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Abstract

Optimizing compilers, including those in virtual machines, commonly
utilize Static Single Assignment Form as their intermediate representation,
but interpreters typically implement stack-oriented virtual machines. This
paper introduces an easily interpreted variant of Static Single Assignment
Form. Each instruction of this Interpretable Static Single Assignment Form,
including the Phi Instruction, has self-contained operational semantics
facilitating efficient interpretation. Even the array manipulation instructions
possess directly-executable single-assignment semantics. In addition, this
paper describes the construction of a prototype virtual machine realizing
Interpretable Static Single Assignment Form and reports on its performance.
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1 INTRODUCTION 1

1 Introduction

Over the past decade, intermediate representations based on Static Single Assign-
ment (SSA) Form|[Alpern et al., 1988, Rosen et|al., 1988] have been utilized in-
side many research and industrial compilers. More recently, Amme et al.| [2001]
proposed SafeTSA, a verifiable external program representation based on SSA
Form, which is well suited for just-in-time compilation. Just-in-time compila-
tion, however, imposes a startup delay, which may not be justified for short-lived
applications and infrequently executed methods. Java Virtual Machine implemen-
tations, such as Sun’s HotSpot Performance Engine [Agesen and [Cetlefs, 2000],
typically use mixed-mode interpretation and compilation to combine interpreta-
tion’s shorter startup times with compiled code’s better throughput. Perhaps as
a consequence of several problematic features of SSA, conventional imperative
interpreters have not been written for SSA representations. Consequently, Krintz
[2002] recently proposed storing and transporting programs in both Java class
files (which use a stack-oriented virtual machine) for interpretation and also in
SafeTSA classes for compilation, allowing both compilation and interpretation at
the cost of supporting two program representations.

If an SSA interpreter were available, however, it would be possible to build
a virtual machine supporting both compilation and interpretation using only SSA
representations, providing the same benefits as the hybrid virtual machine Krintz
[2002] proposes without the overhead of supporting two input program represen-
tations. Incidentally, the same interpreter technology could be used as a debugging
and testing tool for executing the SSA intermediate representations of optimizing
compilers.

While an interpreter for SSA is desirable, several features of SSA Form are
particularly challenging for direct imperative interpretation: the large number of
variable names, the selection@function operands, the simultaneous execution
of mutually dependent-functions, and the handling of non-scalar variables (such
as arrays) with single-assignment semantics.

In the next section, this paper presents Interpretable SSA (ISSA) Form, an
SSA variant in which each instruction has directly-interpretable operational se-
mantics, demonstrating how ISSA handles each of these problematic features of
SSA. After this, it reports on the performance of a prototype ISSA virtual ma-
chine. Finally, the paper concludes after discussing future improvements and re-
lated work.
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x=3 iconst_3
y= 2 iconst_2 X, i=mov 3 0 const 3
X=X+y iadd y, ‘=mov4 1 const 2
£ * iconst_2 X, = iadd X,Y, 2 iadd (0) (1)
Y imul X, = imul X, Y, 3 imul (2) (1)
print X print print x, 4 print (3)
exit exit exit 5 exit
(a) source code (b) stack-based code (c) SSA Form (d) ISSA code

Figure 1: a simple program

_ 1P=4
=]
4’ 0 const 3 0 const 3 0 const 3 |3 | Oconst3
1 const 2 1 const 2 1 const 2 i 1 const 2
2iadd (0) (1) —= | 2iadd ) (1) 2iadd (0) (1) |5 | 2iadd (0) (1)
3imul 2) (1) 3imul 2) (1) 3imul 2) (1) | 10| 3imul 2) (1)
4 print (3) 4 print (3) 4 print (3) x| 4 print (3)
5 exit 5 exit 5 exit | X | Sexit
(@) (b) (©) (d)

Figure 2: execution of a simple program

2 Interpretable SSA Form

2.1 Unique Naming

The most important characteristic of Static Single Assignment is that the left hand
side of each and every variable assignment must have a unique name. As a result,
each original program variable has several corresponding SSA variables (often
distinguished with subscripts).

Since each SSA variable is defined by exactly one program instruction (the
right hand side of the assignment), ISSA instantiates an abstract machine for each
program containing oneesult registerper instruction. Figurg 1(H) shows the pro-
gram in Figur¢ 1I(a) translated into ISSA. Each instruction in ISSA is labeled (on
the left) with a consecutive instruction number. A few instruction types, such as



2 INTERPRETABLE SSA FORM 3

int foo (int b) | 0int_arg |
{ 1 1 const 5 l
intx=>5; 12 const 7 i
1nt y=T7, 1 3 const 0 l
ez [4beq (0)(3) (710 |
if (b ==0) T .- oo F ‘
x4V o~ ! 5isub (2) (1) |
Z=X+1Y; [71add(l) 2) :6g0[0 8] 1 :
else - EpSE !
0 "~y -7l
Z=Yy —X; ' 8phi (7) (5 !
return z; ' 9 pfe }
} (10return 8)
(a) source code (b) ISSA code

Figure 3: a program using the if-then-else construct

the const instructions, take immediate integer values, but most have indirect
operands which refer to the result of previously executed instructions. Each of
these operands (syntactically distinguished by parentheses) denote the result reg-
ister by indicating the definition’s instruction number.

Figurg 2 shows the dynamic execution of this program’s abstract machine. The
instructions’ result registers are shown by the boxes to the left of the instructions;
an auxiliaryinstruction pointer(IP) register is used to indicate the instruction to
be executed next. As each instruction executes, it retrieves its inputs from from the
indicated registers, performs its computation, and writes to the appropriate result
register (RR) on its left. For example, before instruction 3 executes, the machine
state is as show in Figufe Z|c); as it executes it reads the values of RR2 (i.e. 5)
and RR1 (i.e. 2), multiplies them together, and writes the result (i.e. 10) to RR3.

This solution is simple to implement, and while it may seem to waste a large
amount of memory. The memory used is limited to fraction of that which is re-
guired to hold the instructions and is offset by not needing to perform stack ma-
nipulation (in conventional stack-oriented virtual machines) or designate a result
register (in virtual register machines).
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assume b =4 assume b=4 assume b =4 assume b=4

4] Tointarg 4] Tomtarg 4] ointarg 4] Toimtarg
|5 | |lconst5 |S | i1lconst5 |5 | |lconsts |S | i1lconst5
L 32c0nst7 L 32const7 L 32c0nst7 L 32const7
|0 | |3const0 |0 | |3const0 |0 | |3const0 |0 | |3const0
T 14beq (070 [X | 14beq (B [710 [X | 4beq (710 [X | 14beq (O [710
|| SEe@@® 12 Tsib@ @) 12| lsimb@ @ 12| [siswb@@
|x | Ggool811 | x| ibgowl811 |x | i6gotol811 |x | iGgotol811
Tladd (D@ || Thddh@) || 7Rdd(H@) || Thddh@)
| | 8phi(h () | | 8phi (MG —= | (8phi (DG |2 | (8phi(h ()
|x | 3 9 pfe | |x | 3 9 pfe | |x | 3 9 pfe | |x | 39pfe
] Dorewm@ 0 ] oewm®) ) [x ] L0rewn @) —={x | [10retum(®)
() (b) (c) (d)

Figure 4. execution of if-then-else construct

2.2 Choosing®-function Operands

While SSA naming can be handled by instantiating result registefsnctions

pose a greater obstacle to direct imperative interpretation of programs in SSA
Form. In standard SSA Form, eaghfunction resides in a basic block (where
more than one control flow edge converges) and selects one of its input operands
(using the value denoted by that operand as its result value) depending on the
control flow edge through which the dynamic execution entered the basic block.

Figure[ 3 shows a simple program with converging control flow translated into
Interpretable SSA. The-functions (that would exist in standard SSA Form) are
replaced byphi instructions. Since the basic-block control flow graph (CFG)
(which is shown as the dashed boxes and arrows in Figuré 3(b)) is not explic-
itly represented, it is not clear how an interpreter should decide whethphthe
instruction is to copy from RR7 or RR5.

For this reason, ISSA provides an auxiliary CFG-Edge Number (CEN) reg-
ister, which is set on branching instructions and is usegliy instructions to
select among their operands. Figlife 4 shows several snapshots of this program’s
execution. Consider the execution of instruction 6 (transforming the state of Fig-
ure[4(b) into that of Figurg 4(c)); this corresponds to the traversal of the CFG
edge labeled “1” in Figurg 3(pb). ISSAgoto instruction takes two immediate
operands, the first is the target instruction number (in this case, 8) and the edge
number (in this case, 1). When instruction 6 is executed the CEN register is set to
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fibonacci () 10 const 0

{ | 1 const 1
I

intf i 2=0; 1 2const 10 !
. . . I
?ntf_1_1:1, 11(“%&2771\ o
int f_i; —iIZzaeaosTT TN
inti=2; | 4 phi(1) (8 !
intn=10; ! 5 phi (0) (4) 1
! .
"6 phi (3) (10 )
do { ! phi (3) (10) i .
fi=fi l+fi2 17 pfe ; L1
print f_i; 1 8add (4) (5) ! !
i ++ 9 print (8) ! !
. o ! ,
fi2=1£i1; 110 add (1) (6) | )
fil=fi | !
}while (i <= n); o UbedO @l
} | [2return | T
(a) source (b) ISSA

Figure 5: a program computing the Fibonacci sequence

1 and the control is transfered to instruction 8 (e instruction). Because the
CEN register is 1, the second operand ofphe instruction is selected, and 2 is
read from RR5 and placed in RR8. After this the CEN register is reset to 0O; the
resulting state can be seen in Figure A(d).

2.3 Simultaneous Execution ofp-functions

The observant reader will have noticed that the previous section did not mention
thepfe (Phi-Function End) instruction marking the end of {it@ instructions
within a basic block. Thefe instruction is needed because standard SSA Form
¢-function semantics require thatfunctions be “executed” at the beginning of
the basic block in which they reside [Cytron et al., 1991]. An often overlooked
consequence of this rule manifests itself when one or mdtaction (in a loop)
reference the result values@ffunctions within the same basic block. In this case,
they must be implemented, so that the virtual machine behaves as if they were
all executed simultaneously using the previous iteration’s result values [Morgan,
1998].

A concrete example of this problem occurs during the execution of the pro-
gram shown in Figurie 5(a), which calculates the first 10 numbers of the Fibonacci
sequence. This program hag-dunction (instruction 5) that references the result
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iteration = 0

iteration = 0

iteration = 0

iteration = 0

[ Phiset = )

[ Phiset = {<(4), 1>}

\ PhiSet = {<(4),1>,<(5),0>} \

‘ PhiSet = {<(4),1>,<(5),0>,<(6),2>}

07 10 const 0 ! 07 1 0const 0~ 7:
17 3 1 const 1 3 17 3 1 const 1 3
ﬂ 1 2 const 10 : ﬂ 1 2 const 10 :
2 lenstZ,J 2 :1consLl,J
—= | apRareT T ; T ;
| seio@ Lo | i@ }
1 6 phi (3) (10) ! 16 phi (3) (10) !
Z 3 7 pfe i Z 3 7 pfe 3
| | 18add@) () ! | | 8add@)(5) !
x| 3 9 print (8) 3 x| 3 9 print (8) 3
110 add (1) (6) 1 1 10 :add (1) (6) 1
Z :Llilible (10)(2)[411 Z L]ﬁl ble (10) (2) [4]1
x L 7
(@) (b)
iteration = 0
[ phiset= ) [ Phiset = {}

3 1 const 1
10| |2 const 10 !

Ll const2 _ |
'S phi (0) 4)
16 phi (3) (10)
X 37 pfe

18 add (4) (5)
Z 39 print (8)
|| 110 add (1) (6)

L |o|l=|n|=|=|c
o

>

x‘w

—

77777777 I
I
31 const1 |
I
12 const 10 !

L.’z const2

'5 phi (0) (@)
16 phi (3) (10)
3 7 pfe

'$ add 4) (5)
[x | 39 print (8)
10 add (1) (6)

()

[o ] 10onsto [0 ] 10 consto™
17 :lconstl 3 17 ilconstl 3
|10 | 2 const 10 ! 10| 12 const 10 !
12 ] 13 const2 _ | Z '3 const2_ |

‘4phi(1)@®) ! [4phi(D®) !
|| ESphi (0) (4) 3 : 35 phi (0) (4) 3
L iﬁphi (3) (10) 3 || 36 phi (3) (10) ;
|x | 17 pfe ! —™|x | |7 pfe !
| | 18 add@) () ! 18 add (4) (5) !
|x | 39 print (8) 3 Z 39 print (8) 1
|| 110 add (1) (6) ! || 110 add (1) 6) !
|x | Ln ble (10) (2) [411 1 |x | :Lll ble (10) 2) [411 1
ES ES N B

(c) (d)

iteration = 1 iteration = 1
\ PhiSet = {<(4),1>,<(5),1>.<(6),3>} \ [Phiset= ()
0 | 07 consc0 [0 ] 10 consto
L :1constl 3 1| ilcnnstl |
| 10| 3200“5110 i | 10] 12cun51103
12 | 3 const2_, 1 L.’zmnleJ
| A phitD S ERRE R
10| 15 phi(0)(4) 3 1|15 phico) ) !
|2 | 36 phi (3) (10) ! |3 | 16 phi(3)(10) 3
1x | :7 pfe 3 |x | 3 7 pfe '
|| is add (4) (5) ! —=1 | 8 add(4) (5 3
[x | 19 print®) 3 x| 39 print (8) !
|3 | |10 add (1) (6) ! E 10 add (1) (6)
X X 1
] ]

Figure 6: computing the Fibonacci sequence
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of a¢-function (instruction 4) from the previous iteration. (This happens, because
the previous iteration’s n-1 becomes the new iteration’s n-2; in more complicated
examples, there could be multiple mutually dependefunctions.) If thesep-
functions were to be executed sequentially simply copying the results from the
correct input operand into the result register, instruction 5 will erroneously copy
the value placed in RR4 during the current iteration instead of the previous itera-
tion. For example, at the end of the second iteration RR4 and RR5 will both be 1;
for the third iteration, the new value of RR4 is 2, but the new value of RR5 should
still be 1.

For this reason, an ISSA virtual machine will buffari instruction transfers
until it executes thefe instruction, which commits the transfers stored in the
PhiSetbuffer and resets the CEN register. This solves the problem because all of
the reads associated with the S&Aunctions occur at the ISSphi instructions
before performing any of the writes (at tpée instruction).

For an example of thpfe instruction in action, consider the first two itera-
tions of the Fibonacci program shown in Figlire 5(b). Figure|6(a) show the state
of the program on initially entering the loop body; the CEN register is 0, indicat-
ing that the first operand of thehi instructions should be used. As eguhi
instruction is executed, a pair, containing fi@ 's instruction number and the
selected operands current value, is added tdPthi€etbuffer. When instruction
4 executes, it selects the first operand, reads in the contents of RR1 (i.e. 1), and
places (4, 1) into th@hiSetbuffer (Figurg 6(B)); for 5 it reads in RRO and places
(5,0) into the buffer (Figurg 6(c)); for 6 it reads in RR3 and places (6,2) into the
buffer (Figureg 6(d)). After this, th@fe instruction executes; it removes each of
the pairs out of the PhiSet (the order does not matter) and writes to the appropriate
result registers (1 to RR4, 0 to RR5, and 2 to RR6) and resets the CEN register to
0.

The second iteration is entered from the conditional branch of instruction 11
(Figure[6(f)). Because the value of RR10 (i.e. 3) is less than the value of RR2
(i.,e. 10), the test succeeds, control transfers control back to instruction 4, and
the CEN register is set to 1. Thus, in this iteration, the second operand of each
phi instruction is selected, and the virtual machine reads in the current values
of RR8, RR4, and RR10 and placing (4,1), (5,1), and (6,3) intd,tm&etbuffer
(Figure[6(g)). When thefe instruction executes, the appropriate result registers
are written to and the CEN register is reset; the result is shown in Higuie 6(h).
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Ay=10,0,0]

A,=1[4,13]

Figure 7: tree depiction of the array model

2.4 Arrays
2.4.1 The Cytron et al. Array Model

Support for non-scalars has long been problematic in SSA, and many extensions
have been proposed for supporting arrays and other non-scalars (e.g., Array SSA
Form [Knobe and Sarkar, 1998]). The simplest array semantics consistent with the
single-assignment property are found in the seminal description of SSA by Cytron
et all [1991]! Cytron et al. treat each array as a single scalar variable with multiple
instances and describe two primitives for accessing and manipulating these arrays:
Access{l, i) andUpdate(,,j,V). TheAccesprimitive merely fetches the value

of indexi in array instancel,,. TheUpdateprimitive creates a new array instance

A, which is equivalent tol, except that elementis changed td’. This model

can be viewed as creating a tree (Figure 7) where each array instance is a node,
and eaclUpdatecreates a new child instance derived from a parent instance. All
instances remain accessible to futuedates andAccesss.

Maintaining multiple instances of each array may seem expensive but it is
needed to maintain proper SSA semantics and avoid output dependencies. The
output dependencies would not be a problem if the SSA code was produced by
a straightforward translation from a source program. If, however, code motion
was performed as part of the program’s optimization in SSA Form (for example,
when debugging compiler output after partial redundancy elimination), an SSA
interpreter supporting non-destructive array semantics must be prepared to deal
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a=new int [5];

a[0] =13;
a[l] =14,
x =a[l]
a[l] =15;
y=a[l]

(a) Source Code

PhiSet = {}

0 const 13
1 const 14
2 const 15
3 const 5

4 const 0

[-[e[=]al=]=]

5 const 1

o

6 newarray (3)
7 update (6) (4) (0)
8 update (7) (5) (1)
9 update (8) (5) (2)
10 access (8) (5)
11 access (9) (5)

EEE

(@)

al = newarray 5

a2 = update (al, 0, 13)
a3 = update (a2, 1, 14)
x0 = access (a3, 1)

a4 = update (a3,

1, 15)

y0 = access (a4, 1)

(b) SSA Form

al = newarray 5

a2 = update (al, 0, 13)
a3 =update (a2, 1, 14)
a4 = update (a3, 1, 15)
x0 = access (a3, 1)

y0 = access (a4, 1)

(c) After Code
Motion

0 const 13

1 const 14

2 const 15

3 const 5

4 const 0

5 const 1

6 newarray (3)

7 update (6) (4) (0)
8 update (7) (5) (1)
9 update (8) (5) (2)
10 access (8) (5)

11 access (9) (5)

(d) ISSA Code

Figure 8: a program exhibiting array manipulation

[ Phiset= {}

[ Phiset= () [Phiset= () [ Phiset= {}
[13] 0const13 [13] 0const13 3| oconst13 [13] 0const13
[ 14| 1const 14 [ 14] 1const 14 1 const 14 [ 14| 1const 14
[ 15| 2const15 [15| 2const15 2 const 15 [ 15| 2const15
| 5| 3const5 | 5| 3const5 3 const 5 | 5| 3const5
0| 4const0 0| 4const0 4 const 0 0| 4const0
1 5 const 1 1| 5constl 5 const 1 1 5 const 1

6 newarray (3)
7 update (6) (4) (0)
8 update (7) (5) (1)
9 update (8) (5) (2)
10 access (8) (5)
11 access (9) (5)

6 newarray (3)
7 update (6) (4) (0)
8 update (7) (5) (1)
9 update (8) (5) (2)
10 access (8) (5)
11 access (9) (5)

6 newarray (3)

7 update (6) (4) (0)
8 update (7) (5) (1)
9 update (8) (5) (2)
10 access (8) (5)

11 access (9) (5)

6 newarray (3)

7 update (6) (4) (0)
8 update (7) (5) (1)
9 update (8) (5) (2)
10 access (8) (5)

11 access (9) (5)

(b)

(©

Figure 9: dynamic execution of array manipulation
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with the possibility of an array access being moved below an L[ﬁdate

An example program requiring non-destructiygdatesemantics is shown in
Figure[8. Figurg 8(Ib) shows the direct SSA translation of the source program in
Figure[8(d). Figurg 8(F) which is semantically equivalent to the program in Figure
[B(b) but has been altered by legal code motion and as a result accesses an old
version of an array (i.e. a3) even after it has been updated (becoming a4). Thus,
a3 and a4 have overlapping live ranges and, for this reason, cannot share the same
storage space.

2.4.2 ISSA's Implementation of Arrays

ISSA supports array manipulation througbwarray , access , andupdate
instructions modeled after thépdateandAccesgunctions of Cytron et al| [1991],

which treat the entire array as a single SSA variable. Baebarray instruction

takes as an operand the number of elements, creates a new array of that size,
and places a reference to it in thewarray 's result register. Evergccess ,

takes as operands a reference to an array and the index into the array, fetches
the appropriate element from that array, and places a copy of its value in the
access ’sresult register. Eachpdate instruction takes as operands a reference

to an array, an index into that array, and a value, copies the array, writes the value
to the element in the new array identified by the index, and places a reference to
the new array in thepdate ’s result register.

As a concrete example, we will now describe the dynamic execution of the
program shown in Figure8(d); Several steps in this program’s execution are illus-
trated in Figur¢ 9. Array references are implemented as indexes into a dynamic
data structure called therray vector(AV), which contains pointers to all of the
arrays instantiated during program execution. The execution ofreaghrray
or update adds a new array to tharray vectorfor each instantiation of the
original program array (Figufe 9(a), Figure 9(b), and Figure|9(c)). aduess
instructions select array versions by referencing the result register of the instruc-
tion which produced that instance; this result register contains an index to the
array vector which in turn contains a pointer to the actual array instance. The
access of instruction 10 uses the array produced by instruction 8, which was
unaffected by theipdate at instruction 9 (Figuré 9(H)), so retrieves the “old”
value of element 1 (i.e., 14). Instruction 11, however, uses the “current” version

LAlternatively, the optimizer could be made aware of output dependencies for non-scalars, or
output dependencies could be fixed-up by another code motion phase just prior to interpretation,
but this goes beyond single-assignment semantics.
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Program Elapsed Time (in sec)
ISSA C Perl Java
destructive| non-dest. with JIT | no JIT
Factorial 2! x 109 - 42.57| 0.35| 115.57 1.04 13.01
Fibonacci (firstd7 x 107) - 166.12| 1.02 | 719.67 3.20 76.64
Fibonacci (Array)  (firstt7 x 10°) 2.95 8.98| 0.04| 11.64| 0.37 1.29

Table 1: execution times

Program Slowdown (Relative to Optimized C Code)
ISSA Perl Java
destructive| non-dest. with JIT | no JIT
Factorial (2! x 107) - 122x | 330x | 3.0x 37x
Fibonacci (firstd7 x 107) - 163x | 706x | 3.1x 75x%
Fibonacci (Array)  (firstt7 x 10°) 4% 225 | 291x 9.3x 32x

Table 2: relative execution time

of the array produced by thgpdate at instruction 9 (Figurg 9(g)) and retrieves
the the “current” value of element 1 (i.e., 15).

2.4.3 Optimizations

As noted above, each arraypdate results in a copy. Most of the time, these

are unnecessary. A live range analysis could be used to identify cases where the
update ’s input array is never used again. (For most programs, this would be
all of them.) In those cases, tlwpdate can safely avoid the copy and instead
destructively modify the array in place and output the a reference to that same
array.

3 Implementation and Performance

We have implemented a simple prototype ISSA virtual machine in about 1,000
lines of C code. During execution, it reads and parses an ASCII representation
of ISSA code and then executes it using a simple interpretive engine consisting
of a switch statement (with 30 case statements, one for each instruction opcode)
embedded in a loop. The virtual machine is untyped; all immediate and register
values are 32-bit words but may be used as integers, single-precision floats, or
indexes into tharray vector and instruction numbers used as operands are also
32-bits. It uses an array to efficiently implement the PhiSet buffer. In addition,
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the the virtual machine performs dynamic bounds checking to ensure that neither
invalid instruction numbers nor illegal array manipulation can violate its integrity.

Although dynamic bounds checking guarantees the virtual machine’s integrity,
the virtual machine does not verify other properties whose violation can only af-
fect program correctness. In particular, CEN values on branges,instruc-
tions, andofe instructions, must be used correctly in order to implement standard
SSA semantics, misuse may produce programs that are not in SSA form. Simi-
larly the virtual machine does not distinguish float, integer, and array reference
types; instead all data exists as 32-bit words and each instruction uses each of
those words as the type appropriate for that instruction operand.

Even though our interpreter was written using loop/switch-dispatch and prior-
itizing simplicity over performance, we measured its performance on a few simple
benchmarks. Because there is no compiler targeting ISSA, we manually translit-
erated each of our benchmarks from C into ISSA, Perl and Java, and timed their
execution in their respective environmﬁntsThe resulting execution times (in
seconds) are shown in Talple 1. There were three benchmarks: the first computes
the first computes 12! 10,000,000 times, the second computes (in scalar vari-
ables) the first 47 elements of the Fibonacci sequence 10,000,000 times, and the
third builds a dynamically allocated array containing the first 47 elements of the
Fibonacci sequence, repeating this 100,000 times. These benchmarks were exe-
cuted on a dual-processor 1GHz Pentium Il Xeon with 256KB cache and 1GB
of 133Mhz SRAM, running RedHat Linux 7.2 with a Linux 2.4.18 kernel; all I/O
was suppressed, and the preprocessing times of ISSA virtual machine and Perl
times were exclud@ The ISSA Fibonacci array benchmark was run using both
destructive and non-destructive array manipulations. From this it can be seen that
single-assignment semantics for arrays resulted3r alowdown relative to de-
structive array manipulation, which is perhaps less than expected considering that
there were 47 array updates (which one would expect to be the most expensive
operation) in every iteration of the outer loop.

Slowdowns relative to optimized C code are show in Figufe 10. The ISSA vir-

°The prototype virtual machine and the C benchmarks were produced using gcc 2.96 with -
O3 switch, and the Java benchmarks were compiled to Java Bytecode using jikes 1.15. The Perl
benchmarks were executed using Perl 5.6.1 compiled by RedHat, and the Java benchmarks were
executed using the Blackdown Java 2 SDK 1.G2b FCS.

3We were unable to obtain the current userspace time consumption from within Java, so we
examined the wall-clock time consumed by the computation itself, the time reported by Java’s
profiling feature, and the user time reported by Linux for the process’s complete run, and reported
the lowest of these three.
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tual machine’s performance (with full single-assignment semantics) varied from
122x to 225x slower than the optimized C code. In all cases, it was slower
than Sun’s JVM implementation but faster than Perl. This puts it slower than
the best optimized interpreters (which have slowdowns of less thap but as
expected for a simple non-threading interpreter and faster than some production
interpreters.

4 Future Work

4.1 A Faster ISSA Virtual Machine

The prototype implementation, described above, was written prioritizing code
simplicity and the directness of ISSA model implementation over execution speed.
We plan to rewrite the interpreter, possibly using vmGen [Ertl &t al., [2002] prior-
itizing performance. We expect this rewrite, applying some of the state-of-the-art
interpreter optimizations and hand-tuning the interpreter code, to result in as much
as an order of magnitude speedup.

Much of the execution time spent by an optimized interpreter on a modern
processor can be attributed to dispatching cost Ertl and Gregg|[2003]. Our pro-
totype virtual machine uses loop/switch-dispatch, which is platform independent
and easy to implement but is relatively expensive. Each dispatch typically requires
the execution of 3 control transfer instructions Gagnon [2002], one of which is an
indirect branch that is particularly difficult for hardware to predict Ertl and Gregg
[2003]. Threaded execution dispatch techniques [Bell, 1973, Déwar| 1975] can
reduce this overhead. In addition, superinstructions [Proebsting) 1995, Piumarta
and Riccardi| 1988] can reduce the number of dispatches required, and instruc-
tion replication can increase the effectiveness of hardware branch predictars [Ertl
and Gregg, 2003]. Our rewritten interpreter will utilizes some type of threaded
dispatch and may also make use of superinstructions and replication.

Portable interpreter implementations tend to implement operand stacks and
virtual registers as elements of arrays in memory. In stack architectures, it is pos-
sible to use one (or more) local variable to hold the top element(s) of the stack
Ertl [1995], reducing the number of memory loads. This optimization is not pos-
sible in ISSA, but the results of SSA instructions are often used soon after their
creation. Thus caching the most recently generated result registers as local vari-
ables and accessing these explicitly in the subsequent instructions may result in a
significant reduction in operand loads.
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In addition to any design-level optimizations, the interpreter code itself could
be improved significantly. For example, the interpreters state variables (e.g. IP,
CEN) are not currently local variables; thus it is impossible for the compiler to
place these into registers. We expect that the code can be tightened significantly.

4.2 A SafeTSA Interpreter

In parallel with the construction of an improved ISSA interpreter described above,
Amme and Apel[2003] are creating an interpreter for the SafeTSA representation
[Amme et al.| 2001], which utilizes some of the techniques described in this paper.
This interpreter is what Klint [1981] classifies as a Type lll interpreter, consist-
ing of a relatively extensive preprocessor and an interpretive engine. In the initial
static preprocessor pass, the interpreter converts SafeTSA’s tree structured control
primitives into a flat sequence of instructions with explicit branches. In addition,
this pass translatesfunctions into ISSA-likephi instructions, adding the correct

CEN operands to branches and addafgy instructions after thehi instructions

in each basic block. The dynamic interpretive engine currently supports a subset
of the features required to implement the SafeTSA language. Specifically, primi-
tive data types can be manipulated and static method calls can be dispatched, but
reference types and dynamic dispatch are not yet implemented.

Although reference types have not yet been implemented, two properties of
SafeTSA will simplify the treatment of non-scalars compared to the handling of
arrays described in this paper. First, SafeTSAs enforced type safety replaces
the array vector since array and object references can be statically verified and
implemented with direct pointers. Second, SafeTSA's memory operations are de-
structive making the non-destructive array handling described here is unnecessary.

5 Related Work

As mentioned earlier, this work was motivated by the existence of Safe TSAJAmme
et all, 2001] as a mobile code format. SafeTSA differs from ISSA in several
ways, including the lack of annotated CFG edge numbers (CEN) and explicit
phi-function end (pfe) instructions, the use of tree structured control primitives
instead of unrestricted gotos, and the use of destructive heap-memory primitives.
The published work on SafeTSA has concentrated on the program representation
itself [Amme et al.] 2001], processing it with an optimizing compiler in a Java
Virtual Machine [Amme et al/, 2003], and reducing the online cost of optimiza-
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tions [von Ronne et al., 2001, 2002, Hartmann et al., 2003]. None of this work,
however, addresses the efficient interpretation of SafeTSA; in fact, Krintz|[2002]
speculates that direct interpretation is impossible.

Both the Program Dependence Web (PDW) of Ballance et al. [1990] and the
Static Single Information (SSI) of Ananian [1999] augment SSA Form with ad-
dition information which allows for more explicit execution semantics. To rep-
resent a program as a PDW, each of an SSA progranfisctions is replaced
with either av- or u-function, depending on whether the operands come from
forward or backwards control flow; in additiopfunctions (which mark values
after the termination of loops) and switches are inserted. This conversion is only
possible for programs with reducible control flow graphs, but provides “all the
information needed for control-driven, data-driven, or demand-driven interpreta-
tion”. The interpretation envisioned, however, is not that of an efficient byte-code
interpreter but rather that of a dataflow architecture simulator. Similarly, the SSI
variant of Static Single Information form adg<unctions to loops in order to en-
able abstract interpretation and provide event driven semantics. The conversion
of programs in SSA Form to each of these representations is more involved than
annotating branches with CENs and grouping phi-functions with pfe instructions
as required for conversion to ISSA.

Interpreting programs in SSA form represents a departure from the traditional
stack-based virtual machine; another alternative is the virtual register machine.
Davis et al. [[2003] report that by having less instructions (and thus reducing in-
direct jumps) machines with a virtual register architecture can outperform those
with a stack-based architecture despite requiring extra memory loads for the ex-
plicit operands. The performance characteristics of an ISSA interpreter should be
closer to that of a virtual register machine than to those with stack architectures.
Both virtual register machines and ISSA reduce the number of instructions at the
cost of adding explicit input-operands. The difference is that the ISSA interpreter
has less operands, because the instruction result is implicit; this benefit is achieved
at the cost of having one result register per instruction, which is less dense than
a typical virtual register machine and may increase the size of each operand and
have detrimental cache effects.

6 Conclusion

One can indeed construct an interpretable Static Single Assignment Form. Pro-
grams in standard SSA Form can be translated into this Interpretable SSA (ISSA)
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Form by simply renaming operands to implicit registers, annotating edge numbers
at branches, and marking the lgsfunction in each converging basic block.

We have demonstrated how to build an ISSA interpreter for scalars using a
result registerfor each instruction, aontrol-flow edge numbeegister to select
phi instruction operands, and RhiSetbuffer to simultaneously commyjthi
instruction result values. In addition, we have provided an actual implementation
of the Accessand Updatefunctions from the single-assignment array model of
Cytron et al.. Our prototype ISSA virtual machine is able to handle all of these
constructs with the performance expected of a simple non-threading interpreter.

This demonstrates the practicality of constructing virtual machines which in-
terpret programs represented in Static Single Assignment Form. Such SSA inter-
preters may prove useful in debugging SSA compilers and are a prerequisite for
mixed-mode virtual machines using only SafeTSA.
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A Implementation of the Interpreter Core

A.1l ssavm.c

#include "inst.h”
#include "ssavm.h”
#include "ssa.array.h”
#include "ssa parser.h”
#include <stdlib .h>
#include <stdio .h>

typedef struct phi_assignment phiassignment;

struct phi_assignment

{
ssavariable v; /lv = value to be transfered
int ovi; /1 ovi = output variable index
}
typedef struct
{
inst xxia; /lia = instruction array
int ial; /l'ial = instruction array length
ssaarray-vector xav; //av = array vector
ssavariable xoa; /loa = output array (size = instlength)
phi_assignmentxpq; /I pg = phi—assignment queue
int pqt; /' pgt = phi—assignment queue top
int ip; /l'ip = instruction pointer (index to instarray)
int cen; //cen = CFG edge number

} vm_state;

void init(vm_statexs, instx inst.array[], int inst_.length);
void commit.phis (vm_state xs);
int execute (vmstate xs, inst«instruction);

inline int pg.empty (vmstate s){return s.pg == NULL;}

inline ssavariable decodeimmediate (instxinstruction , int i) {
ssavariable v = ((ssavariablex) instruction—data)[i];
return v;

}

inline ssavariable decodeoperand (vmstate xs, instxinstruction , int i) {
int index = ((intx) instruction—data)[i];
return s—oalindex];

}

inline ssavariable firstoperand (vmstatexs, instsxinstruction) {
return decodeoperand(s, instruction, 0);

}

inline ssavariable secondoperand (vmstate xs, instsxinstruction) {
return decodeoperand(s, instruction, 1);

}



A IMPLEMENTATION OF THE INTERPRETER CORE 22

void ssavm (instx inst_array[], int inst_.length)
{

vm_state s;

instx ci;

init(&s, inst.array , instlength);
while (1)

if (s.ip < O0]] s.ip >=s.ial) abort();// we jumped out of the method
ci = s.ia[s.ip];
if (execute (&s, ci) == 0)break;

}

void init(vm_state «s, instx inst.array[], int inst_.length)
{

Il instructions—— should we copy these?

s—>ia = inst.array;

s—ial = inst_.length;

/I simple registers;

s—=>ip = 0;

s—>cen = 0;

/!l complex data

s—>av = av.init();

s—>0a = (ssavariablex) calloc (instlength , sizeof(ssavariable));
s—>pq = (phi.assignmen#) calloc (instlength , sizeof(phi_assignment));
s—>pqt = 0;

}

void commit.phis(vm_state xs)

e
int i;

for (i = 0; i < s—=>pqt; i++){
s—oa[s—>pq[i].ovi] = s—=>pq[i].v;

}
s—>pqt = 0;
}

int execute(vmstate xs, inst xci)
{ .

// temporaries

int t,n,a,i;

ssavariable x,y;

switch (ci—opcode)

case CONST:
x = decodeimmediate (ci,0);
s—>oa[s—>ip] = Xx;
s—=>ip ++;
break;
case PRINT:
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[l puts(”printing int”);
x = first_operand(s,ci);
printf ("==>.%d\n", x.i);
S—>ip ++;
break;

case ADD:
x = first_.operand(s,ci);

y = secondoperand(s,ci);
s—oa[s=ip].i = x.i +y.i;
S—ip ++;
break;

case SUB:

x = first_operand(s,ci);
y = secondoperand(s,ci);
s—>oa[s=ip].i = x.i —y.i;
s—=>ip ++;
break;

case DIV:
x = first_operand(s,ci);
y = secondoperand(s,ci);
s—oa[s=>ip].i = x.i [ y.i;
s—>ip ++;
break;

case MUL:
x = first_operand(s,ci);

y = secondoperand(s,ci);
s—>oa[s—=>ip].i = x.i *x y.i;
S—>ip ++;
break;

case AND:
X first_operand(s,ci);

y = secondoperand(s,ci);
s—>oa[s>ip].i = x.i && y.i;
S—>ip ++;
break;

case OR:

X first_operand(s,ci);

y secondoperand (s, ci);

s—>oa[s>ipl.i = x.i || y.i;
s—>ip ++;
break;

case NEG:

x = first_operand(s,ci);
s—oa[s>ip].i = —x.1i;
s—>ip ++;
break;
case BGE:
X first_operand(s,ci);
y secondoperand(s,ci);
t decodeimmediate(ci,2).t; I/l branch target
n decodeimmediate(ci,3).n; /I CFG Edge Number
if (x.i >=y.i)
{

s—>cen = n;

s—=ip = t;
} else{

S—>ip++;

23
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break;
case BGT:
x = first_operand(s,ci);
y = secondoperand(s,ci);
t = decodeimmediate (ci ,2).t;
n = decodeimmediate(ci,3).n;
if (x.i >vy.i)
s—>cen = n;
s—ip = t;
} else{
S—>ip ++;
break;
case BLE:
x = first_operand(s,ci);
y = secondoperand(s,ci);
t = decodeimmediate (ci,2).t;
n = decodeimmediate(ci,3).n;

it (x.i <=vy.i)
{

s—>cen = n;

s—=ip = t;
} else{

S—=ip ++;

break;
case BLT:

x = first_.operand(s,ci);
y = secondoperand(s,ci);
t = decodeimmediate (ci ,2).t;
n = decodeimmediate(ci,3).n;

it (x.i <y.i)
{

s—>cen = n;

s—=ip = t;
} else{
s—=>ip ++;
break;
case BNE:
x = first_operand(s,ci);
y = secondoperand(s,ci);
t = decodeimmediate(ci,2).t;
n = decodeimmediate(ci,3).n;
if (x.i!=y.i)
{
s—>cen = n;
s—>ip = t;
} else{
S—>ip ++;
break;
case BEQ:
x = first_operand(s,ci);
y = secondoperand(s,ci);

I/ branch target
// CFG Edge Number

Il branch target
/I CFG Edge Number

/! branch target
/I CFG Edge Number

I/ branch target
/!l CFG Edge Number

24
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t decodeimmediate(ci,2).t; I/l branch target
n decodeimmediate(ci,3).n; /!l CFG Edge Number

if (x.i==vy.i)
{

s—>cen = n;

s—>ip = t;
} else{

S—=ip ++;

break;
case GOTO:
t = decodeimmediate (ci,0).t; Il branch target
n = decodeimmediate(ci,1l).n; /I CFG Edge Number
s—>cen = n;
s—=ip = t;
break;
case EXIT:
// puts("exiting”);
exit (0);
case RETURN:
x = decodeoperand(s,ci,0); // thing to set the element to
exit(x.i);
case PHI:
/I check that the PHI is big enough for the cfg edge number
n = ci—opdnum;

if (s—=>cen >=n) abort(); [/l phi must have enough operands
if (s—>pqt >=s—ial) abort(); // can't overflow phi queue buffer

I/l record the data in the phiassignment queue
s—>pq[s—pqt].ovi = s=>ip;

s—>pq[s—pqt].v = decodeoperand(s, ci, s>cen);;
S>pat++;

/l next instruction
S—>ip ++;
break;
case PFE:
commit_.phis(s);
s—>cen = 0;
S—>ip ++;
break;
case NOOP:
S—=ip ++;
break;
case NEWARRAY:
x = decodeoperand(s,ci,0); // thing to set the element to
s—oa[s—ip].a = av.newarray(s>av, X.i);
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S—=ip ++;
break;

case UPDATE:
a = decodeoperand(s,ci,0).a; // array (index of array in array vector)
i = decodeoperand(s,ci,l).i; // element (index into array)
x = decodeoperand(s,ci,2); /l thing to set the element to
s—>oa[s—ip].a = av.update(s>av, a, i, x); [// result is new array
S—>ip ++;

break;



A IMPLEMENTATION OF THE INTERPRETER CORE

case ACCESS:
a = decodeoperand(s,ci,0).a; // array (index of array in array vector)

i = decodeoperand(s,ci,l).i; // element (index into array)
s—>oa[s—>ip] = av._access(s>av, a, i); [/l result is element
S—=>ip ++;
break;

case FADD:

x = first_operand(s,ci);
y = secondoperand(s,ci);
s—>oa[s—>ip].f = x.f + y.f;
S—>ip ++;
break;

case FSUB:

x = first_operand(s,ci);

y = secondoperand(s,ci);
s—oa[s>ip].f = x.f —y.f;
s—ip ++;
break;

case FDIV:

x = first_operand(s,ci);
y = secondoperand(s,ci);
s—>oa[s—ip].f = x.f [ y.f;
S—=>ip ++;
break;
case FMUL:
x = first_operand(s,ci);
y = secondoperand(s,ci);
s—>oa[s—>ip].f = x.f x y.f;
S—>ip ++;
break;
case FCONST:
s—oa[s—ip] = decodeimmediate (ci,0);
S—>ip ++;
break;
case FPRINT:
x = first_operand(s,ci);
S—=ip ++;
break;
default:
abort();

return 1;

}
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A.2 ssavm.h

#ifndef SSAVM_H
#define SSAVM_H

#include "inst.h”

typedef signed s32;
typedef unsigned u32;
typedef float f32;

typedef union ssavariable {
s32 i; [/l 32—bit signed integer integer
f32 f; // 32— bit floating point value
u32 a; // 32—bit unsigned array vector index
u32 n; // 32—bit unsigned array CFG Edge Number
u32 t; // 32—bit unsigned branch target

} ssavariable;

void ssavm(instx inst.array[], int inst_.length);
#endif
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A.3 ssaarray.h

#ifndef SSAARRAY_H
#define SSAARRAY_H

#include "ssavm.h”
#include <stdlib .h>

typedef struct
{
unsigned | ; /I array length
ssavariable xa; // array of ssavariables
} ssaarray;

typedef struct
{
unsigned na; // next array
unsigned | ; I/ allocated length
ssaarray xv; // array (vector) of arrays
} ssaarray.vector;

ssaarray-vector xav_init();

u32 av.newarray (ssaarray.vector xav, int size);

void av_cleanup (ssaarray.vector xav);

u32 av.update (ssaarray.vector xav, u32 avindex , u32 aindex , ssavariable v);

ssavariable avaccess (ssaarray.vector xav, u32 avindex, u32 arrayindex);

u32 av.fastupdate (ssaarray.vector xav, u32 avindex, u32 arrayindex ,
ssavariable v);

#endif
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A.4 inst.h

#ifndef INST.H
#define INST_H

#include <stdlib .h>
#define MAX_INSTS 1024

#define BASE 257 /x the first 256 is assigned to

typedef struct

{

int opcode;

int

opdnum; /« length in words %/

char * img;
void * data;

int datatype; /x

}inst;

typedef struct

char % img;
int opdnum;

}inst_attribute ;

static
{"const”, 1},
{"fconst”, 1},
{"add” ,2},
{"sub” ,2},
{"div" ,2},
{"mul” 2},
{"and” ,2},
{"or” 2},
{'neg” 1},
{"fadd”, 2},
{"fsub”, 2},
{"fdiv", 2},
{"fmul”, 2%,
{"bge” .4},
{"bgt" .4},
{"ble” ,4}%},
{"blt" .4},
{"bne” ,4},
{"beq” .4},
{"goto” ,2},
{"phi” -1},
{"pfe” .0},
{"update”, 3},

{"access”, 2

{"newarray”, 1},

{"exit”, 0},
{"return”, 1},
{"print”, 1},

{"fprint”, 1},

inst_attribute

int, bool, float x/

instatt [] = {

ascii

chaw/
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{"null™ ,0},

extern inst % insts_array[];
extern int insts_size;

I+ inst.c =/

inst *xnew_inst(int opcode);

inst xnew_unary_.inst(int opcode, int opd);

inst xnew_unary_finst(int opcode, float opd);

inst xnew_binary_inst(int opcode, int opdl, int opd2);

inst xnew_tenary.inst(int opcode, int opdl, int opd2, int opd3);
inst xnew_quandaryinst(int opcode, int opdl, int opd2, int opd3, int opd4);
inst xnew_phi_inst(int opcode, int opdnum, int opd[]);

void print_all_insts (inst* insts[], int size);

void print_inst (inst % ist);

void delete,all_insts(inst*insts[], int size);

#endif /x no INSTH x/
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B Benchmarks

B.1 Factorials

B.1.1 factorial.ssa

/l Find 12!, 40,000,000

0 const.0 /1l
1 const.1 /1l
2 const.12 /1l
3 const.40000000 /1l

/' Outer Loop
4 phi_2 (0 12)
5 pfe

Il Inner Loop

6 phi_2 (19) /I f
7 phi_2 (1 10) /] |
8 pfe

9 mul (6 7)
10 add (7 1)
11 ble (10 2) [6] 1

/!l Outer Loop Continued
12 add (4 1)
13 blt (12 3) [4] 1

[l Exit
14 exit

Zero
one

X
iterations
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B.1.2 factorial.c

#include <stdio .h>

#include <stdlib .h>

#include <time . h>

int main(int argc, char *xx argv){
clock_.t start, end, used = 0;
int f,x,i,j;

start = clock();

f =1;
X =12;:
i = 0;
do {
f =1;
=1
do {
f=1f % j;
jt+;
+ while (] <= x);
i ++;

} while (i < 10000000);

end = clock();
fprintf(stderr ,”"Time_.used%d\n” ,end-start);



B BENCHMARKS 33

B.1.3 Factorial.java
public class Factorial {
public static void main(String[] args})

long start;
long end;

int f,x,i,j;

start = System.currentTimeMillis () ;

f =1,
X =12;
i =0;
do {
f=1;
=1
do {
f=1f % j;
j++;
+ while (j <= x);
i ++;

} while (i < 10000000);

end = System.currentTimeMillis () ;

System.out. println ("Timeused.:."” + Long.toString(
end-start));
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B.1.4 factorial.pl
#!/usr/bin/perl —w
require ’'sys/syscall.ph’;

$TIMEVAL T = "LLLL";
$done = $start =pack(STIMEVAL_T, ());

syscall( &SYS_times, $start ,—1);

$f=1;
$x=12;
$i=0;
do {
$f = 1;
$j = 1;
do {
$f = $f = $j;
$j++;
} while ($)] <= $x);
$i++;

} while ($i < 10000000);

syscall( &SYS_times, $done, 0);

@start = unpack($TIMEVAL T, $start);
@done =unpack($TIMEVAL T, $done);

# fix microseconds
#for ($done[l], $start[1]) { $_ /= 1_000.000 }

print "Time_used.:.".($done[0]- $start[0])."\n";
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B.2 Fibbonacci Sequence (in scalars)

B.2.1 fibonacci.ssa

0
1

Il F(0)
Il F(1)
Il F(n)
/1

F(n-2) + F(n-1) for all n>=2

/I Calculate F(46), 10,000,000 times

/!l Block O
0 const.0
1 const.1
2 const.46
3 const.2
4

const.10000000 //

/!l Outer Loop
5 phi_,2 (0 14)
6 pfe

[/l Inner Loop

phi_.2 (0 8)
8 phi_2 (1 11)
9 phi_,2 (3 12)
10 pfe

11 add (7 8)
12 add (1 9)

max = 46
n=2
iterations
/Il phi (f.0, f_{n-2})
/1 phi (f.1, f_-{n-1})
/I phi (n=2, n+1)
I f_{n} = f_{n-2} + f_{n-1}
/I n<—-n+l

13 ble (12 2) [7] 1 /I

// Outer Loop Continued

14 add (5 1)

15 blt (14 4) [5] 1

/!l End
16 exit

n <= max repeat loop



B BENCHMARKS

B.2.2 fibonacci.c
#include <stdio .bh>
#include <stdlib .h>
#include <time . h>

int main(int argc, char *xx argv){

clock_.t start, end, used = 0;
int i, n, max = 46, fn, f_n.1, f_n_2;

start = clock();

f_n_1 = 0;
f_n_.2 = 1;
i = 0;
do {
n =2:
do {
f_n = f.n_.2 + f_n_1;
f_n_.2 = f_n_1;
f_n_.1 = f_n;
n=n+1;
} while (n <= 46);

i =i+ 1;
} while (i <10000000);

end = clock();
fprintf(stderr ,”Time_used%d\n”,end-start);
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B.2.3 Fibonacci.java
public class Fibonacci {
public static void main(String[] args})
long start , end;

int f_n_.2, f_.n_.1, f_n, n;
int max = 46;

int i;

start = System.currentTimeMillis () ;

f_n_1 = 0;
f_n.2 = 1;
i = 0;
do{
n=2;:
do{
f_n = f.n_2 + f_n_1;
f_n_.2 = f_n_1;
f_n_.1 = f_n;
n=n+1;

twhile (n<=46);
=0+ 1;
}while (i <10000000);

end = System.currentTimeMillis () ;
System.out. println ("Timeused.:.” + Long.toString (
end-start));
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B.2.4 fibonacci.pl
#!/usr/bin/perl —w
require ’'sys/syscall.ph’;

$TIMEVAL T = "LLLL";
$done = $start =pack(STIMEVAL_T, ());

syscall( &SYS_times, $start, 0);

$f_n_1 = 0;
$f_n_.2 = 1;
$i=0;
do {
$n = 2;
do {
$f.n = $f.n_.2 + $f_.n_1
$f_n_.2 = $f_n_1;
$f_n_1 = $f_n;
$n = $n + 1;
} while ($n <= 46);
$i = $i + 1;

} while ($i<10000000);
syscall( &SYS_times, $done, 0);

@start = unpack($TIMEVAL T, $start);
@done =unpack($TIMEVAL T, $done);

# fix microseconds
#for ($done[l], $start[1]) { $- /= 1_000.000 }

print "Time_used.:.".($done[0]- $start[0]) ."\n";

38



B

BENCHMARKS

B.3 Fibbonacci Sequence (in an array)

B.3.1 fibonacciarray.ssa

/1
/1
/1
/1

A OWNPEFO

/1
5
6

= © 00

11
12
13

14
15
16
17
18
19
20
21

/1

Find F[46], 100,000 using arrays

OQOuter Loop
phi_2 (0 22) I i
pfe

add (3 1)
newarray 7
update (8 0) O

Inner Loop
phi_2 (2 20)
phi_2 (10 19)
pfe

sub (11 1)

sub (11 2)
access(12 14)
access (12 15)
add (16 17)
update (12 11) 18
add (11 1)

ble (20 3) [11] 1

/1
/1

/1
/1
/1
/1

/1
/1

Outer Loop Continued

F[Oo] =0

F[1]1 =1

F[n] = F[n —1] + F[n =-2]
const.0 /10
const.1 /1
const.2 /I jO =2
const.46 /Il x =46
const. 100000 // iterations

]

E

] —1

] — 2

FLj —1]
FIi —2]
FLil = FIj
j=7+1

/I F = newarray x+1
/I f[0] =0
update (9 1) 1 // F[1] =1

—11 + F[j -2]
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22 add (5 1)
23 blt (22 4) [5] 1

/1 Exit
24 exit
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B.3.2 fib.array.c

#include <stdio .h>

#include <stdlib .h>

#include <time .h>

int main(int argc, char *xx argv){

clock_.t start, end;

int i, j, xf, x;

start = clock();

X=46;
i = 0;
do {
f = (intx) malloc (sizeof(int) % (x + 1));
f[0] = O;
f[1] = 1;
=2
do {
flil = flj —1]1 + f[j -2
jt+;
} while (] <=Xx);
free (f);
i ++;

} while (i < 100000);

end = clock();
fprintf(stderr ,”Time_.used%d\n” ,end-start);
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B.3.3 FibArray.java
public class FibArray {
public static void main(String[] args})

long start;
long end;

int[] f;
int i, j;

int x;

start = System.currentTimeMillis () ;

X = 46;
i = 0;
do{
f = new int[x+1];
f[0]=0;
f[1]=1;
1=2;
do{
flil = 0 -1] + f[j -2];
j++,
twhile (j <=x) ;
f=null ;
i ++;

}while (i <100000);

end = System.currentTimeMillis () ;
System.out. println ("Timeused.:." + Long.toString (
end-start));



B BENCHMARKS

B.3.4 fib_array.pl
#!/usr/bin/perl —w
require ’'sys/syscall.ph’;

$TIMEVAL T = "LLLL";
$done = $start =pack(STIMEVAL_T, ());

syscall( &SYS_times, $start, 0);

$x=46;
$i=0;
do {
@f = (0..%x);
$j = 2;
do {
$T[$j] = SF[$] —1] + $F[$j —2];
$j++;
} while ($] <= $x);
$i++;

} while ($i < 100000);
syscall( &SYS_times, $done, 0);

@start = unpack($TIMEVAL_T, $start);
@done =unpack($TIMEVAL T, $done);

print "Time_used_:.".($done[0]- $start[0])."\n";
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