Skip to content
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
120 lines (96 sloc) 4.02 KB

Deploy Compiled Modules

NNVM compiled modules are fully embedded in TVM runtime as long as GRAPH_RUNTIME option is enabled in tvm runtime. Check out the TVM documentation for how to deploy TVM runtime to your system.

In a nutshell, we will need three items to deploy a compiled module. Checkout our tutorials on getting started with NNVM compiler for more details.

  • The graph json data which contains the execution graph.
  • The tvm module library of compiled functions.
  • The parameter blobs for stored parameters.

We can then use TVM's runtime API to deploy the compiled module. Here is an example in python.

import tvm

# tvm module for compiled functions.
loaded_lib = tvm.module.load("")
# json graph
loaded_json = open(temp.relpath("deploy.json")).read()
# parameters in binary
loaded_params = bytearray(open(temp.relpath("deploy.params"), "rb").read())

fcreate = tvm.get_global_func("tvm.graph_runtime.create")
ctx = tvm.gpu(0)
gmodule = fcreate(loaded_json, loaded_lib, ctx.device_type, ctx.device_id)
set_input, get_output, run = gmodule["set_input"], gmodule["get_output"], gmodule["run"]
set_input("x", tvm.nd.array(x_np))
out = tvm.nd.empty(shape)
get_output(0, out)

An example in c++.

#include <dlpack/dlpack.h>
#include <tvm/runtime/module.h>
#include <tvm/runtime/registry.h>
#include <tvm/runtime/packed_func.h>

#include <fstream>
#include <iterator>
#include <algorithm>

int main()
    // tvm module for compiled functions
    tvm::runtime::Module mod_syslib = tvm::runtime::Module::LoadFromFile("");

    // json graph
    std::ifstream json_in("deploy.json", std::ios::in);
    std::string json_data((std::istreambuf_iterator<char>(json_in)), std::istreambuf_iterator<char>());

    // parameters in binary
    std::ifstream params_in("deploy.params", std::ios::binary);
    std::string params_data((std::istreambuf_iterator<char>(params_in)), std::istreambuf_iterator<char>());

    // parameters need to be TVMByteArray type to indicate the binary data
    TVMByteArray params_arr; = params_data.c_str();
    params_arr.size = params_data.length();

    int dtype_code = kDLFloat;
    int dtype_bits = 32;
    int dtype_lanes = 1;
    int device_type = kDLCPU;
    int device_id = 0;

    // get global function module for graph runtime
    tvm::runtime::Module mod = (*tvm::runtime::Registry::Get("tvm.graph_runtime.create"))(json_data, mod_syslib, device_type, device_id);

    DLTensor* x;
    int in_ndim = 4;
    int64_t in_shape[4] = {1, 3, 224, 224};
    TVMArrayAlloc(in_shape, in_ndim, dtype_code, dtype_bits, dtype_lanes, device_type, device_id, &x);
    // load image data saved in binary
    std::ifstream data_fin("cat.bin", std::ios::binary);<char*>(x->data), 3 * 224 * 224 * 4);

    // get the function from the module(set input data)
    tvm::runtime::PackedFunc set_input = mod.GetFunction("set_input");
    set_input("data", x);

    // get the function from the module(load patameters)
    tvm::runtime::PackedFunc load_params = mod.GetFunction("load_params");

    // get the function from the module(run it)
    tvm::runtime::PackedFunc run = mod.GetFunction("run");

    DLTensor* y;
    int out_ndim = 1;
    int64_t out_shape[1] = {1000, };
    TVMArrayAlloc(out_shape, out_ndim, dtype_code, dtype_bits, dtype_lanes, device_type, device_id, &y);

    // get the function from the module(get output data)
    tvm::runtime::PackedFunc get_output = mod.GetFunction("get_output");
    get_output(0, y);

    // get the maximum position in output vector
    auto y_iter = static_cast<float*>(y->data);
    auto max_iter = std::max_element(y_iter, y_iter + 1000);
    auto max_index = std::distance(y_iter, max_iter);
    std::cout << "The maximum position in output vector is: " << max_index << std::endl;


    return 0;
You can’t perform that action at this time.