
module PortAllocator

The port allocator updates an endpoint’s ports field from its spec. For host-mode ports, it just
copies them over. For ingress-mode ports, it checks that the requested port number is free (if

given), or allocates an unused one from the dynamic range (if not).

Places where I deviated from the Go code to make the checks pass are marked with XXX . In
summary:

Reusing a previous assignment when we need it elsewhere

Example:

1. [name = “foo”, dynamic] (initial configuration)

2. [name = “foo”, dynamic], [name = “bar”, published = 30000] (updated)

Here we will reject the update because we try to reuse port 30000 for “foo”, even though we
now need it for “bar”.

Duplicate similar ports

Example:

1. [name = “foo”, dynamic]

2. [name = “foo”, dynamic], [name = “foo”, dynamic]

We will try to use port number 30000 for both ports and reject the allocation.

Shadowing an existing host port

The allocator ignores host ports completely. It may allocate a dynamic ingress port using a
network address that is already in use on some host. In this case, the original service becomes
unreachable.

Accepting a host port that is hidden

The allocator may accept a host-port allocation that it knows will be unreachable on any host
because that address is already in use as an ingress port.

extends Sequences, Integers, TLC , FiniteSets Some libraries we use

Range(S)
∆
= {S [i] : i ∈ domain S} Generic helper function

The set of protocols we support (e.g. {“tcp”, “udp”, “sctp”}). We assume that every protocol

has the same set of static and dynamic ports.

constant Protocol

A host-mode port is available only via the host that ends up running the workload. Two different

services can use the same port, as long as they run on different hosts.

host
∆
= “host”

Ingress-mode ports are available via any node in the cluster. Connections will be forwarded to

a host running the service.

ingress
∆
= “ingress”

Mode
∆
= {ingress, host}

Port numbers that can be assigned by the allocator when the user requests a dynamic port

number. The code currently uses 30000 . . 32767.

1

constant DynamicPortNumber

Non-dynamic port numbers.

constant StaticPortNumber

All port numbers. SwarmKit uses 1 . . 65535. We mainly define it this may to make it easy to

make dynamic and static numbers symmetry sets in the model checker.

PortNumber
∆
= DynamicPortNumber ∪ StaticPortNumber

A special value for the published port field to indicate that the allocator should select the port.

SwarmKit uses 0 for this.

dynamic
∆
= choose x : x /∈ PortNumber

The type of endpoint IDs (e.g. string).

constant EndpointID

The type of port names (e.g. string).

constant Name

The maximum number of ports in a specification.

constant MaxPorts

The requirements for a port, provided by the user. The user can specify a port number directly
(including any number in DynamicPortNumber), or can specify dynamic to have the system

allocate it.

The real structure also includes target port , which is the port inside the container. For the
model, we can consider this as part of name (it just makes the port more unique).

PortSpec
∆
= [

mode : Mode,
name : Name,
protocol : Protocol ,
published port : StaticPortNumber ∪DynamicPortNumber ∪ {dynamic}

]

A configured port, after the allocator has done its job. Note: The SwarmKit code uses a single

Go type for this and PortSpec.

PortConfig
∆
=

Either an ingress port:

[
mode : {ingress},
name : Name,
protocol : Protocol ,
published port : PortNumber The port is now allocated

]
∪ or a host port:

[
mode : {host},
name : Name,

2

protocol : Protocol ,
published port : PortNumber ∪ {dynamic} Can still be unassigned

]

Two PortConfig/PortSpec values are “mostly equal” if they differ only in their published port .

PortsMostlyEqual(a, b)
∆
=

let ignorePP(x)
∆
= [f ∈ domain x \ {“published port”} 7→ x [f]]

in ignorePP(a) = ignorePP(b)

A network address is a protocol and port-number pair.

Address
∆
= Protocol × PortNumber

The network address of a SwarmKit port.

Addr(port)
∆
=

〈port .protocol , port .published port〉

A finite sequence of maximum length max . Useful for model checking.

FiniteSeq(S , max)
∆
=

union {[1 . . n → S] : n ∈ 0 . . max}

An endpoint specification is just a list of port specifications.

EndpointSpec
∆
= FiniteSeq(PortSpec, MaxPorts)

An endpoint object records the currently allocated ports and the original specification that led

to this assignment.

Endpoint
∆
= [

spec : EndpointSpec,
ports : Seq(PortConfig)

]

nullEndpoint is used to represent an endpoint that does not yet exist.

nullEndpoint
∆
= [

spec 7→ 〈〉,
ports 7→ 〈〉

]

The allocator returns a proposal for updating the state, rather than doing it immediately. Note

that the port allocator’s proposal is only valid until the next time an allocation is requested.

The allocate field is not really needed here, as we can generate it easily (it’s just the set of
ingress addresses in ports). deallocate wouldn’t be needed if the commit operation took the
old configuration as an argument, as it’s just the ingress addresses in that. However, the Go
code includes these fields, so we do too.

Proposal
∆
= [

deallocate : subset Address, Addresses to remove from allocated

allocate : subset Address, Addresses to add to allocated (after deallocation)

ports : Seq(PortConfig) The new value for endpoint .ports

]

3

The allocator

The set of allocated ingress addresses.

variable allocated

The smallest item in a non-empty set.

MinElement(S)
∆
= choose x ∈ S : ∀ y ∈ S : x ≤ y

Return an updated version of spec in which dynamic ingress ports have been updated to copy

the existing configution, where possible.

RecoverExistingPorts(endpoint , spec)
∆
=

let The current configuration

oldPorts
∆
= endpoint .ports

Indexes in the list of ports for which we need to choose a port number:

dynamics
∆
= {i ∈ domain spec :

∧ spec[i].mode = ingress
∧ spec[i].published port = dynamic}

Ingress ports for which the user specified the port:

forcedPorts
∆
= {p ∈ Range(spec) :

∧ p.mode = ingress
∧ p.published port 6= dynamic}

The (ingress) addresses the user specified manually:

forcedAddrs
∆
= {Addr(p) : p ∈ forcedPorts}

The recovered port number for port i :

Recover(i)
∆
=

let The port specification from the user:

s
∆
= spec[i]

The currently configured port(s) that are like s :

olds
∆
= {j ∈ domain oldPorts :

∧ ∃ k ∈ domain endpoint .spec :
∧ endpoint .spec[k] = s Spec hasn’t changed

∧ PortsMostlyEqual(oldPorts[j], s)
We’re not forced to use this for something else:

XXX : does SwarmKit do this?

∧Addr(oldPorts[j]) /∈ forcedAddrs

}
Whether s is similar to a previous dynamic port in the spec list:

XXX : Looks like the SwarmKit code doesn’t do this check.

duplicate
∆
= ∃ j ∈ 1 . . (i − 1) : An earlier similar port in the list

∧ j ∈ dynamics needed a dynamic assignment too

∧ PortsMostlyEqual(spec[i], spec[j])
in
if ∨ olds = {} If we haven’t already got anything like s

∨ duplicate Or we already used it

4

then dynamic Then don’t update s − it’s still dynamic

else
Use the first of the candidates for published port :

oldPorts[MinElement(olds)].published port
The updates to apply:

recovered
∆
= [i ∈ dynamics 7→ [spec[i] except ! .published port = Recover(i)]]

in
recovered @@ spec Combine updates with other entries

Allocate(endpoint , spec) returns a set of possible proposals to update endpoint to spec .

The real system will only return a single proposal. For cases where this function returns {} a
real implementation must reject the request. For cases where it returns a non-empty set, a real
implementation must return one of the elements as its proposal.

Allocate(endpoint , specFromUser)
∆
=

let Step 1 : Recover dynamic ports from old configuration

spec
∆
= RecoverExistingPorts(endpoint , specFromUser)

Step 2 : Reject bad user requests due to static assignments

All the ingress ports in the existing configuration:

oldIngressPorts
∆
= {p ∈ Range(endpoint .ports) : p.mode = ingress}

Addresses currently in use by endpoint :

deallocate
∆
= {Addr(p) : p ∈ oldIngressPorts}

Addresses used by other endpoints:

addrsForOthers
∆
= allocated \ deallocate

Did the user request a port that another endpoint is using?

alreadyInUse
∆
= ∃ p ∈ Range(spec) :

∧ p.mode = ingress
∧ p.published port 6= dynamic
∧Addr(p) ∈ addrsForOthers

Did the user specify the same static (ingress) address twice?

haveForcedDuplicates
∆
=

∃ i , j ∈ domain spec :
∧ i 6= j
∧ let si

∆
= spec[i]

sj
∆
= spec[j]

in
∧ si .mode = ingress ∧ si .published port 6= dynamic
∧ sj .mode = ingress ∧ sj .published port 6= dynamic
∧Addr(si) = Addr(sj)

in
if alreadyInUse ∨ haveForcedDuplicates then {} Reject

else
Step 3 : Assign dynamic ports

There are various ways of assigning the ports. e.g. picking the lowest free port, starting the
search from the last allocated number, checking already-free ports first and then using ports
from deallocate only as a last resort. We’ll avoid over-specifying by allowing any behaviour
here.

5

let
Ingress ports that still need to be assigned:

portsNeeded
∆
= {i ∈ domain spec :

∧ spec[i].mode = ingress
∧ spec[i].published port = dynamic}

Possible ways of allocating them. Each element of this set is a mapping from a port index

to a port number in the dynamic range.

allocs
∆
=

{alloc ∈ [portsNeeded → DynamicPortNumber] :
Check that alloc is reasonable:

let NA(i)
∆
= The proposed network address of i

if i ∈ domain alloc then 〈spec[i].protocol , alloc[i]〉
else Addr(spec[i])

in
∀ i ∈ domain alloc : For each dynamic ingress port:

No other endpoint is using this address:

∧NA(i) /∈ addrsForOthers
We’re not already trying to allocate this address:

∧ ∀ j ∈ domain spec \ {i} :
∨ spec[j].mode = host
∨NA(i) 6= NA(j)

}
Create a proposal object from an allocation mapping:

Result(alloc)
∆
=

let
ports

∆
= [i ∈ domain alloc 7→

[spec[i] except ! .published port = alloc[i]]
] @@ spec

ingressPorts
∆
= {p ∈ Range(ports) : p.mode = ingress}

in
[

deallocate 7→ deallocate,
allocate 7→ {Addr(p) : p ∈ ingressPorts},
ports 7→ ports

]
in
{Result(x) : x ∈ allocs}

The result of applying prop to the current allocations.

Apply(prop)
∆
=

(allocated \ prop.deallocate) ∪ prop.allocate

The test system (allocator + user)

The set of active endpoints (the allocator doesn’t look at this)

6

variables endpoints

vars
∆
= 〈allocated , endpoints〉

The user creates a new endpoint

NewEndpoint
∆
=

∃ s ∈ EndpointSpec : s is the new spec

∃ id ∈ EndpointID \domain endpoints : id is an unused endpoint ID

∃ prop ∈ Allocate(nullEndpoint , s) : prop is a proposal from the allocator

let e
∆
= [spec 7→ s, ports 7→ prop.ports] e is the new endpoint

in Update the store:

∧ endpoints ′ = id :> e @@ endpoints Add e to endpoints

∧ allocated ′ = Apply(prop) Tell the allocator to commit

The user updates an existing endpoint

UpdateEndpoint
∆
=

∃ s ∈ EndpointSpec : s is the new spec

∃ id ∈ domain endpoints : id is an existing endpoint

∃ prop ∈ Allocate(endpoints[id], s) : prop is a proposal from the allocator

let e
∆
= [spec 7→ s, ports 7→ prop.ports] e is the new endpoint

in
∧ endpoints ′ = [endpoints except ! [id] = e]
∧ allocated ′ = Apply(prop)

Remove an existing endpoint

RemoveEndpoint
∆
=

∃ id ∈ domain endpoints : id is an existing endpoint

let props
∆
= Allocate(endpoints[id], 〈〉) Ask the allocator to remove all ports

in
∧Assert(props 6= {}, “Rejected remove operation!”)
∧ ∃ prop ∈ props :

Commit the removal proposal

∧ endpoints ′ = [i ∈ domain endpoints \ {id} 7→ endpoints[i]]
∧ allocated ′ = Apply(prop)

The initial state of the system, with no endpoints or allocations. When restarting SwarmKit ,
saved endpoints can be loaded and allocated as if they were being added as new services using the
Restore operation. Note: SwarmKit does not check whether the saved allocations are consistent
at restore time.

Init
∆
=

∧ endpoints = 〈〉
∧ allocated = {}

The possible ways of using the allocator.

Next
∆
=

∨ NewEndpoint
∨ UpdateEndpoint

7

∨ RemoveEndpoint

Spec
∆
=

Init ∧2[Next]vars

Properties to check

Check that the variables have the expected types.

TypeOK
∆
=

∧ allocated ⊆ Address A set of addresses

∧ domain endpoints ⊆ EndpointID A partial map from endpoint IDs

∧ endpoints ∈ [domain endpoints → Endpoint] to Endpoints.

Check that the state of the system is consistent: all addresses marked as allocated are needed
by some endpoint, all endpoints have a configuration that matches their requirements, and no
two endpoints have been allocated the same address.

AllocationsOK
∆
=

Every port the allocator thinks is allocated is actually used by some endpoint

∧ ∀ addr ∈ allocated :
∃ e ∈ Range(endpoints) :
∃ p ∈ Range(e.ports) :
Addr(p) = addr

Every endpoint’s configuration is correct

∧ ∀ eid ∈ domain endpoints :
let e

∆
= endpoints[eid]

in
∧ Len(e.spec) = Len(e.ports) We have the right number of ports configured

∧ ∀ i ∈ domain e.spec : For each port . . .

let spec
∆
= e.spec[i]

port
∆
= e.ports[i]

in
The actual port is the same as its specification, ignoring dynamic ingress port numbers.

∧ if spec.mode = ingress ∧ spec.published port = dynamic
then PortsMostlyEqual(spec, port)
else spec = port

The port’s address is in the allocated set.

∧ port .mode = ingress ⇒ Addr(port) ∈ allocated

There are no other users of this port. We only check spec.mode = ingress because we
don’t check collisions between host ports here and we’ll find any host/ingress conflict

anyway when we come to check the other port.

XXX : host/host collisions need to be avoided by the scheduler, not the allocator. How-

ever:

“the scheduler is not involved in host mode ports. it was a very rushed feature, if i recall
correctly, and it’s sensitive to collisions.”

8

∧ spec.mode = ingress ⇒
∀ eid2 ∈ domain endpoints :
∀ i2 ∈ domain endpoints[eid2].ports :
〈eid , i〉 6= 〈eid2, i2〉 ⇒ Don’t check a port against itself

let p2
∆
= endpoints[eid2].ports[i2]

in
The other port must have a different network address:

∨Addr(port) 6= Addr(p2)

XXX : an exception to this rule for ingress/host conflicts: We can’t use the same
address for an ingress and a host port because an ingress port must be allocated on
every node, and so would conflict with the host port. However, this is a known bug
in SwarmKit . For now, ignore ingress/host conflicts:

∨ p2.mode = host

Check that spec is OK in itself (ignoring any other endpoints).

SpecOK (spec)
∆
=

∀ i ∈ domain spec : For every pair of ports 〈i , j 〉
∀ j ∈ 1 . . (i − 1) :
∨ spec[i].mode = host Don’t care about host-mode ports

∨ spec[j].mode = host
∨Addr(spec[i]) 6= Addr(spec[j]) The requested addresses are different

∨ spec[i].published port = dynamic or they are both dynamic.

Special value to indicate creation of a new endpoint.

nullId
∆
= choose x : x /∈ EndpointID

Checks that the allocator rejects a request only if it should.

RejectJustified
∆
=

∀ s ∈ EndpointSpec : s is the new spec

∀ eid ∈ domain endpoints ∪ {nullId} : eid is the endpoint to update, or nullId for creation

let oldEndpoint
∆
= if eid = nullId then nullEndpoint else endpoints[eid]

The possible allocations, or {} if rejected:

props
∆
= Allocate(oldEndpoint , s)

Ports used in our old configuration. We can conflict with these:

dealloc
∆
= {Addr(p) : p ∈ {p ∈ Range(oldEndpoint .ports) : p.mode = ingress}}

Ports not used by us:

usedByOthers
∆
= allocated \ dealloc

Ingress ports where the user chose the port number:

staticPorts
∆
= {p ∈ Range(s) : ∧ p.mode = ingress

∧ p.published port 6= dynamic}
All the ingress addresses chosen by the user:

staticAddr
∆
= {Addr(p) : p ∈ staticPorts}

We expect the allocation to be rejected:

rejectOK
∆
=

The specification is itself invalid:

∨ ¬SpecOK (s)

9

We asked for a port that is already in use:

∨ staticAddr ∩ usedByOthers 6= {}
There aren’t enough free dynamic addresses for some protocol:

∨ ∃ proto ∈ Protocol :
let dynNeeded

∆
= Cardinality({i ∈ domain s :

∧ s[i].protocol = proto
∧ s[i].mode = ingress
∧ s[i].published port = dynamic})

dynAvail
∆
= Cardinality({a ∈ Address \ (usedByOthers ∪ staticAddr) :

∧ a[1] = proto
∧ a[2] ∈ DynamicPortNumber})

Note: dynNeeded is an over-estimate because we might be able to reuse an existing

static address.

in dynNeeded > dynAvail
in

If the allocator rejected the new spec, we understand why:

∨ props = {} ⇒ rejectOK
∨ Print(〈props, rejectOK , endpoints, eid , s〉, false) Log the reason on error

If an endpoint’s spec didn’t change, then its allocation shouldn’t change either. This tests that
Allocate is idempotent. XXX : This is not currently the case, because if we have two similar
specs then we only copy the existing allocation for the first one.

StepAllocateIdempotent
∆
=

∀ eid ∈ domain endpoints ∩ domain endpoints ′ :
let ep

∆
= endpoints[eid]

in
ep.spec = (ep.spec)′

⇒
ep.ports = (ep.ports)′

All steps are idempotent.

AllocateIdempotent
∆
=

2[StepAllocateIdempotent]vars

10

