TP 2: Erreurs d'arrondi, algorithmes simples

Exercice 1. Erreurs d'arrondi: suite logistique

Soit $x_0 \in [0, 1]$ et posons $x_{n+1} = 4x_n(1 - x_n)$ pour $n \ge 0$.

- 1. Étant donnée $x_0 = 0.23$ (de type float), calculer x_{10} puis x_{60} . On écrira un code qui utilise seulement deux variables simples (et pas de listes).
- 2. Définissons à présent la suite suivante : $y_0 = 0.23$, $y_{n+1} = 4y_n 4y_n^2$ pour $n \ge 0$. Notons que formellement c'est la même suite que (x_n) , mais définie avec une expression développée.

Calculer y_{10} puis y_{60} (en utilisant l'expression développée).

Est-ce qu'on obtient les mêmes valeurs que dans la question précédente?

Si non, d'où vient la différence ? Lequel de ces deux résultats vous semble correct ?

On mettra les réponses dans le script (en commentaire).

Exercice 2. Suite instable, suite stable aux erreurs d'arrondis

Soit $a \in \mathbb{R}$, a > 1. Pour tout $n \in \mathbb{N}$, $n \ge 1$, on considère $v_n = \int_0^1 \frac{x^{n-1}}{a+x} dx$.

1. (sur papier) Montrer que pour tout $n \in \mathbb{N}^*$, on a : $\frac{1}{n(a+1)} \le v_n \le \frac{1}{na}$.

Montrer que la suite (v_n) peut être définie par la récurrence :

$$v_1 = \log\left(\frac{1+a}{a}\right), \quad v_n = \frac{1}{n-1} - a v_{n-1}, \text{ pour } n \ge 2.$$
 (1)

Indication: On pourra calculer $v_n + av_{n-1}$.

- 2. Le but est de calculer v_{40} à l'aide de Python en utilisant la relation de récurrence (1). Tester, en particulier, le cas a=3. Le résultat vous paraît-il correct ? Afficher les valeurs v_1, \ldots, v_{40} .
- 3. Une autre stratégie consiste à faire le calcul en partant d'une valeur estimée de v_{60} (par exemple la moyenne des 2 bornes de l'encadrement précédent) et à utiliser la relation de récurrence pour "descendre" jusqu'à obtenir une valeur approchée de v_{40} . Compléter le script de l'exercice (prendre la même valeur de a que précédemment) pour obtenir une valeur approchée de v_{40} avec cette stratégie.

Exercice 3. Écriture binaire

1. Écrire une fonction inverse(L) qui retourne une liste L dans l'ordre inverse (cf. l'aide mémoire).

- 2. Dans la suite de cet exercice, on va manipuler des nombres en base 2. Pour les représenter dans la machine, on pourra utiliser une liste composée de 0 et de 1. Par exemple, le nombre 1101₂ en base 2 correspond naturellement à la liste [1,1,0,1].
 - Écrire une fonction dec(B) qui, étant donné un nombre en base 2 (représenté par une liste B), retourne sa valeur numérique en base 10 (cf. CM). Tester: dec([1,1,0,1]) doit retourner 13.
- 3. A l'aide de la fonction dec, calculer $1101100_2 + 10101010_2$. On affichera le résultat en base 10.
- 4. Écrire une fonction binaire(n) qui, étant donné un entier retourne son écriture en base 2 (sous forme d'une liste de 0 et de 1). Tester : binaire(13) retourne [1,1,0,1].
- 5. Calculer $1101100_2 + 10101010_2$ et afficher le résultat en base 2.
- 6. Afficher l'écriture binaire de la factorielle de 50. Quelle est sa longueur ? *Indication* : Pour utiliser la fonction factorielle (qui n'est pas définie dans numpy), on tape : from math import factorial.

Exercice 4. Suite de Fibonacci

Soit $(u_n)_{n\geq 0}$ la suite définie par $u_0=0,\ u_1=1$ et $u_n=u_{n-1}+u_{n-2}$ pour tout $n\geq 2$.

- 1. Écrire une fonction fibo_liste(n) qui renvoie une liste contenant la suite de Fibonacci de u_0 jusqu'a u_n (inclus). Afficher les 20 premières valeurs de la suite.
- 2. Écrire une fonction fibo(n) qui renvoie u_n en utilisant seulement des variables simples (pas de listes). Afficher les 20 premières valeurs de la suite.
- 3. En prenant en compte les 100000 premiers termes de la suite de Fibonacci, trouver la somme S des termes qui sont des nombres paires. Afficher S modulo 10000007.

Attention! Pour ne pas saturer la mémoire, dans cette question on s'interdit d'utiliser des listes (et donc la fonction fibo_liste)! On pourra en revanche s'inspirer du code de la fonction fibo (sans appeler la fonction elle-même).

Exercice 5. Algorithme d'Euclide

L'algorithme d'Euclide permet de déterminer le plus grand commun diviseur de deux nombres naturels (si besoin, consulter Wikipédia)

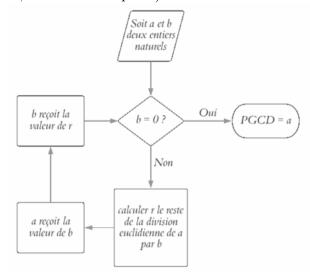


Image:Wikipédia

- 1. En utilisant une boucle while, écrire une fonction pgcd(a, b) qui, en effectuant l'algorithme d'Euclide, renvoie le plus grand commun diviseur de deux entiers positifs a et b.
- 2. Tester : pgcd(495,275) vaut 55; pensez à d'autres exemples faciles à vérifier à la main.

Exercice 6. Suite de Farey

- 1. Écrire une fonction pgcd(a, b) qui effectue l'algorithme d'Euclide et renvoie le plus grand commun diviseur de a et b. Calculer pgcd(123456, 234567).
- 2. La fonction φ d'Euler est la fonction qui à tout entier n non nul associe le nombre d'entiers strictement positifs inférieurs ou égaux à n et premiers avec n, i.e. le nombre des entiers k tels que $0 < k \le n$ et pgcd(k, n) = 1. Par exemple, $\varphi(10) = 4$.

Écrire une fonction phi (n) qui calcule la fonction φ d'Euler.

À l'aide de cette fonction, calculer le nombre de fractions irréductibles strictement positives et strictement inférieures à 1, ayant pour le dénominateur q = 30.

3. La suite de Farey d'ordre n est la suite des fractions irréductibles entre 0 et 1 (inclus) dont le dénominateur est inférieur ou égal à n et en ordre croissant. Chaque suite de Farey commence avec la valeur 0, décrite par la fraction $\frac{0}{1}$, et finit avec la valeur 1, décrite par la fraction $\frac{1}{1}$.

Par exemple, la suite de Farey d'ordre 4 est $\frac{0}{1}$, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{1}{1}$.

Écrire une fonction farey(n) qui renvoie la longueur de la suite de Farey d'ordre n. Par exemple farey(4) retournera 7.

Indication: Pour connaître la longueur de la suite de Farey d'ordre n, il suffit de compter les fractions irréductibles (entre 0 et 1) dont le dénominateur est inférieur ou égal à n.

4. Calculer et afficher la liste des valeurs farey(n), pour n variant de 10 à 30 (on affichera un terme par ligne).

3