-
Notifications
You must be signed in to change notification settings - Fork 4.8k
/
Copy pathHexConverter.cs
453 lines (393 loc) · 22 KB
/
HexConverter.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System.Diagnostics;
using System.Runtime.CompilerServices;
#if SYSTEM_PRIVATE_CORELIB
using System.Buffers.Binary;
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.Arm;
using System.Runtime.Intrinsics.X86;
using System.Text;
using System.Text.Unicode;
#endif
namespace System
{
internal static class HexConverter
{
public enum Casing : uint
{
// Output [ '0' .. '9' ] and [ 'A' .. 'F' ].
Upper = 0,
// Output [ '0' .. '9' ] and [ 'a' .. 'f' ].
// This works because values in the range [ 0x30 .. 0x39 ] ([ '0' .. '9' ])
// already have the 0x20 bit set, so ORing them with 0x20 is a no-op,
// while outputs in the range [ 0x41 .. 0x46 ] ([ 'A' .. 'F' ])
// don't have the 0x20 bit set, so ORing them maps to
// [ 0x61 .. 0x66 ] ([ 'a' .. 'f' ]), which is what we want.
Lower = 0x2020U,
}
// We want to pack the incoming byte into a single integer [ 0000 HHHH 0000 LLLL ],
// where HHHH and LLLL are the high and low nibbles of the incoming byte. Then
// subtract this integer from a constant minuend as shown below.
//
// [ 1000 1001 1000 1001 ]
// - [ 0000 HHHH 0000 LLLL ]
// =========================
// [ *YYY **** *ZZZ **** ]
//
// The end result of this is that YYY is 0b000 if HHHH <= 9, and YYY is 0b111 if HHHH >= 10.
// Similarly, ZZZ is 0b000 if LLLL <= 9, and ZZZ is 0b111 if LLLL >= 10.
// (We don't care about the value of asterisked bits.)
//
// To turn a nibble in the range [ 0 .. 9 ] into hex, we calculate hex := nibble + 48 (ascii '0').
// To turn a nibble in the range [ 10 .. 15 ] into hex, we calculate hex := nibble - 10 + 65 (ascii 'A').
// => hex := nibble + 55.
// The difference in the starting ASCII offset is (55 - 48) = 7, depending on whether the nibble is <= 9 or >= 10.
// Since 7 is 0b111, this conveniently matches the YYY or ZZZ value computed during the earlier subtraction.
// The commented out code below is code that directly implements the logic described above.
// uint packedOriginalValues = (((uint)value & 0xF0U) << 4) + ((uint)value & 0x0FU);
// uint difference = 0x8989U - packedOriginalValues;
// uint add7Mask = (difference & 0x7070U) >> 4; // line YYY and ZZZ back up with the packed values
// uint packedResult = packedOriginalValues + add7Mask + 0x3030U /* ascii '0' */;
// The code below is equivalent to the commented out code above but has been tweaked
// to allow codegen to make some extra optimizations.
// The low byte of the packed result contains the hex representation of the incoming byte's low nibble.
// The adjacent byte of the packed result contains the hex representation of the incoming byte's high nibble.
// Finally, write to the output buffer starting with the *highest* index so that codegen can
// elide all but the first bounds check. (This only works if 'startingIndex' is a compile-time constant.)
// The JIT can elide bounds checks if 'startingIndex' is constant and if the caller is
// writing to a span of known length (or the caller has already checked the bounds of the
// furthest access).
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void ToBytesBuffer(byte value, Span<byte> buffer, int startingIndex = 0, Casing casing = Casing.Upper)
{
uint difference = (((uint)value & 0xF0U) << 4) + ((uint)value & 0x0FU) - 0x8989U;
uint packedResult = ((((uint)(-(int)difference) & 0x7070U) >> 4) + difference + 0xB9B9U) | (uint)casing;
buffer[startingIndex + 1] = (byte)packedResult;
buffer[startingIndex] = (byte)(packedResult >> 8);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void ToCharsBuffer(byte value, Span<char> buffer, int startingIndex = 0, Casing casing = Casing.Upper)
{
uint difference = (((uint)value & 0xF0U) << 4) + ((uint)value & 0x0FU) - 0x8989U;
uint packedResult = ((((uint)(-(int)difference) & 0x7070U) >> 4) + difference + 0xB9B9U) | (uint)casing;
buffer[startingIndex + 1] = (char)(packedResult & 0xFF);
buffer[startingIndex] = (char)(packedResult >> 8);
}
#if SYSTEM_PRIVATE_CORELIB
// Converts Vector128<byte> into 2xVector128<byte> ASCII Hex representation
[MethodImpl(MethodImplOptions.AggressiveInlining)]
[CompExactlyDependsOn(typeof(Ssse3))]
[CompExactlyDependsOn(typeof(AdvSimd.Arm64))]
internal static (Vector128<byte>, Vector128<byte>) AsciiToHexVector128(Vector128<byte> src, Vector128<byte> hexMap)
{
Debug.Assert(Ssse3.IsSupported || AdvSimd.Arm64.IsSupported);
// The algorithm is simple: a single srcVec (contains the whole 16b Guid) is converted
// into nibbles and then, via hexMap, converted into a HEX representation via
// Shuffle(nibbles, srcVec). ASCII is then expanded to UTF-16.
Vector128<byte> shiftedSrc = Vector128.ShiftRightLogical(src.AsUInt64(), 4).AsByte();
Vector128<byte> lowNibbles = Vector128.UnpackLow(shiftedSrc, src);
Vector128<byte> highNibbles = Vector128.UnpackHigh(shiftedSrc, src);
return (Vector128.ShuffleUnsafe(hexMap, lowNibbles & Vector128.Create((byte)0xF)),
Vector128.ShuffleUnsafe(hexMap, highNibbles & Vector128.Create((byte)0xF)));
}
[CompExactlyDependsOn(typeof(Ssse3))]
[CompExactlyDependsOn(typeof(AdvSimd.Arm64))]
private static void EncodeToUtf16_Vector128(ReadOnlySpan<byte> bytes, Span<char> chars, Casing casing)
{
Debug.Assert(bytes.Length >= Vector128<int>.Count);
ref byte srcRef = ref MemoryMarshal.GetReference(bytes);
ref ushort destRef = ref Unsafe.As<char, ushort>(ref MemoryMarshal.GetReference(chars));
Vector128<byte> hexMap = casing == Casing.Upper ?
Vector128.Create((byte)'0', (byte)'1', (byte)'2', (byte)'3',
(byte)'4', (byte)'5', (byte)'6', (byte)'7',
(byte)'8', (byte)'9', (byte)'A', (byte)'B',
(byte)'C', (byte)'D', (byte)'E', (byte)'F') :
Vector128.Create((byte)'0', (byte)'1', (byte)'2', (byte)'3',
(byte)'4', (byte)'5', (byte)'6', (byte)'7',
(byte)'8', (byte)'9', (byte)'a', (byte)'b',
(byte)'c', (byte)'d', (byte)'e', (byte)'f');
nuint pos = 0;
nuint lengthSubVector128 = (nuint)bytes.Length - (nuint)Vector128<int>.Count;
do
{
// This implementation processes 4 bytes of input at once, it can be easily modified
// to support 16 bytes at once, but that didn't demonstrate noticeable wins
// for Converter.ToHexString (around 8% faster for large inputs) so
// it focuses on small inputs instead.
uint i32 = Unsafe.ReadUnaligned<uint>(ref Unsafe.Add(ref srcRef, pos));
Vector128<byte> vec = Vector128.CreateScalar(i32).AsByte();
// JIT is expected to eliminate all unused calculations
(Vector128<byte> hexLow, _) = AsciiToHexVector128(vec, hexMap);
(Vector128<ushort> v0, _) = Vector128.Widen(hexLow);
v0.StoreUnsafe(ref destRef, pos * 2);
pos += (nuint)Vector128<int>.Count;
if (pos == (nuint)bytes.Length)
{
return;
}
// Overlap with the current chunk for trailing elements
if (pos > lengthSubVector128)
{
pos = lengthSubVector128;
}
} while (true);
}
#endif
public static void EncodeToUtf16(ReadOnlySpan<byte> bytes, Span<char> chars, Casing casing = Casing.Upper)
{
Debug.Assert(chars.Length >= bytes.Length * 2);
#if SYSTEM_PRIVATE_CORELIB
if ((AdvSimd.Arm64.IsSupported || Ssse3.IsSupported) && bytes.Length >= 4)
{
EncodeToUtf16_Vector128(bytes, chars, casing);
return;
}
#endif
for (int pos = 0; pos < bytes.Length; pos++)
{
ToCharsBuffer(bytes[pos], chars, pos * 2, casing);
}
}
public static unsafe string ToString(ReadOnlySpan<byte> bytes, Casing casing = Casing.Upper)
{
#if NETFRAMEWORK || NETSTANDARD2_0
Span<char> result = bytes.Length > 16 ?
new char[bytes.Length * 2].AsSpan() :
stackalloc char[bytes.Length * 2];
int pos = 0;
foreach (byte b in bytes)
{
ToCharsBuffer(b, result, pos, casing);
pos += 2;
}
return result.ToString();
#else
return string.Create(bytes.Length * 2, (RosPtr: (IntPtr)(&bytes), casing), static (chars, args) =>
EncodeToUtf16(*(ReadOnlySpan<byte>*)args.RosPtr, chars, args.casing));
#endif
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static char ToCharUpper(int value)
{
value &= 0xF;
value += '0';
if (value > '9')
{
value += ('A' - ('9' + 1));
}
return (char)value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static char ToCharLower(int value)
{
value &= 0xF;
value += '0';
if (value > '9')
{
value += ('a' - ('9' + 1));
}
return (char)value;
}
public static bool TryDecodeFromUtf16(ReadOnlySpan<char> chars, Span<byte> bytes, out int charsProcessed)
{
#if SYSTEM_PRIVATE_CORELIB
if (BitConverter.IsLittleEndian && (Ssse3.IsSupported || AdvSimd.Arm64.IsSupported) &&
chars.Length >= Vector128<ushort>.Count * 2)
{
return TryDecodeFromUtf16_Vector128(chars, bytes, out charsProcessed);
}
#endif
return TryDecodeFromUtf16_Scalar(chars, bytes, out charsProcessed);
}
#if SYSTEM_PRIVATE_CORELIB
[CompExactlyDependsOn(typeof(AdvSimd.Arm64))]
[CompExactlyDependsOn(typeof(Ssse3))]
public static bool TryDecodeFromUtf16_Vector128(ReadOnlySpan<char> chars, Span<byte> bytes, out int charsProcessed)
{
Debug.Assert(Ssse3.IsSupported || AdvSimd.Arm64.IsSupported);
Debug.Assert(chars.Length <= bytes.Length * 2);
Debug.Assert(chars.Length % 2 == 0);
Debug.Assert(chars.Length >= Vector128<ushort>.Count * 2);
nuint offset = 0;
nuint lengthSubTwoVector128 = (nuint)chars.Length - ((nuint)Vector128<ushort>.Count * 2);
ref ushort srcRef = ref Unsafe.As<char, ushort>(ref MemoryMarshal.GetReference(chars));
ref byte destRef = ref MemoryMarshal.GetReference(bytes);
do
{
// The algorithm is UTF8 so we'll be loading two UTF-16 vectors to narrow them into a
// single UTF8 ASCII vector - the implementation can be shared with UTF8 paths.
Vector128<ushort> vec1 = Vector128.LoadUnsafe(ref srcRef, offset);
Vector128<ushort> vec2 = Vector128.LoadUnsafe(ref srcRef, offset + (nuint)Vector128<ushort>.Count);
Vector128<byte> vec = Ascii.ExtractAsciiVector(vec1, vec2);
// Based on "Algorithm #3" https://github.com/WojciechMula/toys/blob/master/simd-parse-hex/geoff_algorithm.cpp
// by Geoff Langdale and Wojciech Mula
// Move digits '0'..'9' into range 0xf6..0xff.
Vector128<byte> t1 = vec + Vector128.Create((byte)(0xFF - '9'));
// And then correct the range to 0xf0..0xf9.
// All other bytes become less than 0xf0.
Vector128<byte> t2 = Vector128.SubtractSaturate(t1, Vector128.Create((byte)6));
// Convert into uppercase 'a'..'f' => 'A'..'F' and
// move hex letter 'A'..'F' into range 0..5.
Vector128<byte> t3 = (vec & Vector128.Create((byte)0xDF)) - Vector128.Create((byte)'A');
// And correct the range into 10..15.
// The non-hex letters bytes become greater than 0x0f.
Vector128<byte> t4 = Vector128.AddSaturate(t3, Vector128.Create((byte)10));
// Convert '0'..'9' into nibbles 0..9. Non-digit bytes become
// greater than 0x0f. Finally choose the result: either valid nibble (0..9/10..15)
// or some byte greater than 0x0f.
Vector128<byte> nibbles = Vector128.Min(t2 - Vector128.Create((byte)0xF0), t4);
// Any high bit is a sign that input is not a valid hex data
if (!Utf16Utility.AllCharsInVectorAreAscii(vec1 | vec2) ||
Vector128.AddSaturate(nibbles, Vector128.Create((byte)(127 - 15))).ExtractMostSignificantBits() != 0)
{
// Input is either non-ASCII or invalid hex data
break;
}
Vector128<byte> output;
if (Ssse3.IsSupported)
{
output = Ssse3.MultiplyAddAdjacent(nibbles,
Vector128.Create((short)0x0110).AsSByte()).AsByte();
}
else if (AdvSimd.Arm64.IsSupported)
{
// Workaround for missing MultiplyAddAdjacent on ARM
Vector128<short> even = AdvSimd.Arm64.TransposeEven(nibbles, Vector128<byte>.Zero).AsInt16();
Vector128<short> odd = AdvSimd.Arm64.TransposeOdd(nibbles, Vector128<byte>.Zero).AsInt16();
even = AdvSimd.ShiftLeftLogical(even, 4).AsInt16();
output = AdvSimd.AddSaturate(even, odd).AsByte();
}
else
{
// We explicitly recheck each IsSupported query to ensure that the trimmer can see which paths are live/dead
ThrowHelper.ThrowUnreachableException();
output = default;
}
// Accumulate output in lower INT64 half and take care about endianness
output = Vector128.Shuffle(output, Vector128.Create((byte)0, 2, 4, 6, 8, 10, 12, 14, 0, 0, 0, 0, 0, 0, 0, 0));
// Store 8 bytes in dest by given offset
Unsafe.WriteUnaligned(ref Unsafe.Add(ref destRef, offset / 2), output.AsUInt64().ToScalar());
offset += (nuint)Vector128<ushort>.Count * 2;
if (offset == (nuint)chars.Length)
{
charsProcessed = chars.Length;
return true;
}
// Overlap with the current chunk for trailing elements
if (offset > lengthSubTwoVector128)
{
offset = lengthSubTwoVector128;
}
}
while (true);
// Fall back to the scalar routine in case of invalid input.
bool fallbackResult = TryDecodeFromUtf16_Scalar(chars.Slice((int)offset), bytes.Slice((int)(offset / 2)), out int fallbackProcessed);
charsProcessed = (int)offset + fallbackProcessed;
return fallbackResult;
}
#endif
private static bool TryDecodeFromUtf16_Scalar(ReadOnlySpan<char> chars, Span<byte> bytes, out int charsProcessed)
{
Debug.Assert(chars.Length % 2 == 0, "Un-even number of characters provided");
Debug.Assert(chars.Length / 2 == bytes.Length, "Target buffer not right-sized for provided characters");
int i = 0;
int j = 0;
int byteLo = 0;
int byteHi = 0;
while (j < bytes.Length)
{
byteLo = FromChar(chars[i + 1]);
byteHi = FromChar(chars[i]);
// byteHi hasn't been shifted to the high half yet, so the only way the bitwise or produces this pattern
// is if either byteHi or byteLo was not a hex character.
if ((byteLo | byteHi) == 0xFF)
break;
bytes[j++] = (byte)((byteHi << 4) | byteLo);
i += 2;
}
if (byteLo == 0xFF)
i++;
charsProcessed = i;
return (byteLo | byteHi) != 0xFF;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int FromChar(int c)
{
return c >= CharToHexLookup.Length ? 0xFF : CharToHexLookup[c];
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int FromUpperChar(int c)
{
return c > 71 ? 0xFF : CharToHexLookup[c];
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int FromLowerChar(int c)
{
if ((uint)(c - '0') <= '9' - '0')
return c - '0';
if ((uint)(c - 'a') <= 'f' - 'a')
return c - 'a' + 10;
return 0xFF;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsHexChar(int c)
{
if (IntPtr.Size == 8)
{
// This code path, when used, has no branches and doesn't depend on cache hits,
// so it's faster and does not vary in speed depending on input data distribution.
// We only use this logic on 64-bit systems, as using 64 bit values would otherwise
// be much slower than just using the lookup table anyway (no hardware support).
// The magic constant 18428868213665201664 is a 64 bit value containing 1s at the
// indices corresponding to all the valid hex characters (ie. "0123456789ABCDEFabcdef")
// minus 48 (ie. '0'), and backwards (so from the most significant bit and downwards).
// The offset of 48 for each bit is necessary so that the entire range fits in 64 bits.
// First, we subtract '0' to the input digit (after casting to uint to account for any
// negative inputs). Note that even if this subtraction underflows, this happens before
// the result is zero-extended to ulong, meaning that `i` will always have upper 32 bits
// equal to 0. We then left shift the constant with this offset, and apply a bitmask that
// has the highest bit set (the sign bit) if and only if `c` is in the ['0', '0' + 64) range.
// Then we only need to check whether this final result is less than 0: this will only be
// the case if both `i` was in fact the index of a set bit in the magic constant, and also
// `c` was in the allowed range (this ensures that false positive bit shifts are ignored).
ulong i = (uint)c - '0';
ulong shift = 18428868213665201664UL << (int)i;
ulong mask = i - 64;
return (long)(shift & mask) < 0 ? true : false;
}
return FromChar(c) != 0xFF;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsHexUpperChar(int c)
{
return (uint)(c - '0') <= 9 || (uint)(c - 'A') <= ('F' - 'A');
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static bool IsHexLowerChar(int c)
{
return (uint)(c - '0') <= 9 || (uint)(c - 'a') <= ('f' - 'a');
}
/// <summary>Map from an ASCII char to its hex value, e.g. arr['b'] == 11. 0xFF means it's not a hex digit.</summary>
public static ReadOnlySpan<byte> CharToHexLookup =>
[
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 15
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 31
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 47
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 63
0xFF, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 79
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 95
0xFF, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 111
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 127
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 143
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 159
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 175
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 191
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 207
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 223
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 239
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF // 255
];
}
}