-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathfinetuned_mrpc.log
305 lines (305 loc) · 15.1 KB
/
finetuned_mrpc.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
INFO:root:Namespace(accumulate=None, batch_size=32, dev_batch_size=8, epochs=3, gpu=True, log_interval=10, lr=2e-05, max_len=128, optimizer='bertadam', seed=2, task_name='MRPC', test_batch_size=8, warmup_ratio=0.1)
[11:45:38] src/storage/storage.cc:108: Using GPUPooledRoundedStorageManager.
INFO:root:BERTClassifier(
(bert): BERTModel(
(encoder): BERTEncoder(
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
(transformer_cells): HybridSequential(
(0): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(1): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(2): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(3): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(4): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(5): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(6): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(7): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(8): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(9): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(10): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(11): BERTEncoderCell(
(dropout_layer): Dropout(p = 0.1, axes=())
(attention_cell): MultiHeadAttentionCell(
(_base_cell): DotProductAttentionCell(
(_dropout_layer): Dropout(p = 0.1, axes=())
)
(proj_query): Dense(768 -> 768, linear)
(proj_key): Dense(768 -> 768, linear)
(proj_value): Dense(768 -> 768, linear)
)
(proj): Dense(768 -> 768, linear)
(ffn): BERTPositionwiseFFN(
(ffn_1): Dense(768 -> 3072, linear)
(activation): GELU()
(ffn_2): Dense(3072 -> 768, linear)
(dropout_layer): Dropout(p = 0.1, axes=())
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
(layer_norm): BERTLayerNorm(eps=1e-12, axis=-1, center=True, scale=True, in_channels=768)
)
)
)
(word_embed): HybridSequential(
(0): Embedding(30522 -> 768, float32)
(1): Dropout(p = 0.1, axes=())
)
(token_type_embed): HybridSequential(
(0): Embedding(2 -> 768, float32)
(1): Dropout(p = 0.1, axes=())
)
(pooler): Dense(768 -> 768, Activation(tanh))
)
(classifier): HybridSequential(
(0): Dropout(p = 0.1, axes=())
(1): Dense(None -> 2, linear)
)
)
INFO:root:Setting MXNET_GPU_MEM_POOL_TYPE="Round" may lead to higher memory usage and faster speed. If you encounter OOM errors, please unset this environment variable.
INFO:root:[Epoch 1 Batch 10/119] loss=0.6271, lr=0.0000059, metrics=accuracy:0.6937,f1:0.8171
INFO:root:[Epoch 1 Batch 20/119] loss=0.6428, lr=0.0000118, metrics=accuracy:0.6709,f1:0.7933
INFO:root:[Epoch 1 Batch 30/119] loss=0.5898, lr=0.0000176, metrics=accuracy:0.6828,f1:0.7804
INFO:root:[Epoch 1 Batch 40/119] loss=0.5413, lr=0.0000196, metrics=accuracy:0.7017,f1:0.7784
INFO:root:[Epoch 1 Batch 50/119] loss=0.6055, lr=0.0000190, metrics=accuracy:0.6997,f1:0.7572
INFO:root:[Epoch 1 Batch 60/119] loss=0.5425, lr=0.0000183, metrics=accuracy:0.7070,f1:0.7427
INFO:root:[Epoch 1 Batch 70/119] loss=0.6457, lr=0.0000177, metrics=accuracy:0.7001,f1:0.7210
INFO:root:[Epoch 1 Batch 80/119] loss=0.5171, lr=0.0000170, metrics=accuracy:0.7043,f1:0.7207
INFO:root:[Epoch 1 Batch 90/119] loss=0.4528, lr=0.0000164, metrics=accuracy:0.7117,f1:0.7127
INFO:root:[Epoch 1 Batch 100/119] loss=0.4327, lr=0.0000157, metrics=accuracy:0.7196,f1:0.7091
INFO:root:[Epoch 1 Batch 110/119] loss=0.4692, lr=0.0000151, metrics=accuracy:0.7246,f1:0.7029
INFO:root:validation metrics:accuracy:0.8309,f1:0.7159
INFO:root:Time cost=54.4s
INFO:root:[Epoch 2 Batch 10/119] loss=0.3106, lr=0.0000139, metrics=accuracy:0.8969,f1:0.6467
INFO:root:[Epoch 2 Batch 20/119] loss=0.2445, lr=0.0000132, metrics=accuracy:0.9051,f1:0.6670
INFO:root:[Epoch 2 Batch 30/119] loss=0.2599, lr=0.0000126, metrics=accuracy:0.9023,f1:0.6672
INFO:root:[Epoch 2 Batch 40/119] loss=0.2171, lr=0.0000119, metrics=accuracy:0.9089,f1:0.6631
INFO:root:[Epoch 2 Batch 50/119] loss=0.3426, lr=0.0000113, metrics=accuracy:0.9020,f1:0.6684
INFO:root:[Epoch 2 Batch 60/119] loss=0.3033, lr=0.0000106, metrics=accuracy:0.8976,f1:0.6689
INFO:root:[Epoch 2 Batch 70/119] loss=0.2578, lr=0.0000100, metrics=accuracy:0.8958,f1:0.6712
INFO:root:[Epoch 2 Batch 80/119] loss=0.3022, lr=0.0000093, metrics=accuracy:0.8943,f1:0.6711
INFO:root:[Epoch 2 Batch 90/119] loss=0.2507, lr=0.0000087, metrics=accuracy:0.8924,f1:0.6719
INFO:root:[Epoch 2 Batch 100/119] loss=0.2629, lr=0.0000080, metrics=accuracy:0.8930,f1:0.6765
INFO:root:[Epoch 2 Batch 110/119] loss=0.2550, lr=0.0000074, metrics=accuracy:0.8931,f1:0.6736
INFO:root:validation metrics:accuracy:0.8873,f1:0.7009
INFO:root:Time cost=52.9s
INFO:root:[Epoch 3 Batch 10/119] loss=0.0993, lr=0.0000061, metrics=accuracy:0.9712,f1:0.6634
INFO:root:[Epoch 3 Batch 20/119] loss=0.0745, lr=0.0000055, metrics=accuracy:0.9728,f1:0.6612
INFO:root:[Epoch 3 Batch 30/119] loss=0.1482, lr=0.0000049, metrics=accuracy:0.9682,f1:0.6713
INFO:root:[Epoch 3 Batch 40/119] loss=0.1198, lr=0.0000042, metrics=accuracy:0.9684,f1:0.6792
INFO:root:[Epoch 3 Batch 50/119] loss=0.1264, lr=0.0000036, metrics=accuracy:0.9631,f1:0.6822
INFO:root:[Epoch 3 Batch 60/119] loss=0.0803, lr=0.0000029, metrics=accuracy:0.9652,f1:0.6830
INFO:root:[Epoch 3 Batch 70/119] loss=0.1020, lr=0.0000023, metrics=accuracy:0.9662,f1:0.6776
INFO:root:[Epoch 3 Batch 80/119] loss=0.0679, lr=0.0000016, metrics=accuracy:0.9686,f1:0.6788
INFO:root:[Epoch 3 Batch 90/119] loss=0.1596, lr=0.0000010, metrics=accuracy:0.9661,f1:0.6809
INFO:root:[Epoch 3 Batch 100/119] loss=0.1332, lr=0.0000003, metrics=accuracy:0.9651,f1:0.6849
INFO:root:[Epoch 3 Batch 110/119] loss=0.0906, lr=-0.0000003, metrics=accuracy:0.9655,f1:0.6813
INFO:root:validation metrics:accuracy:0.8873,f1:0.7033
INFO:root:Time cost=52.3s