-
-
Notifications
You must be signed in to change notification settings - Fork 8.8k
Description
I install xgboost and want to use its GPU acceleration with nano. But I got error:
XGBoostError: [12:54:26] /home/lly2014/xgboost/src/learner.cc:180: XGBoost version not compiled with GPU support.
XGBoostError Traceback (most recent call last)
in
~/.local/lib/python3.6/site-packages/xgboost-0.83.dev0-py3.6.egg/xgboost/sklearn.py in fit(self, X, y, sample_weight, eval_set, eval_metric, early_stopping_rounds, verbose, xgb_model, sample_weight_eval_set, callbacks)
394 evals_result=evals_result, obj=obj, feval=feval,
395 verbose_eval=verbose, xgb_model=xgb_model,
--> 396 callbacks=callbacks)
397
398 if evals_result:
~/.local/lib/python3.6/site-packages/xgboost-0.83.dev0-py3.6.egg/xgboost/training.py in train(params, dtrain, num_boost_round, evals, obj, feval, maximize, early_stopping_rounds, evals_result, verbose_eval, xgb_model, callbacks, learning_rates)
214 evals=evals,
215 obj=obj, feval=feval,
--> 216 xgb_model=xgb_model, callbacks=callbacks)
217
218
~/.local/lib/python3.6/site-packages/xgboost-0.83.dev0-py3.6.egg/xgboost/training.py in _train_internal(params, dtrain, num_boost_round, evals, obj, feval, xgb_model, callbacks)
72 # Skip the first update if it is a recovery step.
73 if version % 2 == 0:
---> 74 bst.update(dtrain, i, obj)
75 bst.save_rabit_checkpoint()
76 version += 1
~/.local/lib/python3.6/site-packages/xgboost-0.83.dev0-py3.6.egg/xgboost/core.py in update(self, dtrain, iteration, fobj)
1113 if fobj is None:
1114 _check_call(_LIB.XGBoosterUpdateOneIter(self.handle, ctypes.c_int(iteration),
-> 1115 dtrain.handle))
1116 else:
1117 pred = self.predict(dtrain)
~/.local/lib/python3.6/site-packages/xgboost-0.83.dev0-py3.6.egg/xgboost/core.py in _check_call(ret)
176 """
177 if ret != 0:
--> 178 raise XGBoostError(py_str(_LIB.XGBGetLastError()))
179
180
XGBoostError: [12:54:26] /home/lly2014/xgboost/src/learner.cc:180: XGBoost version not compiled with GPU support.
Stack trace returned 10 entries:
[bt] (0) /home/lly2014/.local/lib/python3.6/site-packages/xgboost-0.83.dev0-py3.6.egg/xgboost/./lib/libxgboost.so(dmlc::StackTrace[abi:cxx11](unsigned long)+0x84) [0x7f2dcf4884]
[bt] (1) /home/lly2014/.local/lib/python3.6/site-packages/xgboost-0.83.dev0-py3.6.egg/xgboost/./lib/libxgboost.so(dmlc::LogMessageFatal::~LogMessageFatal()+0x48) [0x7f2dcf5060]
[bt] (2) /home/lly2014/.local/lib/python3.6/site-packages/xgboost-0.83.dev0-py3.6.egg/xgboost/./lib/libxgboost.so(xgboost::LearnerImpl::AssertGPUSupport()+0x54) [0x7f2dd7486c]
[bt] (3) /home/lly2014/.local/lib/python3.6/site-packages/xgboost-0.83.dev0-py3.6.egg/xgboost/./lib/libxgboost.so(xgboost::LearnerImpl::ConfigureUpdaters()+0x2d0) [0x7f2dd794e8]
[bt] (4) /home/lly2014/.local/lib/python3.6/site-packages/xgboost-0.83.dev0-py3.6.egg/xgboost/./lib/libxgboost.so(xgboost::LearnerImpl::Configure(std::vector<std::pair<std::__cxx11::basic_string<char, std::char_traits, std::allocator >, std::__cxx11::basic_string<char, std::char_traits, std::allocator > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits, std::allocator >, std::__cxx11::basic_string<char, std::char_traits, std::allocator > > > > const&)+0x4b0) [0x7f2dd7b600]
[bt] (5) /home/lly2014/.local/lib/python3.6/site-packages/xgboost-0.83.dev0-py3.6.egg/xgboost/./lib/libxgboost.so(XGBoosterUpdateOneIter+0xc8) [0x7f2dcedda8]
[bt] (6) /usr/lib/aarch64-linux-gnu/libffi.so.6(ffi_call_SYSV+0x64) [0x7f94776d28]
[bt] (7) /usr/lib/aarch64-linux-gnu/libffi.so.6(ffi_call+0xc8) [0x7f94777698]
[bt] (8) /usr/lib/python3.6/lib-dynload/_ctypes.cpython-36m-aarch64-linux-gnu.so(_ctypes_callproc+0x41c) [0x7f9479be04]
[bt] (9) /usr/lib/python3.6/lib-dynload/_ctypes.cpython-36m-aarch64-linux-gnu.so(+0x9178) [0x7f94793178]
Anyone can help me to fixted ? Thanks. Here is a brief introduction of nano:
https://devblogs.nvidia.com/jetson-nano-ai-computing/