@@ -2,19 +2,16 @@
// Licensed under GPLv2+
// Refer to the license.txt file included.

#include "Common/Thread.h"
#include "InputCommon/ControlReference/ControlReference.h"

// For InputGateOn()
// This is a bad layering violation, but it's the cleanest
// place I could find to put it.
#include "Core/ConfigManager.h"
#include "Core/Host.h"

#include "InputCommon/ControlReference/ControlReference.h"

using namespace ciface::ExpressionParser;

constexpr ControlState INPUT_DETECT_THRESHOLD = 0.55;

bool ControlReference::InputGateOn()
{
return SConfig::GetInstance().m_BackgroundInput || Host_RendererHasFocus() ||
@@ -109,86 +106,3 @@ ControlState OutputReference::State(const ControlState state)
m_parsed_expression->SetValue(state * range);
return 0.0;
}

//
// InputReference :: Detect
//
// Wait for input on all binded devices
// supports not detecting inputs that were held down at the time of Detect start,
// which is useful for those crazy flightsticks that have certain buttons that are always held down
// or some crazy axes or something
// upon input, return pointer to detected Control
// else return nullptr
//
ciface::Core::Device::Control* InputReference::Detect(const unsigned int ms,
ciface::Core::Device* const device)
{
unsigned int time = 0;
std::vector<bool> states(device->Inputs().size());

if (device->Inputs().empty())
return nullptr;

// get starting state of all inputs,
// so we can ignore those that were activated at time of Detect start
std::vector<ciface::Core::Device::Input*>::const_iterator i = device->Inputs().begin(),
e = device->Inputs().end();
for (std::vector<bool>::iterator state = states.begin(); i != e; ++i)
*state++ = ((*i)->GetState() > (1 - INPUT_DETECT_THRESHOLD));

while (time < ms)
{
device->UpdateInput();
i = device->Inputs().begin();
for (std::vector<bool>::iterator state = states.begin(); i != e; ++i, ++state)
{
// detected an input
if ((*i)->IsDetectable() && (*i)->GetState() > INPUT_DETECT_THRESHOLD)
{
// input was released at some point during Detect call
// return the detected input
if (false == *state)
return *i;
}
else if ((*i)->GetState() < (1 - INPUT_DETECT_THRESHOLD))
{
*state = false;
}
}
Common::SleepCurrentThread(10);
time += 10;
}

// no input was detected
return nullptr;
}

//
// OutputReference :: Detect
//
// Totally different from the inputReference detect / I have them combined so it was simpler to make
// the GUI.
// The GUI doesn't know the difference between an input and an output / it's odd but I was lazy and
// it was easy
//
// set all binded outputs to <range> power for x milliseconds return false
//
ciface::Core::Device::Control* OutputReference::Detect(const unsigned int ms,
ciface::Core::Device* const device)
{
// ignore device

// don't hang if we don't even have any controls mapped
if (BoundCount() > 0)
{
State(1);
unsigned int slept = 0;

// this loop is to make stuff like flashing keyboard LEDs work
while (ms > (slept += 10))
Common::SleepCurrentThread(10);

State(0);
}
return nullptr;
}
@@ -26,8 +26,6 @@ class ControlReference

virtual ~ControlReference();
virtual ControlState State(const ControlState state = 0) = 0;
virtual ciface::Core::Device::Control* Detect(const unsigned int ms,
ciface::Core::Device* const device) = 0;
virtual bool IsInput() const = 0;

int BoundCount() const;
@@ -57,8 +55,6 @@ class InputReference : public ControlReference
InputReference();
bool IsInput() const override;
ControlState State(const ControlState state) override;
ciface::Core::Device::Control* Detect(const unsigned int ms,
ciface::Core::Device* const device) override;
};

//
@@ -72,6 +68,4 @@ class OutputReference : public ControlReference
OutputReference();
bool IsInput() const override;
ControlState State(const ControlState state) override;
ciface::Core::Device::Control* Detect(const unsigned int ms,
ciface::Core::Device* const device) override;
};
@@ -217,7 +217,19 @@ class ControlExpression : public Expression
std::shared_ptr<Device> m_device;

explicit ControlExpression(ControlQualifier qualifier_) : qualifier(qualifier_) {}
ControlState GetValue() const override { return control ? control->ToInput()->GetState() : 0.0; }
ControlState GetValue() const override
{
if (!control)
return 0.0;

// Note: Inputs may return negative values in situations where opposing directions are
// activated. We clamp off the negative values here.

// FYI: Clamping values greater than 1.0 is purposely not done to support unbounded values in
// the future. (e.g. raw accelerometer/gyro data)

return std::max(0.0, control->ToInput()->GetState());
}
void SetValue(ControlState value) override
{
if (control)
@@ -259,7 +259,7 @@ std::string Joystick::Hat::GetName() const

ControlState Joystick::Axis::GetState() const
{
return std::max(0.0, ControlState(m_axis - m_base) / m_range);
return ControlState(m_axis - m_base) / m_range;
}

ControlState Joystick::Button::GetState() const
@@ -4,22 +4,22 @@

#include "InputCommon/ControllerInterface/Device.h"

#include <cmath>
#include <memory>
#include <sstream>
#include <string>
#include <tuple>

#include "Common/StringUtil.h"
#include "Common/Thread.h"

namespace ciface
{
namespace Core
{
//
// Device :: ~Device
//
// Destructor, delete all inputs/outputs on device destruction
//
// Compared to an input's current state (ideally 1.0) minus abs(initial_state) (ideally 0.0).
constexpr ControlState INPUT_DETECT_THRESHOLD = 0.55;

Device::~Device()
{
// delete inputs
@@ -68,6 +68,11 @@ Device::Output* Device::FindOutput(const std::string& name) const
return nullptr;
}

ControlState Device::FullAnalogSurface::GetState() const
{
return (1 + std::max(0.0, m_high.GetState()) - std::max(0.0, m_low.GetState())) / 2;
}

//
// DeviceQualifier :: ToString
//
@@ -214,5 +219,83 @@ bool DeviceContainer::HasConnectedDevice(const DeviceQualifier& qualifier) const
const auto device = FindDevice(qualifier);
return device != nullptr && device->IsValid();
}

// Wait for input on a particular device.
// Inputs are considered if they are first seen in a neutral state.
// This is useful for crazy flightsticks that have certain buttons that are always held down
// and also properly handles detection when using "FullAnalogSurface" inputs.
// Upon input, return the detected Device and Input, else return nullptrs
std::pair<std::shared_ptr<Device>, Device::Input*>
DeviceContainer::DetectInput(u32 wait_ms, std::vector<std::string> device_strings)
{
struct InputState
{
ciface::Core::Device::Input& input;
ControlState initial_state;
};

struct DeviceState
{
std::shared_ptr<Device> device;

std::vector<InputState> input_states;
};

// Acquire devices and initial input states.
std::vector<DeviceState> device_states;
for (auto& device_string : device_strings)
{
DeviceQualifier dq;
dq.FromString(device_string);
auto device = FindDevice(dq);

if (!device)
continue;

std::vector<InputState> input_states;

for (auto* input : device->Inputs())
{
// Don't detect things like absolute cursor position.
if (!input->IsDetectable())
continue;

// Undesirable axes will have negative values here when trying to map a
// "FullAnalogSurface".
input_states.push_back({*input, input->GetState()});
}

if (!input_states.empty())
device_states.emplace_back(DeviceState{std::move(device), std::move(input_states)});
}

if (device_states.empty())
return {};

u32 time = 0;
while (time < wait_ms)
{
Common::SleepCurrentThread(10);
time += 10;

for (auto& device_state : device_states)
{
device_state.device->UpdateInput();
for (auto& input_state : device_state.input_states)
{
// We want an input that was initially 0.0 and currently 1.0.
const auto detection_score =
(input_state.input.GetState() - std::abs(input_state.initial_state));

if (detection_score > INPUT_DETECT_THRESHOLD)
return {device_state.device, &input_state.input};
}
}
}

// No input was detected. :'(
return {};
}
}

} // namespace Core
} // namespace ciface
@@ -55,9 +55,22 @@ class Device
class Input : public Control
{
public:
// things like absolute axes/ absolute mouse position will override this
// Things like absolute axes/ absolute mouse position should override this to prevent
// undesirable behavior in our mapping logic.
virtual bool IsDetectable() { return true; }

// Implementations should return a value from 0.0 to 1.0 across their normal range.
// One input should be provided for each "direction". (e.g. 2 for each axis)
// If possible, negative values may be returned in situations where an opposing input is
// activated. (e.g. When an underlying axis, X, is currently negative, "Axis X-", will return a
// positive value and "Axis X+" may return a negative value.)
// Doing so is solely to allow our input detection logic to better detect false positives.
// This is necessary when making use of "FullAnalogSurface" as multiple inputs will be seen
// increasing from 0.0 to 1.0 as a user tries to map just one. The negative values provide a
// view of the underlying axis. (Negative values are clamped off before they reach
// expression-parser or controller-emu)
virtual ControlState GetState() const = 0;

Input* ToInput() override { return this; }
};

@@ -96,11 +109,7 @@ class Device
{
public:
FullAnalogSurface(Input* low, Input* high) : m_low(*low), m_high(*high) {}
ControlState GetState() const override
{
return (1 + m_high.GetState() - m_low.GetState()) / 2;
}

ControlState GetState() const override;
std::string GetName() const override { return m_low.GetName() + *m_high.GetName().rbegin(); }

private:
@@ -163,6 +172,9 @@ class DeviceContainer

bool HasConnectedDevice(const DeviceQualifier& qualifier) const;

std::pair<std::shared_ptr<Device>, Device::Input*>
DetectInput(u32 wait_ms, std::vector<std::string> device_strings);

protected:
mutable std::mutex m_devices_mutex;
std::vector<std::shared_ptr<Device>> m_devices;
@@ -228,13 +228,13 @@ ControlState Device::Trigger::GetState() const

ControlState Device::Axis::GetState() const
{
return std::max(0.0, ControlState(m_axis) / m_range);
return ControlState(m_axis) / m_range;
}

void Device::Motor::SetState(ControlState state)
{
m_motor = (WORD)(state * m_range);
m_parent->UpdateMotors();
}
}
}
} // namespace XInput
} // namespace ciface
@@ -343,7 +343,7 @@ ControlState evdevDevice::Axis::GetState() const
int value = 0;
libevdev_fetch_event_value(m_dev, EV_ABS, m_code, &value);

return std::max(0.0, ControlState(value - m_base) / m_range);
return ControlState(value - m_base) / m_range;
}

evdevDevice::Effect::Effect(int fd) : m_fd(fd)