaze_obj$Fix, is.na(gaze_obj$Fix), FALSE) 
summary(gaze_obj)

##    FixationID       timeBin           Subject              Target  

##  Min.   :    1   Min.   :   1.00   9115   : 43680   barn      :  
9552  
##  1st Qu.: 2732   1st Qu.:  45.00   9160   : 38553   walker    :  
8283  
##  Median : 5295   Median :  88.00   9061   : 36645   bandaid   :  
8256  
##  Mean   : 5458   Mean   :  95.09   9156   : 35202   acorn     :  
8019  
##  3rd Qu.: 8293   3rd Qu.: 130.00   9171   : 32793   soda      :  
7926  
##  Max.   :10916   Max.   :1310.00   9092   : 32289   paintbrush:  
7839  
##                                    (Other):265791   
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(Other)   :435078  
##      Condition           ACC               RT             Time     

##  associate:135507   Min.   :0.0000   Min.   : 2236   Min.   :   20 

##  filler   :135375   1st Qu.:1.0000   1st Qu.: 2947   1st Qu.:  900 

##  practice : 75618   Median :1.0000   Median : 3229   Median : 1760 

##  taxonomic:138453   Mean   :0.9895   Mean   : 3641   Mean   : 1902 

##                     3rd Qu.:1.0000   3rd Qu.: 3673   3rd Qu.: 2600 

##                     Max.   :1.0000   Max.   :26105   Max.   :26200 

##                                                                    

##        Object          Fix         
##  Targ     :161651   Mode :logical  
##  Comp     :161651   FALSE:379285   
##  Unrelated:161651   TRUE :105668   

In the final stage of preprocessing, the error and practice trials can be removed and the 

time window can be restricted, to make the data ready for aggregation. For this example, we 

group the trials by Subject, Condition, and Object type to calculate number of valid trials in each 

cell. Then also group by time bin to calculate the number of object fixations and mean fixation 

proportion in each time bin; that is, the time course of fixation. These are the subject-by-

condition time courses that would go into an analysis.

gaze_subj <- gaze_obj %>% 
# keep only correct-response trials, exclude practice condition, and

analyze time points only up to 3500ms after trial onset
  filter(ACC == 1, Condition != "practice", Time < 3500) %>% 
  # calculate number of valid trials for each subject-condition
  group_by(Subject, Condition, Object) %>% # for every unique 
combination of Subject, Condition, and Object…
  mutate(nTrials = length(unique(Target))) %>% # count the number of 
trials

ungroup() %>%
  # calculate number of fixations counts and proportions
  group_by(Subject, Condition, Object, Time) %>% # for every unique 
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combination of Subject, Condition, and Object in each time bin
  summarize(sumFix = sum(Fix), # number of fixations
            nTrials = unique(nTrials), # number of trials
            meanFix = sum(Fix)/unique(nTrials)) # fixation proportion
# there were two unrelated objects, so divide those proportions by 2
gaze_subj$meanFix[gaze_subj$Object == "Unrelated"] <- 
  gaze_subj$meanFix[gaze_subj$Object == "Unrelated"] / 2
summary(gaze_subj)

##     Subject          Condition          Object          Time     
##  9061   : 1566   associate:7800   Targ     :7790   Min.   :  20  
##  9062   : 1566   filler   :7758   Comp     :7790   1st Qu.: 880  
##  9092   : 1566   practice :   0   Unrelated:7790   Median :1740  
##  9115   : 1566   taxonomic:7812                    Mean   :1742  
##  9146   : 1566                                     3rd Qu.:2600  
##  9153   : 1566                                     Max.   :3480  
##  (Other):13974                                                   
##      sumFix          nTrials         meanFix       
##  Min.   : 0.000   Min.   :19.00   Min.   :0.00000  
##  1st Qu.: 0.000   1st Qu.:20.00   1st Qu.:0.00000  
##  Median : 2.000   Median :20.00   Median :0.07895  
##  Mean   : 3.495   Mean   :19.87   Mean   :0.15186  
##  3rd Qu.: 5.000   3rd Qu.:20.00   3rd Qu.:0.20000  
##  Max.   :20.000   Max.   :20.00   Max.   :1.00000  
## 

Plot fixation time course

After the fixations have been assigned to the object type and converted to time bins, they 

are ready for visualization and statistical analysis. Below is a plot of the time course of fixation 

proportions for each target type.

ggplot(gaze_subj, aes(Time, meanFix, color = Object)) + 
  facet_wrap(~ Condition) +
  stat_summary(fun.y = mean, geom = "line") +
  geom_vline(xintercept = 1300) +
  annotate("text", x=1300, y=0.9, label="Word onset", hjust=0)
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Figure 3. Time course of fixation proportions by condition. These data have been pre-

processed and are ready for statistical analysis.

Preprocessing Pupil Data from a Lexical Decison Task

Recent advances in eye-tracking technology have lead to a burgeoning interest in 

cognitive pupillometry (i.e., measurement of changes in pupil size as it relates to higher-level 

processing). According to a recent PubMed search, the number of studies employing 

pupillometry has grown exponentially since the first modern boom more than a half a century ago

(Kret & Sjak-Shie, 2018). The reason for this is quite simple: pupil size has been shown to be a 

reliable and valid index of mental effort or arousal across many domains, including word 

recognition (Geller, Still, & Morris, 2016), normal and impaired auditory perception (Zekveld et 

al., 2018), attention allocation (Karatekin, Couperus, & Marcus, 2004), working memory load 

(Granholm, Asarnow, Sarkin, & Dykes, 1996; Van Gerven, Paas, Van Merriënboer, & Schmidt, 

2004), face perception (Goldinger, He, and Papesh, 2009), and general cognitive processing 

(Murphy et al., 2014). While there are a number of good open-source programs available in R to 

18

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408



GAZER

analyze pupil data (see Forbes, 2019; Tsukahara, 2018), there are not many walkthroughs 

demonstrating how to go from raw data to fully pre-processed data. A recent methods review by 

Winn et al. (2018) describes and illustrates general principles like blink detection, interpolation, 

and filtering. The gazeR package includes functions for implementing these steps and here we 

demonstrate their use. 

To demonstrate analysis of pupil data, we will be using an example data set containing 

data from a lexical decision task. In this task, participants (N=41) judged the lexicality of printed 

and cursive stimuli while pupil diameter was recorded. Because cursive stimuli are non-

segmented and could be ambiguous, it was predicted that recognizing cursive stimuli would 

require more effort than printed words (cf., Barnhart & Goldinger, 2010; Geller, Still, Dark, & 

Carpenter, 2018), resulting in larger pupil dilation.

Preprocessing pupil data requires the following steps:

(1) Read in data

(2) De-blinking

o Extending blinks

o Interpolation

(4) Smoothing

(5) Baseline correction

(6) Re-scaling

(7) Artifact Rejection 

o Missing data

o Unlikely pupil values
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o Median absolute deviation (MAD)

(8) Trial Clipping

(9) Decimating/Downsampling

(10) Aggregation

Reading in Pupil Data

In order for the pupil functions to work properly, the Sample Report must be generated 

with the columns below. The functions will not work if these columns are not present in the 

Sample Report. Other columns should be included if needed.

Table 1. Variables Needed to Process Pupil Data 

Names
RECORDING_SESSION_LABEL
TRIAL_INDEX
AVERAGE_IN_BLINK, RIGHT_IN_BLKINK, or LEFT_IN_BLINK
TIMESTAMP
AVERAGE_PUPIL_SIZE, RIGHT_PUPIL_SIZE,  or LEFT_PUPIL 

SIZE
IP_START_TIME
SAMPLE_MESSAGE

If you generated separate sample reports for each participant, the function 

merge_pupil will take all your pupil files from a folder path and merge them together. It 

will also rename variables, make all variable names lowercase, and add a new column, 

time, which places time in ms instead of tracker time. You must first specify a list of pupil 

data files, then you can call the merge_pupil function to aggregate your data. Depending 

on the number of subjects and the sampling rate at experiment runtime, this could take a 

few minutes. There are two arguments, blink_colname and pupil_colname. It is 

important you specify what these variables are called in your data set so the pipeline runs 
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smoothly. In our example dataset, we used the AVERAGE_IN_BLINK and 

AVERAGE_PUPIL_SIZE columns. 

# where to find all your pupil files
file_list <- list.files(path = '', pattern = ".xls") 
pupil_files <- merge_pupil(
  file_list, 
  blink_colname = “AVERAGE_IN_BLINK”, 
  pupil_colname = “AVERAGE_PUPIL_SIZE”
) 

Due to processing constraints, we are using a Sample Report  that includes data from

a few participants. If you would like to try out the merge_pupil function you can download

all the participant files on Open Science Framework (OSF) here:   https://osf.io/fzu38/. 

While reading in the data is pretty fast (even with many participants), some of the functions

performed on the data can be computationally intensive. 

#download Sample Report from Github
pupil_path <- system.file("extdata", "Pupil_file1.xls", package = 
"gazer")
#read in data
pupil_files <- read.table(pupil_path)
Table 3. Pupil Data Description and Structure

Variable Class Contents Source

subject integer Label of the data file
SR

Eyelink

trial integer Trial number
SR

Eyelink

blink integer Whether eye was in blink
SR

Eyelink

pupil integer
pupil size on the current

sample

SR

Eyelink

accuracy integer 0=incorrect; 1=correct
SR

Eyelink
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cb integer counterbalance list
SR

Eyelink

key_pressed integer response made
SR

Eyelink

rt integer

condition (word,

nonword transposed

letter,  2L substition

nonword)

SR

Eyelink

alteration integer

Trial condition (practice,

associate, filler,

taxonomic)

SR

Eyelink

block integer Block number
SR

Eyelink

item
characte

r
item presented

SR

Eyelink

response integer button pressed
SR

Eyelink

script integer
condition (cursive, type-

print)

SR

Eyelink

target
characte

r
eye in saccade

SR

Eyelink

average_in_saccad

e
integer Start time of the interest

period

SR

Eyelink

ip_start_time integer

Start time (in

milliseconds since

EyeLink tracker was

Eyelink

SR

Eyelink
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sample_message
characte

r

Message text printed out

during current sample

SR

Eyelink

timestamp integer

Time lapsed (in

milliseconds) since eye-

tracker started

SR

Eyelink

time integer ip_start_time - timestamp
SR

Eyelink

Behavioral Data (Optional)

If you are also interested in analyzing behavioral data (RTs and accuracy), the 

behave_data function will cull the important behavioral data from the Sample Report. The 

function will return a data frame without errors when omiterrors=TRUE or a data frame with 

errors for accuracy/error analysis when omiterrors=FALSE. The columns relevant for your 

experiment need to be specified within the behave_col names argument. This function does not

eliminate outliers; you must use your preferred method. Grange’s (2015) trimr package 

implements multiple standard methods of outlier exclusion (https://github.com/JimGrange/trimr).

##      subject  script alteration trial     target accuracy   rt 
block cb
## 1        10b   print       word     1 sprigp.png        1 2539     
0  2
## 960      10b cursive       nwtl     2  nypmh.png        1 3254     
0  2
## 2117     10b Cursive       nwtl     3 seivep.png        0 1755     
0  2
## 2882     10b cursive       word     4  mourn.png        1 2435     
0  2
## 3821     10b Cursive       word     5  noisy.png        1 2200     
1  2
## 5197     10b Cursive       word     6  ridge.png        1 1952     
1  2
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For this example, we will exclude participants with overall accuracy lower than 75% and 

items with accuracy below 60%. Using the file generated above with omiterrors=FALSE, we 

can calculate subject and item accuracy, merge those values into the main data set, and use them 

as exclusion criteria.

Itemacc <- behave_data %>% 
  group_by(target) %>% 
  summarise(
    # overall item accuracy and word condition only
    meanitemacc = mean(accuracy[block>0 & alteration=="word"])
  ) 
    
subacc <- behave_data %>% 
  group_by(subject) %>% 
  summarise(
    #subject accuracy and word condition only
    meansubacc = mean(accuracy[block > 0 & alteration == "word"])
  ) 
    
dataraw1 <- merge(pupil_files, itemacc) # merge into main ds
dataraw2 <- merge(dataraw1, subacc) # merge into main ds

We can now restrict preprocessing to valid trials by removing practice blocks, trials with 

incorrect responses, conditions that are not words, subjects with accuracy below 75%, and items 

with accuracy below 60%. 

pupil_files1 <- dataraw2 %>%
# filter out practice blocks, incorrect responses, nonword trials, low
item and subj acc
  filter(
    block > 0, accuracy == 1, alteration == "word", 
     meanitemacc >= .60, meansubacc >= .75
  ) %>% 
  arrange(subject, target, trial, time)

Pupil Preprocessing is now ready to begin!
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De-blinking

An imporatant first step in preprocessing pupil data is de-blinking. A major artifact in 

pupil data comes from blinking. When the eye blinks, the pupil momentarily becomes smaller as 

it is occluded more and more by the eyelids, making computing the center of the pupil difficult. 

Eye-trackers interpret this as a fast shift in pupil position and will classify it as a saccade. 

Additionally, the estimate of pupil size will rapidly decrease as the pupil occupies less of the 

camera image. This process happens in reverse (albeit a bit more slowly) as the eye is opening, so

blinks are always flanked by a saccade artifact. Occasionally there will be some additional 

artifacts, such as short fixations preceding or following the blink. It is thus advisable to de-blink 

the data, which involves identifying blinks, removing them, and then interpolating data during the

blink period and even across a longer segment that extends before and after the blink. Identifying 

blinks is rather trivial as the EyeLink records contain a blink column with 0s or 1s denoting 

absence or presence of a blink.  Less trivial is deciding how many data points you remove before 

and after the blink. It has generally been recommended that data 100 ms before and after the 

blink should be eliminated. The gazeR package contains several functions for dealing with blinks.

If you are exporting files from SR, there is an option to extend blinks within Data Viewer. There 

are several ways one can deal with blinks (see Hershman, Henik, & Cohen, 2018). One method is

to eliminate all blinks from a trial. This is generally not recommended as it can eliminate too 

much data, resulting in a loss of power. A more acceptable approach, and the one implemented in

gazeR, is to extend the time window around the blinks so the interpolation starts 100-200 ms 

before the blink and after the blink (Nyström, Hooge, & Andersson, 2016; Satterthwaite et al., 

2007). Extending the time window around the blinks eliminates spurious samples caused by the 

closing and opening of the eyelids.  If you have not done this before exporting into R, you can 
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use the extend_blinks function. The fillback argument extends blinks back in time and the 

fillforward argument extends blinks forward in time. This function is robust to different sampling

rates — make sure you specify the tracker sampling rate in the hz argument. For this experiment,

the tracker sampled at 250Hz (once every 4 ms) and blinks were extended 100 ms forward and 

backward in time.

pup_extend<- pup_files1 %>% 
  group_by(subject, trial) %>% 
  mutate(extendpupil=extend_blinks(pupil, fillback=100, 
fillforward=100, hz=250))
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Interpolation

Missing data stemming from blinks or failure of the eye tracker need to be interpolated. 

The interpolate_pupil function searches the data and reconstructs the pupil size for each 

trial from the relevant samples using either linear interpolation (Bradley, Miccoli, Escrig, & 

Lang, 2008; Cohen et al., 2015; Siegle, Steinhauer, Carter, Ramel, & Thase, 2003) or cubic-

spline interpolation (Mathôt, 2018). Considering the short duration of blinks and the relatively 

low speed of blinks, the choice of linear versus cubic interpolation will ultimately have negligible

effect. If extendblinks = FALSE, samples with blinks are turned into “NA”s and are then 

interpolated linearly or by cubic interpolation. This function returns a tibble with a column called 

interp which contains interpolated values from the pupil column in your data (e.g., average, 

left, or right pupil size). As an important note, if the Data Viewer was used to extend blinks, the 

extendblinks argument should be set to FALSE. If gazer::extend_blinks was used, the 

extendblink argument should be set to TRUE. It is important to note that SR only extends the 

blink column and does not set pupil size estimates during blinks to “NA” in the Sample Report. 

For this example, we will set extendblinks to TRUE and use linear interpolation. You can use 

cubic interpolation by changing type to “cubic.” 

pup_interp <- interpolate_pupil(
  pup_extend, 
  extendblinks = TRUE, 
  type = "linear")

## Performing linear interpolation

It is a good idea to check that the interpolation did what it was supposed to do. The plot 

below shows data from one trial with artifacts removed, the observed data are shown in black and

the interpolated data are shown in green. Looks good!
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Figure 4. Linear interpolation for one trial

Smoothing

Pupil data can be extremely noisy! There are many ways to smooth pupil data. Two 

common methods are implemented in gazeR: n-point moving average and a hanning filter. To 

smooth the data using a n-point moving average, call the moving_average_pupil function, 

and specify the column that contains the interpolated pupil values and the size (in samples) of the 

moving average window. In this example, we use a 5-point moving average (n=5). The variable 

movingavgpup is returned with the smoothed pupil data. Low-pass filtering is something that 

might be included in a future update to the package. 

rolling_mean_pupil_average <- as.data.frame(pup_interp) %>% #must be 
in a data.frame
  select(
    subject, trial, target, pupil, script, alteration, 
    time, interp, sample_message
  ) %>%

  mutate(movingavgpup = moving_average_pupil(interp, n = 5))
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Baseline correction

To control for variability in overall pupil size arising from non-task related (tonic) state of

arousal, baseline correction is commonly used (but see Attard-Johnson, Ó Ciardha, & 

Bindemann, 2019). The two most popular types of baseline correction to identify task-evoked 

dilation are subtractive (pupil size - baseline) and divisive (pupil size / baseline). Subtractive 

baseline correction is more common in the literature (cf., Beatty, 1982; Laeng et al., 2012; 

Zekveld, Koelewijn, & Kramer, 2018), and this practice has been supported on the basis of a 

study by Reilly, Kelly, Kim, Jett, and Zuckerman (2018) that argued for linearity of the pupil 

response, independent of baseline size2. The baseline_correction_pupil function finds the

median pupil size during a specified baseline period for each trial and performs a subtraction 

baseline correction by default  (see Mathôt et al., 2018, for argument that baseline correction 

should be done using the median, and not the mean, baseline value). By changing the 

baseline_method argument to “div”, you will get proportion change from baseline.  In this 

example, subtractive baseline correction is applied to pupil size in arbitrary units (pupil_colnames

= "movingavgpup") though the same can be done for pupil size in mm or z-score. The baseline 

window is the 500ms immediately preceding stimulus onset, which in this study is 500-1000ms 

after trial onset.

2 Reilly et al. varied luminance in order to elicit different baseline sizes, but that is not the typical 

source of baseline pupil size differences. Tonic baseline pupil size differences due to arousal, age,

or other variables may affect the range of dilation reactivity in ways that differ from changes that 

are elicited by changes in luminance. Additonally, Wang et al. (2018) suggested that brighter 

lighting condition elicit larger dilations, on account of suppression of the parasympathetic 

suppressive influence on dilations. These factors can be used to motivate divisive baseline 

correction. 
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baseline_pupil <- baseline_correction_pupil(
  rolling_mean_pupil_average, 
  pupil_colnames = "movingavgpup", 
  baseline_window = c(500, 1000), 
  baseline_method = ‘sub’
)
## Calculating baseline

## Calculating median baseline from:500-1000

## Merging baseline

## Performing subtractive baseline correction

baseline_pupil

## # A tibble: 11,031 x 11
## # Groups:   subject, trial, time [11,031]
##    subject trial  time baseline target script alteration interp
##    <fct>   <int> <int>    <dbl> <fct>  <fct>  <fct>       <dbl>
##  1 10b         5   680    4130. noisy… Cursi… word         4373
##  2 10b         5   684    4253. noisy… Cursi… word         4375
##  3 10b         5   688    4379. noisy… Cursi… word         4374
##  4 10b         5   692    4382. noisy… Cursi… word         4382
##  5 10b         5   696    4386  noisy… Cursi… word         4389
##  6 10b         5   700    4390. noisy… Cursi… word         4392
##  7 10b         5   704    4395  noisy… Cursi… word         4393
##  8 10b         5   708    4399. noisy… Cursi… word         4396
##  9 10b         5   712    4403. noisy… Cursi… word         4405
## 10 10b         5   716    4407  noisy… Cursi… word         4408
## # … with 11,021 more rows, and 3 more variables: sample_message 
<fct>,
## #   pupil1 <dbl>, baselinecorrectedp <dbl>

Re-Scaling

So far, the analysis steps have used arbitrary pupil units. It is advised that these be 

transformed into a standardized unit in order to make comparisons between individuals. Among 

the numerous options that have been used, there are z-scores (see Cohen, Moyal, & Henik, 2015; 

Einhauser, Stout, Koch, & Carter, 2008; Kang & Wheatley, 2015), absolute changes in mm (e.g., 

Beatty, 1982; Geller, Landrigan, & Mirman, 2019; Geller et al., 2016), proportional change 
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relative to baseline (Winn, 2016), and absolute change relative to dynamic range of pupil 

reactivity elicited by the light reflex (Piquado, Isaacowitz, & Wingfield, 2010). To convert 

arbitrary pupil size to mm, we measured the scaling factor by running a short experiment with an 

artificial pupil (5 mm in size) and calculated the average pupil size in arbitrary units. At a fixed 

camera-to-pupil distance of 90 cm, the 5mm pupil was coded as 5570.29 arbitrary pixel units. 

This information was entered into the equation below to convert arbitrary units to mm. 

Specifically, the smoothed pupil size value is multiplied by 5/5570.29 to re-scale the values to 

mm.

timebinsmm <- rolling_mean_pupil_average  %>% 
  mutate(pupilmm = (movingavgpup * 5)/5570.29)

Alternatively, the arbitrary pupil units can be converted to a z-score using the scale 

function.

timebinsz<- rolling_mean_pupil_average %>% 
  group_by(subject, trial) %>%
  mutate(pupilz = scale(movingavgpup))

Artifact Rejection

Missingness. The count_missing_pupil function will remove subjects and items that 

have a large amount of missing data – the threshold for “a large amount” is specified by the 

researcher. It has been recommended by Winn et al. (2018) that a reasonable threshold is 20%, 

but that the exact importance of missing data might be weighted by specific timing landmarks in 

the experiment trials. For this example, we have set the missingthresh argument to .2. The 

count_missing_pupil() function returns the percentage of subjects and trials that have been 

excluded for reporting.

pup_missing <- count_missing_pupil (baseline_pupil, missingthresh =
.2)
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## % trials excluded:0.011

## subjects taken out:

Spurious pupil values. Unlikley pupil values that are too small and too large should be 

removed from the data (Mathôt et al., 2018; Winn et al., 2018). Mathôt (2018) recommended 

against removing data based on a subject-independent fixed criterion (e.g., above or below a SD 

cut-off or a specified lower and upper pupil boundary). This is due to the inherent heterogeneity 

of pupil sizes across experiments. Instead, Mathôt (2018) recommend visual inspection to 

determine unlikely pupil values. This can be done using a simple histogram to plot the 

pupillometric data. Based on the histogram below, it seems reasonable to remove pupil sizes less 

than 2500 and greater than 5000.

puphist <- ggplot(pup_extend, aes(x = extendpupil)) + 
  geom_histogram(aes(y = ..count..), colour = "green", binwidth = 0.5)
+ 
  geom_vline(xintercept = 2500, linetype="dotted") +
  geom_vline(xintercept = 5100, linetype="dotted") + 
  xlab("Pupil Size") + 
  ylab("Count") + 
  theme_bw()

print(puphist)
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Figure 5. Histogram of recorded pupil sizes throughout experiment for all 41 participants. 

pup_outliers <- pup_missing %>% 
  # based on visual inspection
  dplyr::filter(interp  >= 2500, interp <= 5100) 

Median absolute deviation (MAD). After interpolation, it is a good idea to perfrom a 

second pass on your data to make sure  that the data is not contaminated by rapid pupil size 

disturbances.   These artifacts can be detected using the median absolute deviation (Kret & Sjak-

Shie, 2018). The speed_dilation function calculates the normalized dilation speed, which is 

the absolute change in pupil size between samples divided by the temporal separation between 

them. To detect outliers, the median absolute deviation is calculated from the speed dilation 

variable, multiplied by a constant (in this case 16), and added to the median dilation speed 

variable using the calc_mad function–values above this threshold are then removed.

mad_removal <-pup_outliers  %>% 
  group_by(subject, trial) %>% 
  mutate(speed=speed_pupil(interp,time)) %>% 
  mutate(MAD=calc_mad(speed, n = 16)) %>% 
  filter(speed < MAD)

Event Time Alignment

In most psychological experiments, each trial includes several events. In the example 

experiment, each trial began with a fixation screen (small cross in the center of the screen) and 

the stimulus of interest appeared on screen 1s after trial onset. These events are documented in 

the data file: the onset of the target is denoted by the trial message “target.” We can use this 

information to align the data so that time=0 corresponds to stimulus onset (i.e., the analysis 

window of interest) rather than trial onset. The onset_pupil function performs this alignment 

using three arguments: time column, sample message column, and the event of interest (“target” 
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in our example). In the output below, we can see below that our experiment now starts at zero, 

when the target was displayed on screen.

baseline_pupil_onset <- baseline_pupil %>% 
  group_by(subject, trial) %>%  
  mutate(
    time_zero = onset_pupil (time, sample_message, event = 
c("target"))
  ) %>%
  ungroup() %>% 
  filter(time_zero >= 0, time_zero <= 3000) %>%
  select(
    subject, trial, time, script, time_zero, 
    sample_message, baselinecorrectedp
  )

baseline_pupil_onset

## # A tibble: 66,126 x 7
##    subject trial  time script  time_zero sample_message 
baselinecorrectedp
##    <fct>   <int> <int> <fct>       <int> <fct>                     
<dbl>
##  1 10b        11   348 Cursive         0 target                    
-11.9
##  2 10b        11   352 Cursive         4 <NA>                      
-15.5
##  3 10b        11   356 Cursive         8 <NA>                      
-19.1
##  4 10b        11   360 Cursive        12 <NA>                      
-24.1
##  5 10b        11   364 Cursive        16 <NA>                      
-28.5
##  6 10b        11   368 Cursive        20 <NA>                      
-32.1
##  7 10b        11   372 Cursive        24 <NA>                      
-34.5
##  8 10b        11   376 Cursive        28 <NA>                      
-35.7
##  9 10b        11   380 Cursive        32 <NA>                      
-35.9
## 10 10b        11   384 Cursive        36 <NA>                      
-37.5
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Downsampling/Decimation

If the data are recorded at a relatively high sampling frequency (e.g., 250Hz in this 

example), it may be useful to aggregate the the data into time bins that are somewhat larger than 

the sample rate (users can specify a time bin size to use). The downsample_pupil function 

takes your data and a specified bin length (in ms) as arguments and returns a tibble with a column

called timebins.

timebins1 <- downsample_pupil(baseline_pupil_onset, bin.length=200)

timebins1

## # A tibble: 66,126 x 8
##    subject trial  time script time_zero sample_message 
baselinecorrect…
##    <fct>   <int> <int> <fct>      <int> <fct>                     
<dbl>
##  1 10b        11   348 Cursi…         0 target                    -
11.9
##  2 10b        11   352 Cursi…         4 <NA>                      -
15.5
##  3 10b        11   356 Cursi…         8 <NA>                      -
19.1
##  4 10b        11   360 Cursi…        12 <NA>                      -
24.1
##  5 10b        11   364 Cursi…        16 <NA>                      -
28.5
##  6 10b        11   368 Cursi…        20 <NA>                      -
32.1
##  7 10b        11   372 Cursi…        24 <NA>                      -
34.5
##  8 10b        11   376 Cursi…        28 <NA>                      -
35.7
##  9 10b        11   380 Cursi…        32 <NA>                      -
35.9
## 10 10b        11   384 Cursi…        36 <NA>                      -
37.5
## # … with 66,116 more rows, and 1 more variable: timebins <dbl>

Aggregating Data

To further simplify the data, they can be aggregated to produce an average pupil diameter 

for each subject in each condition at each time bin.
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agg_subject<- timebins1 %>% 
  dplyr::group_by(subject, script,timebins) %>% 

dplyr::summarise(aggbaseline=mean(baselinecorrectedp)) %>% 
  ungroup()

## # A tibble: 80 x 4
##    subject script  timebins aggbaseline
##    <fct>   <fct>      <dbl>       <dbl>
##  1 10b     Cursive        0       16.0 
##  2 10b     Cursive      200        3.03
##  3 10b     Cursive      400       -3.92
##  4 10b     Cursive      600       10.8 
##  5 10b     Cursive      800       38.8 
##  6 10b     Cursive     1000       74.8 
##  7 10b     Cursive     1200      102.  
##  8 10b     Cursive     1400      113.  
##  9 10b     Cursive     1600      114.  

Pupillary Data Visualization

After baseline-correction and aggregation, the data are ready for visualization and 

statistical analysis. The pre-processed data produced by gazeR are highly flexible and compatible

with different visualization strategies. Below is a plot of the time course for the baseline-

corrected pupillary response between cursive and type-print stimuli. A cursory look suggests that 

that recognizing cursive words resulted in a larger pupillary response at around 1600-2500ms.

data(cursive_new)

## # A tibble: 6 x 4
##   subject script  timebins aggbaseline
##   <chr>   <chr>      <dbl>       <dbl>
## 1 10b     cursive        0       15.7 
## 2 10b     cursive      200        3.14
## 3 10b     cursive      400       -4.53
## 4 10b     cursive      600        6.63
## 5 10b     cursive      800       34.6 
## 6 10b     cursive     1000       73.8

runningSE <- cursive_new %>%
  filter(timebins <= 3500) %>% 
  split(.$timebins) %>% 
  map(~Rmisc::summarySEwithin(data = ., measurevar = "aggbaseline", 
withinvars = "script", idvar="subject"))
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cur1 <- filter(cursive_new, timebins <= 3500)

WSCI <- map_df(runningSE, extract) %>%
  mutate(Time = rep(unique(cur1$timebins), each = 2))
    #Note, you'll have to change 2 to match the number of conditions

WSCI.plot <- ggplot(WSCI) + geom_line(aes(Time, aggbaseline, 
linetype=script, color=script), size=3) +
  theme_bw() +
  labs(x = "Time (ms)",y = "Baseline-corrected pupil size (a.u)") +
  geom_hline(yintercept = 0,linetype = "dashed") +
  geom_ribbon(data = WSCI, aes(x=Time, ymin = aggbaseline-ci, ymax = 
aggbaseline+ci, linetype=script, colour=script),  alpha = 0.3) +
  theme(axis.title.y=element_text(size = 14, face="bold"), 
axis.title.x = element_text(size=14,   face="bold"), 
axis.text.x=element_text(size = 12, 
face="bold"),axis.text.y=element_text(size=12, face="bold"))

WSCI.plot

Figure 6. Pupillary time course as a function of script type. Ribbons denote 95% CIs.

In addition to pupillary time course, it is common to use summary measures: mean and 

max pupil size. Below you can see how to construct a graph based on mean and max pupil size 

using the ggstatsplot package (Patil, 2018). 
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data(cursive_new)
library(ggstatsplot)

mean_pup<-subset(cursive_new, timebins<=2500) %>% 
  group_by(subject, script) %>%
  summarise(meanpup=mean(aggbaseline), maxpup=max(aggbaseline)) %>%
  ungroup()
 
mean<-ggstatsplot::ggwithinstats(
  data = mean_pup,
  x = script,
  y = meanpup,
  title = "Mean Pupil Size",
  xlab  = “Script”,           # turn off the default subtitle
  Ylab = ="Mean Change in Pupil Size (arbituary units)”, 

)

plot(mean) 

Figure 7. Mean Pupil Size. 

#plot max pupil size

 mean<-ggstatsplot::ggwithinstats(
  data = mean_pup,
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  x = script,
  y = maxpup,
  title = "Mean Pupil Size",
  xlab  = “Script”,           # turn off the default subtitle
  Ylab = ="Mean Change in Pupil Size (arbituary units)”, 

)

Figure 8. Max Pupil Size

Discussion

While there are a number of viable solutions available to process eye-tracking data, they are 

typically unsuitable for research for several reasons: 

 An all-graphical interface seldom provides information about the underlying data analysis

 File formats are sometimes proprietary and undocumented, lacking detailed annotation 

necessary for replicability

 Source code and description of the algorithms are not accessible to the user

 Some implementations are expensive or rely on expensive underlying software. 
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The research community needs solutions that are completely open, with the possibility of directly 

manipulating and annotating the code, data, and parameters so that others may replicate or critique the 

methods. This article summarized and demonstrated the functionality of gazeR -- a free, open-source 

package written in R. We walked through important functions needed to pre-process your data and make it

suitable for analysis. This provides a generalized, replicable, and transparent method for preprocessing 

raw eye-tracking data.  

Limitations

There are several limitations of this package. The gazeR package is deliberately agnostic 

to type of statistical analysis. While the gazeR package does contain helper functions such as 

code_poly to facilitate growth curve analysis (GCA) using orthogonal polynomials (Mirman, 

2014), the pre-processed results could also be analyzed using other functional forms (e.g., reverse

Gaussian and logistic; Seedorff, Oleson, and McMurray, 2018) and/or statistical techniques (e.g., 

general additive models and functional data analysis; Jackson & Sirois, 2009). In the absence of a

field-standard statistical approach, we leave it up to the researcher to choose what statistical 

analysis to use.

Another limitation is that the gazeR pre-possessing pipeline is not exhaustive. We 

included a set of functions that we think will suffice for researchers to pre-process their gaze and 

pupil data, but there are factors that are not included yet. For example, gaze position is known to 

influence pupil size (Brisson et al., 2013; Gagl, Hawelka, & Hutzler, 2011), called the pupil 

foreshortening effect. This effect occurs when rotations of the eyes change the angle at which the 

camera records the pupil, and therefore also the pupil’s apparent size. As such, this manifestation 

of gaze position in pupil size should ideally be controlled or corrected for. A simple way to do 

this would be to include X and Y gaze coordinates into the analysis model as a co-variate. 
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Additionally, various aspects of pupil dilation might be more or less important to the analysis, 

which might benefit from examination of additional features such as onset and offset slopes (c.f., 

Winn & Moore, 2018). Because the gazeR package is open-source, modifications can always be 

made to incorporate additional functionality. Suggestions and contributions from users are 

encouraged and can be submitted through the package github page: 

https://github.com/dmirman/gazer.

Finally, the current instantiation of gazeR is limited to data that comes from the SR 

EyeLink. Much of the gazeR functionality is easily portable to data from other eye-trackers with 

the addition of functions for reading data and possibly renaming columns (variables) to match the

EyeLink conventions. 

To summarize, the gazeR package provides general, open-source tools for replicable and 

transparent processing gaze and pupillometry data. GazeR grew out of in-house preprocessing 

code in several research groups and is already being used by several additional research groups. It

is our hope that more researchers will use it and will contribute to its improvement.
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Supplemental Figure: A demonstration of how tidyr::gather converts “wide” data with three 
separate object columns into “long” data that contains a “key” variable (Object) and a “value” 
variable (Fix).
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