@@ -16,62 +16,52 @@ enum class CPUVendor

struct CPUInfo
{
CPUVendor vendor = CPUVendor::Intel;
CPUVendor vendor = CPUVendor::Other;

char cpu_string[0x41] = {};
char brand_string[0x21] = {};
bool OS64bit = false;
bool CPU64bit = false;
bool Mode64bit = false;
std::string cpu_id;
std::string model_name;

bool HTT = false;
int num_cores = 0;

bool bSSE = false;
bool bSSE2 = false;
bool bSSE3 = false;
bool bSSSE3 = false;
bool bPOPCNT = false;
bool bSSE4_1 = false;
bool bSSE4_2 = false;
bool bLZCNT = false;
bool bSSE4A = false;
bool bAVX = false;
bool bAVX2 = false;
bool bBMI1 = false;
bool bBMI2 = false;
// PDEP and PEXT are ridiculously slow on AMD Zen1, Zen1+ and Zen2 (Family 23)
bool bFastBMI2 = false;
// PDEP and PEXT are ridiculously slow on AMD Zen1, Zen1+ and Zen2 (Family 17h)
bool bBMI2FastParallelBitOps = false;
bool bFMA = false;
bool bFMA4 = false;
bool bAES = false;
// FXSAVE/FXRSTOR
bool bFXSR = false;
bool bMOVBE = false;
// This flag indicates that the hardware supports some mode
// in which denormal inputs _and_ outputs are automatically set to (signed) zero.
bool bFlushToZero = false;
bool bLAHFSAHF64 = false;
bool bLongMode = false;
bool bAtom = false;
bool bZen1p2 = false;

// ARMv8 specific
bool bFP = false;
bool bASIMD = false;
bool bCRC32 = false;
bool bSHA1 = false;
bool bSHA2 = false;

// ARMv8 specific
bool bAFP = false; // Alternate floating-point behavior

// Call Detect()
explicit CPUInfo();

// Turn the CPU info into a string we can show
// The returned string consists of "<model_name>,<cpu_id>,<flag...>"
// Where:
// model_name and cpud_id may be zero-length
// model_name is human-readable marketing name
// cpu_id is ':'-delimited string of id info
// flags are optionally included if the related feature is supported and reporting its enablement
// seems useful to report
std::string Summarize();

private:
// Detects the various CPU features
void Detect();
};

@@ -259,6 +259,13 @@ void ReplaceBreaksWithSpaces(std::string& str)
std::replace(str.begin(), str.end(), '\n', ' ');
}

void TruncateToCString(std::string* s)
{
const size_t terminator = s->find_first_of('\0');
if (terminator != s->npos)
s->resize(terminator);
}

bool TryParse(const std::string& str, bool* const output)
{
float value;
@@ -54,6 +54,8 @@ std::string ReplaceAll(std::string result, std::string_view src, std::string_vie

void ReplaceBreaksWithSpaces(std::string& str);

void TruncateToCString(std::string* s);

bool TryParse(const std::string& str, bool* output);

template <typename T, std::enable_if_t<std::is_integral_v<T> || std::is_enum_v<T>>* = nullptr>
@@ -11,9 +11,12 @@
#include <string>
#include <thread>

#include <fmt/format.h>

#include "Common/CommonTypes.h"
#include "Common/Intrinsics.h"
#include "Common/MsgHandler.h"
#include "Common/StringUtil.h"

#ifndef _WIN32

@@ -38,20 +41,23 @@ static inline void __cpuidex(int info[4], int function_id, int subfunction_id)
#endif
}

static inline void __cpuid(int info[4], int function_id)
constexpr u32 XCR_XFEATURE_ENABLED_MASK = 0;

static u64 xgetbv(u32 index)
{
return __cpuidex(info, function_id, 0);
u32 eax, edx;
__asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
return ((u64)edx << 32) | eax;
}

#endif // ifndef _WIN32
#else

#ifdef _WIN32
constexpr u32 XCR_XFEATURE_ENABLED_MASK = _XCR_XFEATURE_ENABLED_MASK;

static u64 xgetbv(u32 index)
{
return _xgetbv(index);
}
constexpr u32 XCR_XFEATURE_ENABLED_MASK = _XCR_XFEATURE_ENABLED_MASK;

static void WarnIfRunningUnderEmulation()
{
@@ -76,16 +82,20 @@ static void WarnIfRunningUnderEmulation()
"Please run the ARM64 build of Dolphin for a better experience.");
}

#else
#endif // ifdef _WIN32

static u64 xgetbv(u32 index)
struct CPUIDResult
{
u32 eax, edx;
__asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
return ((u64)edx << 32) | eax;
u32 eax{}, ebx{}, ecx{}, edx{};
};
static_assert(sizeof(CPUIDResult) == sizeof(u32) * 4);

static inline CPUIDResult cpuid(int function_id, int subfunction_id = 0)
{
CPUIDResult info;
__cpuidex((int*)&info, function_id, subfunction_id);
return info;
}
constexpr u32 XCR_XFEATURE_ENABLED_MASK = 0;
#endif // ifdef _WIN32

CPUInfo cpu_info;

@@ -94,196 +104,174 @@ CPUInfo::CPUInfo()
Detect();
}

// Detects the various CPU features
void CPUInfo::Detect()
{
#ifdef _WIN32
WarnIfRunningUnderEmulation();
#endif

#ifdef _M_X86_64
Mode64bit = true;
OS64bit = true;
#endif
num_cores = 1;

// Set obvious defaults, for extra safety
if (Mode64bit)
{
bSSE = true;
bSSE2 = true;
bLongMode = true;
}
// This should be much more reliable and easier than trying to get the number of cores out of the
// CPUID data ourselves.
num_cores = std::max(static_cast<int>(std::thread::hardware_concurrency()), 1);

// Assume CPU supports the CPUID instruction. Those that don't can barely
// boot modern OS:es anyway.
int cpu_id[4];

// Detect CPU's CPUID capabilities, and grab CPU string
__cpuid(cpu_id, 0x00000000);
u32 max_std_fn = cpu_id[0]; // EAX
std::memcpy(&brand_string[0], &cpu_id[1], sizeof(int));
std::memcpy(&brand_string[4], &cpu_id[3], sizeof(int));
std::memcpy(&brand_string[8], &cpu_id[2], sizeof(int));
__cpuid(cpu_id, 0x80000000);
u32 max_ex_fn = cpu_id[0];
if (!strcmp(brand_string, "GenuineIntel"))
// boot modern OS anyway.

// Detect CPU's CPUID capabilities and grab vendor string.
auto info = cpuid(0);
const u32 func_id_max = info.eax;

std::string vendor_id;
vendor_id.resize(sizeof(u32) * 3);
std::memcpy(&vendor_id[0], &info.ebx, sizeof(u32));
std::memcpy(&vendor_id[4], &info.edx, sizeof(u32));
std::memcpy(&vendor_id[8], &info.ecx, sizeof(u32));
TruncateToCString(&vendor_id);
if (vendor_id == "GenuineIntel")
vendor = CPUVendor::Intel;
else if (!strcmp(brand_string, "AuthenticAMD"))
else if (vendor_id == "AuthenticAMD")
vendor = CPUVendor::AMD;
else
vendor = CPUVendor::Other;

// Set reasonable default brand string even if brand string not available.
strcpy(cpu_string, brand_string);

// Detect family and other misc stuff.
bool ht = false;
HTT = ht;
if (max_std_fn >= 1)
bool is_amd_family_17 = false;
bool has_sse = false;
if (func_id_max >= 1)
{
__cpuid(cpu_id, 0x00000001);
int family = ((cpu_id[0] >> 8) & 0xf) + ((cpu_id[0] >> 20) & 0xff);
int model = ((cpu_id[0] >> 4) & 0xf) + ((cpu_id[0] >> 12) & 0xf0);
info = cpuid(1);
const u32 version = info.eax;
const u32 family = ((version >> 8) & 0xf) + ((version >> 20) & 0xff);
const u32 model = ((version >> 4) & 0xf) + ((version >> 12) & 0xf0);
const u32 stepping = version & 0xf;

cpu_id = fmt::format("{:02X}:{:02X}:{:X}", family, model, stepping);

// Detect people unfortunate enough to be running Dolphin on an Atom
if (family == 6 &&
if (vendor == CPUVendor::Intel && family == 6 &&
(model == 0x1C || model == 0x26 || model == 0x27 || model == 0x35 || model == 0x36 ||
model == 0x37 || model == 0x4A || model == 0x4D || model == 0x5A || model == 0x5D))
bAtom = true;

// Detect AMD Zen1, Zen1+ and Zen2
if (family == 23)
bZen1p2 = true;
ht = (cpu_id[3] >> 28) & 1;
if (vendor == CPUVendor::AMD && family == 0x17)
is_amd_family_17 = true;

// AMD CPUs before Zen faked this flag and didn't actually
// implement simultaneous multithreading (SMT; Intel calls it HTT)
// but rather some weird middle-ground between 1-2 cores
HTT = ht && (vendor == CPUVendor::Intel || family >= 23);
const bool ht = (info.edx >> 28) & 1;
HTT = ht && (vendor == CPUVendor::Intel || (vendor == CPUVendor::AMD && family >= 0x17));

if ((cpu_id[3] >> 25) & 1)
bSSE = true;
if ((cpu_id[3] >> 26) & 1)
bSSE2 = true;
if ((cpu_id[2]) & 1)
if ((info.edx >> 25) & 1)
has_sse = true;
if (info.ecx & 1)
bSSE3 = true;
if ((cpu_id[2] >> 9) & 1)
if ((info.ecx >> 9) & 1)
bSSSE3 = true;
if ((cpu_id[2] >> 19) & 1)
if ((info.ecx >> 19) & 1)
bSSE4_1 = true;
if ((cpu_id[2] >> 20) & 1)
if ((info.ecx >> 20) & 1)
bSSE4_2 = true;
if ((cpu_id[2] >> 22) & 1)
if ((info.ecx >> 22) & 1)
bMOVBE = true;
if ((cpu_id[2] >> 25) & 1)
if ((info.ecx >> 25) & 1)
bAES = true;

if ((cpu_id[3] >> 24) & 1)
{
// We can use FXSAVE.
bFXSR = true;
}

// AVX support requires 3 separate checks:
// - Is the AVX bit set in CPUID?
// - Is the XSAVE bit set in CPUID?
// - XGETBV result has the XCR bit set.
if (((cpu_id[2] >> 28) & 1) && ((cpu_id[2] >> 27) & 1))
if (((info.ecx >> 28) & 1) && ((info.ecx >> 27) & 1))
{
if ((xgetbv(XCR_XFEATURE_ENABLED_MASK) & 0x6) == 0x6)
// Check that XSAVE can be used for SSE and AVX
if ((xgetbv(XCR_XFEATURE_ENABLED_MASK) & 0b110) == 0b110)
{
bAVX = true;
if ((cpu_id[2] >> 12) & 1)
if ((info.ecx >> 12) & 1)
bFMA = true;
}
}

if (max_std_fn >= 7)
if (func_id_max >= 7)
{
__cpuidex(cpu_id, 0x00000007, 0x00000000);
// careful; we can't enable AVX2 unless the XSAVE/XGETBV checks above passed
if ((cpu_id[1] >> 5) & 1)
bAVX2 = bAVX;
if ((cpu_id[1] >> 3) & 1)
info = cpuid(7);
if ((info.ebx >> 3) & 1)
bBMI1 = true;
if ((cpu_id[1] >> 8) & 1)
if ((info.ebx >> 8) & 1)
bBMI2 = true;
if ((info.ebx >> 29) & 1)
bSHA1 = bSHA2 = true;
}
}

bFlushToZero = bSSE;
bFastBMI2 = bBMI2 && !bZen1p2;

if (max_ex_fn >= 0x80000004)
info = cpuid(0x80000000);
const u32 ext_func_id_max = info.eax;
if (ext_func_id_max >= 0x80000004)
{
// Extract CPU model string
__cpuid(cpu_id, 0x80000002);
memcpy(cpu_string, cpu_id, sizeof(cpu_id));
__cpuid(cpu_id, 0x80000003);
memcpy(cpu_string + 16, cpu_id, sizeof(cpu_id));
__cpuid(cpu_id, 0x80000004);
memcpy(cpu_string + 32, cpu_id, sizeof(cpu_id));
model_name.resize(sizeof(info) * 3);
for (u32 i = 0; i < 3; i++)
{
info = cpuid(0x80000002 + i);
memcpy(&model_name[sizeof(info) * i], &info, sizeof(info));
}
TruncateToCString(&model_name);
model_name = StripSpaces(model_name);
}
if (max_ex_fn >= 0x80000001)
if (ext_func_id_max >= 0x80000001)
{
// Check for more features.
__cpuid(cpu_id, 0x80000001);
if (cpu_id[2] & 1)
bLAHFSAHF64 = true;
if ((cpu_id[2] >> 5) & 1)
info = cpuid(0x80000001);
if ((info.ecx >> 5) & 1)
bLZCNT = true;
if ((cpu_id[2] >> 16) & 1)
if ((info.ecx >> 16) & 1)
bFMA4 = true;
if ((cpu_id[3] >> 29) & 1)
bLongMode = true;
}

// this should be much more reliable and easier
// than trying to get the number of cores out of the CPUID data
// ourselves
num_cores = std::max(std::thread::hardware_concurrency(), 1u);
// Computed flags
bFlushToZero = has_sse;
bBMI2FastParallelBitOps = bBMI2 && !is_amd_family_17;
bCRC32 = bSSE4_2;

model_name = ReplaceAll(model_name, ",", "_");
cpu_id = ReplaceAll(cpu_id, ",", "_");
}

// Turn the CPU info into a string we can show
std::string CPUInfo::Summarize()
{
std::string sum(cpu_string);
sum += " (";
sum += brand_string;
sum += ")";

if (bSSE)
sum += ", SSE";
if (bSSE2)
{
sum += ", SSE2";
if (!bFlushToZero)
sum += " (but not DAZ!)";
}
std::vector<std::string> sum;
sum.push_back(model_name);
sum.push_back(cpu_id);

if (bSSE3)
sum += ", SSE3";
sum.push_back("SSE3");
if (bSSSE3)
sum += ", SSSE3";
sum.push_back("SSSE3");
if (bSSE4_1)
sum += ", SSE4.1";
sum.push_back("SSE4.1");
if (bSSE4_2)
sum += ", SSE4.2";
sum.push_back("SSE4.2");
if (HTT)
sum += ", HTT";
sum.push_back("HTT");
if (bAVX)
sum += ", AVX";
if (bAVX2)
sum += ", AVX2";
sum.push_back("AVX");
if (bBMI1)
sum += ", BMI1";
sum.push_back("BMI1");
if (bBMI2)
sum += ", BMI2";
sum.push_back("BMI2");
if (bFMA)
sum += ", FMA";
if (bAES)
sum += ", AES";
sum.push_back("FMA");
if (bMOVBE)
sum += ", MOVBE";
if (bLongMode)
sum += ", 64-bit support";
return sum;
sum.push_back("MOVBE");
if (bAES)
sum.push_back("AES");
if (bCRC32)
sum.push_back("CRC32");
if (bSHA1)
sum.push_back("SHA1");
if (bSHA2)
sum.push_back("SHA2");

return JoinStrings(sum, ",");
}
@@ -65,7 +65,7 @@ void CommonAsmRoutines::GenConvertDoubleToSingle()

// Don't Denormalize

if (cpu_info.bFastBMI2)
if (cpu_info.bBMI2FastParallelBitOps)
{
// Extract bits 0-1 and 5-34
MOV(64, R(RSCRATCH), Imm64(0xc7ffffffe0000000));
@@ -299,7 +299,7 @@ void VertexLoaderX64::ReadColor(OpArg data, VertexComponentFormat attribute, Col
// RRRRRGGG GGGBBBBB
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
LoadAndSwap(16, scratch1, data);
if (cpu_info.bBMI1 && cpu_info.bFastBMI2)
if (cpu_info.bBMI1 && cpu_info.bBMI2FastParallelBitOps)
{
MOV(32, R(scratch2), Imm32(0x07C3F7C0));
PDEP(32, scratch3, scratch1, R(scratch2));
@@ -339,7 +339,7 @@ void VertexLoaderX64::ReadColor(OpArg data, VertexComponentFormat attribute, Col
// RRRRGGGG BBBBAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
LoadAndSwap(16, scratch1, data);
if (cpu_info.bFastBMI2)
if (cpu_info.bBMI2FastParallelBitOps)
{
MOV(32, R(scratch2), Imm32(0x0F0F0F0F));
PDEP(32, scratch1, scratch1, R(scratch2));
@@ -368,7 +368,7 @@ void VertexLoaderX64::ReadColor(OpArg data, VertexComponentFormat attribute, Col
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
data.AddMemOffset(-1); // subtract one from address so we can use a 32bit load and bswap
LoadAndSwap(32, scratch1, data);
if (cpu_info.bFastBMI2)
if (cpu_info.bBMI2FastParallelBitOps)
{
MOV(32, R(scratch2), Imm32(0xFCFCFCFC));
PDEP(32, scratch1, scratch1, R(scratch2));
@@ -179,8 +179,8 @@ bool VideoConfig::UsingUberShaders() const

static u32 GetNumAutoShaderCompilerThreads()
{
// Automatic number. We use clamp(cpus - 3, 1, 4).
return static_cast<u32>(std::min(std::max(cpu_info.num_cores - 3, 1), 4));
// Automatic number.
return static_cast<u32>(std::clamp(cpu_info.num_cores - 3, 1, 4));
}

static u32 GetNumAutoShaderPreCompilerThreads()
@@ -92,7 +92,31 @@ class x64EmitterTest : public testing::Test
protected:
void SetUp() override
{
memset(&cpu_info, 0x01, sizeof(cpu_info));
// Ensure settings are constant no matter on which actual hardware the test runs.
// Attempt to maximize complex code coverage. Note that this will miss some paths.
cpu_info.vendor = CPUVendor::Intel;
cpu_info.cpu_id = "GenuineIntel";
cpu_info.model_name = "Unknown";
cpu_info.HTT = true;
cpu_info.num_cores = 8;
cpu_info.bSSE3 = true;
cpu_info.bSSSE3 = true;
cpu_info.bSSE4_1 = true;
cpu_info.bSSE4_2 = true;
cpu_info.bLZCNT = true;
cpu_info.bAVX = true;
cpu_info.bBMI1 = true;
cpu_info.bBMI2 = true;
cpu_info.bBMI2FastParallelBitOps = true;
cpu_info.bFMA = true;
cpu_info.bFMA4 = true;
cpu_info.bAES = true;
cpu_info.bMOVBE = true;
cpu_info.bFlushToZero = true;
cpu_info.bAtom = false;
cpu_info.bCRC32 = true;
cpu_info.bSHA1 = true;
cpu_info.bSHA2 = true;

emitter.reset(new X64CodeBlock());
emitter->AllocCodeSpace(4096);