Permalink
Branch: master
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
176 lines (137 sloc) 5.85 KB

Deploy NNVM Modules

NNVM compiled modules are fully embedded in TVM runtime as long as GRAPH_RUNTIME option is enabled in tvm runtime.

In a nutshell, we will need three items to deploy a compiled module. Checkout our tutorials on getting started with NNVM compiler for more details.

  • The graph json data which contains the execution graph.
  • The tvm module library of compiled functions.
  • The parameter blobs for stored parameters.

We can then use TVM's runtime API to deploy the compiled module. Here is an example in python.

import tvm

# tvm module for compiled functions.
loaded_lib = tvm.module.load("deploy.so")
# json graph
loaded_json = open(temp.relpath("deploy.json")).read()
# parameters in binary
loaded_params = bytearray(open(temp.relpath("deploy.params"), "rb").read())

fcreate = tvm.get_global_func("tvm.graph_runtime.create")
ctx = tvm.gpu(0)
gmodule = fcreate(loaded_json, loaded_lib, ctx.device_type, ctx.device_id)
set_input, get_output, run = gmodule["set_input"], gmodule["get_output"], gmodule["run"]
set_input("x", tvm.nd.array(x_np))
gmodule["load_params"](loaded_params)
run()
out = tvm.nd.empty(shape)
get_output(0, out)
print(out.asnumpy())

An example in c++.

#include <dlpack/dlpack.h>
#include <tvm/runtime/module.h>
#include <tvm/runtime/registry.h>
#include <tvm/runtime/packed_func.h>

#include <fstream>
#include <iterator>
#include <algorithm>

int main()
{
    // tvm module for compiled functions
    tvm::runtime::Module mod_syslib = tvm::runtime::Module::LoadFromFile("deploy.so");

    // json graph
    std::ifstream json_in("deploy.json", std::ios::in);
    std::string json_data((std::istreambuf_iterator<char>(json_in)), std::istreambuf_iterator<char>());
    json_in.close();

    // parameters in binary
    std::ifstream params_in("deploy.params", std::ios::binary);
    std::string params_data((std::istreambuf_iterator<char>(params_in)), std::istreambuf_iterator<char>());
    params_in.close();

    // parameters need to be TVMByteArray type to indicate the binary data
    TVMByteArray params_arr;
    params_arr.data = params_data.c_str();
    params_arr.size = params_data.length();

    int dtype_code = kDLFloat;
    int dtype_bits = 32;
    int dtype_lanes = 1;
    int device_type = kDLCPU;
    int device_id = 0;

    // get global function module for graph runtime
    tvm::runtime::Module mod = (*tvm::runtime::Registry::Get("tvm.graph_runtime.create"))(json_data, mod_syslib, device_type, device_id);

    DLTensor* x;
    int in_ndim = 4;
    int64_t in_shape[4] = {1, 3, 224, 224};
    TVMArrayAlloc(in_shape, in_ndim, dtype_code, dtype_bits, dtype_lanes, device_type, device_id, &x);
    // load image data saved in binary
    std::ifstream data_fin("cat.bin", std::ios::binary);
    data_fin.read(static_cast<char*>(x->data), 3 * 224 * 224 * 4);

    // get the function from the module(set input data)
    tvm::runtime::PackedFunc set_input = mod.GetFunction("set_input");
    set_input("data", x);

    // get the function from the module(load patameters)
    tvm::runtime::PackedFunc load_params = mod.GetFunction("load_params");
    load_params(params_arr);

    // get the function from the module(run it)
    tvm::runtime::PackedFunc run = mod.GetFunction("run");
    run();

    DLTensor* y;
    int out_ndim = 2;
    int64_t out_shape[2] = {1, 1000, };
    TVMArrayAlloc(out_shape, out_ndim, dtype_code, dtype_bits, dtype_lanes, device_type, device_id, &y);

    // get the function from the module(get output data)
    tvm::runtime::PackedFunc get_output = mod.GetFunction("get_output");
    get_output(0, y);

    // get the maximum position in output vector
    auto y_iter = static_cast<float*>(y->data);
    auto max_iter = std::max_element(y_iter, y_iter + 1000);
    auto max_index = std::distance(y_iter, max_iter);
    std::cout << "The maximum position in output vector is: " << max_index << std::endl;

    TVMArrayFree(x);
    TVMArrayFree(y);

    return 0;
}

Deploy as System Module

C++ additionally support deployment as system module. This process need few additional options as given below to NNVM build.

  • For target llvm append --system-lib as target=llvm --system-lib
  • For a GPU build (or non llvm) the additional option should be given to targat_host as target_host=llvm --system-lib

Module export require additional options for not to compile but save as lib.export_library (path, fcompile=False)

The output of above API is a tar compressed file containing object file (lib.o) and cpp source file (devc.cc) which embeds device blob. Thease two files should be compiled along with other files or objects while building c++ application. Please refer to Makefile for a reference.

The c++ code to load this system module require the below change.

    // tvm module for compiled functions
    tvm::runtime::Module mod_syslib = (*tvm::runtime::Registry::Get("module._GetSystemLib"))();

Based on the build environment the system object, device blob source should be included in the final executable. An example with bazel build is given below.

cc_library(
    name = "host_module",
    srcs = ["lib.o"],
    alwayslink=1
)

cc_library(
    name = "device_module",
    srcs = ["devc.cc"],
    alwayslink=1
)

cc_library(
    name = "tvm_runtime",
    srcs = ["libtvm_runtime_pack.cc"],
)

cc_binary(
    name = "bazel_deploy",
    srcs = ["cpp_deploy.cc"],
    deps = [
        ":tvm_runtime", ":host_module", ":device_module"
    ],
    linkopts = [ "-lpthread -ldl" ]
)

This build directive creates

  • new library host_module out of lib.o
  • new library device_module out of devc.cc

These intermediate modules can be used as a dependency to final deploy application.

In bazel alwayslink=1 enforce embedding entire lib into application (even though it doesn't call any API from this module).