
PH-204 Physics Simulation, 2018 j.e.bateman@swansea.ac.uk

Assignment 3 [30 marks]
Code must be written in Python3 and submitted a working script for each sub-question.
Please use the file names specified in the question e.g. [A1Q1.py]
The deadline for this assignment is 2018-12-05 Wednesday at 11:00
You must answer the sheet showing your student number.

Dom Van Der Pas 879132
Kapitza oscillator [A3Q1.py]
A rigid pendulum hanging from fixing which moves up and down following equation y(t) can be described by
the differential equation

θ̈ + Γθ̇ + κ sin θ = A(t) sin θ

where A(t) is the vertical acceleration of the fixing, Γ is a damping rate, and
√
κ = ω0 is the natural frequency.

θ is the angle with the vertical and θ = 0 means pointing down.
Simulate the motion with a stationary fixing (i.e. A(t) = 0) with Γ = 1 s−1 and ω0 = 2π × 1 Hz. Start with
the pendulum released from rest at θ = 0.9π (i.e. nearly straight up). [4 marks]
Plot time evolution θ(t) for the first 20 s [2 marks]
Simulate the motion with an oscillating fixing using A(t) = A0 sin(100ω0t) with A0 = 104 s−2, and the other
conditions the same as above. [2 marks]
Plot time evolution θ(t) and comment on your result. [2 marks]

Penning traps [A3Q2.py]
A Penning trap for charged particles has a uniform magnetic field B along ẑ and electrodes which repel the
particle from z = ±z0 and attract it to a ring electrode of radius r0 in the z = 0 plane. When conditions are
right, the particle cannot reach this ring electrode, because the magnetic field makes it follow a curved path.
The electric potential is Φ(x) = Φ0(2z2 − x2 − y2), where x, y, z are the components of position vector x.
This gives an electric field E(x) = κ(xx̂ + yŷ − 2zẑ). The differential equation describing the motion is:

F = mẍ = q (E(x) + ẋ×B)

n.b. the electric field is a function of position.
Simulate this scenario with κ = 104 V/m2 and a 1 Tesla magnetic field for a calcium ion (atomic mass
40) with one electron removed (i.e. q = +e where e is the fundamental charge). Start the ion at position
(1 mm, 0, 1 mm) with initial speed 100 m/s along x̂.
Simulate the first millisecond. [8 marks]
Plot (a) the trajectory (x, y) and (b) the time-domain plot z(t) vs t. [2 marks]
Hint: The state vector now contains 6 elements: 3 for position and 3 for speed.

Assignment 3 continues on the next page.

Page 1

PH-204 Physics Simulation, 2018 j.e.bateman@swansea.ac.uk

Stochastic Oscillator [A3Q3.py]
Real oscillators are subject to thermal fluctiations and this is most apparent on microscopic systems.
We can simulate this using a Stochastic Differential Equation:

ẍ+ Γẋ+ ω2
0x = ν(t)

where ν(t) is a Wiener process: the values of ν(t) are random, Gaussian distributed with zero mean, and the
value at time t is completely uncorrelated with the value at any other time.
This can be solved numerically using a modified version of Euler’s method:

Xn+1 = Xn + f(tn, Xn)δt+ dW (δt)

where Xn = (xn, vn) is the state vector and dW (δt) is a function of δt which describes the thermal fluctiatons.
In this case,

dW (δt) =

√
Γ kBT

M

(
0
1

)√
δt× randn()

where kB is Boltzmann’s constant, T is the temperature, and M is the mass of the oscillator.
You are provided with a modified Euler method called sde:

def sde(f, x0, dt, dW):
tn = 0
xn = x0

while True:
yield tn,xn
xn = xn + f(tn,xn)*dt + dW(dt)
tn = tn + dt

Make a function dW(dt) implementing the above (it must give a different random number each time) and
simulate the stochastic harmonic oscillator, with initial conditions X0 = (0, 0), for ω0 = 2π × 100 kHz,
Γ = 104 s−1, T = 300 K, and M = 10−18 kg.
Simulate with time-step δt = 10 ns and up to at least 10 ms. [6 marks]
Plot the time-domain plot x(t). [2 marks]
Plot a 2D histogram of the phase space (x, v/ω0), using plt.hist2d and around 50 bins. [2 marks]

End of Assignment 3.

Page 2

def euler(f, x0, dt):
 tn = 0
 xn = x0

 while True:
 yield tn,xn
 xn = xn + f(tn,xn)*dt
 tn = tn + dt

def leapfrog(f, x0, dt):
 tn = 0
 xn = x0

 while True:
 yield tn,xn
 xndash = xn + f(tn,xn)*dt
 xn = xn + 0.5*(f(tn,xn)+f(tn+dt,xndash))*dt
 tn = tn + dt

def rk4(f, x0, dt):
 tn = 0
 xn = x0

 while True:
 yield tn,xn

 k1 = dt*f(tn,xn)
 k2 = dt*f(tn+dt/2,xn+k1/2)
 k3 = dt*f(tn+dt/2,xn+k2/2)
 k4 = dt*f(tn+dt,xn+k3)

 xn = xn + (k1+2*k2+2*k3+k4)/6
 tn = tn + dt

def rkscipy(f, y0, dt):
 """Thin wrapper around scipy.integrate.ode"""
 from scipy.integrate import ode
 r = ode(f)
 r.set_integrator('dopri5') # this picks RK6; others are available
 r.set_initial_value(y0, 0)
 while True:
 yield r.t, r.y
 r.integrate(r.t+dt)

def sde(f, x0, dt, dW):
 tn = 0
 xn = x0

 while True:
 yield tn,xn
 xn = xn + f(tn,xn)*dt + dW(dt)
 tn = tn + dt

