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Abstract. Semi-supervised learning methods utilize abundant unlabeled
data to help to learn a better classifier when the number of labeled in-
stances is very small. A common method is to select and label unlabeled
instances that the current classifier has high classification confidence to
enlarge the labeled training set and then to update the classifier, which
is widely used in two paradigms of semi-supervised learning: self-training
and co-training. However, the original labeled instances are more reliable
than the self-labeled instances that are labeled by the classifier. If unla-
beled instances are assigned wrong labels and then used to update the
classifier, classification accuracy will be jeopardized. In this paper, we
present a new instance selection method based on the original labeled
data (ISBOLD). ISBOLD considers not only the prediction confidence of
the current classifier on unlabeled data but also its performance on the
original labeled data only. In each iteration, ISBOLD uses the change
of accuracy of the newly learned classifier on the original labeled data
as a criterion to decide whether the selected most confident unlabeled
instances will be accepted to the next iteration or not. We conducted
experiments in self-training and co-training scenarios when using Naive
Bayes as the base classifier. Experimental results on 26 UCI datasets
show that, ISBOLD can significantly improve accuracy and AUC of self-
training and co-training.
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1 Introduction

In many real-world machine learning applications, it may be expensive or time-
consuming to obtain a large amount of labeled data. On the other hand, it is
relatively easy to collect lots of unlabeled data. Learning classifiers from a small
number of labeled training instances may not produce good performance. There-
fore, various algorithms have been proposed to exploit and utilize the unlabeled
data to help to learn better classifiers. Semi-supervised learning is one kind of
such algorithms that use both labeled data and unlabeled data.
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Many semi-supervised learning algorithms have been proposed in the past
decades, including self-training, co-training, semi-supervised support vector ma-
chines, graph-based methods, and so on [2,13]. The general idea of self-training
[12] and co-training [1] is to iteratively pick some unlabeled instances according
to a given selection criterion and move them (together with the labels assigned
by the classifier) to the training set to build a new classifier. These selected
instances are called “self-labeled” instances in [5]. The main difference between
self-training and co-training is that, in co-training, the attributes are split into
two separate sub-views and every operation is conducted on the two sub-views,
respectively.

A commonly used instance selection criterion is “confidence selection” which
selects unlabeled instances that are predicted by the current classifier with high
confidence [1,2,6,8,12], that is, the instances with the high class membership
probabilities. Other selection methods have also been proposed by researchers.
Wang et al. presented an adapted Value Difference Metric as the selection metric
in self-training, which does not depend on class membership probabilities [10].
In [5], a method named SETRED is presented that utilizes the information of
the neighbors of each self-labeled instance to identify and remove the mislabeled
examples from the self-labeled data.

Ideally, the selected unlabeled instances (together with the predicted labels)
can finally help to learn a better classifier. In [3], however, it concludes that
unlabeled data may degrade classification performance in some extreme condi-
tions and under common assumptions when the model assumptions are incor-
rect. In our previous work [4], an extensive empirical study was conducted on
some common semi-supervised learning algorithms (including self-training and
co-training) using different base Bayesian classifiers. Results on 26 UCI datasets
show that, the performance of using “confidence selection” is not necessarily su-
perior to that of randomly selecting unlabeled instances. If the current classifier
has poor performance and wrongly assigns labels to some self-labeled instances,
the final performance will be jeopardized due to the accumulation of mislabeled
data. It is a general problem for the methods based on the classifier performance
on the expanded data, including the original labeled data and the self-labeled
data. Since the originally labeled instances are generally more reliable than self-
labeled instances, the performance on the former instances alone is more critical.
Thus, we conjecture that, the classifier should have a good performance on the
original labeled data if it wants to have good prediction performance on fu-
ture data. More precisely, when the accuracy of the classifier evaluated on the
original labeled data decreases, the accuracy on the future testing set generally
degrades as well. Hence, utilizing the accuracy on the original labeled data to
select more reliable unlabeled instances seems crucial to the final performance
of semi-supervised learning.

In this paper, we present an effective instance selection method based on the
original labeled data (ISBOLD) to improve the performance of self-training and
co-training when using Naive Bayes (NB) as the base classifier. ISBOLD con-
siders both the prediction confidence of the current classifier on the self-labeled
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data and the accuracy on the original labeled data only. In each iteration, af-
ter the selection of the most confident unlabeled instances, the accuracy of the
current classifier on the original labeled data is computed and then used to
decide whether to add the selected instances to the training set in the next iter-
ation. Experiments on 26 UCI datasets demonstrate that, ISBOLD significantly
improves the accuracy of self-training and co-training on 6 to 7 datasets and
prevents the performance being degraded on the other datasets, compared to
our experimental results in [4]. Besides, ISBOLD significantly improves AUC on
8 to 9 datasets.

The rest of the paper is organized as follows. Section 2 briefly describes self-
training and co-training algorithms and reviews related research work. A new
instance selection method based on the original labeled data (ISBOLD) is pre-
sented in Section 3. Section 4 shows experimental results on 26 UCI datasets, as
well as detailed performance analysis. Finally, it is concluded in Section 5.

2 Related Work

Semi-supervised learning methods utilize unlabeled data to help to learn better
classifiers when the amount of labeled training data is small. A set L of labeled
training instances and a set U of unlabeled instances are given in semi-supervised
learning scenario. In [13], a good survey of research work on several well-known
semi-supervised learning methods has been given. These algorithms and their
variants are also analyzed and compared in [2]. Self-training and co-training are
two common algorithms among them.

2.1 Self-training and Co-training Algorithms

Self-training works as follows [12]. A classifier is built from L and used to predict
the labels for instances in U . Then m instances in U that the current classifier
has high classification confidence are labeled and moved to enlarge L. The whole
process iterates until stopped.

Co-training works in a similar way except that it is a two-view learning
method [1]. Initially, the attribute set (view) is partitioned into two condition-
ally independent sub-sets (sub-views). A data pool U ′ is created by randomly
choosing some instances from U for each sub-view, respectively. On each sub-
view, a classifier is built from the labeled data and then used to predict labels
for the unlabeled data in its data pool. A certain number of unlabeled instances
that one classifier has high classification confidence are labeled and moved to ex-
pand the labeled data of the other classifier. And the same number of unlabeled
instances will be randomly moved from U to replenish U ′. Then the two clas-
sifiers are rebuilt from their corresponding updated labeled data, respectively.
The process iterates until stopped. In other words, in co-training, it iteratively
and alternately uses one classifier to help to “train” another classifier.

The stopping criterion in self-training and co-training is that, either there is no
unlabeled instance left or the maximum number of iterations has been reached.
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There are two assumptions in co-training to ensure good performance [1]: each
sub-view is sufficient to build a good classifier; and the two sub-views are condi-
tionally independent of each other given the class. The two assumptions may be
violated in real-world applications. In [8], it is stated that, co-training still works
when the attribute set is randomly divided into two separate subsets, although
the performance may not be as good as when the attributes are split sufficiently
and independently.

2.2 Variants of Self-training and Co-training Algorithms

Researchers have presented different variants of self-training and co-training al-
gorithms.

One kind of methods is to use all the unlabeled instances in each iteration
so that no selection criterion is needed. A self-training style method, semi-
supervised EM, is presented in [9]. During each iteration, all the unlabeled
instances are given predicted labels and then used to enlarge the training set
and update the classifier. In [8], co-training is combined with EM to generate
a new algorithm co-EM which in each iteration uses all the unlabeled instances
instead of a number of instances picked from the data pool.

Another kind of methods is to use active learning method to select unlabeled
instances and then ask human experts to label them. Hence, no mislabeled ex-
amples will occur, in principle. In [7], an active learning method is used to select
unlabeled instances for the multi-view semi-supervised Co-EM algorithm. And
labels are assigned to the selected unlabeled instances by experts. However, ac-
tive learning methods are not applicable if we do not have available human
experts.

Some researchers also used different selection techniques to decide which un-
labeled instances should be used in each iteration. In [10], the authors presented
an adapted Value Difference Metric as the selection metric in self-training. In [5],
a data editing method is applied to identify and remove the mislabeled examples
from the self-labeled data.

In our previous work [4], an empirical study on 26 UCI datasets shows that,
in self-training and co-training, using “confidence selection” cannot always out-
perform that of randomly selecting unlabeled instances. If the classification per-
formance of the current classifier is poor, wrong labels may be predicted to most
unlabeled instances and the final performance of semi-supervised learning will
be affected accordingly. Generally speaking, the original labeled instances are
more reliable than the instances with predicted labels by the current classifier.
Hence, the performance on the original labeled data is an important factor to
reflect the final performance of semi-supervised learning.

3 Instance Selection Based on the Original Labeled Data

Motivated by the existing work, in this paper, we present a new method, In-
stance Selection Based on the Original Labeled Data (ISBOLD), to improve the
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performance of self-training and co-training when using NB as the base classi-
fier. The main idea of ISBOLD is to use the accuracy on the original labeled
data only to prevent adding unlabeled instances that will possibly degrade the
performance. How to use ISBOLD in self-training and co-training scenarios is
described in following two subsections, respectively.

3.1 ISBOLD for Self-training

In order to describe our method, some notations are used here. In iteration t,
we use Lt to denote the new labeled training set, Ct to represent the classifier
built on Lt, and Acct as the accuracy of Ct on the original labeled data L0. The
detailed algorithm is shown in Figure 1.

1. Set t, the iteration counter, to 0.
2. Build a classifier Ct on the original labeled data L0.
3. Compute Acct, which is the accuracy of Ct on L0.
4. While the stopping criteria are not satisfied,

(a) Use Ct to predict a label for each instance in U .
(b) Generate Ls

t+1: select m unlabeled instances that Ct has high classification
confidence, and assign a predicted label to each selected instance.
Delete the selected instances from U .

(c) Lt+1 = Lt ∪ Ls
t+1.

(d) Build a classifier Ct+1 on Lt+1.
(e) Compute Acct+1, which is the accuracy of Ct+1 on L0.
(f) If Acct+1 < Acct, then Lt+1 = Lt, and rebuild Ct+1 on Lt+1.
(g) Increase t by 1.

5. Return the final classifier.

Fig. 1. Algorithm of ISBOLD for self-training

The difference between ISBOLD and the common confidence selection method
in self-training is displayed in steps 4(e) and 4(f). In iteration t + 1, after se-
lecting the most confident unlabeled instances and assigning labels to them (for
simplicity, the set of those selected instances is denoted as Ls

t+1), the training set
Lt+1 = Lt ∪ Ls

t+1. Now we build a classifier Ct+1 on Lt+1 and compute Acct+1.
If Acct+1 < Acct, Lt+1 is reset to be equal to Lt, and Ct+1 is updated on Lt+1

accordingly. The whole process iterates until there is no unlabeled instance left
or the maximum number of iterations is reached.

The reason that we remove Ls
t+1 from Lt+1 once the accuracy on L0 decreases

is that, if adding Ls
t+1 to the training set degrades the classifier’s performance

on L0, it is very possible that the performance of the current classifier on the
test set degrades as well. Hence, we use this method to roughly prevent possible
performance degradation. Furthermore, notice that in step 4(b), all the selected
instances are removed from U , which means that each selected instance is either
added to the labeled data or removed from U .
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3.2 ISBOLD for Co-training

A similar selection method is used in co-training. We denote the classifiers on the
two sub-views in iteration t as Ca

t and Cb
t . The algorithm is shown in Figure 2.

1. Set t, the iteration counter, to 0.
2. Randomly partition the attribute set Att into two separate sets Atta and Attb.

Generate La
0 and Lb

0 from L. Generate Ua and Ub from U .
3. Generate data pool U ′

a and U ′
b by randomly choosing u instances from Ua and Ub,

respectively.
4. Use La

0 to train a classifier Ca
t .

5. Use Lb
0 to train a classifier Cb

t .
6. Compute Accat , which is the accuracy of Ca

t on La
0 .

7. Compute Accbt , which is the accuracy of Cb
t on Lb

0.
8. While the stopping criteria are not satisfied,

(a) Use Ca
t to predict a label for each instance in U ′

a. Use Cb
t to predict a label

for each instance in U ′
b.

(b) Generate Las

t+1: select m unlabeled instances that Cb
t has high classification

confidence, together with predicted labels. Delete the selected instances from
U ′

b.
(c) Generate Lbs

t+1: select m unlabeled instances that Ca
t has high classification

confidence, together with predicted labels. Delete the selected instances from
U ′

a.
(d) La

t+1 = La
t ∪ Las

t+1. L
b
t+1 = Lb

t ∪ Lbs

t+1.
(e) Use La

t+1 to train a classifier Ca
t+1.

(f) Compute Accat+1, which is the accuracy of Ca
t+1 on La

0 .
(g) If Accat+1 < Accat , then La

t+1 = La
t , and rebuild Ca

t+1 on La
t+1.

(h) Use Lb
t+1 to train a classifier Cb

t+1.
(i) Compute Accbt+1, which is the accuracy of Cb

t+1 on Lb
0.

(j) If Accbt+1 < Accbt , then Lb
t+1 = Lb

t , and rebuild Cb
t+1 on Lb

t+1.
(k) Randomly move m instances from Ua to replenish U ′

a.
Randomly move m instances from Ub to replenish U ′

b.
(l) Increase t by 1.

Fig. 2. Algorithm of ISBOLD for co-training

The difference between ISBOLD and the common confidence selection method
in co-training is displayed in steps 8(f), 8(g), 8(i) and 8(j). In iteration t + 1,
on sub-view a, after selecting a certain number of unlabeled instances that Cb

t

has high classification confidence, a label is assigned to each selected instance
(for simplicity, the set of those selected instances is denoted as Las

t+1). Then
La

t+1 = La
t ∪ Las

t+1 and Ca
t+1 is built on La

t+1. Now we compute Acca
t+1 that

represents the accuracy of Ca
t+1 on La

0. If Acca
t+1 < Acca

t , La
t+1 = La

t and Ca
t+1

is updated accordingly. The same steps are repeated on sub-view b to generate
Lb

t+1 and Cb
t+1. New unlabeled instances will be replenished from the remaining
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unlabeled data part to the data pool of each sub-view. The whole process iterates
until there is no unlabeled instance left or the maximum number of iterations is
reached.

4 Experimental Results and Analysis

4.1 Experimental Settings

In order to examine the performance of ISBOLD, we conducted experiments on
26 UCI datasets, including 18 binary class datasets and 8 multi-class datasets.
These datasets are downloaded from a package of 37 classification problems,
“datasets-UCI.jar”1. Each dataset is then preprocessed in Weka software [11]
by replacing missing values, discretization and removing any attribute that its
number of attribute values is almost equal to the number of instances in the
dataset [4]. We only use 26 datasets out of the package because the other 11
datasets have extremely skewed class distributions. For example, in the hy-
pothyriod dataset, the frequency of each class value is 3481, 194, 95 and 2 re-
spectively. When randomly sampling the labeled data set in semi-supervised
learning, the classes that have very small values of frequency may not appear in
some generated datasets if we want to keep the same class distributions. Usually
researchers merge the minor classes into a major class or simply delete instances
with minor classes. However, to minimize any possible influence, we ignored
those datasets with extremely skewed class distributions. The 26 datasets are
the same as those used in our previous work [4].

On each dataset, 10 runs of 4-fold stratified cross-validation are conducted.
That is, 25% of the original data will be put aside as the testing set to evaluate
the performance of learning algorithms. The remaining 75% data are divided into
labeled data (L) and unlabeled data (U) according to a pre-defined percentage
of labeled data (lp). The data splitting setting follows those in [1,4,5,6]. In our
experiments, lp is set to be 5%. Therefore, 25% data are kept as the testing set,
5% of the 75% data are randomly sampled as L while the remaining 95% of the
75% data are saved as U . When generating L, we made sure that L and the
original training data had the same class distributions.

Naive Bayes is used in self-training and co-training. The maximum number
of iterations in both is set to 80. The size of data pool in co-training is set to be
50% of the size of U . Accuracy and AUC are used as performance measurements.
In our experiments on co-training, the attributes are randomly split into two
subsets.

4.2 Results Analysis

Performance comparison results of using ISBOLD and using the common “con-
fidence selection” method in self-training and co-training are shown in Table 1
and Table 2. For simplicity, the methods are denoted as ISBOLD and CF

1 They are available from http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Table 1. Accuracy of CF vs ISBOLD in self-training and co-training

(a) self-training

Dataset CF ISBOLD

balance-scale 59.52 66.21
breast-cancer 65.09 65.61
breast-w 96.67 96.34
colic 74.54 75.38
colic.ORIG 55.05 60.57
credit-a 80.68 80.78
credit-g 60.62 66.03 v
diabetes 70.55 70.53
heart-c 81.55 81.15
heart-h 83.06 82.41
heart-statlog 81.37 80.74
hepatitis 79.70 78.34
ionosphere 80.97 79.86
iris 90.31 90.05
kr-vs-kp 67.26 80.07 v
labor 88.26 87.92
letter 40.38 57.39 v
mushroom 91.90 92.57 v
segment 63.49 72.88 v
sick 91.54 94.15
sonar 55.72 57.93
splice 82.05 85.48 v
vehicle 41.79 48.35
vote 87.89 88.53
vowel 18.75 21.78
waveform-5000 77.98 78.87

mean 71.80 74.61

w/t/l 6/20/0

(b) co-training

Dataset CF ISBOLD

balance-scale 59.10 67.17
breast-cancer 70.41 71.00
breast-w 96.85 96.47
colic 76.60 75.76
colic.ORIG 55.19 62.04
credit-a 81.36 79.67
credit-g 63.04 67.72 v
diabetes 67.51 69.58
heart-c 82.77 80.13
heart-h 81.46 78.60
heart-statlog 82.03 80.30
hepatitis 81.04 80.21
ionosphere 81.50 83.08
iris 80.79 78.98
kr-vs-kp 59.22 77.36 v
labor 77.21 78.43
letter 36.67 56.05 v
mushroom 91.74 92.38 v
segment 61.49 71.64 v
sick 93.40 93.56
sonar 55.43 58.08
splice 73.91 82.63 v
vehicle 41.57 47.86
vote 88.21 88.60
vowel 18.83 23.36
waveform-5000 71.61 75.91 v

mean 70.34 73.71

w/t/l 7/19/0

in the tables. In each table, figures on each row are the average accuracy or
AUC over 10-runs of 4-fold cross-validation on the corresponding dataset. Row
“w/t/l” represents that using ISBOLD in the corresponding column wins on w
datasets (marked by ‘v’), ties on t datasets, and loses on l datasets (marked by
‘*’) against using “confidence selection” in self-training or co-training, under a
two-tailed pair-wise t-test with the significant level of 95%. Values in row “mean”
are the average accuracy or AUC over the 26 datasets.

Table 1(a) shows the average accuracy of using ISBOLD and CF in self-
training. The “w/t/l” t-test results show that, ISBOLD significantly improves
classification accuracy on 6 datasets. Values in row “mean” also demonstrate
that ISBOLD improves the average performance. Table 1(b) shows the average
accuracies in co-training. The “w/t/l” t-test results tell that ISBOLD signifi-
cantly improves the performance of co-training on 7 datasets. And the mean
value increases from 70.34 to 73.71.
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Table 2. AUC of CF vs ISBOLD in self-training and co-training

(a) self-training

Dataset CF ISBOLD

balance-scale 61.37 66.68
breast-cancer 63.98 63.48
breast-w 99.07 99.08
colic 79.24 78.43
colic.ORIG 51.62 58.49
credit-a 86.81 86.79
credit-g 56.56 65.24 v
diabetes 78.03 76.36
heart-c 83.97 83.92
heart-h 83.74 83.74
heart-statlog 88.93 88.64
hepatitis 83.02 80.99
ionosphere 86.86 86.68
iris 98.33 98.29
kr-vs-kp 74.65 89.03 v
labor 96.59 96.72
letter 86.09 93.08 v
mushroom 98.04 98.81 v
segment 90.86 95.24 v
sick 91.51 93.96
sonar 58.64 62.21
splice 94.40 96.23 v
vehicle 59.63 66.95 v
vote 96.31 96.52
vowel 57.65 64.49 v
waveform-5000 88.85 90.96 v

mean 80.57 83.12

w/t/l 9/17/0

(b) co-training

Dataset CF ISBOLD

balance-scale 60.44 65.34
breast-cancer 63.51 64.37
breast-w 99.22 99.19
colic 78.99 79.08
colic.ORIG 49.62 55.82
credit-a 88.05 86.35
credit-g 55.33 61.62
diabetes 72.61 74.95
heart-c 84.02 83.80
heart-h 83.77 83.50
heart-statlog 90.03 88.03
hepatitis 78.38 73.19
ionosphere 87.89 88.92
iris 93.21 92.27
kr-vs-kp 66.86 86.39 v
labor 87.76 85.18
letter 82.98 92.57 v
mushroom 97.89 98.75 v
segment 87.93 94.82 v
sick 87.74 93.83
sonar 59.59 62.93
splice 88.65 94.87 v
vehicle 59.56 67.09 v
vote 96.31 96.46
vowel 57.97 66.44 v
waveform-5000 84.22 89.54 v

mean 78.56 81.74

w/t/l 8/18/0

Comparison results on AUC in self-training and co-training are displayed in
Table 2. It can be observed that, using ISBOLD, the AUC of self-training is
significantly improved on 9 datasets. And the mean value increases from 80.57
to 83.12. Similarly, the AUC of co-training is sharply improved on 8 datasets,
and the mean value is improved from 78.56 to 81.74.

4.3 Learning Curves Analysis

Based on our previous work [4], we guess that, the classifier should have a good
prediction performance on the testing set if the accuracy on the original labeled
data does not degrade. To verify our conjecture and to further examine the per-
formance of ISBOLD during each iteration, learning curves of a random running
of two self-training methods on datasets vehicle and kr-vs-kp are displayed in
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Figure 3 and Figure 4, respectively. The data splitting setting is the same as that
in subsection 4.1. Curves in co-training are omitted here due to space limitation.

On each graph, at each iteration t, the accuracy values of classifier Ct on
the original labeled data L0 and the testing set for using ISBOLD or CF in
self-training are displayed, respectively. Curves “ISBOLD-L0” and “ISBOLD-
test” show accuracy values on the original labeled data L0 and on the testing
set, respectively, when using ISBOLD in self-training on the dataset. Curves
“CF-L0” and “CF-test” display accuracy values on L0 and on the testing set,
respectively, when using “confidence selection” in self-training on the dataset.
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Fig. 3. Learning curves on the vehicle dataset
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Fig. 4. Learning curves on the kr-vs-kp dataset

According to our conjecture, when the accuracy on the original labeled data
L0 decreases, the accuracy on the corresponding testing set generally decreases
as well. This is actually observed on the trends of curve “CF-L0” and curve
“CF-test” in Figure 3 and Figure 4. Curve “CF-test” generally goes down when
curve “CF-L0” goes down.
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ISBOLD is presented based on our conjecture that the classifier will have
good prediction performance on the testing set if its accuracy on the original
labeled data does not degrade during each iteration. As shown in Figure 3 and
Figure 4, comparing curves on “confidence selection” method to curves on IS-
BOLD method, ISBOLD can sharply improve the accuracy on the testing set
while improving it on L0. When the accuracy on L0 does not degrade, the final
accuracy on the testing set does not significantly decrease. These observations
confirm that, using the accuracy on the original labeled data to further decide
whether to accept the selected unlabeled instances into the next iteration or not
is an effective way to improve the performance in semi-supervised learning.

5 Conclusions and Future Work

In this paper, we presented a new instance selection method ISBOLD to im-
prove the performance of self-training and co-training when using NB as the
base classifier. During each iteration, after selecting a number of unlabeled in-
stances that the current classifier has high classification confidence, we use the
accuracy of the current classifier on the original labeled data to decide whether
to accept the selected unlabeled instances to the labeled training set in the next
iteration. Experiments on 26 UCI datasets show that ISBOLD can significantly
improve the performance of self-training and co-training on many datasets. The
learning curve analysis gives a vivid demonstration and experimentally proves
the feasibility of our method.

In future work, we will try different base classifiers such as non-naive Bayesian
classifiers and decision trees, and extend the method to more semi-supervised
learning methods. Besides, theoretical analysis will also be done to help to un-
derstand the functionality of the method. Based on these work, we will present
new methods to improve the performance of semi-supervised learning.
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