
Running head: GAZER

GazeR: A Package for Processing Gaze Position and Pupil Size Data

Jason Geller1, Matthew B. Winn2, Tristian Mahr3, & Daniel Mirman4

1 University of Iowa
2 University of Minnesota

3 University of Wisconsin-Madison

4 University of Alabama at Birmingham

Author note

1) Department of Psychological & Brain Sciences

 The University of Iowa

 Iowa City, IA 52242

2) Department of Speech-Language-Hearing Sciences

164 Pillsbury Dr. SE

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

GAZER

Minneapolis, MN 555455

3) Waisman Center

1500 Highland Ave

Madison, WI 53705

4) Department of Psychology

1300 University Blvd

Birmingham, AL 35205

Correspondence concerning this article should be addressed to Jason Geller, Department

of Psychological & Brain Sciences, University of Iowa. E-mail: jason-geller@uiowa.edu

2

15

16

17

18

19

20

21

22

23

24

GAZER

Abstract

Eye-tracking is widely used throughout the scientific community, from vision science and

psycholinguistics, to marketing and human-computer interaction. Surprisingly, there is little

consistency and transparency in preprocessing steps, making replicability difficult. To increase

replicability and transparency, a package in R (a free and widely used statistical programming

environment) called gazeR was created to read in and preprocess two types of data from the SR

EyeLink eye tracker: gaze position and pupil size. For gaze position data, gazeR has functions

for: reading in raw eye-tracking data, formatting it for analysis, converting from gaze coordinates

to areas of interest, and binning and aggregating data. For data from pupillometry studies, the

gazeR package has functions for: reading in and merging multiple raw pupil data files, removing

observations with too much missing data, eliminating artifacts, blink identification and

interpolation, subtractive baseline correction, and binning and aggregating data. The package is

open-source and freely available for download and installation:

https://github.com/dmirman/gazer. We provide step-by-step analyses of data from two tasks

exemplifying the package’s capabilities.

Keywords: eye-tracking, open science, pupillometry, visual world paradigm,R,

Word count: 8,938

3

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

https://github.com/dmirman/gazer

GAZER

GazeR: A package for processing gaze position and pupil size data

Introduction

Recent advances in eye-tracking technology make it a highly powerful and relatively

inexpensive tool to gather fine-grained measures of the temporal dynamics of cognitive

processing. Because of this, a growing number of fields from vision science and

psycholinguistics, to marketing and human-computer interaction, have adopted this methodology.

Despite its growing presence, there is a lot of variability in how eye-tracking data are processed.

While there are many open-source tools for processing eye-tracking data, written in a variety of

programming languages (e.g., R, Python, or MATLAB), they implement different processing

conventions, some of which could be sub-optimal. In addition, some of these tools are not

accessible to all users because they require proprietary or costly software (e.g., MATLAB). In the

current climate where replicability and transparency are becoming more common, there is a need

for a cross-platform, fully free implementation of standard practices in eye-tracking data

processing. To this end, we have created the gazeR package in R (R Core Team 2018), which is a

free, open-source statistical programming language, to aid researchers in analyzing eye-tracking

data that comes from visual world paradigms and pupil dilation experiments. The package is

implemented in R because it is the dominant environment for statistical analysis and visualization

of eye-tracking data. Therefore, the gazeR package facilitates end-to-end analysis of eye-tracking

data within a single programming environment – from reading in raw data files to statistical

analysis and generating figures. The initial release version of gazeR is designed for use with the

SR EyeLink eye-tracker, and extensions to other eye-trackers should be fairly straightforward.

4

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

GAZER

In this paper, we provide a step-by-step walk through of how to use the gazeR package to

analyze data from experiments in which the primary outcome measure is gaze position or pupil

size. There are several conceptual or theoretical discussions on best practices when analyzing

pupil and gaze data available elsewhere (see Mathôt et al., 2018; Winn, Wendt, Koelewijn, and

Kuchinsky, 2018; Salverda & Tanenhaus, 2018). The main aim of the present paper is to

illustrate and explain how to analyze gaze and pupil data in a more standardized way using

gazeR, such that it may be used by researchers to analyze their own data. While there exist

various packages and online resources to get started with eye-tracking, such materials are limited

to the analysis of a single subject and do not represent what researchers actually want to do with

their data. A secondary aim is to facilitate reproducible and transparent preprocessing of these

types of data, using conventional practices in eye-tracking data processing, and smoothing the

transition from data preprocessing to data analysis and visualization. In the remainder of this

report, we provide a step-by-step walk through of the installation and core functionality of the

gazeR package.

Package Installation and Setup

Raw Data

At the time of this writing, the gazeR package supports processing of data collected using

an SR Research EyeLink eye tracker and exported using SR Research Data Viewer software,

which generates a comma-separated text file consisting of either the full set of individual samples

(“Sample Report”) or parsed fixations (“Fixation Report”).

5

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

GAZER

Package Installation

The gazeR package can be installed along with helper packages using the remotes

package:

library(remotes)
remotes::install_github("dmirman/gazer") #installs package from github

Once this has been completed, gazeR can be installed by typing the following into the

command line:

library(gazer)
library(tidyverse)
library(zoo)
library(knitr)

Once the gazeR package has been installed you are now ready to start preprocessing data!

Preprocessing Gaze Position Data from the Visual World Paradigm

In a typical instantiation of the Visual World Paradigm (VWP), participants hear spoken

instructions to manipulate or select one of several images on a computer screen or objects in the

real world (Cooper, 1974; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). Decades of

research have shown that the time course of fixation proportions – that is, the probability of

fixating a particular object at a particular time – reflect the activation of that object’s mental

representation. Figure 1 illustrates a typical VWP task. In this example (from Mirman &

Graziano, 2012), the study examined semantic competition: the display contained a critical

distractor that was related to the target either thematically (associates; e.g., dog-leash; shown in

the left panel of Figure 1) or taxonomically (e.g., apple-pear). On each trial, the display

contained a target object image, a semantic competitor (taxonomically or thematically related),

and two unrelated distractors. The outcome measure was the probability of looks (fixation

6

85

86

87

88
89

90

91

92
93
94
95

96

97

98

99

100

101

102

103

104

105

106

107

108

GAZER

proportion) to a particular object at each point in time (example data shown in the right panel of

Figure 1).

Figure 1. Left: Example display from a VWP experiment. The target is dog, the critical

semantic competitor is leash (thematically related to the target), and snowman and carriage are

unrelated distractors. Right: Example data showing the time course of target word recognition

(soild line) and semantic competition: the semantically related competitor (dotted line) was

fixated more than the unrelated distractors (dashed line).

Gaze preprocessing requires three main steps:

(1) Reading in the data

(2) Assigning areas of interest

(3) Binning fixations

7

109

110

111

112

113

114

115

116

117

118

119

120

GAZER

Reading in Gaze Data

Gaze data need to be read from the Fixation Report file generated by the EyeLink Data

Viewer application. The read_fixation_report() function will read in the fixation report

file. By default, this function will also generate two plots: (1) a scatter plot showing participant-

level proportion of time spent not in fixations and proportion of time spend with gaze outside the

bounds of the screen (Figure 2, top), which can be used as calibration diagnostics; (2) scatter

plots for each participant showing fixation positions and durations, along with a red rectangle that

shows the screen edges (Figure 2, bottom), which can be used to check for any systematic

calibration issues. A pdf file is generated for all the participants and is saved in your directory.

The non-fixation and out-of-bounds proportions can also be calculated using

get_gaze_diagnostics() function.

Example1

gaze_path <- system.file("extdata", "FixData_v1_N15.xls", package =
"gazer")
gaze <- read_fixation_report(gaze_path, plot_fix_scatter = TRUE)

1 The first line of code defines the path to the fixation report file included with the package.

Because package installations differ across platforms and users, this line is necessary to define

the user-specific path to the included data file. More generally, when a user wants to analyze their

own data set, the gaze_path variable will need to be the path to that data file.

8

121

122

123

124

125

126

127

128

129

130

131

132

133
134
135

1

2

3

4

5

GAZER 9

136

137

138

GAZER

Figure 2. Plots generated when reading in fixation data. Top: gaze diagnostics. Horizontal

axis is non-fixation time, vertical axis is proportion of looking time outside of screen boundaries.

High values on these dimensions suggest possibly poor calibration or track quality. Bottom:

scatterplots of fixation locations. Red rectangle indicates screen boundaries, circle size indicates

fixation duration (square-root scaled so that perceptual effect of circle size better matches fixation

duration). Most fixations should be in the corners (where the objects are) and the center cross.

Systematic deviations or looks outside the suggest poor calibration.

For this example data set, the fixation report contains eye-tracking variables that are

created by EyeLink (fixation duration, fixation position, pupil size, etc.) and experiment-specific

values (positions of different objects, trial condition, participant accuracy and response time) that

are provided by the experiment software (in this case, E-Prime).

Table 1. Visual World Data Description and Structure

Variable Class Contents Source

Subject
intege

r

Label of the data

file

SR

Eyelink

CURRENT_FIX_PUPIL double
Pupil size of the

current fixation

SR

Eyelink
CURRENT_FIX_DURATIO

N

intege

r

Duration of the

current fixation

SR

Eyelink

CURRENT_FIX_END
intege

r

Trial time when the

current fixation

ends

SR

Eyelink

CURRENT_FIX_START
intege

r

Trial time when the

current fixation

starts

SR

Eyelink

10

139

140

141

142

143

144

145

146

147

148

149

150

GAZER

CURRENT_FIX_X double
X coordinate of the

current fixation

SR

Eyelink

CURRENT_FIX_Y double
Y coordinate of the

current fixation

SR

Eyelink

CompPort
intege

r

Screen location of

Competitor image
E-Prime

Condition
intege

r

Trial condition

(practice, associate,

filler, taxonomic)

E-Prime

TargetLoc
intege

r

Screen location of

Target image
E-Prime

summary(gaze)

Subject CURRENT_FIX_PUPIL CURRENT_FIX_DURATION
CURRENT_FIX_END
9160 :1109 Min. : 36.0 Min. : 2.0 Min. :
22.0
9196 : 897 1st Qu.: 122.0 1st Qu.: 140.0 1st Qu.:
919.5
9115 : 882 Median : 165.0 Median : 210.0 Median :
1886.0
9187 : 839 Mean : 176.3 Mean : 279.6 Mean :
1958.0
9061 : 787 3rd Qu.: 201.0 3rd Qu.: 328.0 3rd Qu.:
2614.5
9171 : 786 Max. :9144.0 Max. :2660.0
Max. :26184.0
(Other):5616

CURRENT_FIX_START CURRENT_FIX_X CURRENT_FIX_Y CompPort

Min. : 4 Min. :-3270.0 Min. :-3270.0 image1:2794

1st Qu.: 650 1st Qu.: 234.5 1st Qu.: 173.5 image2:2762

Median : 1562 Median : 510.9 Median : 362.7 image3:2716

Mean : 1680 Mean : 510.5 Mean : 354.0 image4:2644

11

151

152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

GAZER

3rd Qu.: 2334 3rd Qu.: 799.7 3rd Qu.: 522.7

Max. :25848 Max. : 3270.0 Max. : 3270.0

Condition TargetLoc ACC RT
associate:3059 image1:2769 Min. :0.0000 Min. : 2236
filler :3010 image2:2891 1st Qu.:1.0000 1st Qu.: 2957
practice :1702 image3:2611 Median :1.0000 Median : 3237
taxonomic:3145 image4:2645 Mean :0.9898 Mean : 3631
3rd Qu.:1.0000 3rd Qu.: 3687
Max. :1.0000 Max. :26105

Target TargetLocation
barn : 213 1:2769
walker : 194 2:2891
acorn : 184 3:2611
bandaid: 184 4:2645
pillow : 181
falcon : 180
(Other):9780

Parsing areas of interest

The following preprocessing assumes that the interest areas (locations of objects) were

static and that the fixation report includes columns indicating the location of each object for each

trial. For this example, the objects were always presented in the four corners of the screen, though

which object was in which corner was randomized. The four possible image locations are labeled

as image1, image2, image3, and image4. The TargetLoc variable identifies which of those

locations was the target object and the CompPort variable identifies which of those locations was

the critical semantically related competitor. The gaze position was recorded in terms of (x,y)

coordinates. In order to determine which (if any) of the objects were being fixated, first identify

the locations of the target and competitor images, then use gaze coordinates to determine which

image location (if any) was being fixated, then compare gaze location to target and competitor

12

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201

202

203

204

205

206

207

208

209

210

211

GAZER

locations. If gaze location has already been coded in terms of interest areas (many experiment

programs do this dynamically, as the data are being collected), then this step can be skipped.

First, extract the numbered location of the target and competitor in order to match the

output of the assign_aoi function, which will assign a numbered area of interest for each

fixation that falls within a defined area of interest (by default, 400x300 rectangles in the corners

of the screen). This sub-step is somewhat specific to how image locations were labeled in this

particular experiment, where the image location is the 6th character in the location string (e.g.,

image2), so that is the value that needs to be extracted:

gaze$TargetLocation <- as.numeric(substr(gaze$TargetLoc, 6, 6))
gaze$CompLocation <- as.numeric(substr(gaze$CompPort, 6, 6))

Then match fixation locations to areas of interest (AOI) based on screen coordinates:

gaze_aoi <- assign_aoi(gaze)
summary(gaze_aoi)

Subject CURRENT_FIX_PUPIL CURRENT_FIX_DURATION
CURRENT_FIX_END
9160 :1109 Min. : 36.0 Min. : 2.0 Min. :
22.0
9196 : 897 1st Qu.: 122.0 1st Qu.: 140.0 1st Qu.:
919.5
9115 : 882 Median : 165.0 Median : 210.0 Median :
1886.0
9187 : 839 Mean : 176.3 Mean : 279.6 Mean :
1958.0
9061 : 787 3rd Qu.: 201.0 3rd Qu.: 328.0 3rd Qu.:
2614.5
9171 : 786 Max. :9144.0 Max. :2660.0
Max. :26184.0
(Other):5616

CURRENT_FIX_START CURRENT_FIX_X CURRENT_FIX_Y CompPort

Min. : 4 Min. :-3270.0 Min. :-3270.0 image1:2794

1st Qu.: 650 1st Qu.: 234.5 1st Qu.: 173.5 image2:2762

13

212

213

214

215

216

217

218

219

220
221

222

223
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

GAZER

Median : 1562 Median : 510.9 Median : 362.7 image3:2716

Mean : 1680 Mean : 510.5 Mean : 354.0 image4:2644

3rd Qu.: 2334 3rd Qu.: 799.7 3rd Qu.: 522.7

Max. :25848 Max. : 3270.0 Max. : 3270.0

Condition TargetLoc ACC RT
associate:3059 image1:2769 Min. :0.0000 Min. : 2236
filler :3010 image2:2891 1st Qu.:1.0000 1st Qu.: 2957
practice :1702 image3:2611 Median :1.0000 Median : 3237
taxonomic:3145 image4:2645 Mean :0.9898 Mean : 3631
3rd Qu.:1.0000 3rd Qu.: 3687
Max. :1.0000 Max. :26105

Target TargetLocation CompLocation AOI
barn : 213 Min. :1.00 Min. :1.000 Min. :0.000
walker : 194 1st Qu.:1.00 1st Qu.:1.000 1st Qu.:0.000
acorn : 184 Median :2.00 Median :2.000 Median :2.000
bandaid: 184 Mean :2.47 Mean :2.477 Mean :1.721
pillow : 181 3rd Qu.:3.00 3rd Qu.:3.000 3rd Qu.:3.000
falcon : 180 Max. :4.00 Max. :4.000 Max. :4.000
(Other):9780 NA's :1040

Now determine which object was being fixated by matching AOI codes with target and

competitor locations:

gaze_aoi$Targ <- gaze_aoi$AOI == gaze_aoi$TargetLocation
gaze_aoi$Comp <- gaze_aoi$AOI == gaze_aoi$CompLocation
gaze_aoi$Unrelated <-
 ((gaze_aoi$AOI != as.numeric(gaze_aoi$TargetLocation)) &
 (gaze_aoi$AOI != as.numeric(gaze_aoi$CompLocation)) &
 (gaze_aoi$AOI != 0) & !is.na(gaze_aoi$AOI))

Fixations to bins

Fixations can start and end at any time point, but most analysis strategies require aligned,

equally-spaced time bins. The binify_fixations function will unpack the set of fixations into

a fixation time series consisting of standardized time bins with a size specified by the user

(default is 20ms). In addition, it will drop columns that are no longer necessary – the fixation

14

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

273

274

275
276
277
278
279
280

281

282

283

284

285

GAZER

start and end time and duration will no longer be needed, nor will the gaze position coordinates,

since gaze position has now been recoded from coordinates to objects. The user needs to specify

a list columns that should be kept after the binning is done. Converting fixations to bins can be

somewhat slow.

gaze_bins <- binify_fixations(

 gaze = gaze_aoi,

 keepCols = c("Subject", "Target", "Condition", "ACC",

 "RT", "Targ", "Comp", "Unrelated"))

Aggregate Data

The specifics of data organization and aggregation will depend on the design and

hypotheses of the specific study. For this example, the fixation locations need to be “gathered”

from separate columns into a single column (see Supplemental Figure for a demonstration of this)

and “NA” values need to be re-coded as not-fixations:

gaze_obj <- gather(gaze_bins,
 key = "Object", value = "Fix",
 Targ, Comp, Unrelated, factor_key = TRUE)
recode NA as not-fixating
gaze_obj$Fix <- replace(gaze_obj$Fix, is.na(gaze_obj$Fix), FALSE)
summary(gaze_obj)

FixationID timeBin Subject Target

Min. : 1 Min. : 1.00 9115 : 43680 barn :
9552
1st Qu.: 2732 1st Qu.: 45.00 9160 : 38553 walker :
8283
Median : 5295 Median : 88.00 9061 : 36645 bandaid :
8256
Mean : 5458 Mean : 95.09 9156 : 35202 acorn :
8019
3rd Qu.: 8293 3rd Qu.: 130.00 9171 : 32793 soda :
7926
Max. :10916 Max. :1310.00 9092 : 32289 paintbrush:
7839
(Other):265791

15

286

287

288

289

290

291

292

293

294

295

296

297

298

299
300
301
302
303
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

GAZER

(Other) :435078
Condition ACC RT Time

associate:135507 Min. :0.0000 Min. : 2236 Min. : 20

filler :135375 1st Qu.:1.0000 1st Qu.: 2947 1st Qu.: 900

practice : 75618 Median :1.0000 Median : 3229 Median : 1760

taxonomic:138453 Mean :0.9895 Mean : 3641 Mean : 1902

3rd Qu.:1.0000 3rd Qu.: 3673 3rd Qu.: 2600

Max. :1.0000 Max. :26105 Max. :26200

Object Fix
Targ :161651 Mode :logical
Comp :161651 FALSE:379285
Unrelated:161651 TRUE :105668

In the final stage of preprocessing, the error and practice trials can be removed and the

time window can be restricted, to make the data ready for aggregation. For this example, we

group the trials by Subject, Condition, and Object type to calculate number of valid trials in each

cell. Then also group by time bin to calculate the number of object fixations and mean fixation

proportion in each time bin; that is, the time course of fixation. These are the subject-by-

condition time courses that would go into an analysis.

gaze_subj <- gaze_obj %>%
keep only correct-response trials, exclude practice condition, and

analyze time points only up to 3500ms after trial onset
 filter(ACC == 1, Condition != "practice", Time < 3500) %>%
 # calculate number of valid trials for each subject-condition
 group_by(Subject, Condition, Object) %>% # for every unique
combination of Subject, Condition, and Object…
 mutate(nTrials = length(unique(Target))) %>% # count the number of
trials

ungroup() %>%
 # calculate number of fixations counts and proportions
 group_by(Subject, Condition, Object, Time) %>% # for every unique

16

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

342

343

344

345

346

347

348
349
350
351
352
353
354
355
356
357
358
359
360

GAZER

combination of Subject, Condition, and Object in each time bin
 summarize(sumFix = sum(Fix), # number of fixations
 nTrials = unique(nTrials), # number of trials
 meanFix = sum(Fix)/unique(nTrials)) # fixation proportion
there were two unrelated objects, so divide those proportions by 2
gaze_subj$meanFix[gaze_subj$Object == "Unrelated"] <-
 gaze_subj$meanFix[gaze_subj$Object == "Unrelated"] / 2
summary(gaze_subj)

Subject Condition Object Time
9061 : 1566 associate:7800 Targ :7790 Min. : 20
9062 : 1566 filler :7758 Comp :7790 1st Qu.: 880
9092 : 1566 practice : 0 Unrelated:7790 Median :1740
9115 : 1566 taxonomic:7812 Mean :1742
9146 : 1566 3rd Qu.:2600
9153 : 1566 Max. :3480
(Other):13974
sumFix nTrials meanFix
Min. : 0.000 Min. :19.00 Min. :0.00000
1st Qu.: 0.000 1st Qu.:20.00 1st Qu.:0.00000
Median : 2.000 Median :20.00 Median :0.07895
Mean : 3.495 Mean :19.87 Mean :0.15186
3rd Qu.: 5.000 3rd Qu.:20.00 3rd Qu.:0.20000
Max. :20.000 Max. :20.00 Max. :1.00000

Plot fixation time course

After the fixations have been assigned to the object type and converted to time bins, they

are ready for visualization and statistical analysis. Below is a plot of the time course of fixation

proportions for each target type.

ggplot(gaze_subj, aes(Time, meanFix, color = Object)) +
 facet_wrap(~ Condition) +
 stat_summary(fun.y = mean, geom = "line") +
 geom_vline(xintercept = 1300) +
 annotate("text", x=1300, y=0.9, label="Word onset", hjust=0)

17

361
362
363
364
365
366
367
368

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385

386

387

388

389
390
391
392
393

GAZER

Figure 3. Time course of fixation proportions by condition. These data have been pre-

processed and are ready for statistical analysis.

Preprocessing Pupil Data from a Lexical Decison Task

Recent advances in eye-tracking technology have lead to a burgeoning interest in

cognitive pupillometry (i.e., measurement of changes in pupil size as it relates to higher-level

processing). According to a recent PubMed search, the number of studies employing

pupillometry has grown exponentially since the first modern boom more than a half a century ago

(Kret & Sjak-Shie, 2018). The reason for this is quite simple: pupil size has been shown to be a

reliable and valid index of mental effort or arousal across many domains, including word

recognition (Geller, Still, & Morris, 2016), normal and impaired auditory perception (Zekveld et

al., 2018), attention allocation (Karatekin, Couperus, & Marcus, 2004), working memory load

(Granholm, Asarnow, Sarkin, & Dykes, 1996; Van Gerven, Paas, Van Merriënboer, & Schmidt,

2004), face perception (Goldinger, He, and Papesh, 2009), and general cognitive processing

(Murphy et al., 2014). While there are a number of good open-source programs available in R to

18

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

GAZER

analyze pupil data (see Forbes, 2019; Tsukahara, 2018), there are not many walkthroughs

demonstrating how to go from raw data to fully pre-processed data. A recent methods review by

Winn et al. (2018) describes and illustrates general principles like blink detection, interpolation,

and filtering. The gazeR package includes functions for implementing these steps and here we

demonstrate their use.

To demonstrate analysis of pupil data, we will be using an example data set containing

data from a lexical decision task. In this task, participants (N=41) judged the lexicality of printed

and cursive stimuli while pupil diameter was recorded. Because cursive stimuli are non-

segmented and could be ambiguous, it was predicted that recognizing cursive stimuli would

require more effort than printed words (cf., Barnhart & Goldinger, 2010; Geller, Still, Dark, &

Carpenter, 2018), resulting in larger pupil dilation.

Preprocessing pupil data requires the following steps:

(1) Read in data

(2) De-blinking

o Extending blinks

o Interpolation

(4) Smoothing

(5) Baseline correction

(6) Re-scaling

(7) Artifact Rejection

o Missing data

o Unlikely pupil values

19

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

GAZER

o Median absolute deviation (MAD)

(8) Trial Clipping

(9) Decimating/Downsampling

(10) Aggregation

Reading in Pupil Data

In order for the pupil functions to work properly, the Sample Report must be generated

with the columns below. The functions will not work if these columns are not present in the

Sample Report. Other columns should be included if needed.

Table 1. Variables Needed to Process Pupil Data

Names
RECORDING_SESSION_LABEL
TRIAL_INDEX
AVERAGE_IN_BLINK, RIGHT_IN_BLKINK, or LEFT_IN_BLINK
TIMESTAMP
AVERAGE_PUPIL_SIZE, RIGHT_PUPIL_SIZE, or LEFT_PUPIL

SIZE
IP_START_TIME
SAMPLE_MESSAGE

If you generated separate sample reports for each participant, the function

merge_pupil will take all your pupil files from a folder path and merge them together. It

will also rename variables, make all variable names lowercase, and add a new column,

time, which places time in ms instead of tracker time. You must first specify a list of pupil

data files, then you can call the merge_pupil function to aggregate your data. Depending

on the number of subjects and the sampling rate at experiment runtime, this could take a

few minutes. There are two arguments, blink_colname and pupil_colname. It is

important you specify what these variables are called in your data set so the pipeline runs

20

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

GAZER

smoothly. In our example dataset, we used the AVERAGE_IN_BLINK and

AVERAGE_PUPIL_SIZE columns.

where to find all your pupil files
file_list <- list.files(path = '', pattern = ".xls")
pupil_files <- merge_pupil(
 file_list,
 blink_colname = “AVERAGE_IN_BLINK”,
 pupil_colname = “AVERAGE_PUPIL_SIZE”
)

Due to processing constraints, we are using a Sample Report that includes data from

a few participants. If you would like to try out the merge_pupil function you can download

all the participant files on Open Science Framework (OSF) here: https://osf.io/fzu38/.

While reading in the data is pretty fast (even with many participants), some of the functions

performed on the data can be computationally intensive.

#download Sample Report from Github
pupil_path <- system.file("extdata", "Pupil_file1.xls", package =
"gazer")
#read in data
pupil_files <- read.table(pupil_path)
Table 3. Pupil Data Description and Structure

Variable Class Contents Source

subject integer Label of the data file
SR

Eyelink

trial integer Trial number
SR

Eyelink

blink integer Whether eye was in blink
SR

Eyelink

pupil integer
pupil size on the current

sample

SR

Eyelink

accuracy integer 0=incorrect; 1=correct
SR

Eyelink

21

448

449

450
451
452
453
454
455
456

457

458

459

460

461

462
463
464
465
466
467

https://osf.io/fzu38/

GAZER

cb integer counterbalance list
SR

Eyelink

key_pressed integer response made
SR

Eyelink

rt integer

condition (word,

nonword transposed

letter, 2L substition

nonword)

SR

Eyelink

alteration integer

Trial condition (practice,

associate, filler,

taxonomic)

SR

Eyelink

block integer Block number
SR

Eyelink

item
characte

r
item presented

SR

Eyelink

response integer button pressed
SR

Eyelink

script integer
condition (cursive, type-

print)

SR

Eyelink

target
characte

r
eye in saccade

SR

Eyelink

average_in_saccad

e
integer Start time of the interest

period

SR

Eyelink

ip_start_time integer

Start time (in

milliseconds since

EyeLink tracker was

Eyelink

SR

Eyelink

22

GAZER

sample_message
characte

r

Message text printed out

during current sample

SR

Eyelink

timestamp integer

Time lapsed (in

milliseconds) since eye-

tracker started

SR

Eyelink

time integer ip_start_time - timestamp
SR

Eyelink

Behavioral Data (Optional)

If you are also interested in analyzing behavioral data (RTs and accuracy), the

behave_data function will cull the important behavioral data from the Sample Report. The

function will return a data frame without errors when omiterrors=TRUE or a data frame with

errors for accuracy/error analysis when omiterrors=FALSE. The columns relevant for your

experiment need to be specified within the behave_col names argument. This function does not

eliminate outliers; you must use your preferred method. Grange’s (2015) trimr package

implements multiple standard methods of outlier exclusion (https://github.com/JimGrange/trimr).

subject script alteration trial target accuracy rt
block cb
1 10b print word 1 sprigp.png 1 2539
0 2
960 10b cursive nwtl 2 nypmh.png 1 3254
0 2
2117 10b Cursive nwtl 3 seivep.png 0 1755
0 2
2882 10b cursive word 4 mourn.png 1 2435
0 2
3821 10b Cursive word 5 noisy.png 1 2200
1 2
5197 10b Cursive word 6 ridge.png 1 1952
1 2

23

468

469

470

471

472

473

474

475

476

477
478
479
480
481
482
483
484
485
486
487
488
489
490

https://github.com/JimGrange/trimr

GAZER

For this example, we will exclude participants with overall accuracy lower than 75% and

items with accuracy below 60%. Using the file generated above with omiterrors=FALSE, we

can calculate subject and item accuracy, merge those values into the main data set, and use them

as exclusion criteria.

Itemacc <- behave_data %>%
 group_by(target) %>%
 summarise(
 # overall item accuracy and word condition only
 meanitemacc = mean(accuracy[block>0 & alteration=="word"])
)

subacc <- behave_data %>%
 group_by(subject) %>%
 summarise(
 #subject accuracy and word condition only
 meansubacc = mean(accuracy[block > 0 & alteration == "word"])
)

dataraw1 <- merge(pupil_files, itemacc) # merge into main ds
dataraw2 <- merge(dataraw1, subacc) # merge into main ds

We can now restrict preprocessing to valid trials by removing practice blocks, trials with

incorrect responses, conditions that are not words, subjects with accuracy below 75%, and items

with accuracy below 60%.

pupil_files1 <- dataraw2 %>%
filter out practice blocks, incorrect responses, nonword trials, low
item and subj acc
 filter(
 block > 0, accuracy == 1, alteration == "word",
 meanitemacc >= .60, meansubacc >= .75
) %>%
 arrange(subject, target, trial, time)

Pupil Preprocessing is now ready to begin!

24

491

492

493

494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

511

512

513

514
515
516
517
518
519
520
521

522

GAZER

De-blinking

An imporatant first step in preprocessing pupil data is de-blinking. A major artifact in

pupil data comes from blinking. When the eye blinks, the pupil momentarily becomes smaller as

it is occluded more and more by the eyelids, making computing the center of the pupil difficult.

Eye-trackers interpret this as a fast shift in pupil position and will classify it as a saccade.

Additionally, the estimate of pupil size will rapidly decrease as the pupil occupies less of the

camera image. This process happens in reverse (albeit a bit more slowly) as the eye is opening, so

blinks are always flanked by a saccade artifact. Occasionally there will be some additional

artifacts, such as short fixations preceding or following the blink. It is thus advisable to de-blink

the data, which involves identifying blinks, removing them, and then interpolating data during the

blink period and even across a longer segment that extends before and after the blink. Identifying

blinks is rather trivial as the EyeLink records contain a blink column with 0s or 1s denoting

absence or presence of a blink. Less trivial is deciding how many data points you remove before

and after the blink. It has generally been recommended that data 100 ms before and after the

blink should be eliminated. The gazeR package contains several functions for dealing with blinks.

If you are exporting files from SR, there is an option to extend blinks within Data Viewer. There

are several ways one can deal with blinks (see Hershman, Henik, & Cohen, 2018). One method is

to eliminate all blinks from a trial. This is generally not recommended as it can eliminate too

much data, resulting in a loss of power. A more acceptable approach, and the one implemented in

gazeR, is to extend the time window around the blinks so the interpolation starts 100-200 ms

before the blink and after the blink (Nyström, Hooge, & Andersson, 2016; Satterthwaite et al.,

2007). Extending the time window around the blinks eliminates spurious samples caused by the

closing and opening of the eyelids. If you have not done this before exporting into R, you can

25

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

GAZER

use the extend_blinks function. The fillback argument extends blinks back in time and the

fillforward argument extends blinks forward in time. This function is robust to different sampling

rates — make sure you specify the tracker sampling rate in the hz argument. For this experiment,

the tracker sampled at 250Hz (once every 4 ms) and blinks were extended 100 ms forward and

backward in time.

pup_extend<- pup_files1 %>%
 group_by(subject, trial) %>%
 mutate(extendpupil=extend_blinks(pupil, fillback=100,
fillforward=100, hz=250))

26

546

547

548

549

550

551
552
553
554

GAZER

Interpolation

Missing data stemming from blinks or failure of the eye tracker need to be interpolated.

The interpolate_pupil function searches the data and reconstructs the pupil size for each

trial from the relevant samples using either linear interpolation (Bradley, Miccoli, Escrig, &

Lang, 2008; Cohen et al., 2015; Siegle, Steinhauer, Carter, Ramel, & Thase, 2003) or cubic-

spline interpolation (Mathôt, 2018). Considering the short duration of blinks and the relatively

low speed of blinks, the choice of linear versus cubic interpolation will ultimately have negligible

effect. If extendblinks = FALSE, samples with blinks are turned into “NA”s and are then

interpolated linearly or by cubic interpolation. This function returns a tibble with a column called

interp which contains interpolated values from the pupil column in your data (e.g., average,

left, or right pupil size). As an important note, if the Data Viewer was used to extend blinks, the

extendblinks argument should be set to FALSE. If gazer::extend_blinks was used, the

extendblink argument should be set to TRUE. It is important to note that SR only extends the

blink column and does not set pupil size estimates during blinks to “NA” in the Sample Report.

For this example, we will set extendblinks to TRUE and use linear interpolation. You can use

cubic interpolation by changing type to “cubic.”

pup_interp <- interpolate_pupil(
 pup_extend,
 extendblinks = TRUE,
 type = "linear")

Performing linear interpolation

It is a good idea to check that the interpolation did what it was supposed to do. The plot

below shows data from one trial with artifacts removed, the observed data are shown in black and

the interpolated data are shown in green. Looks good!

27

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571
572
573
574

575

576

577

578

GAZER

Figure 4. Linear interpolation for one trial

Smoothing

Pupil data can be extremely noisy! There are many ways to smooth pupil data. Two

common methods are implemented in gazeR: n-point moving average and a hanning filter. To

smooth the data using a n-point moving average, call the moving_average_pupil function,

and specify the column that contains the interpolated pupil values and the size (in samples) of the

moving average window. In this example, we use a 5-point moving average (n=5). The variable

movingavgpup is returned with the smoothed pupil data. Low-pass filtering is something that

might be included in a future update to the package.

rolling_mean_pupil_average <- as.data.frame(pup_interp) %>% #must be
in a data.frame
 select(
 subject, trial, target, pupil, script, alteration,
 time, interp, sample_message
) %>%

 mutate(movingavgpup = moving_average_pupil(interp, n = 5))

28

579

580

581

582

583

584

585

586

587

588

589
590
591
592
593
594
595
596

597

GAZER

Baseline correction

To control for variability in overall pupil size arising from non-task related (tonic) state of

arousal, baseline correction is commonly used (but see Attard-Johnson, Ó Ciardha, &

Bindemann, 2019). The two most popular types of baseline correction to identify task-evoked

dilation are subtractive (pupil size - baseline) and divisive (pupil size / baseline). Subtractive

baseline correction is more common in the literature (cf., Beatty, 1982; Laeng et al., 2012;

Zekveld, Koelewijn, & Kramer, 2018), and this practice has been supported on the basis of a

study by Reilly, Kelly, Kim, Jett, and Zuckerman (2018) that argued for linearity of the pupil

response, independent of baseline size2. The baseline_correction_pupil function finds the

median pupil size during a specified baseline period for each trial and performs a subtraction

baseline correction by default (see Mathôt et al., 2018, for argument that baseline correction

should be done using the median, and not the mean, baseline value). By changing the

baseline_method argument to “div”, you will get proportion change from baseline. In this

example, subtractive baseline correction is applied to pupil size in arbitrary units (pupil_colnames

= "movingavgpup") though the same can be done for pupil size in mm or z-score. The baseline

window is the 500ms immediately preceding stimulus onset, which in this study is 500-1000ms

after trial onset.

2 Reilly et al. varied luminance in order to elicit different baseline sizes, but that is not the typical

source of baseline pupil size differences. Tonic baseline pupil size differences due to arousal, age,

or other variables may affect the range of dilation reactivity in ways that differ from changes that

are elicited by changes in luminance. Additonally, Wang et al. (2018) suggested that brighter

lighting condition elicit larger dilations, on account of suppression of the parasympathetic

suppressive influence on dilations. These factors can be used to motivate divisive baseline

correction.

29

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

6

7

8

9

10

11

12

GAZER

baseline_pupil <- baseline_correction_pupil(
 rolling_mean_pupil_average,
 pupil_colnames = "movingavgpup",
 baseline_window = c(500, 1000),
 baseline_method = ‘sub’
)
Calculating baseline

Calculating median baseline from:500-1000

Merging baseline

Performing subtractive baseline correction

baseline_pupil

A tibble: 11,031 x 11
Groups: subject, trial, time [11,031]
subject trial time baseline target script alteration interp
<fct> <int> <int> <dbl> <fct> <fct> <fct> <dbl>
1 10b 5 680 4130. noisy… Cursi… word 4373
2 10b 5 684 4253. noisy… Cursi… word 4375
3 10b 5 688 4379. noisy… Cursi… word 4374
4 10b 5 692 4382. noisy… Cursi… word 4382
5 10b 5 696 4386 noisy… Cursi… word 4389
6 10b 5 700 4390. noisy… Cursi… word 4392
7 10b 5 704 4395 noisy… Cursi… word 4393
8 10b 5 708 4399. noisy… Cursi… word 4396
9 10b 5 712 4403. noisy… Cursi… word 4405
10 10b 5 716 4407 noisy… Cursi… word 4408
… with 11,021 more rows, and 3 more variables: sample_message
<fct>,
pupil1 <dbl>, baselinecorrectedp <dbl>

Re-Scaling

So far, the analysis steps have used arbitrary pupil units. It is advised that these be

transformed into a standardized unit in order to make comparisons between individuals. Among

the numerous options that have been used, there are z-scores (see Cohen, Moyal, & Henik, 2015;

Einhauser, Stout, Koch, & Carter, 2008; Kang & Wheatley, 2015), absolute changes in mm (e.g.,

Beatty, 1982; Geller, Landrigan, & Mirman, 2019; Geller et al., 2016), proportional change

30

615
616
617
618
619
620
621

622

623

624

625
626
627

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

645

646

647

648

649

650

651

GAZER

relative to baseline (Winn, 2016), and absolute change relative to dynamic range of pupil

reactivity elicited by the light reflex (Piquado, Isaacowitz, & Wingfield, 2010). To convert

arbitrary pupil size to mm, we measured the scaling factor by running a short experiment with an

artificial pupil (5 mm in size) and calculated the average pupil size in arbitrary units. At a fixed

camera-to-pupil distance of 90 cm, the 5mm pupil was coded as 5570.29 arbitrary pixel units.

This information was entered into the equation below to convert arbitrary units to mm.

Specifically, the smoothed pupil size value is multiplied by 5/5570.29 to re-scale the values to

mm.

timebinsmm <- rolling_mean_pupil_average %>%
 mutate(pupilmm = (movingavgpup * 5)/5570.29)

Alternatively, the arbitrary pupil units can be converted to a z-score using the scale

function.

timebinsz<- rolling_mean_pupil_average %>%
 group_by(subject, trial) %>%
 mutate(pupilz = scale(movingavgpup))

Artifact Rejection

Missingness. The count_missing_pupil function will remove subjects and items that

have a large amount of missing data – the threshold for “a large amount” is specified by the

researcher. It has been recommended by Winn et al. (2018) that a reasonable threshold is 20%,

but that the exact importance of missing data might be weighted by specific timing landmarks in

the experiment trials. For this example, we have set the missingthresh argument to .2. The

count_missing_pupil() function returns the percentage of subjects and trials that have been

excluded for reporting.

pup_missing <- count_missing_pupil (baseline_pupil, missingthresh =
.2)

31

652

653

654

655

656

657

658

659

660
661

662

663

664
665
666

667

668

669

670

671

672

673

674

675
676

GAZER

% trials excluded:0.011

subjects taken out:

Spurious pupil values. Unlikley pupil values that are too small and too large should be

removed from the data (Mathôt et al., 2018; Winn et al., 2018). Mathôt (2018) recommended

against removing data based on a subject-independent fixed criterion (e.g., above or below a SD

cut-off or a specified lower and upper pupil boundary). This is due to the inherent heterogeneity

of pupil sizes across experiments. Instead, Mathôt (2018) recommend visual inspection to

determine unlikely pupil values. This can be done using a simple histogram to plot the

pupillometric data. Based on the histogram below, it seems reasonable to remove pupil sizes less

than 2500 and greater than 5000.

puphist <- ggplot(pup_extend, aes(x = extendpupil)) +
 geom_histogram(aes(y = ..count..), colour = "green", binwidth = 0.5)
+
 geom_vline(xintercept = 2500, linetype="dotted") +
 geom_vline(xintercept = 5100, linetype="dotted") +
 xlab("Pupil Size") +
 ylab("Count") +
 theme_bw()

print(puphist)

32

677

678

679

680

681

682

683

684

685

686

687
688
689
690
691
692
693
694
695
696

697

GAZER

Figure 5. Histogram of recorded pupil sizes throughout experiment for all 41 participants.

pup_outliers <- pup_missing %>%
 # based on visual inspection
 dplyr::filter(interp >= 2500, interp <= 5100)

Median absolute deviation (MAD). After interpolation, it is a good idea to perfrom a

second pass on your data to make sure that the data is not contaminated by rapid pupil size

disturbances. These artifacts can be detected using the median absolute deviation (Kret & Sjak-

Shie, 2018). The speed_dilation function calculates the normalized dilation speed, which is

the absolute change in pupil size between samples divided by the temporal separation between

them. To detect outliers, the median absolute deviation is calculated from the speed dilation

variable, multiplied by a constant (in this case 16), and added to the median dilation speed

variable using the calc_mad function–values above this threshold are then removed.

mad_removal <-pup_outliers %>%
 group_by(subject, trial) %>%
 mutate(speed=speed_pupil(interp,time)) %>%
 mutate(MAD=calc_mad(speed, n = 16)) %>%
 filter(speed < MAD)

Event Time Alignment

In most psychological experiments, each trial includes several events. In the example

experiment, each trial began with a fixation screen (small cross in the center of the screen) and

the stimulus of interest appeared on screen 1s after trial onset. These events are documented in

the data file: the onset of the target is denoted by the trial message “target.” We can use this

information to align the data so that time=0 corresponds to stimulus onset (i.e., the analysis

window of interest) rather than trial onset. The onset_pupil function performs this alignment

using three arguments: time column, sample message column, and the event of interest (“target”

33

698

699
700
701

702

703

704

705

706

707

708

709

710
711
712
713
714

715

716

717

718

719

720

721

722

GAZER

in our example). In the output below, we can see below that our experiment now starts at zero,

when the target was displayed on screen.

baseline_pupil_onset <- baseline_pupil %>%
 group_by(subject, trial) %>%
 mutate(
 time_zero = onset_pupil (time, sample_message, event =
c("target"))
) %>%
 ungroup() %>%
 filter(time_zero >= 0, time_zero <= 3000) %>%
 select(
 subject, trial, time, script, time_zero,
 sample_message, baselinecorrectedp
)

baseline_pupil_onset

A tibble: 66,126 x 7
subject trial time script time_zero sample_message
baselinecorrectedp
<fct> <int> <int> <fct> <int> <fct>
<dbl>
1 10b 11 348 Cursive 0 target
-11.9
2 10b 11 352 Cursive 4 <NA>
-15.5
3 10b 11 356 Cursive 8 <NA>
-19.1
4 10b 11 360 Cursive 12 <NA>
-24.1
5 10b 11 364 Cursive 16 <NA>
-28.5
6 10b 11 368 Cursive 20 <NA>
-32.1
7 10b 11 372 Cursive 24 <NA>
-34.5
8 10b 11 376 Cursive 28 <NA>
-35.7
9 10b 11 380 Cursive 32 <NA>
-35.9
10 10b 11 384 Cursive 36 <NA>
-37.5

34

723

724

725

726
727
728
729
730
731
732
733
734
735
736
737

738
739

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764

GAZER

Downsampling/Decimation

If the data are recorded at a relatively high sampling frequency (e.g., 250Hz in this

example), it may be useful to aggregate the the data into time bins that are somewhat larger than

the sample rate (users can specify a time bin size to use). The downsample_pupil function

takes your data and a specified bin length (in ms) as arguments and returns a tibble with a column

called timebins.

timebins1 <- downsample_pupil(baseline_pupil_onset, bin.length=200)

timebins1

A tibble: 66,126 x 8
subject trial time script time_zero sample_message
baselinecorrect…
<fct> <int> <int> <fct> <int> <fct>
<dbl>
1 10b 11 348 Cursi… 0 target -
11.9
2 10b 11 352 Cursi… 4 <NA> -
15.5
3 10b 11 356 Cursi… 8 <NA> -
19.1
4 10b 11 360 Cursi… 12 <NA> -
24.1
5 10b 11 364 Cursi… 16 <NA> -
28.5
6 10b 11 368 Cursi… 20 <NA> -
32.1
7 10b 11 372 Cursi… 24 <NA> -
34.5
8 10b 11 376 Cursi… 28 <NA> -
35.7
9 10b 11 380 Cursi… 32 <NA> -
35.9
10 10b 11 384 Cursi… 36 <NA> -
37.5
… with 66,116 more rows, and 1 more variable: timebins <dbl>

Aggregating Data

To further simplify the data, they can be aggregated to produce an average pupil diameter

for each subject in each condition at each time bin.

35

765

766

767

768

769

770

771
772
773

774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

800

801

802

GAZER

agg_subject<- timebins1 %>%
 dplyr::group_by(subject, script,timebins) %>%

dplyr::summarise(aggbaseline=mean(baselinecorrectedp)) %>%
 ungroup()

A tibble: 80 x 4
subject script timebins aggbaseline
<fct> <fct> <dbl> <dbl>
1 10b Cursive 0 16.0
2 10b Cursive 200 3.03
3 10b Cursive 400 -3.92
4 10b Cursive 600 10.8
5 10b Cursive 800 38.8
6 10b Cursive 1000 74.8
7 10b Cursive 1200 102.
8 10b Cursive 1400 113.
9 10b Cursive 1600 114.

Pupillary Data Visualization

After baseline-correction and aggregation, the data are ready for visualization and

statistical analysis. The pre-processed data produced by gazeR are highly flexible and compatible

with different visualization strategies. Below is a plot of the time course for the baseline-

corrected pupillary response between cursive and type-print stimuli. A cursory look suggests that

that recognizing cursive words resulted in a larger pupillary response at around 1600-2500ms.

data(cursive_new)

A tibble: 6 x 4
subject script timebins aggbaseline
<chr> <chr> <dbl> <dbl>
1 10b cursive 0 15.7
2 10b cursive 200 3.14
3 10b cursive 400 -4.53
4 10b cursive 600 6.63
5 10b cursive 800 34.6
6 10b cursive 1000 73.8

runningSE <- cursive_new %>%
 filter(timebins <= 3500) %>%
 split(.$timebins) %>%
 map(~Rmisc::summarySEwithin(data = ., measurevar = "aggbaseline",
withinvars = "script", idvar="subject"))

36

803
804

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

820

821

822

823

824

825

826

827
828
829
830
831
832
833
834
835

836
837
838
839
840
841

GAZER

cur1 <- filter(cursive_new, timebins <= 3500)

WSCI <- map_df(runningSE, extract) %>%
 mutate(Time = rep(unique(cur1$timebins), each = 2))
 #Note, you'll have to change 2 to match the number of conditions

WSCI.plot <- ggplot(WSCI) + geom_line(aes(Time, aggbaseline,
linetype=script, color=script), size=3) +
 theme_bw() +
 labs(x = "Time (ms)",y = "Baseline-corrected pupil size (a.u)") +
 geom_hline(yintercept = 0,linetype = "dashed") +
 geom_ribbon(data = WSCI, aes(x=Time, ymin = aggbaseline-ci, ymax =
aggbaseline+ci, linetype=script, colour=script), alpha = 0.3) +
 theme(axis.title.y=element_text(size = 14, face="bold"),
axis.title.x = element_text(size=14, face="bold"),
axis.text.x=element_text(size = 12,
face="bold"),axis.text.y=element_text(size=12, face="bold"))

WSCI.plot

Figure 6. Pupillary time course as a function of script type. Ribbons denote 95% CIs.

In addition to pupillary time course, it is common to use summary measures: mean and

max pupil size. Below you can see how to construct a graph based on mean and max pupil size

using the ggstatsplot package (Patil, 2018).

37

842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

859

860

861

862

863

864

GAZER

data(cursive_new)
library(ggstatsplot)

mean_pup<-subset(cursive_new, timebins<=2500) %>%
 group_by(subject, script) %>%
 summarise(meanpup=mean(aggbaseline), maxpup=max(aggbaseline)) %>%
 ungroup()

mean<-ggstatsplot::ggwithinstats(
 data = mean_pup,
 x = script,
 y = meanpup,
 title = "Mean Pupil Size",
 xlab = “Script”, # turn off the default subtitle
 Ylab = ="Mean Change in Pupil Size (arbituary units)”,

)

plot(mean)

Figure 7. Mean Pupil Size.

#plot max pupil size

 mean<-ggstatsplot::ggwithinstats(
 data = mean_pup,

38

865
866

867
868
869
870
871
872
873
874
875
876
877
878
879

880

882

883

884

885

886

887
888
889

GAZER

 x = script,
 y = maxpup,
 title = "Mean Pupil Size",
 xlab = “Script”, # turn off the default subtitle
 Ylab = ="Mean Change in Pupil Size (arbituary units)”,

)

Figure 8. Max Pupil Size

Discussion

While there are a number of viable solutions available to process eye-tracking data, they are

typically unsuitable for research for several reasons:

 An all-graphical interface seldom provides information about the underlying data analysis

 File formats are sometimes proprietary and undocumented, lacking detailed annotation

necessary for replicability

 Source code and description of the algorithms are not accessible to the user

 Some implementations are expensive or rely on expensive underlying software.

39

890
891
892
893
894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

GAZER

The research community needs solutions that are completely open, with the possibility of directly

manipulating and annotating the code, data, and parameters so that others may replicate or critique the

methods. This article summarized and demonstrated the functionality of gazeR -- a free, open-source

package written in R. We walked through important functions needed to pre-process your data and make it

suitable for analysis. This provides a generalized, replicable, and transparent method for preprocessing

raw eye-tracking data.

Limitations

There are several limitations of this package. The gazeR package is deliberately agnostic

to type of statistical analysis. While the gazeR package does contain helper functions such as

code_poly to facilitate growth curve analysis (GCA) using orthogonal polynomials (Mirman,

2014), the pre-processed results could also be analyzed using other functional forms (e.g., reverse

Gaussian and logistic; Seedorff, Oleson, and McMurray, 2018) and/or statistical techniques (e.g.,

general additive models and functional data analysis; Jackson & Sirois, 2009). In the absence of a

field-standard statistical approach, we leave it up to the researcher to choose what statistical

analysis to use.

Another limitation is that the gazeR pre-possessing pipeline is not exhaustive. We

included a set of functions that we think will suffice for researchers to pre-process their gaze and

pupil data, but there are factors that are not included yet. For example, gaze position is known to

influence pupil size (Brisson et al., 2013; Gagl, Hawelka, & Hutzler, 2011), called the pupil

foreshortening effect. This effect occurs when rotations of the eyes change the angle at which the

camera records the pupil, and therefore also the pupil’s apparent size. As such, this manifestation

of gaze position in pupil size should ideally be controlled or corrected for. A simple way to do

this would be to include X and Y gaze coordinates into the analysis model as a co-variate.

40

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

GAZER

Additionally, various aspects of pupil dilation might be more or less important to the analysis,

which might benefit from examination of additional features such as onset and offset slopes (c.f.,

Winn & Moore, 2018). Because the gazeR package is open-source, modifications can always be

made to incorporate additional functionality. Suggestions and contributions from users are

encouraged and can be submitted through the package github page:

https://github.com/dmirman/gazer.

Finally, the current instantiation of gazeR is limited to data that comes from the SR

EyeLink. Much of the gazeR functionality is easily portable to data from other eye-trackers with

the addition of functions for reading data and possibly renaming columns (variables) to match the

EyeLink conventions.

To summarize, the gazeR package provides general, open-source tools for replicable and

transparent processing gaze and pupillometry data. GazeR grew out of in-house preprocessing

code in several research groups and is already being used by several additional research groups. It

is our hope that more researchers will use it and will contribute to its improvement.

References

Attard-Johnson, J., Ó Ciardha, C., & Bindemann, M. (2019). Comparing methods for the

analysis of pupillary response. Behavior Research Methods, 51(1), 83–95.

https://doi.org/10.3758/s13428-018-1108-6

Barnhart, A. S., & Goldinger, S. D. (2010). Interpreting chicken-scratch: Lexical access

for handwritten words. Journal of Experimental Psychology: Human Perception and

Performance, 36(4), 906–923. https://doi.org/10.1037/a0019258

41

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

https://doi.org/10.1037/a0019258

GAZER

Beatty, J. (1982a). Task-evoked pupillary responses, processing load, and the structure of

processing resources. Psychological Bulletin, 91(2), 276–292. https://doi.org/10.1037/0033-

2909.91.2.276

Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure

of emotional arousal and autonomic activation. Psychophysiology, 45(4), 602–607.

https://doi.org/10.1111/j.1469-8986.2008.00654.x

Brisson, J., Mainville, M., Mailloux, D., Beaulieu, C., Serres, J., & Sirois, S. (2013). Pupil

diameter measurement errors as a function of gaze direction in corneal reflection eyetrackers.

Behavior Research Methods, 45(4), 1322–1331. https://doi.org/10.3758/s13428-013-0327-0

Cohen, N., Moyal, N., & Henik, A. (2015). Executive control suppresses pupillary

responses to aversive stimuli. Biological Psychology, 112, 1–11.

https://doi.org/10.1016/j.biopsycho.2015.09.006

Cooper, R. M. (1974). The control of eye fixation by the meaning of spoken language: A

new methodology for the real-time investigation of speech perception, memory, and language

processing. Cognitive Psychology, 6(1), 84–107. https://doi.org/10.1016/0010-0285(74)90005-X

Einhauser, W., Stout, J., Koch, C., & Carter, O. (2008). Pupil dilation reflects perceptual

selection and predicts subsequent stability in perceptual rivalry. Proceedings of the National

Academy of Sciences, 105(5), 1704–1709. https://doi.org/10.1073/pnas.0707727105

Forbes, S.H. (2019). pupillometryR: An R package for preparing and analysing

pupillometry data. Retrieved from https://github.com/samhforbes/PupillometryR

42

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

https://doi.org/10.1073/pnas.0707727105
https://doi.org/10.1016/0010-0285(74)90005-X
https://doi.org/10.1016/j.biopsycho.2015.09.006
https://doi.org/10.3758/s13428-013-0327-0
https://doi.org/10.1111/j.1469-8986.2008.00654.x

GAZER

Gagl, B., Hawelka, S., & Hutzler, F. (2011). Systematic influence of gaze position on

pupil size measurement: analysis and correction. Behavior Research Methods, 43(4), 1171–1181.

https://doi.org/10.3758/s13428-011-0109-5

Geller, J., Landrigan, J.-F., & Mirman, D. (2019). A Pupillometric Examination of

Cognitive Control in Taxonomic and Thematic Semantic Memory. Journal of Cognition, 2(1).

https://doi.org/10.5334/joc.56

Geller, J., Still, M. L., Dark, V. J., & Carpenter, S. K. (2018). Would disfluency by any

other name still be disfluent? Examining the disfluency effect with cursive handwriting. Memory

& Cognition, 46(7), 1109–1126. https://doi.org/10.3758/s13421-018-0824-6

Geller, J., Still, M. L., & Morris, A. L. (2016). Eyes wide open: Pupil size as a proxy for

inhibition in the masked-priming paradigm. Memory & Cognition, 44(4), 554–564.

https://doi.org/10.3758/s13421-015-0577-4

Goldinger, S. D., He, Y., & Papesh, M. H. (2009). Deficits in cross-race face learning:

Insights from eye movements and pupillometry. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 35(5), 1105–1122. https://doi.org/10.1037/a0016548

Grange, J.A. (2015). trimr: An implementation of common response time trimming

methods. R package version 1.0.1. https://cran.r-project.org/web/packages/trimr/index.html

Granholm, E., Asarnow, R. F., Sarkin, A. J., & Dykes, K. L. (1996). Pupillary responses

index cognitive resource limitations. Psychophysiology, 33(4), 457–461. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/8753946

43

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

http://www.ncbi.nlm.nih.gov/pubmed/8753946
https://cran.r-project.org/web/packages/trimr/index.html
https://doi.org/10.1037/a0016548
https://doi.org/10.3758/s13421-015-0577-4
https://doi.org/10.3758/s13421-018-0824-6
https://doi.org/10.5334/joc.56
https://doi.org/10.3758/s13428-011-0109-5

GAZER

Hershman, R., Henik, A., & Cohen, N. (2018). A novel blink detection method based on

pupillometry noise. Behavior Research Methods, 50(1), 107–114.

https://doi.org/10.3758/s13428-017-1008-1

Karatekin, C., Couperus, J. W., & Marcus, D. J. (2004). Attention allocation in the dual-

task paradigm as measured through behavioral and psychophysiological responses.

Psychophysiology, 41(2), 175–185. https://doi.org/10.1111/j.1469-8986.2004.00147.x

Kret, M. E., & Sjak-Shie, E. E. (2018). Preprocessing pupil size data: Guidelines and

code. Behavior Research Methods, 1–7. https://doi.org/10.3758/s13428-018-1075-y

Mathôt, S. (2018). Pupillometry: Psychology, Physiology, and Function. Journal of

Cognition, 1(1). https://doi.org/10.5334/joc.18

Mathôt, S., Fabius, J., Van Heusden, E., & Van der Stigchel, S. (2018). Safe and sensible

preprocessing and baseline correction of pupil-size data. Behavior Research Methods, 50(1), 94–

106. https://doi.org/10.3758/s13428-017-1007-2

Murphy, P. R., O'connell, R. G., O'sullivan, M., Robertson, I. H., & Balsters, J. H. (2014).

Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain

Mapping, 35(8), 4140-4154.

Nyström, M., Hooge, I., & Andersson, R. (2016). Pupil size influences the eye-tracker

signal during saccades. Vision Research, 121, 95–103.

https://doi.org/10.1016/J.VISRES.2016.01.009

Patil, I. (2018). ggstatsplot:“ggplot2” Based Plots with Statistical Details. CRAN.

44

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

https://doi.org/10.1016/J.VISRES.2016.01.009
https://doi.org/10.3758/s13428-017-1007-2
https://doi.org/10.5334/joc.18
https://doi.org/10.3758/s13428-018-1075-y
https://doi.org/10.1111/j.1469-8986.2004.00147.x

GAZER

Piquado, T., Isaacowitz, D., & Wingfield, A. (2010). Pupillometry as a measure of

cognitive effort in younger and older adults. Psychophysiology, 47(3), 560–569.

https://doi.org/10.1111/j.1469-8986.2009.00947.x

Reilly, J., Kelly, A., Kim, S. H., Jett, S., & Zuckerman, B. (2018). The human task-evoked

pupillary response function is linear: Implications for baseline response scaling in pupillometry.

Behavior Research Methods. https://doi.org/10.3758/s13428-018-1134-4

Salverda, A. P., & Tanenhaus, M. K. (2018). The visual world paradigm. In Annette M. B.

de Groot and Peter Hagoort (Eds) Research methods in psycholinguistics and the neurobiology of

language: A practical guide, pp. 89-110. Wiley Blackwell.

Satterthwaite, T. D., Green, L., Myerson, J., Parker, J., Ramaratnam, M., & Buckner, R. L.

(2007). Dissociable but inter-related systems of cognitive control and reward during decision

making: Evidence from pupillometry and event-related fMRI. NeuroImage, 37(3), 1017–1031.

https://doi.org/10.1016/j.neuroimage.2007.04.066

Seedorff, M., Oleson, J., & McMurray, B. (2018). Detecting when timeseries differ: Using

the Bootstrapped Differences of Timeseries (BDOTS) to analyze Visual World Paradigm data

(and more). Journal of Memory and Language, 102, 55–67.

https://doi.org/10.1016/J.JML.2018.05.004

Siegle, G. J., Steinhauer, S. R., Carter, C. S., Ramel, W., & Thase, M. E. (2003). Do the

Seconds Turn Into Hours? Relationships between Sustained Pupil Dilation in Response to

Emotional Information and Self-Reported Rumination. Cognitive Therapy and Research, 27(3),

365–382. https://doi.org/10.1023/A:1023974602357

45

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

https://doi.org/10.1023/A:1023974602357
https://doi.org/10.1016/J.JML.2018.05.004
https://doi.org/10.3758/s13428-018-1134-4
https://doi.org/10.1111/j.1469-8986.2009.00947.x

GAZER

Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995).

Integration of visual and linguistic information in spoken language comprehension. Science (New

York, N.Y.), 268(5217), 1632–1634. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/7777863

Tsukahara, J.S. (2018). pupillometry: An R Package to Preprocess Pupil Data. Retrieved

from https://dr-jt.github.io/pupillometry

Van Gerven, P. W. M., Paas, F., Van Merriënboer, J. J. G., & Schmidt, H. G. (2004).

Memory load and the cognitive pupillary response in aging. Psychophysiology, 41(2), 167–174.

https://doi.org/10.1111/j.1469-8986.2003.00148.x

Winn, M. B., Wendt, D., Koelewijn, T., & Kuchinsky, S. E. (2018). Best Practices and

Advice for Using Pupillometry to Measure Listening Effort: An Introduction for Those Who

Want to Get Started. Trends in Hearing, 22, 2331216518800869.

https://doi.org/10.1177/2331216518800869

Supplemental Figure: A demonstration of how tidyr::gather converts “wide” data with three
separate object columns into “long” data that contains a “key” variable (Object) and a “value”
variable (Fix).

46

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047
1048
1049

https://doi.org/10.1177/2331216518800869
https://doi.org/10.1111/j.1469-8986.2003.00148.x
https://dr-jt.github.io/pupillometry
http://www.ncbi.nlm.nih.gov/pubmed/7777863

GAZER 47

1050

1051

	Author note
	Introduction
	Package Installation and Setup
	Raw Data
	Package Installation

	Preprocessing Gaze Position Data from the Visual World Paradigm
	Reading in Gaze Data
	Parsing areas of interest
	Fixations to bins
	gaze_bins <- binify_fixations(gaze = gaze_aoi, keepCols = c("Subject", "Target", "Condition", "ACC", "RT", "Targ", "Comp", "Unrelated"))
	Aggregate Data
	Plot fixation time course
	Preprocessing Pupil Data from a Lexical Decison Task
	Reading in Pupil Data

	Behavioral Data (Optional)
	De-blinking
	Interpolation
	Missing data stemming from blinks or failure of the eye tracker need to be interpolated. The interpolate_pupil function searches the data and reconstructs the pupil size for each trial from the relevant samples using either linear interpolation (Bradley, Miccoli, Escrig, & Lang, 2008; Cohen et al., 2015; Siegle, Steinhauer, Carter, Ramel, & Thase, 2003) or cubic-spline interpolation (Mathôt, 2018). Considering the short duration of blinks and the relatively low speed of blinks, the choice of linear versus cubic interpolation will ultimately have negligible effect. If extendblinks = FALSE, samples with blinks are turned into “NA”s and are then interpolated linearly or by cubic interpolation. This function returns a tibble with a column called interp which contains interpolated values from the pupil column in your data (e.g., average, left, or right pupil size). As an important note, if the Data Viewer was used to extend blinks, the extendblinks argument should be set to FALSE. If gazer::extend_blinks was used, the extendblink argument should be set to TRUE. It is important to note that SR only extends the blink column and does not set pupil size estimates during blinks to “NA” in the Sample Report. For this example, we will set extendblinks to TRUE and use linear interpolation. You can use cubic interpolation by changing type to “cubic.”
	Smoothing
	Baseline correction
	Re-Scaling
	Artifact Rejection
	Median absolute deviation (MAD). After interpolation, it is a good idea to perfrom a second pass on your data to make sure that the data is not contaminated by rapid pupil size disturbances. These artifacts can be detected using the median absolute deviation (Kret & Sjak-Shie, 2018). The speed_dilation function calculates the normalized dilation speed, which is the absolute change in pupil size between samples divided by the temporal separation between them. To detect outliers, the median absolute deviation is calculated from the speed dilation variable, multiplied by a constant (in this case 16), and added to the median dilation speed variable using the calc_mad function–values above this threshold are then removed.
	Event Time Alignment
	Downsampling/Decimation
	Aggregating Data
	Pupillary Data Visualization
	Limitations

	References

