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Abstract—Artificial intelligence (AI) is evolving exponentially,
from residing mainly in the realm of human imagination and
advanced scientific research to becoming an undeniable part of
day-to-day human reality. Many of the AI applications already
revolutionizing society such as ChatGPT are generated using
large language models (LLMs) trained on huge amounts of data
to recognize and interpret human language. The rise of AI goes
hand-in-hand with automation and robotics, fueling the need of
more intelligent systems and robots. However, one of the main
difficulties with robotic applications is understanding human
instruction. A very natural progression of LLMs is to move
towards robotic applications and enhance functionality.

In this paper, we show how allowing LLMs to modify robotic
codebase at runtime enables new human-machine interaction.
To achieve this, we use dora-rs, a robotic framework capable of
changing code at runtime while keeping state, also known as hot-
reloading. By pairing dora-rs with LLMs, we demonstrate that
robots can be controlled and instructed with natural language to
modify any aspect of the robot codebase. This approach allows
new human-robot interactions that were previously inaccessible
due to the limitations posed by the need to use existing predefined
interfaces, thus paving the way to more sophisticated and wider
use of robotic applications that can better understand and re-
spond to human needs. The code is available at: github.com/dora-
rs/dora and huggingface.co/datasets/haixuantao/dora-robomaster
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I. INTRODUCTION

LLMs make it possible to write quality code using natural
language. With their understanding of natural language and
coding syntax, LLMs can generate very powerful code assis-
tants such as ChatGPT and Github Copilot.

The idea of using LLMs to generate code to control a
robot from natural language has been popularized by Liang
et al. where they demonstrate LLM capabilities to generate
functional code for a robot to solve specified tasks [1].
Liang et al. showcased that some LLM has great coding and
reasoning skills and that they can solve many concrete robotic
challenges in zero-shot [1]. Liang et al. limited the coding
capabilities of LLMs to only a subset of the codebase called
the Language Model Program (LMP), but we want to extend
to the entire robot codebase.

This approach has not been actively researched as the
commonly used Robot Operating System (ROS) [2] requires
stopping the robot, building the codebase, and then restart-
ing the robot in order to implement any modification. The
ROS/ROS2 compilation step is required as the message format
is protobuf-encoded, making message compilation necessary
even when using an interpreted language like Python.

These issues have pushed us to investigate hot-reloaded code
change to provide a way to interact with a robot during runtime
and use LLM as the driver of those changes, making it possible
to use natural language to modify code at runtime.

Being able to modify and override a codebase at runtime
provides access to instruction that would have been impossible
to implement with predefined interface.

II. METHODS

This section deep dives on how we build our LLM-powered
hot-reloading robotic framework. It first describes dora-rs
unique implementation details, and then dives in the code
generation components.

A. dora-rs

1) Dataflow Paradigm: dora-rs was initially written as a
framework to help build robotic applications. It implements a
dataflow paradigm where tasks are split between nodes that
are isolated as individual processes. Each node defines its
inputs and outputs to connect with other nodes. The dataflow
paradigm has the advantage to create an abstraction layer that
makes robotic applications modular and easily configurable.
Nodes can be sensor nodes, network nodes, as well as compute
nodes. Splitting a robotic application into distributed nodes
makes it possible to edit and reload specific nodes of the
application.

2) Communication: Communication between nodes is han-
dled with shared memory on a same machine and Transmission
Control Protocol (TCP) on distributed machines. Our shared
memory implementation tracks messages across processes and
discards them when obsolete. Shared memory slots are cached
to avoid new memory allocation.

3) Message Format: Nodes communicate with Apache
Arrow Data Format as it defines a C data interface without
any build-time or link-time dependency requirements [3]. This
makes hot-reloading simpler as compiling and linking message
formats at runtime can be slow and error-prone. Apache Arrow
message format also makes sharing data zero-copy as data can
be interpreted at runtime from all languages. Apache Arrow
also uses the same memory layout as many scientific libraries,
making it zero-copy to convert Apache Arrow Data to the
format used by LLMs such as NumPy [4] or PyTorch [5].

4) Python: dora-rs nodes are written in Python removing
the need for compilation. Hot-reloading compiled code is hard
as changing a dynamic library at runtime is very error-prone

https://github.com/dora-rs/dora
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[6]. LLMs also perform better on Python according to Peng,
Chai, and Li [7]. Dora also supports C, C++ and Rust nodes
but those nodes are not hot-reloadable.

5) Hot-Reloading: The hot-reloading sequence is the fol-
lowing:

1) Check for code change from OS signal
2) Spawn a new node from the updated code
3) Catch error upon initialization and keep current

running node in case of failure
4) Copy running node state into the new node
5) Swap the running node with the new node
6) Catch error on following input to allow runtime

debugging

This hot-reloading sequence has the unique ability to keep
the state of the running node. Any progress within the state
will be copied in the reloaded node, thus avoiding the loss of
running state.

B. Code Generation

To generate code, we provide an instruction and a source
code to an LLM that is able to implement the code modifi-
cation required to follow the instruction. This modification is
then saved which triggers the hot-reloading process.

The code generation implementation follows a common
Retrieval Augmented Generation (RAG) [8] pattern applied
to the codebase of the robot.

Currently, dora-rs has been tested on two LLMs: Finetuned
OpenHermes-2.5-Mistral-7B and ChatGPT-4-turbo.

1) ChatGPT: ChatGPT is a LLM developed by OpenAI
[9]. It demonstrates advanced problem solving capabilities and
is very instinctive when provided with code, without needing
prompts to extensively explain the instruction.

ChatGPT cannot be embedded offline but is easily accessi-
ble via its API.

ChatGPT has a low generation speed of 22 token/s or about
16 words/s [10] which is considered slow as our average nodes
source contains about 100 lines of codes, equivalent to about
350 tokens, which takes about 30 seconds to a minute to
generate a response to our code change request.

Our system prompt using ChatGPT is “You are a helpful
assistant.” and user prompt template is [11]:

this is a python code:
‘‘‘python
{code}
‘‘‘
{instruction}

Format your response by:
- Showing the whole modified code.
- No explanation is required.
- Only code.

The response is processed by copying the code block
enclosed in triple backticks and pasting it over the original
code.

2) Mistral 7B: Mistral 7B is an open-source LLM model
developed by Mistral.ai [12]. Mistral 7B has the advantage of
having a small number of parameters and can be embedded
into applications within a laptop with sufficient GPU Memory.
We use Mistral 7B OpenHermes 2.5: “TheBloke/OpenHermes-
2.5-Mistral-7B-GGUF” as it has been finetuned on code gen-
eration using ChatGPT4 output. Mistral 7B can make minor
code changes such as changing variables, modifying functions
or adding simple if-statements. It will, however, struggle
with grasping complex domain technicalities and major code
changes.

Mistral 7B, being a smaller model, can generate at a faster
speed of 94 token/s [13] or about 74 words/s which takes about
couple of seconds making instant reactive response.

Our prompt template for Mistral 7B model is [14]:

<|im_start|>system
You’re a python code expert.
Respond with only one line of code.
<|im_end|>
<|im_start|>user
‘‘‘python
{code}
‘‘‘

{instruction}
<|im_end|>
<|im_start|>assistant

The response is processed by extracting the generated line
of code and searching for the most similar original line of
codes using the Levenshtein distance and replacing it.

3) Instructions: Instructions are in natural languages and
do not need to specify any code implementation, as LLMs
are able to deduct the required code modification. Instructions
can be made through speech recorded by a microphone and
converted using OpenAI Whisper “speech-to-text”. [15]

4) Codebase embeddings: To retrieve the right source code
to modify, we conduct a vector search of the codebase.
We first map all nodes source code into a vector embed-
ding database using the FlagEmbedding embedding model:
“BAAI/bge-large-en-v1.5” described by Xiao et al. as it is
open source and easy to integrate using Python [16]. We
then map the instruction into the same embedding space and
search for the most similar source code using cosine similarity
[17]. Being able to match the embedding of an instruction in
natural language with code relies on the embedding model to
correctly encode the code documentation such as docstrings
and comments. We currently do not embed imported libraries;
rather, we rely on the code to be self-explanatory enough for
the LLMs to do the modification.

The following schema is a summary of the different steps
in the reloading process (Fig. 1)
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Fig. 1. Schema of the LLM-powered hot-reloading process

III. EXPERIMENT

1) DJI Robomaster: To demonstrate how using a LLM
within a robotic codebase improves human-machine interac-
tion, we tested our method on a DJI robomaster S1 [18].

The DJI Robomaster is a rover programmable using Python,
costing approximately 500 US dollars. This relatively afford-
able platform has very few dependencies and is very easy to
build. It can be moved in two dimensions and has a rotating
gimbal that is attached to a webcam that we can use for object
detection. We connected dora-rs with the DJI robomaster using
DJI Robomaster Python SDK.

All code and recorded data can be found at
huggingface.co/datasets/haixuantao/dora-robomaster.

2) Scenarios: We tested our LLM-powered hot-reloading
functionality in multiple scenarios:

• Modifying static variables such as changing speed or the
destination objectives. This scenario requires retrieving
the right code and making the right modification. It can
be challenging as the instruction wording might not be
directly translatable to the code syntax.

• Changing function arguments such as adding, removing
or modifying a parameter in a function call. This sce-
nario requires understanding the underlying function and
expressing the required change in the proper way.

• Adding control flow such as adding if-statement. This
scenario requires the generation of basic programming
skills and being able to integrate within an existing code.

• Adding new functionalities such as modifying the entire
behavior of a robot. This scenario requires an implemen-
tation of a functionality from scratch. (Fig. 2)

We tested each scenario 20 times with different example
inputs on the robomaster.

3) Metrics: We break down the success rate at three
different stages: Retrieval, Generation and Code Logic. We
measure the success rate by manually annotating the outcome
and resetting the robot using hot-reloading in case of failure.

# yaw-axis angle in degrees(int): [-55, 55]
rotation = 0

# ...

bboxs = dora_event["value"].to_numpy()
self.bboxs = np.reshape(

bboxs, (-1, 6)
) # [min_x, min_y, max_x, max_y, conf, label]

+ # ChatGPT Addition
+ # Find the bbox with the highest confidence
+ target = max(self.bboxs, key=lambda x: x[4])
+ bbox_center_x = (target[0] + target[2]) / 2.0
+ rotation = np.clip(
+ int((bbox_center_x - CAMERA_WIDTH / 2)
+ * 55 / (CAMERA_WIDTH / 2)),
+ -55,
+ 55,
+ )

Fig. 2. To illustrate code generation, the following code snippet is ChatGPT’s
response to the instructions: “rotate the robot according to bounding box”. In
this example, we asked ChatGPT to override a static variable to rotate a robot
by setting the rotation of the robot according to the bounding box sent by an
object detection node. ChatGPT is able to generate a linear function of the
rotation proportional to the bounding box center. Video can be found here:
youtu.be/NvvTEP8Jak8?t=229

IV. RESULTS

Our LLM-powered hot-reloading functionality was able to
pass most of the scenarios we set up, although most required
multiple trials (Table I).

The failures were equally present in the three stages of
generation (Fig. 3):

• Retrieval stage: Errors occurred when the expressed in-
struction did not provide enough context and was not
similar enough to the source file that we wanted to
modify. Being very precise in the instruction and having
a well documented code with docstring and comments
gave the best result.

• Generation stage: Generation failed when the LLMs
assumed a wrong variable type or assumed the wrong
definition of a function.

• Code logic stage: Implementation failed when the task
was too complex or when there was not enough informa-
tion about the required inputs.

https://huggingface.co/datasets/haixuantao/dora-robomaster
https://youtu.be/NvvTEP8Jak8?si=ulJyM1Hte_wF0s9s&t=229


TABLE I
FAILURE RATES DEPENDING ON SCENARIOS AND MODELS

Response type Mistral 7B ChatGPT
Modifying static variable 82% 98%

Changing function arguments 77% 90%
Adding control flow N/A 57%

Adding new functionalities N/A 43%

Fig. 3. Failure rates at different steps in generating code using the dora-
robomaster

V. DISCUSSION

Our method sets a new precedent in human-machine interac-
tion as it provides the possibility to pass many new instructions
to robots on any part of its codebase at runtime, from changing
simple configuration to requesting whole new functionality.

VI. FUTURE WORK

Our methods still need refinement as our current failure
rate is still quite high, but we have already identified many
improvements to be made.

For the retrieval failure rate, we want to:

• Improve our retrieval and generation by extensively doc-
umenting each source code in order to limit retrieval and
generation error.

• Benchmark additional embedding models.
• Reduce retrieval error by using a bigger context model

such as Gemini Pro 1.5 [19] and feed more than one
source code to the LLM and let the LLM decide which
source code to modify.

For the generation and code generation failure rate, we want
to:

• Benchmark alternative LLMs such as Claude 3 [20]
• Use LLM Agents to split the code generation task into

several LLM Agents and condition each agent to a
specific part of the problem [21].

• Implement an auto-debugging mechanism to feed errors
trace-back into the LLMs and enable it to auto-correct
coding syntax error [22].

• Fine-tune ChatGPT and Mistral 7B on existing validated
data [11].

• Investigate prompt engineer and its influence on our
failure rate [23].

In addition to what we have described above, we believe that
there are clear next steps that can further improve interactions
between human and machine:

• Integrate vision into the LLMs in order to be able to
integrate visual element into the code [24].

• Improve the latency of the LLMs making the interaction
faster using alternative inference engine provider such as
groq.com [25] can reach speed of 500 tokens/s. Being
able to interact faster also means that there can be more
trials.

• Explore LLM capacity to self-discover problems and
auto-implement solutions in the likes of Wang et al. self-
driscovering Minecraft bot [26].

• Build and curate a dataset with all modal data (audio, text,
code, and image) and ground truth, to optimize each step
of the generation.

• Add function calling LLMs to interact with code at
runtime.

VII. CONCLUSION

In this paper, we explained how using LLMs in conjunction
with dora-rs, a hot-reloading robotic framework, can provide
new ways to interact with a robot. By hot-reloading code
changes and implementing a retrieval augmented code gen-
eration, we create the opportunity for users to implement
instructions previously inaccessible. This method is still fairly
error-prone but has yielded promising initial results, and many
ways of improvement have already been identified.
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