Skip to content

dnaeon/cl-ssh-keys

master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
src
 
 
t
 
 
 
 
 
 
 
 
 
 

cl-ssh-keys

cl-ssh-keys is a Common Lisp system, which provides the following features.

  • Decode OpenSSH public keys as defined in RFC 4253, section 6.6.
  • Decode OpenSSH private private keys as defined in PROTOCOL.key
  • Generate new private/public key pairs in OpenSSH compatible binary format.

Requirements

Installation

Clone the cl-ssh-keys repo in your Quicklisp local-projects directory.

git clone https://github.com/dnaeon/cl-ssh-keys.git

Load the system.

CL-USER> (ql:quickload :cl-ssh-keys)

Supported Key Types

The following public and private key pairs can be decoded, encoded and generated by cl-ssh-keys.

Type Status
RSA Supported
DSA Supported
ED25519 Supported
ECDSA Supported

Usage

The following section provides various examples showing you how to decode, encode, and generate new OpenSSH private and public key pairs.

For additional examples, make sure to check the test suite.

Public keys

A public key can be parsed from a given string using the SSH-KEYS:PARSE-PUBLIC-KEY function, or from a file using the SSH-KEYS:PARSE-PUBLIC-KEY-FILE function.

CL-USER> (defparameter *public-key*
           (ssh-keys:parse-public-key-file #P"~/.ssh/id_rsa.pub"))
*PUBLIC-KEY*

You can retrieve the comment associated with a public key by using the SSH-KEYS:KEY-COMMENT accessor.

CL-USER> (ssh-keys:key-comment *public-key*)
"john.doe@localhost"

The key kind can be retrieved using SSH-KEYS:KEY-KIND.

CL-USER> (ssh-keys:key-kind *public-key*)
(:NAME "ssh-rsa" :PLAIN-NAME "ssh-rsa" :SHORT-NAME "RSA" :ID :SSH-RSA :IS-CERT NIL)

The number of bits for a key can be retrieved using the SSH-KEYS:KEY-BITS generic function, e.g.

CL-USER> (ssh-keys:key-bits *public-key*)
3072

SSH-KEYS:WITH-PUBLIC-KEY and SSH-KEYS:WITH-PUBLIC-KEY-FILE are convenient macros when working with public keys, e.g.

CL-USER> (ssh-keys:with-public-key-file (key #P"~/.ssh/id_rsa.pub")
           (format t "Comment: ~a~%" (ssh-keys:key-comment key))
           (format t "MD5 fingerprint: ~a~%" (ssh-keys:fingerprint :md5 key))
           (format t "Number of bits: ~a~%" (ssh-keys:key-bits key)))
Comment: john.doe@localhost
MD5 fingerprint: 04:02:4b:b2:43:39:a4:8e:89:47:49:6f:30:78:94:1e
Number of bits: 3072
NIL

Private keys

A private keys can be parsed using the SSH-KEYS:PARSE-PRIVATE-KEY function, which takes a string representing a private key in OpenSSH private key format, or you can use the SSH-KEYS:PARSE-PRIVATE-KEY-FILE function, e.g.

CL-USER> (defparameter *private-key*
           (ssh-keys:parse-private-key-file #P"~/.ssh/id_rsa"))
*PRIVATE-KEY*

Key kind, comment and number of bits can be retrieved using SSH-KEYS:KEY-KIND, SSH-KEYS:KEY-COMMENT and SSH-KEYS:KEY-BITS, similarly to the way you would for public keys, e.g.

CL-USER> (ssh-keys:key-kind *private-key*)
(:NAME "ssh-rsa" :PLAIN-NAME "ssh-rsa" :SHORT-NAME "RSA" :ID :SSH-RSA :IS-CERT NIL)
CL-USER> (ssh-keys:key-comment *private-key*)
"john.doe@localhost"
CL-USER> (ssh-keys:key-bits *private-key*)
3072

OpenSSH private keys embed the public key within the binary blob of the private key. From a private key you can get the embedded public key using SSH-KEYS:EMBEDDED-PUBLIC-KEY, e.g.

CL-USER> (ssh-keys:embedded-public-key *private-key*)
#<CL-SSH-KEYS:RSA-PUBLIC-KEY {100619EAB3}>

You can also use the SSH-KEYS:WITH-PRIVATE-KEY and SSH-KEYS:WITH-PRIVATE-KEY-FILE macros when working with private keys.

CL-USER> (ssh-keys:with-private-key-file (key #P"~/.ssh/id_rsa")
           (format t "Comment: ~a~%" (ssh-keys:key-comment key))
           (format t "MD5 fingerprint: ~a~%" (ssh-keys:fingerprint :md5 key)))
Comment: john.doe@localhost
MD5 fingerprint: 04:02:4b:b2:43:39:a4:8e:89:47:49:6f:30:78:94:1e

Encrypted keys

In order to parse an encrypted private key you need to provide a passphrase, e.g.

CL-USER> (ssh-keys:with-private-key-file (key #P"~/.ssh/id_rsa" :passphrase "my-secret-password")
           (ssh-keys:key-cipher-name key))
"aes256-ctr"

Changing passphrase of an encrypted key

The passphrase for an encrypted private key can be changed by setting a new value for the passphrase using the SSH-KEYS:KEY-PASSPHRASE accessor.

This example changes the passphrase for a given key and saves it on the filesystem.

CL-USER> (ssh-keys:with-private-key-file (key #P"~/.ssh/id_rsa" :passphrase "OLD-PASSPHRASE")
           (setf (ssh-keys:key-passphrase key) "MY-NEW-PASSPHRASE")
           (ssh-keys:write-key-to-path key #P"~/.id_rsa-new-passphrase"))

Setting passphrase for an existing un-encrypted key

In order to set a passphrase for an existing un-encrypted private key, simply set a passphrase using the SSH-KEYS:KEY-PASSPHRASE accessor, e.g.

CL-USER> (ssh-keys:with-private-key-file (key #P"~/.ssh/id_rsa")
           (setf (ssh-keys:key-passphrase key) "my-secret-password")
           (ssh-keys:write-key-to-path key #P"~/.id_rsa-encrypted"))

Removing passphrase of an encrypted key

You can remove the passphrase of a private key and make it un-encrypted by setting the passphrase to nil.

CL-USER> (ssh-keys:with-private-key-file (key #P"~/.ssh/id_rsa" :passphrase "PASSPHRASE")
           (setf (ssh-keys:key-passphrase key) nil)
           (ssh-keys:write-key-to-path key #P"~/.id_rsa-unencrypted"))

Changing the cipher of an encrypted key

The cipher to be used for encryption of a private key can be set by using the SSH-KEYS:KEY-CIPHER-NAME accessor. The value should be one of the known and supported ciphers as returned by SSH-KEYS:GET-ALL-CIPHER-NAMES.

First, list the known cipher names.

CL-USER> (ssh-keys:get-all-cipher-names)
("3des-cbc" "aes128-cbc" "aes192-cbc" "aes256-cbc" "aes128-ctr" "aes192-ctr" "aes256-ctr" "none")

Then set a new cipher.

CL-USER> (ssh-keys:with-private-key-file (key #P"~/.ssh/id_rsa" :passphrase "PASSPHRASE")
           (setf (ssh-keys:key-cipher-name key) "3des-cbc")
           (ssh-keys:write-key-to-path key #P"~/.id_rsa-3des-cbc"))

Changing the KDF number of iterations

By default ssh-keygen(1) and cl-ssh-keys will use 16 rounds of iterations in order to produce an encryption key. You can set this to a higher value, if needed, which would help against brute-force attacks.

CL-USER> (ssh-keys:with-private-key-file (key #P"~/.ssh/id_rsa" :passphrase "PASSPHRASE")
           (setf (ssh-keys:key-kdf-rounds key) 32)
           (ssh-keys:write-key-to-path key #P"~/.id_rsa-stronger"))

Fingerprints

Key fingerprints can be generated using the SSH-KEYS:FINGERPRINT generic function.

The following examples show how to generate the SHA-256, SHA-1 and MD5 fingerprints of a given public key.

CL-USER> (ssh-keys:fingerprint :sha256 *public-key*)
"VmYpd+5gvA5Cj57ZZcI8lnFMNNic6jpnnBd0WoNG1F8"
CL-USER> (ssh-keys:fingerprint :sha1 *public-key*)
"RnLPLG93GrABjOqc6xOvVFpQXsc"
CL-USER> (ssh-keys:fingerprint :md5 *public-key*)
"04:02:4b:b2:43:39:a4:8e:89:47:49:6f:30:78:94:1e"

Fingerprints of private keys are computed against the embedded public key.

Writing Keys

A public and private key can be written in its text representation using the SSH-KEYS:WRITE-KEY generic function.

CL-USER> (ssh-keys:write-key *public-key*)
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQCsngzCcay+lQ+34qUeUSH2m1ZYW9B0a2rxpMmvYFcOyL/hRPJwv8XO89T0+HQIZRC+xlM3BSqdFGs+B58MYXPvo3H+p00CJN8tUjvC3VD74kiXSNxIyhBpKCY1s58RxnWS/6bPQIYfnCVBiQZnkNe1T3isxND1Y71TnbSz5QN2xBkAtiGPH0dPM89yWbZpTjTCaIOfyZn2fBBsmp0zUgEJ7o9W9Lrxs1f0Pn+bZ4PqFSEUzlub7mAQ+RpwgGeLeWIFz+o6KQJPFiuRgzQU6ZsY+wjorVefzgeqpRiWGw/bEyUDck09B4B0IWoTtIiKRzd635nOo7Lz/1XgaMZ60WZD9T/labEWcKmtp4Y7NoCkep0DyYyoAgWrco4FD1r0g4WcVbsJQt8HzRy9UaHlh6YPY/xkk0bSiljpygEiT48FxniqE+6HY+7SbC1wz5QThY+UsIiDgFcg3BljskfT8Il3hateXI2wEXqww4+a+DxcHzypclYorbQKUzdzNLZRBNk= john.doe@localhost
NIL

Another example, this time using a private key.

CL-USER> (ssh-keys:write-key *private-key*)
-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAABlwAAAAdzc2gtcn
NhAAAAAwEAAQAAAYEArJ4MwnGsvpUPt+KlHlEh9ptWWFvQdGtq8aTJr2BXDsi/4UTycL/F
zvPU9Ph0CGUQvsZTNwUqnRRrPgefDGFz76Nx/qdNAiTfLVI7wt1Q++JIl0jcSMoQaSgmNb
OfEcZ1kv+mz0CGH5wlQYkGZ5DXtU94rMTQ9WO9U520s+UDdsQZALYhjx9HTzPPclm2aU40
wmiDn8mZ9nwQbJqdM1IBCe6PVvS68bNX9D5/m2eD6hUhFM5bm+5gEPkacIBni3liBc/qOi
kCTxYrkYM0FOmbGPsI6K1Xn84HqqUYlhsP2xMlA3JNPQeAdCFqE7SIikc3et+ZzqOy8/9V
4GjGetFmQ/U/5WmxFnCpraeGOzaApHqdA8mMqAIFq3KOBQ9a9IOFnFW7CULfB80cvVGh5Y
emD2P8ZJNG0opY6coBIk+PBcZ4qhPuh2Pu0mwtcM+UE4WPlLCIg4BXINwZY7JH0/CJd4Wr
XlyNsBF6sMOPmvg8XB88qXJWKK20ClM3czS2UQTZAAAFkJkcYpSZHGKUAAAAB3NzaC1yc2
EAAAGBAKyeDMJxrL6VD7fipR5RIfabVlhb0HRravGkya9gVw7Iv+FE8nC/xc7z1PT4dAhl
EL7GUzcFKp0Uaz4Hnwxhc++jcf6nTQIk3y1SO8LdUPviSJdI3EjKEGkoJjWznxHGdZL/ps
9Ahh+cJUGJBmeQ17VPeKzE0PVjvVOdtLPlA3bEGQC2IY8fR08zz3JZtmlONMJog5/JmfZ8
EGyanTNSAQnuj1b0uvGzV/Q+f5tng+oVIRTOW5vuYBD5GnCAZ4t5YgXP6jopAk8WK5GDNB
Tpmxj7COitV5/OB6qlGJYbD9sTJQNyTT0HgHQhahO0iIpHN3rfmc6jsvP/VeBoxnrRZkP1
P+VpsRZwqa2nhjs2gKR6nQPJjKgCBatyjgUPWvSDhZxVuwlC3wfNHL1RoeWHpg9j/GSTRt
KKWOnKASJPjwXGeKoT7odj7tJsLXDPlBOFj5SwiIOAVyDcGWOyR9PwiXeFq15cjbARerDD
j5r4PFwfPKlyViittApTN3M0tlEE2QAAAAMBAAEAAAGBAJT3DFHdYdNSti7d09sW7zVvlp
NIINvnO3Jv4HGNtXOXwSd5pbOxe9Z+TEBgDVqVRV8trfCkb8MBNQ9h6lr32uJqbdzyqh14
jnUBK3ueHN5SyIxuH1RdtM3bDSZ47YScfSivoVfn+hdbXDdzNei4cb8RZzXJ3/505ZU8Ww
6IS3X6Aw2/H7TwrExojNTFIQs9p4BCS5zgkRLKvC3NPG5mjWjxzBehuZcOS5AHQ35sVcX0
GAlpkFs/2v2qy6tc1H7j703RsrlJtXvLQ2fUGVXdZflMSlX1te+T+KM5T1unUS5fPFWfLj
U+bQK7KkY48ILVQkrFLGg+8Wj77MTS3AGmQ2MnHzaK0+Cd+HAqUfRIDZZgG/5/T8nIsra/
9AG2ZIvOTSZsLqht4TkfZnp6hJm+MKmpJ9F40NnzGtYNso6GD/aqkDxubKf4uoOEW9cbOO
s5i5bvvZSgxQ1sNees0/nBBYsRhLfYkC41EcCRlhQIcvHA1IFRj5Un0gowA8vtCGyRJQAA
AMEAuPkxyvsmPYIi0SbVNVMdEpaJ3UHTJOLL6b8QDPYsiuYG0DZfHgL1MSbgIrxUKI4Xi1
oEROgfGHnhnUd7mGbwUF/K0KnYJUMlV0W8Jfz94E7+cQiqgvvWD2JZcuvXP5Dg89whsFFy
pinpkrWe8gDmqo/LKzAEBIFAuNVarD7/cIKTpW+pdo7WfnYsXqTgyZ5NO8IwkTXho6NTRI
s/Z7o7UCXX2XnUcQxWOv+L5aw7w4dBdNZpN7XBQCOfOo32SDpQAAAAwQDYmJZrTrb5w5N+
o/j9nhcrY1ZbJNUbpx1lrV/r1GCGX0f3l2ztjjzyttP+WEggPypMB5BC+S6d67PEJeI988
OanzMx/r37tfFbMMtE5YNx1BwyL1Z1x/KYugReibWclHBAa+b+TCFSfJyf1I5NABsgjQ2h
4uVy1pRWcly4Cfu0NWRJo23waTzvODPWjUz1EFIcytpKvYxwbcvYOVEY5ie9+oXhVxNm6U
ZQTLMtPWNUZGHt3xOrGhrf4M7EJRLUBe8AAADBAMwFRHMyDsyjzlFZA1gL42xO4gCGwjJq
IZu+X6h1PV71IYyyY2XV9p6Ir9UZFeFs73wvO7I+OWW6POIKMKVOjjWTU5KD3+kSI2THWq
j/Cf8gr/aLqHOKa6X63meJCPSKC5CtHFchvAPvcUhfLLv7MfHJfwFU4vrBJh5w4h0TXKCU
8hIzudC5tinyYsDgv0i0keWxWAmKMxSxsfIQkqYtqMHc4E9EZ1baUsvAj8VolJcKn0Ocj9
tvLra3KkT8SoqptwAAABJqb2huLmRvZUBsb2NhbGhvc3QBAgMEBQYH
-----END OPENSSH PRIVATE KEY-----
NIL

The SSH-KEYS:WRITE-KEY generic function takes an optional stream parameter, so you can write your keys to a given stream, if needed.

CL-USER> (with-open-file (out #P"my-rsa-public-key" :direction :output)
           (ssh-keys:write-key *public-key* out))
NIL

SSH-KEYS:WRITE-KEY-TO-PATH is a convenience function you can use to write keys to a given path, e.g.

CL-USER> (ssh-keys:write-key-to-path (key #P"my-rsa-public-key")

Generating new private/public key pairs

The SSH-KEYS:GENERATE-KEY-PAIR generic function creates a new private/public key pair of a given kind.

The generated keys are identical with what ssh-keygen(1) would produce and you can use them to authenticate to remote systems.

The following example creates an RSA private/public key pair, and saves the keys on the file system.

CL-USER> (multiple-value-bind (priv-key pub-key) (ssh-keys:generate-key-pair :rsa)
           (ssh-keys:write-key-to-path priv-key #P"~/.ssh/my-priv-rsa-key")
           (ssh-keys:write-key-to-path pub-key #P"~/.ssh/my-pub-rsa-key.pub"))
NIL

The following example generates DSA private/public key pairs.

CL-USER> (ssh-keys:generate-key-pair :dsa)

This example shows how to generate Ed25519 private/public key pairs.

CL-USER> (ssh-keys:generate-key-pair :ed25519)

ECDSA keys can be generated using NIST P-256, NIST P-384 or NIST P-521 curves. The following examples show how to create 256, 384 and 521 bit ECDSA keys.

CL-USER> (ssh-keys:generate-key-pair :ecdsa-nistp256)
CL-USER> (ssh-keys:generate-key-pair :ecdsa-nistp384)
CL-USER> (ssh-keys:generate-key-pair :ecdsa-nistp521)

Tests

Tests are provided as part of the cl-ssh-keys.test system.

The following Common Lisp implementations have been tested and are known to work.

In order to run the tests you can evaluate the following expressions.

CL-USER> (ql:quickload :cl-ssh-keys.test)
CL-USER> (asdf:test-system :cl-ssh-keys.test)

Or you can run the tests in a Docker container instead.

First, build the Docker image.

docker build -t cl-ssh-keys .

Run the tests.

docker run --rm cl-ssh-keys

Contributing

cl-ssh-keys is hosted on Github. Please contribute by reporting issues, suggesting features or by sending patches using pull requests.

Authors

License

This project is Open Source and licensed under the BSD License.