forked from vwxyzjn/cleanrl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpg_continuous_action.py
245 lines (212 loc) · 10.3 KB
/
ddpg_continuous_action.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ddpg/#ddpg_continuous_actionpy
import argparse
import os
import random
import time
from distutils.util import strtobool
import gym
import numpy as np
import pybullet_envs # noqa
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from stable_baselines3.common.buffers import ReplayBuffer
from torch.utils.tensorboard import SummaryWriter
def parse_args():
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment")
parser.add_argument("--seed", type=int, default=1,
help="seed of the experiment")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default=None,
help="the entity (team) of wandb's project")
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="weather to capture videos of the agent performances (check out `videos` folder)")
# Algorithm specific arguments
parser.add_argument("--env-id", type=str, default="HopperBulletEnv-v0",
help="the id of the environment")
parser.add_argument("--total-timesteps", type=int, default=1000000,
help="total timesteps of the experiments")
parser.add_argument("--learning-rate", type=float, default=3e-4,
help="the learning rate of the optimizer")
parser.add_argument("--buffer-size", type=int, default=int(1e6),
help="the replay memory buffer size")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--tau", type=float, default=0.005,
help="target smoothing coefficient (default: 0.005)")
parser.add_argument("--batch-size", type=int, default=256,
help="the batch size of sample from the reply memory")
parser.add_argument("--exploration-noise", type=float, default=0.1,
help="the scale of exploration noise")
parser.add_argument("--learning-starts", type=int, default=25e3,
help="timestep to start learning")
parser.add_argument("--policy-frequency", type=int, default=2,
help="the frequency of training policy (delayed)")
parser.add_argument("--noise-clip", type=float, default=0.5,
help="noise clip parameter of the Target Policy Smoothing Regularization")
args = parser.parse_args()
# fmt: on
return args
def make_env(env_id, seed, idx, capture_video, run_name):
def thunk():
env = gym.make(env_id)
env = gym.wrappers.RecordEpisodeStatistics(env)
if capture_video:
if idx == 0:
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
return env
return thunk
# ALGO LOGIC: initialize agent here:
class QNetwork(nn.Module):
def __init__(self, env):
super().__init__()
self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod() + np.prod(env.single_action_space.shape), 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, 1)
def forward(self, x, a):
x = torch.cat([x, a], 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class Actor(nn.Module):
def __init__(self, env):
super().__init__()
self.fc1 = nn.Linear(np.array(env.single_observation_space.shape).prod(), 256)
self.fc2 = nn.Linear(256, 256)
self.fc_mu = nn.Linear(256, np.prod(env.single_action_space.shape))
# action rescaling
self.register_buffer("action_scale", torch.FloatTensor((env.action_space.high - env.action_space.low) / 2.0))
self.register_buffer("action_bias", torch.FloatTensor((env.action_space.high + env.action_space.low) / 2.0))
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = torch.tanh(self.fc_mu(x))
return x * self.action_scale + self.action_bias
if __name__ == "__main__":
args = parse_args()
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:
import wandb
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# env setup
envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)])
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"
actor = Actor(envs).to(device)
qf1 = QNetwork(envs).to(device)
qf1_target = QNetwork(envs).to(device)
target_actor = Actor(envs).to(device)
target_actor.load_state_dict(actor.state_dict())
qf1_target.load_state_dict(qf1.state_dict())
q_optimizer = optim.Adam(list(qf1.parameters()), lr=args.learning_rate)
actor_optimizer = optim.Adam(list(actor.parameters()), lr=args.learning_rate)
envs.single_observation_space.dtype = np.float32
rb = ReplayBuffer(
args.buffer_size,
envs.single_observation_space,
envs.single_action_space,
device,
handle_timeout_termination=True,
)
start_time = time.time()
# TRY NOT TO MODIFY: start the game
obs = envs.reset()
for global_step in range(args.total_timesteps):
# ALGO LOGIC: put action logic here
if global_step < args.learning_starts:
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
else:
actions = actor(torch.Tensor(obs).to(device))
actions = np.array(
[
(
actions.tolist()[0]
+ np.random.normal(
actor.action_bias[0].cpu().numpy(),
actor.action_scale[0].cpu().numpy() * args.exploration_noise,
size=envs.single_action_space.shape[0],
)
).clip(envs.single_action_space.low, envs.single_action_space.high)
]
)
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, rewards, dones, infos = envs.step(actions)
# TRY NOT TO MODIFY: record rewards for plotting purposes
for info in infos:
if "episode" in info.keys():
print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
break
# TRY NOT TO MODIFY: save data to reply buffer; handle `terminal_observation`
real_next_obs = next_obs.copy()
for idx, d in enumerate(dones):
if d:
real_next_obs[idx] = infos[idx]["terminal_observation"]
rb.add(obs, real_next_obs, actions, rewards, dones, infos)
# TRY NOT TO MODIFY: CRUCIAL step easy to overlook
obs = next_obs
# ALGO LOGIC: training.
if global_step > args.learning_starts:
data = rb.sample(args.batch_size)
with torch.no_grad():
next_state_actions = target_actor(data.next_observations)
qf1_next_target = qf1_target(data.next_observations, next_state_actions)
next_q_value = data.rewards.flatten() + (1 - data.dones.flatten()) * args.gamma * (qf1_next_target).view(-1)
qf1_a_values = qf1(data.observations, data.actions).view(-1)
qf1_loss = F.mse_loss(qf1_a_values, next_q_value)
# optimize the model
q_optimizer.zero_grad()
qf1_loss.backward()
q_optimizer.step()
if global_step % args.policy_frequency == 0:
actor_loss = -qf1(data.observations, actor(data.observations)).mean()
actor_optimizer.zero_grad()
actor_loss.backward()
actor_optimizer.step()
# update the target network
for param, target_param in zip(actor.parameters(), target_actor.parameters()):
target_param.data.copy_(args.tau * param.data + (1 - args.tau) * target_param.data)
for param, target_param in zip(qf1.parameters(), qf1_target.parameters()):
target_param.data.copy_(args.tau * param.data + (1 - args.tau) * target_param.data)
if global_step % 100 == 0:
writer.add_scalar("losses/qf1_loss", qf1_loss.item(), global_step)
writer.add_scalar("losses/actor_loss", actor_loss.item(), global_step)
writer.add_scalar("losses/qf1_values", qf1_a_values.mean().item(), global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
envs.close()
writer.close()