Skip to content
Branch: master
Find file History
bamurtaugh and CESARDELATORRE Migration/v1.3.1 (#597)
* Add anomaly detection example to solution

* Updated label/score printing for anomaly detect

With ML.NET v1.3.0, fixed issue where Predicted Label was always true. No longer need "hack" of comparing score to 0.2

* Update build props nuget versions

ML.NET v1.3.1, ML Preview 0.15.0

* Renamed solution to match v1.3.1

* Update C# readmes to v1.3.1

* Update F# E2E readme

* Update F# getting started readmes

Change to v1.3.1

* Rename F# solution to v1.3.1

* Update to preview v0.15.1

* Changed to ML from MLPreview

Update TimeSeries to v1.3.1 instead of preview

* Update timeseries from preview to regular v1.3.1

* Change TimeSeries from preview to regular v1.3.1

* Update TensorFlow from Preview to regular v1.3.1

* Update TensorFlow from preview to regular v1.3.1
Latest commit 2feb479 Aug 7, 2019
Type Name Latest commit message Commit time
Failed to load latest commit information.
SpamDetectionConsoleApp removed unused assembly reference Apr 10, 2019 Migration/v1.3.1 (#597) Aug 6, 2019
SpamDetectionConsoleApp.sln Added solution file May 3, 2019

Spam Detection for Text Messages

ML.NET version API type Status App Type Data type Scenario ML Task Algorithms
v1.3.1 Dynamic API Might need to update project structure to match template Console app .tsv files Spam detection Two-class classification Averaged Perceptron (linear learner)

In this sample, you'll see how to use ML.NET to predict whether a text message is spam. In the world of machine learning, this type of prediction is known as binary classification.


Our goal here is to predict whether a text message is spam (an irrelevant/unwanted message). We will use the SMS Spam Collection Data Set from UCI, which contains close to 6000 messages that have been classified as being "spam" or "ham" (not spam). We will use this dataset to train a model that can take in new message and predict whether they are spam or not.

This is an example of binary classification, as we are classifying the text messages into one of two categories.


To solve this problem, first we will build an estimator to define the ML pipeline we want to use. Then we will train this estimator on existing data, evaluate how good it is, and lastly we'll consume the model to predict whether a few examples messages are spam.

Build -> Train -> Evaluate -> Consume

1. Build Model

To build the model we will:

  • Define how to read the spam dataset that will be downloaded from

  • Apply several data transformations:

    • Convert the label ("spam" or "ham") to a boolean ("true" represents spam) so we can use it with a binary classifier.
    • Featurize the text message into a numeric vector so a machine learning trainer can use it
  • Add a trainer (such as StochasticDualCoordinateAscent).

The initial code is similar to the following:

// Set up the MLContext, which is a catalog of components in ML.NET.
MLContext mlContext = new MLContext();

// Specify the schema for spam data and read it into DataView.
var data = mlContext.Data.LoadFromTextFile<SpamInput>(path: TrainDataPath, hasHeader: true, separatorChar: '\t');

// Data process configuration with pipeline data transformations 
var dataProcessPipeline = mlContext.Transforms.Conversion.MapValueToKey("Label", "Label")
                                      .Append(mlContext.Transforms.Text.FeaturizeText("FeaturesText", new Microsoft.ML.Transforms.Text.TextFeaturizingEstimator.Options
                                          WordFeatureExtractor = new Microsoft.ML.Transforms.Text.WordBagEstimator.Options { NgramLength = 2, UseAllLengths = true },
                                          CharFeatureExtractor = new Microsoft.ML.Transforms.Text.WordBagEstimator.Options { NgramLength = 3, UseAllLengths = false },
                                      }, "Message"))
                                      .Append(mlContext.Transforms.CopyColumns("Features", "FeaturesText"))
                                      .Append(mlContext.Transforms.NormalizeLpNorm("Features", "Features"))

// Set the training algorithm 
var trainer = mlContext.MulticlassClassification.Trainers.OneVersusAll(mlContext.BinaryClassification.Trainers.AveragedPerceptron(labelColumnName: "Label", numberOfIterations: 10, featureColumnName: "Features"), labelColumnName: "Label")
                                      .Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel", "PredictedLabel"));
var trainingPipeLine = dataProcessPipeline.Append(trainer);

2. Evaluate model

For this dataset, we will use cross-validation to evaluate our model. This will partition the data into 5 'folds', train 5 models (on each combination of 4 folds), and test them on the fold that wasn't used in training.

var crossValidationResults = mlContext.MulticlassClassification.CrossValidate(data: data, estimator: trainingPipeLine, numberOfFolds: 5);

Note that usually we evaluate a model after training it. However, cross-validation includes the model training part so we don't need to do Fit() first. However, we will later train the model on the full dataset to take advantage of the additional data.

3. Train model

To train the model we will call the estimator's Fit() method while providing the full training data.

var model = trainingPipeLine.Fit(data);

4. Consume model

After the model is trained, you can use the Predict() API to predict whether new text is spam.

//Create a PredictionFunction from our model 
var predictor = mlContext.Model.CreatePredictionEngine<SpamInput, SpamPrediction>(model);

var input = new SpamInput { Message = "free medicine winner! congratulations" };
Console.WriteLine("The message '{0}' is {1}", input.Message, prediction.isSpam == "spam" ? "spam" : "not spam");
You can’t perform that action at this time.