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1 What is survival analysis?

Survival analysis models time to an event of interest. Survival analysis is a special kind of regression and differs from
the conventional regression task as follows:

• The label is always positive, since you cannot wait a negative amount of time until the event occurs.

• The label may not be fully known, or censored, because “it takes time to measure time.”

The second bullet point is crucial and we should dwell on it more. As you may have guessed from the name, one of the
earliest applications of survival analysis is to model mortality of a given population. Let’s take NCCTG Lung Cancer Dataset
as an example. The first 8 columns represent features and the last column, Time to death, represents the label.

Table 1: Example of survival data: NCCTG Lung Cancer Dataset

Inst Age Sex ph.ecog ph.karno pat.karno meal.cal wt.loss Time to death (days)
3 74 1 1 90 100 1175 N/A 306
3 68 1 0 90 90 1225 15 455
3 56 1 0 90 90 N/A 15 [1010, +∞)
5 57 1 1 90 60 1150 11 210
1 60 1 0 100 90 N/A 0 883
12 74 1 1 50 80 513 0 [1022, +∞)
7 68 2 2 70 60 384 10 310

Take a close look at the label for the third patient. His label is a range, not a single number. The third patient’s label
is said to be censored, because for some reason the experimenters could not get a complete measurement for that label.
One possible scenario: the patient survived the first 1010 days and walked out of the clinic on the 1011th day, so his death
was not directly observed. Another possibility: The experiment was cut short (since you cannot run it forever) before his
death could be observed. In any case, his label is [1010, +∞), meaning his time to death can be any number that’s higher
than 1010, e.g. 2000, 3000, or 10000.
There are four kinds of censoring:

• Uncensored: the label is not censored and given as a single number.

• Right-censored: the label is of form [a, +∞), where a is the lower bound.

• Left-censored: the label is of form (−∞, b], where b is the upper bound.

• Interval-censored: the label is of form [a, b], where a and b are the lower and upper bounds, respectively.

Right-censoring is the most commonly used.
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2 Accelerated Failure Time model

Accelerated Failure Time (AFT) model is one of the most commonly used models in survival analysis. The model is of
the following form:

ln Y = 〈w, x〉+ σZ (1)

where

• x is a vector in Rd representing the features.

• w is a vector consisting of d coefficients, each corresponding to a feature.

• 〈·, ·〉 is the usual dot product in Rd .

• ln (·) is the natural logarithm.

• Y and Z are random variables.

– Y is the output label.
– Z is a random variable of a known probability distribution. Common choices are the normal distribution, the

logistic distribution, and the extreme distribution. Intuitively, Z represents the “noise” that pulls the prediction
〈w, x〉 away from the true log label ln Y .

• σ is a parameter that scales the size of Z .

Note that this model is a generalized form of a linear regression model Y = 〈w, x〉. In order to make AFT work with
gradient boosting, we revise the model as follows:

ln Y = T (x) + σZ (1’)

where T (x) represents the output from a decision tree ensemble, given input x.

3 Derivation of AFT loss function

XGBoost requires a twice-differentiable loss function `(yi , ŷi ) to perform gradient boosting. Common choices are

• Regression: `(y , ŷ) = (1/2)(y − ŷ)2

• Binary classification1: `(y , ŷ) = −y ln(sigmoid(ŷ)) + (y − 1) ln(1− sigmoid(ŷ)).

The notation y represents the true label, whereas ŷ represents the predicted label.
We will now define a suitable loss function `AFT to represent the AFT model. The loss function should represent the fitness
of the model, i.e. how well the model fits the training data D = {(xi , yi )}n

i=1.
Since Y in (1’) is a random variable, it is possible to compute the probability density for the i-th data point:

P[Yi = yi ] = fY (yi ) (2)

where

• Yi is the random variable representing the i-th “drawing” from the distribution of Y in (1’). Y1, Y2, . . . , Yn are
i.i.d. This construction is justified as long as we assume that the data points (x1, y1), . . . , (xn, yn) are independently
determined from one another.

• fY indicates the probability density function (PDF) of the random variable Y . fY (yi ) is the value of the PDF evaluated
at Y = yi .

1In this context, y ∈ {0, 1} is a binary label, ŷ ∈ R is a margin score, and sigmoid(x) = 1
1+e−x .
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The likelihood function for the whole training data D is the product of probability densities for individual data points:

L(D) = P[Y1 = y1, . . . , Yn = yn] = P[Y1 = y1] · · ·P[Yn = yn] =
n∏

i=1
P[Yi = yi ] =

n∏
i=1

fY (yi ) (3)

To improve the fitness of our model, we should aim to maximize the likelihood function (3). This practice is known as
maximum likelihood estimation. Usually, we elect to maximize the log likelihood instead2, in order to substitute product
with sum:

ln L(D) =
n∑

i=1
lnP[Yi = yi ] =

n∑
i=1

ln fY (yi ) (4)

Unfortunately, we do not know yi for some data points, due to label censoring. So we need to revise (4) to take account of
these data points whose label is censored:

ln L(D) =
∑

lnP[Yi = yi ]︸ ︷︷ ︸
uncensored label

+
∑

lnP[Yi ≥ y l
i ]︸ ︷︷ ︸

right-censored label
yi∈[y l

i ,+∞)

+
∑

lnP[Yi ≤ yu
i ]︸ ︷︷ ︸

left-censored label
yi∈(−∞,yu

i ]

+
∑

lnP[y l
i ≤ Yi ≤ yu

i ]︸ ︷︷ ︸
interval-censored label

yi∈[y l
i ,yu

i ]

=
∑

ln fY (yi )︸ ︷︷ ︸
uncensored label

+
∑

ln (1− FY (y l
i ))︸ ︷︷ ︸

right-censored label

+
∑

ln FY (yu
i )︸ ︷︷ ︸

left-censored label

+
∑

ln (FY (yu
i )− FY (y l

i ))︸ ︷︷ ︸
interval-censored label

(4’)

where

• y l
i and yu

i are lower and upper bounds for the label yi , respectively.

• FY is the cumulative distribution function (CDF), defined as FY (y) = P[Y ≤ y ] =
∫ y
−∞ fY (t)dt.

Notice that we are still applying maximum likelihood estimation: Each time we are given the range of the label in the form
[y l

i , yu
i ], we maximize the likelihood for that range, P[y l

i ≤ Yi ≤ yu
i ].

The likelihood function in (4’) can be expressed more precisely using index sets:

ln L(D) =
∑
i∈U

ln fY (yi ) +
∑
i∈R

ln (1− FY (y l
i )) +

∑
i∈L

ln FY (yu
i ) +

∑
i∈V

ln (FY (yu
i )− FY (y l

i )) (4’’)

where

U = {i : yi is uncensored} R = {i : yi is right-censored}
L = {i : yi is left-censored} V = {i : yi is interval-censored} (5)

We are now ready to define the loss function `AFT.

Definition 1 (Loss function for AFT survival regression).

`AFT(y , ŷ) =


− ln fY (y) if y is not censored
− ln (1− FY (y l )) if y is right-censored with y ∈ [y l , +∞)
− ln FY (yu) if y is left-censored with y ∈ (−∞, yu]
− ln (FY (yu)− FY (y l )) if y is interval-censored with y ∈ [y l , yu]

(6)

Under this definition, the sum of losses
∑n

i=1 `(yi , ŷi ) over the training data is identical to − ln L(D). The minus sign is
particularly useful because the gradient boosting will minimize any given loss function. Setting the loss to be negative of
the likelihood ensures that the likelihood will be maximized as the loss is minimized. This definition is not yet complete,
however, since we don’t know yet how to actually compute (6), so let’s unpack the terms fY (y) and FY (y) in terms of ŷ .
We will need the following lemma:

2This step is justified because the logarithm is a monotone increasing function, i.e. x < y if and only if ln x < ln y .
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Lemma 1. Let Y and Z be random variables. If Y = g(Z) with monotone increasing function g(·), then the PDF and
CDF of Y can be expressed in terms of the PDF and CDF of Z , respectively, as follows:

fY (y) = fZ (g−1(y)) · d
dy g−1(y) (7)

FY (y) = FZ (g−1(y)) (8)

Proof. (8) follows from P[Y ≤ y ] = P[Z ≤ g−1(y)]. Differentiate both sides of (8) with respect to y (use the Chain Rule)
to obtain (7). �

From (1’), we have
Y = exp (ŷ + σZ ), (9)

where we replaced T (x) with ŷ . Let’s apply Lemma 1 with g(Z ) = exp (ŷ + σZ ):

fY (y) = fZ

(
ln y − ŷ

σ

)
· 1
σy = fZ (s(y)) · 1

σy

FY (y) = FZ

(
ln y − ŷ

σ

)
= FZ (s(y))

(10)

where s(y) is a shorthand for the expression (ln y − ŷ)/σ.
Now we have a working formula for `AFT, as we know how to compute the PDF and CDF of Z .

Definition 2 (Loss function for AFT survival regression, in terms of known PDF and CDF).

`AFT(y , ŷ) =



− ln
[

fZ (s(y)) · 1
σy

]
if y is not censored

− ln
[
1− FZ (s(y l ))

]
if y is right-censored with y ∈ [y l , +∞)

− ln FZ (s(yu)) if y is left-censored with y ∈ (−∞, yu]

− ln
[
FZ (s(yu))− FZ (s(y l ))

]
if y is interval-censored with y ∈ [y l , yu]

(6’)

where fZ and FZ are given by Table 2 and s(y) = (ln y − ŷ)/σ is defined the same way as in (10).

Table 2: Probability distributions for Z

Distribution PDF (fZ (z)) CDF (FZ (z))

Normal exp (−z2/2)√
2π

1
2

(
1 + erf

(
z√
2

))
Logistic ez

(1 + ez )2
ez

1 + ez

Extreme3 ez e− exp z 1− e− exp z

4 Gradient and hessian of the AFT loss

The gradient boosting algorithm in XGBoost uses the gradient and hessian of the loss function, which are first and second
partial derivatives of ` with respect to ŷ :

Gradient = ∂`

∂ŷ Hessian = ∂2`

∂ŷ 2 (11)

We first state the full formula for the gradient and hessian of the AFT loss function.
3We follow the formulation found in A Package for Survival Analysis in S (2012) by Terry M. Therneau, Mayo Foundation.
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Definition 3 (Gradient and hessian of AFT loss).

∂`AFT
∂ŷ

∣∣∣∣
y ,ŷ

=



f ′Z (s(y))
σfZ (s(y)) if y is not censored

−fZ (s(y l ))
σ[1− FZ (s(y l ))] if y is right-censored with y ∈ [y l , +∞)

fZ (s(yu))
σFZ (s(yu)) if y is left-censored with y ∈ (−∞, yu]

fZ (s(yu))− fZ (s(y l ))
σ[FZ (s(yu))− FZ (s(y l ))] if y is interval-censored with y ∈ [y l , yu]

(12)

∂2`AFT
∂ŷ 2

∣∣∣∣
y ,ŷ

=



− fZ (s(y))f ′′Z (s(y))− f ′Z (s(y))2

σ2fZ (s(y))2 if y is not censored

[1− FZ (s(y l ))]f ′Z (s(y l )) + fZ (s(y l ))2

σ2[1− FZ (s(y l ))]2 if y is right-censored

−FZ (s(yu))f ′Z (s(yu))− fZ (s(yu))2

σ2FZ (s(yu))2 if y is left-censored

− [FZ (s(yu))− FZ (s(y l ))][f ′Z (s(yu))− f ′Z (s(y l ))]− [fZ (s(yu))− fZ (s(y l ))]2

σ2[FZ (s(yu))− FZ (s(y l ))]2 if y is interval-censored

(13)

where f ′Z and f ′′Z are the first and second derivatives of the PDF fZ , respectively, and s(y) = (ln y − ŷ)/σ is defined the
same way as in Definition 2.

Table 3: First and second derivatives of PDF

Distribution f ′Z (z) f ′′Z (z)
Normal −zfZ (z) (z2 − 1)fZ (z)

Logistic fZ (z)(1− ez )
1 + ez

fZ (z)(e2z − 4ez + 1)
(1 + ez )2

Extreme (1− ez )fZ (z) (e2z − 3ez + 1)fZ (z)

4.1 Derivation of gradient and hessian

There’s a lot of arithmetic happening in this section. You may choose to skip this section.

4.1.1 Uncensored data

`(y , ŷ) = − ln
[

fZ (s(y)) · 1
σy

]
(14)

∂`

∂ŷ = − ∂

∂ŷ ln
[

fZ (s(y)) · 1
σy

]
(15)

= − 1

fZ (s(y)) · 1
σy

· ∂
∂ŷ

[
fZ (s(y)) · 1

σy

]
Chain Rule (16)

= − σy
fZ (s(y)) ·

[
f ′Z (s(y)) · ∂

∂ŷ
ln y − ŷ

σ
· 1
σy

]
Chain Rule (17)
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= − σy
fZ (s(y)) ·

[
f ′Z (s(y)) · − 1

σ
· 1
σy

]
(18)

= f ′Z (s(y))
σfZ (s(y)) (19)

∂2`

∂ŷ 2 = ∂

∂ŷ
∂`

∂ŷ (20)

= ∂

∂ŷ
f ′Z (s(y))
σfZ (s(y)) (21)

= ∂/∂ŷ [f ′Z (s(y))] · σfZ (s(y))− f ′Z (s(y)) · σ∂/∂ŷ [fZ (s(y))]
σ2fZ (s(y))2 Quotient Rule (22)

= f ′′Z (s(y)) · (−1/σ) · σfZ (s(y))− f ′Z (s(y)) · σf ′Z (s(y)) · (−1/σ)
σ2fZ (s(y))2 Chain Rule (23)

= − f ′′Z (s(y))fZ (s(y))− f ′Z (s(y))2

σ2fZ (s(y))2 (24)

4.1.2 Right-censored data

`(y , ŷ) = − ln
[
1− FZ (s(y l ))

]
(25)

∂`

∂ŷ = − ∂

∂ŷ ln
[
1− FZ (s(y l ))

]
(26)

= − 1
1− FZ (s(y l )) ·

∂

∂ŷ
[
1− FZ (s(y l ))

]
Chain Rule (27)

= − 1
1− FZ (s(y l )) · −fZ (s(y l )) · − 1

σ
Chain Rule; fZ = F ′Z (28)

= −fZ (s(y l ))
σ[1− FZ (s(y l ))] (29)

∂2`

∂ŷ 2 = ∂

∂ŷ
∂`

∂ŷ (30)

= ∂

∂ŷ
−fZ (s(y l ))

σ[1− FZ (s(y l ))] (31)

= −∂/∂ŷ [fZ (s(y l ))] · σ[1− FZ (s(y l ))]− [−fZ (s(y l ))]σ∂/∂ŷ [1− FZ (s(y l ))]
σ2[1− FZ (s(y l ))]2 Quotient Rule (32)

= −f ′Z (s(y l )) · (−1/σ) · σ[1− FZ (s(y l ))] + fZ (s(y l ))σ(−fZ (s(y l ))) · (−1/σ)
σ2[1− FZ (s(y l ))]2 Chain Rule; fZ = F ′Z (33)

= [1− FZ (s(y l ))]f ′Z (s(y l )) + fZ (s(y l ))2

σ2[1− FZ (s(y l ))]2 (34)

4.1.3 Left-censored data

`(y , ŷ) = − ln FZ (s(yu)) (35)
∂`

∂ŷ = − ∂

∂ŷ ln FZ (s(yu)) (36)

= − 1
FZ (s(yu)) ·

∂

∂ŷ FZ (s(yu)) Chain Rule (37)

= − 1
FZ (s(yu)) · fZ (s(yu)) · − 1

σ
Chain Rule; fZ = F ′Z (38)

= fZ (s(yu))
σFZ (s(yu)) (39)
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∂2`

∂ŷ 2 = ∂

∂ŷ
∂`

∂ŷ (40)

= ∂

∂ŷ
fZ (s(yu))
σFZ (s(yu)) (41)

= ∂/∂ŷ [fZ (s(yu))] · σFZ (s(yu))− fZ (s(yu)) · σ∂/∂ŷ [FZ (s(yu))]
σ2FZ (s(yu))2 Quotient Rule (42)

= f ′Z (s(yu)) · (−1/σ) · σFZ (s(yu))− fZ (s(yu)) · σfZ (s(yu)) · (−1/σ)
σ2FZ (s(yu))2 Chain Rule; fZ = F ′Z (43)

= −f ′Z (s(yu))FZ (s(yu)) + fZ (s(yu))2

σ2FZ (s(yu))2 (44)

= −FZ (s(yu))f ′Z (s(yu))− fZ (s(yu))2

σ2FZ (s(yu))2 (45)

4.1.4 Interval-censored data

`(y , ŷ) = − ln
[
FZ (s(yu))− FZ (s(y l ))

]
(46)

∂`

∂ŷ = − ∂

∂ŷ ln
[
FZ (s(yu))− FZ (s(y l ))

]
(47)

= − 1
FZ (s(yu))− FZ (s(y l )) ·

∂

∂ŷ
[
FZ (s(yu))− FZ (s(y l ))

]
Chain Rule (48)

= − 1
FZ (s(yu))− FZ (s(y l )) ·

[
fZ (s(yu)) · − 1

σ
− fZ (s(y l )) · − 1

σ

]
Chain Rule; fZ = F ′Z (49)

= fZ (s(yu))− fZ (s(y l ))
σ[FZ (s(yu))− FZ (s(y l ))] (50)

∂2`

∂ŷ 2 = ∂

∂ŷ
∂`

∂ŷ (51)

= ∂

∂ŷ
fZ (s(yu))− fZ (s(y l ))

σ[FZ (s(yu))− FZ (s(y l ))] (52)

= ∂/∂ŷ [fZ (s(yu))− fZ (s(y l ))] · σ[FZ (s(yu))− FZ (s(y l ))]
σ2[FZ (s(yu))− FZ (s(y l ))]2

− [fZ (s(yu))− fZ (s(y l ))] · σ∂/∂ŷ [FZ (s(yu))− FZ (s(y l ))]
σ2[FZ (s(yu))− FZ (s(y l ))]2 Quotient Rule (53)

= [f ′Z (s(yu))− f ′Z (s(y l ))] · (−1/σ) · σ[FZ (s(yu))− FZ (s(y l ))]
σ2[FZ (s(yu))− FZ (s(y l ))]2

− [fZ (s(yu))− fZ (s(y l ))] · σ[fZ (s(yu))− fZ (s(y l ))] · (−1/σ)
σ2[FZ (s(yu))− FZ (s(y l ))]2 Chain Rule; fZ = F ′Z (54)

= − [FZ (s(yu))− FZ (s(y l ))][f ′Z (s(yu))− f ′Z (s(y l ))]− [fZ (s(yu))− fZ (s(y l ))]2

σ2[FZ (s(yu))− FZ (s(y l ))]2 (55)
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