@@ -22,6 +22,7 @@
#include < jni.h>
#endif
#include " Common/BitUtils.h"
#include " Common/Event.h"
#include " Common/Flag.h"
#include " Common/Logging/Log.h"
@@ -55,24 +56,30 @@
namespace GCAdapter
{
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
constexpr unsigned int USB_TIMEOUT_MS = 16 ;
static bool CheckDeviceAccess (libusb_device* device);
static void AddGCAdapter (libusb_device* device);
static void ResetRumbleLockNeeded ();
#endif
static void Reset ();
static void Setup ();
static void Read ();
static void Write ();
static void ProcessInputPayload (const u8* data, std::size_t size);
static void ReadThreadFunc ();
static void WriteThreadFunc ();
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
enum
enum class AdapterStatus
{
NO_ADAPTER_DETECTED = 0 ,
ADAPTER_DETECTED = 1 ,
NotDetected,
Detected,
Error,
};
// Current adapter status: detected/not detected/in error (libusb error codes are negative)
static std::atomic<int > s_status = NO_ADAPTER_DETECTED ;
static std::atomic<AdapterStatus> s_status = AdapterStatus::NotDetected;
static std::atomic<libusb_error> s_adapter_error = LIBUSB_SUCCESS ;
static libusb_device_handle* s_handle = nullptr ;
#elif GCADAPTER_USE_ANDROID_IMPLEMENTATION
// Java classes
@@ -89,19 +96,23 @@ enum class ControllerType : u8
Wireless = 2 ,
};
static std::array<ControllerType, SerialInterface::MAX_SI_CHANNELS> s_controller_type = {
ControllerType::None, ControllerType::None, ControllerType::None, ControllerType::None};
static std::array<u8, SerialInterface::MAX_SI_CHANNELS> s_controller_rumble{};
static std::array<u8, SerialInterface::MAX_SI_CHANNELS> s_controller_rumble;
constexpr size_t CONTROLER_INPUT_PAYLOAD_EXPECTED_SIZE = 37 ;
constexpr size_t CONTROLER_OUTPUT_INIT_PAYLOAD_SIZE = 1 ;
constexpr size_t CONTROLER_OUTPUT_RUMBLE_PAYLOAD_SIZE = 5 ;
static std::array<u8, CONTROLER_INPUT_PAYLOAD_EXPECTED_SIZE> s_controller_payload;
static std::array<u8, CONTROLER_INPUT_PAYLOAD_EXPECTED_SIZE> s_controller_payload_swap;
struct PortState
{
GCPadStatus origin = {};
GCPadStatus status = {};
ControllerType controller_type = ControllerType::None;
bool is_new_connection = false ;
};
// Only access with s_mutex held!
static int s_controller_payload_size = { 0 } ;
static std::array<PortState, SerialInterface::MAX_SI_CHANNELS> s_port_states ;
static std::array<u8, CONTROLER_OUTPUT_RUMBLE_PAYLOAD_SIZE> s_controller_write_payload;
static std::atomic<int > s_controller_write_payload_size{0 };
@@ -145,11 +156,11 @@ static u8 s_endpoint_out = 0;
static u64 s_last_init = 0 ;
static std::optional<size_t > s_config_callback_id = std::nullopt;
static std::array<SerialInterface::SIDevices, SerialInterface::MAX_SI_CHANNELS>
s_config_si_device_type{} ;
static bool s_is_adapter_wanted = false ;
static std::array<bool , SerialInterface::MAX_SI_CHANNELS> s_config_rumble_enabled{};
static void Read ()
static void ReadThreadFunc ()
{
Common::SetCurrentThreadName (" GCAdapter Read Thread" );
NOTICE_LOG_FMT (CONTROLLERINTERFACE, " GCAdapter read thread started" );
@@ -180,35 +191,34 @@ static void Read()
#endif
s_write_adapter_thread_running.Set (true );
s_write_adapter_thread = std::thread (Write );
s_write_adapter_thread = std::thread (WriteThreadFunc );
// Reset rumble once on initial reading
ResetRumble ();
while (s_read_adapter_thread_running.IsSet ())
{
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
std::array<u8, CONTROLER_INPUT_PAYLOAD_EXPECTED_SIZE> input_buffer;
int payload_size = 0 ;
const int error =
libusb_interrupt_transfer (s_handle, s_endpoint_in, s_controller_payload_swap .data (),
CONTROLER_INPUT_PAYLOAD_EXPECTED_SIZE , &payload_size, 16 );
libusb_interrupt_transfer (s_handle, s_endpoint_in, input_buffer .data (),
int (input_buffer. size ()) , &payload_size, USB_TIMEOUT_MS );
if (error != LIBUSB_SUCCESS)
{
ERROR_LOG_FMT (CONTROLLERINTERFACE, " Read: libusb_interrupt_transfer failed: {}" ,
LibusbUtils::ErrorWrap (error));
}
ProcessInputPayload (input_buffer.data (), payload_size);
#elif GCADAPTER_USE_ANDROID_IMPLEMENTATION
const int payload_size = env->CallStaticIntMethod (s_adapter_class, input_func);
jbyte* const java_data = env->GetByteArrayElements (*java_controller_payload, nullptr );
std::copy (java_data, java_data + CONTROLER_INPUT_PAYLOAD_EXPECTED_SIZE,
s_controller_payload_swap.begin ());
#endif
{
std::lock_guard<std::mutex> lk (s_read_mutex);
std::swap (s_controller_payload_swap, s_controller_payload);
s_controller_payload_size = payload_size;
}
#if GCADAPTER_USE_ANDROID_IMPLEMENTATION
ProcessInputPayload (reinterpret_cast <const u8*>(java_data), payload_size);
env->ReleaseByteArrayElements (*java_controller_payload, java_data, 0 );
if (first_read)
@@ -225,7 +235,8 @@ static void Read()
if (s_write_adapter_thread_running.TestAndClear ())
{
s_controller_write_payload_size.store (0 );
s_write_happened.Set (); // Kick the waiting event
// Kick the waiting event
s_write_happened.Set ();
s_write_adapter_thread.join ();
}
@@ -237,7 +248,7 @@ static void Read()
NOTICE_LOG_FMT (CONTROLLERINTERFACE, " GCAdapter read thread stopped" );
}
static void Write ()
static void WriteThreadFunc ()
{
Common::SetCurrentThreadName (" GCAdapter Write Thread" );
NOTICE_LOG_FMT (CONTROLLERINTERFACE, " GCAdapter write thread started" );
@@ -257,8 +268,9 @@ static void Write()
if (write_size)
{
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
const int error = libusb_interrupt_transfer (
s_handle, s_endpoint_out, s_controller_write_payload.data (), write_size, &size, 16 );
const int error =
libusb_interrupt_transfer (s_handle, s_endpoint_out, s_controller_write_payload.data (),
write_size, &size, USB_TIMEOUT_MS);
if (error != LIBUSB_SUCCESS)
{
ERROR_LOG_FMT (CONTROLLERINTERFACE, " Write: libusb_interrupt_transfer failed: {}" ,
@@ -269,7 +281,7 @@ static void Write()
jbyte* const jrumble = env->GetByteArrayElements (jrumble_array, nullptr );
{
std::lock_guard<std::mutex> lk (s_write_mutex);
std::lock_guard lk (s_write_mutex);
memcpy (jrumble, s_controller_write_payload.data (), write_size);
}
@@ -300,9 +312,9 @@ static int HotplugCallback(libusb_context* ctx, libusb_device* dev, libusb_hotpl
Reset ();
// Reset a potential error status now that the adapter is unplugged
if (s_status < 0 )
if (s_status == AdapterStatus::Error )
{
s_status = NO_ADAPTER_DETECTED ;
s_status = AdapterStatus::NotDetected ;
if (s_detect_callback != nullptr )
s_detect_callback ();
}
@@ -347,7 +359,7 @@ static void ScanThreadFunc()
{
if (s_handle == nullptr )
{
std::lock_guard<std::mutex> lk (s_init_mutex);
std::lock_guard lk (s_init_mutex);
Setup ();
}
@@ -383,9 +395,12 @@ void SetAdapterCallback(std::function<void(void)> func)
static void RefreshConfig ()
{
s_is_adapter_wanted = false ;
for (int i = 0 ; i < SerialInterface::MAX_SI_CHANNELS; ++i)
{
s_config_si_device_type[i] = Config::Get (Config::GetInfoForSIDevice (i));
s_is_adapter_wanted |= Config::Get (Config::GetInfoForSIDevice (i)) ==
SerialInterface::SIDevices::SIDEVICE_WIIU_ADAPTER;
s_config_rumble_enabled[i] = Config::Get (Config::GetInfoForAdapterRumble (i));
}
}
@@ -411,7 +426,8 @@ void Init()
}
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
s_status = NO_ADAPTER_DETECTED;
s_status = AdapterStatus::NotDetected;
s_adapter_error = LIBUSB_SUCCESS;
#elif GCADAPTER_USE_ANDROID_IMPLEMENTATION
JNIEnv* const env = IDCache::GetEnvForThread ();
@@ -453,13 +469,13 @@ void StopScanThread()
static void Setup ()
{
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
const int prev_status = s_status;
const AdapterStatus prev_status = s_status;
// Reset the error status in case the adapter gets unplugged
if (s_status < 0 )
s_status = NO_ADAPTER_DETECTED ;
if (s_status == AdapterStatus::Error )
s_status = AdapterStatus::NotDetected ;
s_controller_type .fill (ControllerType::None );
s_port_states .fill ({} );
s_controller_rumble.fill (0 );
const int ret = s_libusb_context->GetDeviceList ([](libusb_device* device) {
@@ -474,7 +490,8 @@ static void Setup()
if (ret != LIBUSB_SUCCESS)
WARN_LOG_FMT (CONTROLLERINTERFACE, " Failed to get device list: {}" , LibusbUtils::ErrorWrap (ret));
if (s_status != ADAPTER_DETECTED && prev_status != s_status && s_detect_callback != nullptr )
if (s_status != AdapterStatus::Detected && prev_status != s_status &&
s_detect_callback != nullptr )
s_detect_callback ();
#elif GCADAPTER_USE_ANDROID_IMPLEMENTATION
s_fd = 0 ;
@@ -485,7 +502,7 @@ static void Setup()
s_read_adapter_thread.join ();
s_read_adapter_thread_running.Set (true );
s_read_adapter_thread = std::thread (Read );
s_read_adapter_thread = std::thread (ReadThreadFunc );
#endif
}
@@ -512,7 +529,10 @@ static bool CheckDeviceAccess(libusb_device* device)
desc.idVendor , desc.idProduct , 1 );
// In case of failure, capture the libusb error code into the adapter status
Common::ScopeGuard status_guard ([&ret] { s_status = ret; });
Common::ScopeGuard status_guard ([&ret] {
s_adapter_error = static_cast <libusb_error>(ret);
s_status = AdapterStatus::Error;
});
const u8 bus = libusb_get_bus_number (device);
const u8 port = libusb_get_device_address (device);
@@ -616,18 +636,19 @@ static void AddGCAdapter(libusb_device* device)
int size = 0 ;
std::array<u8, CONTROLER_OUTPUT_INIT_PAYLOAD_SIZE> payload = {0x13 };
const int error = libusb_interrupt_transfer (s_handle, s_endpoint_out, payload.data (),
CONTROLER_OUTPUT_INIT_PAYLOAD_SIZE, &size, 16 );
const int error =
libusb_interrupt_transfer (s_handle, s_endpoint_out, payload.data (),
CONTROLER_OUTPUT_INIT_PAYLOAD_SIZE, &size, USB_TIMEOUT_MS);
if (error != LIBUSB_SUCCESS)
{
WARN_LOG_FMT (CONTROLLERINTERFACE, " AddGCAdapter: libusb_interrupt_transfer failed: {}" ,
LibusbUtils::ErrorWrap (error));
}
s_read_adapter_thread_running.Set (true );
s_read_adapter_thread = std::thread (Read );
s_read_adapter_thread = std::thread (ReadThreadFunc );
s_status = ADAPTER_DETECTED ;
s_status = AdapterStatus::Detected ;
if (s_detect_callback != nullptr )
s_detect_callback ();
ResetRumbleLockNeeded ();
@@ -647,7 +668,7 @@ void Shutdown()
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
s_libusb_context.reset ();
s_status = NO_ADAPTER_DETECTED ;
s_status = AdapterStatus::NotDetected ;
#endif
if (s_config_callback_id)
@@ -660,10 +681,10 @@ void Shutdown()
static void Reset ()
{
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
std::unique_lock<std::mutex> lock (s_init_mutex, std::defer_lock);
std::unique_lock lock (s_init_mutex, std::defer_lock);
if (!lock.try_lock ())
return ;
if (s_status != ADAPTER_DETECTED )
if (s_status != AdapterStatus::Detected )
return ;
#elif GCADAPTER_USE_ANDROID_IMPLEMENTATION
if (!s_detected)
@@ -674,10 +695,10 @@ static void Reset()
s_read_adapter_thread.join ();
// The read thread will close the write thread
s_controller_type .fill (ControllerType::None );
s_port_states .fill ({} );
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
s_status = NO_ADAPTER_DETECTED ;
s_status = AdapterStatus::NotDetected ;
if (s_handle)
{
@@ -706,133 +727,159 @@ GCPadStatus Input(int chan)
return {};
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
if (s_handle == nullptr || s_status != ADAPTER_DETECTED )
if (s_handle == nullptr || s_status != AdapterStatus::Detected )
return {};
#elif GCADAPTER_USE_ANDROID_IMPLEMENTATION
if (!s_detected || !s_fd)
return {};
#endif
int payload_size = 0 ;
std::array<u8, CONTROLER_INPUT_PAYLOAD_EXPECTED_SIZE> controller_payload_copy{};
std::lock_guard lk (s_read_mutex);
auto & pad_state = s_port_states[chan];
// Return the "origin" state for the first input on a new connection.
if (pad_state.is_new_connection )
{
std::lock_guard<std::mutex> lk (s_read_mutex);
controller_payload_copy = s_controller_payload;
payload_size = s_controller_payload_size;
pad_state.is_new_connection = false ;
return pad_state.origin ;
}
GCPadStatus pad = {};
if (payload_size != CONTROLER_INPUT_PAYLOAD_EXPECTED_SIZE
return pad_state.status ;
}
// Get ControllerType from first byte in input payload.
ControllerType IdentifyControllerType (u8 data)
{
if (Common::ExtractBit<4 >(data))
return ControllerType::Wired;
if (Common::ExtractBit<5 >(data))
return ControllerType::Wireless;
return ControllerType::None;
}
void ProcessInputPayload (const u8* data, std::size_t size)
{
if (size != CONTROLER_INPUT_PAYLOAD_EXPECTED_SIZE
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
|| controller_payload_copy [0 ] != LIBUSB_DT_HID
|| data [0 ] != LIBUSB_DT_HID
#endif
)
{
// This can occur for a few frames on initialization.
ERROR_LOG_FMT (CONTROLLERINTERFACE, " error reading payload (size: {}, type: {:02x})" ,
payload_size, controller_payload_copy [0 ]);
ERROR_LOG_FMT (CONTROLLERINTERFACE, " error reading payload (size: {}, type: {:02x})" , size,
data [0 ]);
#if GCADAPTER_USE_ANDROID_IMPLEMENTATION
Reset ();
#endif
}
else
{
bool get_origin = false ;
// TODO: What do the other bits here indicate? Does casting to an enum like this make sense?
const auto type = static_cast <ControllerType>(controller_payload_copy[1 + (9 * chan)] >> 4 );
if (type != ControllerType::None && s_controller_type[chan] == ControllerType::None)
std::lock_guard lk (s_read_mutex);
for (int chan = 0 ; chan != SerialInterface::MAX_SI_CHANNELS; ++chan)
{
NOTICE_LOG_FMT (CONTROLLERINTERFACE, " New device connected to Port {} of Type: {:02x}" ,
chan + 1 , controller_payload_copy[1 + (9 * chan)]);
get_origin = true ;
}
const u8* const channel_data = &data[1 + (9 * chan)];
s_controller_type[chan] = type;
const auto type = IdentifyControllerType (channel_data[0 ]);
auto & pad_state = s_port_states[chan];
GCPadStatus pad = {};
if (type != ControllerType::None)
{
const u8 b1 = channel_data[1 ];
const u8 b2 = channel_data[2 ];
if (Common::ExtractBit<0 >(b1))
pad.button |= PAD_BUTTON_A;
if (Common::ExtractBit<1 >(b1))
pad.button |= PAD_BUTTON_B;
if (Common::ExtractBit<2 >(b1))
pad.button |= PAD_BUTTON_X;
if (Common::ExtractBit<3 >(b1))
pad.button |= PAD_BUTTON_Y;
if (Common::ExtractBit<4 >(b1))
pad.button |= PAD_BUTTON_LEFT;
if (Common::ExtractBit<5 >(b1))
pad.button |= PAD_BUTTON_RIGHT;
if (Common::ExtractBit<6 >(b1))
pad.button |= PAD_BUTTON_DOWN;
if (Common::ExtractBit<7 >(b1))
pad.button |= PAD_BUTTON_UP;
if (Common::ExtractBit<0 >(b2))
pad.button |= PAD_BUTTON_START;
if (Common::ExtractBit<1 >(b2))
pad.button |= PAD_TRIGGER_Z;
if (Common::ExtractBit<2 >(b2))
pad.button |= PAD_TRIGGER_R;
if (Common::ExtractBit<3 >(b2))
pad.button |= PAD_TRIGGER_L;
pad.stickX = channel_data[3 ];
pad.stickY = channel_data[4 ];
pad.substickX = channel_data[5 ];
pad.substickY = channel_data[6 ];
pad.triggerLeft = channel_data[7 ];
pad.triggerRight = channel_data[8 ];
}
else if (!Core::WantsDeterminism ())
{
// This is a hack to prevent a desync due to SI devices
// being different and returning different values.
// The corresponding code in DeviceGCAdapter has the same check
pad.button = PAD_ERR_STATUS;
}
if (type != ControllerType::None && pad_state.controller_type == ControllerType::None)
{
NOTICE_LOG_FMT (CONTROLLERINTERFACE, " New device connected to Port {} of Type: {:02x}" ,
chan + 1 , channel_data[0 ]);
if (s_controller_type[chan] != ControllerType::None)
{
const u8 b1 = controller_payload_copy[1 + (9 * chan) + 1 ];
const u8 b2 = controller_payload_copy[1 + (9 * chan) + 2 ];
if (b1 & (1 << 0 ))
pad.button |= PAD_BUTTON_A;
if (b1 & (1 << 1 ))
pad.button |= PAD_BUTTON_B;
if (b1 & (1 << 2 ))
pad.button |= PAD_BUTTON_X;
if (b1 & (1 << 3 ))
pad.button |= PAD_BUTTON_Y;
if (b1 & (1 << 4 ))
pad.button |= PAD_BUTTON_LEFT;
if (b1 & (1 << 5 ))
pad.button |= PAD_BUTTON_RIGHT;
if (b1 & (1 << 6 ))
pad.button |= PAD_BUTTON_DOWN;
if (b1 & (1 << 7 ))
pad.button |= PAD_BUTTON_UP;
if (b2 & (1 << 0 ))
pad.button |= PAD_BUTTON_START;
if (b2 & (1 << 1 ))
pad.button |= PAD_TRIGGER_Z;
if (b2 & (1 << 2 ))
pad.button |= PAD_TRIGGER_R;
if (b2 & (1 << 3 ))
pad.button |= PAD_TRIGGER_L;
if (get_origin)
pad.button |= PAD_GET_ORIGIN;
pad_state.origin = pad;
pad_state.is_new_connection = true ;
}
pad.stickX = controller_payload_copy[1 + (9 * chan) + 3 ];
pad.stickY = controller_payload_copy[1 + (9 * chan) + 4 ];
pad.substickX = controller_payload_copy[1 + (9 * chan) + 5 ];
pad.substickY = controller_payload_copy[1 + (9 * chan) + 6 ];
pad.triggerLeft = controller_payload_copy[1 + (9 * chan) + 7 ];
pad.triggerRight = controller_payload_copy[1 + (9 * chan) + 8 ];
}
else if (!Core::WantsDeterminism ())
{
// This is a hack to prevent a desync due to SI devices
// being different and returning different values.
// The corresponding code in DeviceGCAdapter has the same check
pad.button = PAD_ERR_STATUS;
pad_state.controller_type = type;
pad_state.status = pad;
}
}
return pad;
}
bool DeviceConnected (int chan)
{
return s_controller_type[chan] != ControllerType::None;
std::lock_guard lk (s_read_mutex);
return s_port_states[chan].controller_type != ControllerType::None;
}
void ResetDeviceType (int chan)
{
s_controller_type[chan] = ControllerType::None;
std::lock_guard lk (s_read_mutex);
s_port_states[chan].controller_type = ControllerType::None;
}
bool UseAdapter ()
{
const auto & si_devices = s_config_si_device_type;
return std::any_of (si_devices.begin (), si_devices.end (), [](const auto device_type) {
return device_type == SerialInterface::SIDEVICE_WIIU_ADAPTER;
});
return s_is_adapter_wanted;
}
void ResetRumble ()
{
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
std::unique_lock<std::mutex> lock (s_init_mutex, std::defer_lock);
std::unique_lock lock (s_init_mutex, std::defer_lock);
if (!lock.try_lock ())
return ;
ResetRumbleLockNeeded ();
#elif GCADAPTER_USE_ANDROID_IMPLEMENTATION
std::array<u8, CONTROLER_OUTPUT_RUMBLE_PAYLOAD_SIZE> rumble = {0x11 , 0 , 0 , 0 , 0 };
{
std::lock_guard<std::mutex> lk (s_write_mutex);
std::lock_guard lk (s_write_mutex);
s_controller_write_payload = rumble;
s_controller_write_payload_size.store (CONTROLER_OUTPUT_RUMBLE_PAYLOAD_SIZE);
}
@@ -845,7 +892,7 @@ void ResetRumble()
// being called while the libusb state is being reset
static void ResetRumbleLockNeeded ()
{
if (!UseAdapter () || (s_handle == nullptr || s_status != ADAPTER_DETECTED ))
if (!UseAdapter () || (s_handle == nullptr || s_status != AdapterStatus::Detected ))
{
return ;
}
@@ -857,8 +904,9 @@ static void ResetRumbleLockNeeded()
s_controller_rumble[3 ]};
int size = 0 ;
const int error = libusb_interrupt_transfer (s_handle, s_endpoint_out, rumble.data (),
CONTROLER_OUTPUT_RUMBLE_PAYLOAD_SIZE, &size, 16 );
const int error =
libusb_interrupt_transfer (s_handle, s_endpoint_out, rumble.data (),
CONTROLER_OUTPUT_RUMBLE_PAYLOAD_SIZE, &size, USB_TIMEOUT_MS);
if (error != LIBUSB_SUCCESS)
{
WARN_LOG_FMT (CONTROLLERINTERFACE, " ResetRumbleLockNeeded: libusb_interrupt_transfer failed: {}" ,
@@ -884,15 +932,15 @@ void Output(int chan, u8 rumble_command)
// Skip over rumble commands if it has not changed or the controller is wireless
if (rumble_command != s_controller_rumble[chan] &&
s_controller_type [chan] != ControllerType::Wireless)
s_port_states [chan]. controller_type != ControllerType::Wireless)
{
s_controller_rumble[chan] = rumble_command;
std::array<u8, CONTROLER_OUTPUT_RUMBLE_PAYLOAD_SIZE> rumble = {
0x11 , s_controller_rumble[0 ], s_controller_rumble[1 ], s_controller_rumble[2 ],
s_controller_rumble[3 ]};
{
#if GCADAPTER_USE_ANDROID_IMPLEMENTATION
std::lock_guard<std::mutex> lk (s_write_mutex);
std::lock_guard lk (s_write_mutex);
#endif
s_controller_write_payload = rumble;
s_controller_write_payload_size.store (CONTROLER_OUTPUT_RUMBLE_PAYLOAD_SIZE);
@@ -904,16 +952,16 @@ void Output(int chan, u8 rumble_command)
bool IsDetected (const char ** error_message)
{
#if GCADAPTER_USE_LIBUSB_IMPLEMENTATION
if (s_status >= 0 )
if (s_status != AdapterStatus::Error )
{
if (error_message)
*error_message = nullptr ;
return s_status == ADAPTER_DETECTED ;
return s_status == AdapterStatus::Detected ;
}
if (error_message)
*error_message = libusb_strerror (static_cast <libusb_error>(s_status .load () ));
*error_message = libusb_strerror (s_adapter_error .load ());
return false ;
#elif GCADAPTER_USE_ANDROID_IMPLEMENTATION