Permalink
41 lines (37 sloc) 1.21 KB
import os
import argparse
import logging
logging.basicConfig(level=logging.DEBUG)
from common import find_mxnet, data, fit
from common.util import download_file
import mxnet as mx
if __name__ == '__main__':
# parse args
parser = argparse.ArgumentParser(description="train cifar10",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
fit.add_fit_args(parser)
data.add_data_args(parser)
data.add_data_aug_args(parser)
# use a large aug level
data.set_data_aug_level(parser, 3)
parser.set_defaults(
# network
network = 'resnet',
num_layers = 50,
# data
num_classes = 1000,
num_examples = 1281167,
image_shape = '3,224,224',
min_random_scale = 1, # if input image has min size k, suggest to use
# 256.0/x, e.g. 0.533 for 480
# train
num_epochs = 80,
lr_step_epochs = '30,60',
)
args = parser.parse_args()
# load network
from importlib import import_module
net = import_module('symbols.'+args.network)
sym = net.get_symbol(**vars(args))
# train
fit.fit(args, sym, data.get_rec_iter)