Find file History

README.md

XGBoost4J: Distributed XGBoost for Scala/Java

Build Status Documentation Status GitHub license

Documentation | Resources | Release Notes

XGBoost4J is the JVM package of xgboost. It brings all the optimizations and power xgboost into JVM ecosystem.

  • Train XGBoost models on scala and java with easy customizations.
  • Run distributed xgboost natively on jvm frameworks such as Flink and Spark.

You can find more about XGBoost on Documentation and Resource Page.

Hello World

NOTE on LIBSVM Format:

  • Use 1-based ascending indexes for the LIBSVM format in distributed training mode -
    • Spark does the internal conversion, and does not accept formats that are 0-based
  • Whereas, use 0-based indexes format when predicting in normal mode - for instance, while using the saved model in the Python package

XGBoost Scala

import ml.dmlc.xgboost4j.scala.DMatrix
import ml.dmlc.xgboost4j.scala.XGBoost

object XGBoostScalaExample {
  def main(args: Array[String]) {
    // read trainining data, available at xgboost/demo/data
    val trainData =
      new DMatrix("/path/to/agaricus.txt.train")
    // define parameters
    val paramMap = List(
      "eta" -> 0.1,
      "max_depth" -> 2,
      "objective" -> "binary:logistic").toMap
    // number of iterations
    val round = 2
    // train the model
    val model = XGBoost.train(trainData, paramMap, round)
    // run prediction
    val predTrain = model.predict(trainData)
    // save model to the file.
    model.saveModel("/local/path/to/model")
  }
}

XGBoost Spark

XGBoost4J-Spark supports training XGBoost model through RDD and Dataframe

RDD Version:

import org.apache.spark.SparkContext
import org.apache.spark.mllib.util.MLUtils
import ml.dmlc.xgboost4j.scala.spark.XGBoost

object SparkWithRDD {
  def main(args: Array[String]): Unit = {
    if (args.length != 3) {
      println(
        "usage: program  num_of_rounds training_path model_path")
      sys.exit(1)
    }
    // if you do not want to use KryoSerializer in Spark, you can ignore the related configuration
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("XGBoost-spark-example")
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    sparkConf.registerKryoClasses(Array(classOf[Booster]))
    val sc = new SparkContext(sparkConf)
    val inputTrainPath = args(1)
    val outputModelPath = args(2)
    // number of iterations
    val numRound = args(0).toInt
    val trainRDD = MLUtils.loadLibSVMFile(sc, inputTrainPath)
    // training parameters
    val paramMap = List(
      "eta" -> 0.1f,
      "max_depth" -> 2,
      "objective" -> "binary:logistic").toMap
    // use 5 distributed workers to train the model
    // useExternalMemory indicates whether 
    val model = XGBoost.train(trainRDD, paramMap, numRound, nWorkers = 5, useExternalMemory = true)
    // save model to HDFS path
    model.saveModelToHadoop(outputModelPath)
  }
}

Dataframe Version:

object SparkWithDataFrame {
  def main(args: Array[String]): Unit = {
    if (args.length != 5) {
      println(
        "usage: program num_of_rounds num_workers training_path test_path model_path")
      sys.exit(1)
    }
    // create SparkSession
    val sparkConf = new SparkConf().setAppName("XGBoost-spark-example")
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    sparkConf.registerKryoClasses(Array(classOf[Booster]))
    val sparkSession = SparkSession.builder().appName("XGBoost-spark-example").config(sparkConf).
      getOrCreate()
    // create training and testing dataframes
    val inputTrainPath = args(2)
    val inputTestPath = args(3)
    val outputModelPath = args(4)
    // number of iterations
    val numRound = args(0).toInt
    import DataUtils._
    val trainRDDOfRows = MLUtils.loadLibSVMFile(sparkSession.sparkContext, inputTrainPath).
      map{ labeledPoint => Row(labeledPoint.features, labeledPoint.label)}
    val trainDF = sparkSession.createDataFrame(trainRDDOfRows, StructType(
      Array(StructField("features", ArrayType(FloatType)), StructField("label", IntegerType))))
    val testRDDOfRows = MLUtils.loadLibSVMFile(sparkSession.sparkContext, inputTestPath).
      zipWithIndex().map{ case (labeledPoint, id) =>
      Row(id, labeledPoint.features, labeledPoint.label)}
    val testDF = sparkSession.createDataFrame(testRDDOfRows, StructType(
      Array(StructField("id", LongType),
        StructField("features", ArrayType(FloatType)), StructField("label", IntegerType))))
    // training parameters
    val paramMap = List(
      "eta" -> 0.1f,
      "max_depth" -> 2,
      "objective" -> "binary:logistic").toMap
    val xgboostModel = XGBoost.trainWithDataset(
      trainDF, paramMap, numRound, nWorkers = args(1).toInt, useExternalMemory = true)
    // xgboost-spark appends the column containing prediction results
    xgboostModel.transform(testDF).show()
  }
}

XGBoost Flink

import ml.dmlc.xgboost4j.scala.flink.XGBoost
import org.apache.flink.api.scala._
import org.apache.flink.api.scala.ExecutionEnvironment
import org.apache.flink.ml.MLUtils

object DistTrainWithFlink {
  def main(args: Array[String]) {
    val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
    // read trainining data
    val trainData =
      MLUtils.readLibSVM(env, "/path/to/data/agaricus.txt.train")
    // define parameters
    val paramMap = List(
      "eta" -> 0.1,
      "max_depth" -> 2,
      "objective" -> "binary:logistic").toMap
    // number of iterations
    val round = 2
    // train the model
    val model = XGBoost.train(trainData, paramMap, round)
    val predTrain = model.predict(trainData.map{x => x.vector})
    model.saveModelToHadoop("file:///path/to/xgboost.model")
  }
}