
HPE Security Fortify Audit Workbench

Developer Workbook
com.drajer.ecrnowais-ecr-now_Trunk_2020-12-07 -
Trunk

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

2

Table of Contents
Executive Summary
Project Description
Issue Breakdown by Fortify Categories
Results Outline

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

3

Executive Summary
This workbook is intended to provide all necessary details and information for a developer to understand and
remediate the different issues discovered during the com.drajer.ecrnowais-ecr-now_Trunk_2020-12-07 -
Trunk project audit. The information contained in this workbook is targeted at project managers and
developers.

This section provides an overview of the issues uncovered during analysis.

Project Name: com.drajer.ecrnowais-ecr-
now_Trunk_2020-12-07

Project Version: Trunk

SCA: Results Present

WebInspect: Results Not Present

WebInspect Agent: Results Not Present

Other: Results Not Present

Issues by Priority

Impact

1
High

4
Critical

15
Low

0
Medium

Likelihood

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

4

Project Description
This section provides an overview of the HPE Security Fortify scan engines used for this project, as well as
the project meta-information.

SCA

Date of Last Analysis: Dec 6, 2020, 9:12 AM Engine Version: 17.20.0183

Host Name: USMLVV3CTO0086 Certification: VALID

Number of Files: 131 Lines of Code: 15,004

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

5

Issue Breakdown by Fortify Categories
The following table depicts a summary of all issues grouped vertically by Fortify Category. For each category,
the total number of issues is shown by Fortify Priority Order, including information about the number of
audited issues.

Category Fortify Priority (audited/total) Total
IssuesCritical High Medium Low

Header Manipulation 0 0 / 1 0 0 / 1 0 / 2
Insecure Transport: Mail Transmission 0 / 2 0 0 0 0 / 2
Path Manipulation 0 / 2 0 0 0 0 / 2
Poor Error Handling: Overly Broad Throws 0 0 0 0 / 6 0 / 6
Redundant Null Check 0 0 0 0 / 8 0 / 8

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

6

Results Outline

Header Manipulation (2 issues)

Abstract
Including unvalidated data in an HTTP response header can enable cache-poisoning, cross-site scripting,
cross-user defacement, page hijacking, cookie manipulation or open redirect.

Explanation
Header Manipulation vulnerabilities occur when: 1. Data enters a web application through an untrusted
source, most frequently an HTTP request. 2. The data is included in an HTTP response header sent to a
web user without being validated. As with many software security vulnerabilities, Header Manipulation is a
means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes
malicious data to a vulnerable application, and the application includes the data in an HTTP response
header. One of the most common Header Manipulation attacks is HTTP Response Splitting. To mount a
successful HTTP Response Splitting exploit, the application must allow input that contains CR (carriage
return, also given by %0d or \r) and LF (line feed, also given by %0a or \n)characters into the header.
These characters not only give attackers control of the remaining headers and body of the response the
application intends to send, but also allows them to create additional responses entirely under their control.
Many of today's modern application servers will prevent the injection of malicious characters into HTTP
headers. For example, recent versions of Apache Tomcat will throw an IllegalArgumentException if
you attempt to set a header with prohibited characters. If your application server prevents setting headers
with new line characters, then your application is not vulnerable to HTTP Response Splitting. However,
solely filtering for new line characters can leave an application vulnerable to Cookie Manipulation or Open
Redirects, so care must still be taken when setting HTTP headers with user input. Example: The following
code segment reads the name of the author of a weblog entry, author, from an HTTP request and sets it
in a cookie header of an HTTP response.
String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
 cookie.setMaxAge(cookieExpiration);
 response.addCookie(cookie);
Assuming a string consisting of standard alpha-numeric characters, such as "Jane Smith", is submitted in
the request the HTTP response including this cookie might take the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...
However, because the value of the cookie is formed of unvalidated user input the response will only
maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF characters. If
an attacker submits a malicious string, such as "Wiley Hacker\r\nHTTP/1.1 200 OK\r\n...", then the HTTP
response would be split into two responses of the following form:
HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker

HTTP/1.1 200 OK
...
Clearly, the second response is completely controlled by the attacker and can be constructed with any
header and body content desired. The ability of attacker to construct arbitrary HTTP responses permits a
variety of resulting attacks, including: cross-user defacement, web and browser cache poisoning, cross-site
scripting and page hijacking. Cross-User Defacement: An attacker will be able to make a single request to

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

7

a vulnerable server that will cause the server to create two responses, the second of which may be
misinterpreted as a response to a different request, possibly one made by another user sharing the same
TCP connection with the server. This can be accomplished by convincing the user to submit the malicious
request themselves, or remotely in situations where the attacker and the user share a common TCP
connection to the server, such as a shared proxy server. In the best case, an attacker may leverage this
ability to convince users that the application has been hacked, causing users to lose confidence in the
security of the application. In the worst case, an attacker may provide specially crafted content designed to
mimic the behavior of the application but redirect private information, such as account numbers and
passwords, back to the attacker. Cache Poisoning: The impact of a maliciously constructed response can
be magnified if it is cached either by a web cache used by multiple users or even the browser cache of a
single user. If a response is cached in a shared web cache, such as those commonly found in proxy
servers, then all users of that cache will continue receive the malicious content until the cache entry is
purged. Similarly, if the response is cached in the browser of an individual user, then that user will continue
to receive the malicious content until the cache entry is purged, although only the user of the local browser
instance will be affected. Cross-Site Scripting: Once attackers have control of the responses sent by an
application, they have a choice of a variety of malicious content to provide users. Cross-site scripting is
common form of attack where malicious JavaScript or other code included in a response is executed in the
user's browser. The variety of attacks based on XSS is almost limitless, but they commonly include
transmitting private data like cookies or other session information to the attacker, redirecting the victim to
web content controlled by the attacker, or performing other malicious operations on the user's machine
under the guise of the vulnerable site. The most common and dangerous attack vector against users of a
vulnerable application uses JavaScript to transmit session and authentication information back to the
attacker who can then take complete control of the victim's account. Page Hijacking: In addition to using a
vulnerable application to send malicious content to a user, the same root vulnerability can also be
leveraged to redirect sensitive content generated by the server and intended for the user to the attacker
instead. By submitting a request that results in two responses, the intended response from the server and
the response generated by the attacker, an attacker may cause an intermediate node, such as a shared
proxy server, to misdirect a response generated by the server for the user to the attacker. Because the
request made by the attacker generates two responses, the first is interpreted as a response to the
attacker's request, while the second remains in limbo. When the user makes a legitimate request through
the same TCP connection, the attacker's request is already waiting and is interpreted as a response to the
victim's request. The attacker then sends a second request to the server, to which the proxy server
responds with the server generated request intended for the victim, thereby compromising any sensitive
information in the headers or body of the response intended for the victim. Cookie Manipulation: When
combined with attacks like Cross-Site Request Forgery, attackers may change, add to, or even overwrite a
legitimate user's cookies. Open Redirect: Allowing unvalidated input to control the URL used in a redirect
can aid phishing attacks.

Recommendation
The solution to Header Manipulation is to ensure that input validation occurs in the correct places and
checks for the correct properties. Since Header Manipulation vulnerabilities occur when an application
includes malicious data in its output, one logical approach is to validate data immediately before it leaves
the application. However, because web applications often have complex and intricate code for generating
responses dynamically, this method is prone to errors of omission (missing validation). An effective way to
mitigate this risk is to also perform input validation for Header Manipulation. Web applications must validate
their input to prevent other vulnerabilities, such as SQL injection, so augmenting an application's existing
input validation mechanism to include checks for Header Manipulation is generally relatively easy. Despite
its value, input validation for Header Manipulation does not take the place of rigorous output validation. An
application may accept input through a shared data store or other trusted source, and that data store may
accept input from a source that does not perform adequate input validation. Therefore, the application
cannot implicitly rely on the safety of this or any other data. This means the best way to prevent Header
Manipulation vulnerabilities is to validate everything that enters the application or leaves the application
destined for the user. The most secure approach to validation for Header Manipulation is to create a
whitelist of safe characters that are allowed to appear in HTTP response headers and accept input
composed exclusively of characters in the approved set. For example, a valid name might only include

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

8

alpha-numeric characters or an account number might only include digits 0-9. A more flexible, but less
secure approach is known as blacklisting, which selectively rejects or escapes potentially dangerous
characters before using the input. In order to form such a list, you first need to understand the set of
characters that hold special meaning in HTTP response headers. Although the CR and LF characters are
at the heart of an HTTP response splitting attack, other characters, such as ':' (colon) and '=' (equal), have
special meaning in response headers as well. After you identify the correct points in an application to
perform validation for Header Manipulation attacks and what special characters the validation should
consider, the next challenge is to identify how your validation handles special characters. The application
should reject any input destined to be included in HTTP response headers that contains special characters,
particularly CR and LF, as invalid. Many application servers attempt to limit an application's exposure to
HTTP response splitting vulnerabilities by providing implementations for the functions responsible for
setting HTTP headers and cookies that perform validation for the characters essential to an HTTP
response splitting attack. Do not rely on the server running your application to make it secure. When an
application is developed there are no guarantees about what application servers it will run on during its
lifetime. As standards and known exploits evolve, there are no guarantees that application servers will also
stay in sync.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Header Manipulation 2 0 0 2
Total 2 0 0 2

Header Manipulation High
Package: com.drajer.sof.launch
sof/launch/LaunchController.java, line 303 (Header Manipulation) High
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: javax.servlet.ServletRequest.getScheme()
From: com.drajer.sof.launch.LaunchController.launchApp
File: sof/launch/LaunchController.java:253

250 logger.info("Received Launch Parameter::::: {}", launch);
251 logger.info("Received FHIR Server Base URL::::: {}", iss);

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

9

Header Manipulation High
Package: com.drajer.sof.launch
sof/launch/LaunchController.java, line 303 (Header Manipulation) High
252 String uri =
253 request.getScheme()
254 + "://"
255 + request.getServerName()
256 + ("http".equals(request.getScheme()) && request.getServerPort() == 80

Sink Details

Sink: javax.servlet.http.HttpServletResponse.setHeader()
Enclosing Method: launchApp()
File: sof/launch/LaunchController.java:303
Taint Flags: WEB

300 authDetailsService.saveOrUpdate(launchDetails);
301 // response.sendRedirect(constructedAuthUrl);
302 response.setStatus(HttpServletResponse.SC_TEMPORARY_REDIRECT);
303 response.setHeader("Location", constructedAuthUrl);
304 }
305 } catch (Exception e) {
306 logger.error("Error in getting Authorization with Server");

Header Manipulation Low
Package: com.drajer.sof.launch
sof/launch/LaunchController.java, line 303 (Header Manipulation) Low
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: javax.servlet.ServletRequest.getServerPort()
From: com.drajer.sof.launch.LaunchController.launchApp
File: sof/launch/LaunchController.java:259

256 + ("http".equals(request.getScheme()) && request.getServerPort() == 80
257 || "https".equals(request.getScheme()) && request.getServerPort() == 443
258 ? ""
259 : ":" + request.getServerPort())
260 + request.getContextPath();
261 Integer state = random.nextInt();
262 logger.info("Random State Value==========> {}", state);

Sink Details

Sink: javax.servlet.http.HttpServletResponse.setHeader()

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

10

Header Manipulation Low
Package: com.drajer.sof.launch
sof/launch/LaunchController.java, line 303 (Header Manipulation) Low

Enclosing Method: launchApp()
File: sof/launch/LaunchController.java:303
Taint Flags: NUMBER, WEB

300 authDetailsService.saveOrUpdate(launchDetails);
301 // response.sendRedirect(constructedAuthUrl);
302 response.setStatus(HttpServletResponse.SC_TEMPORARY_REDIRECT);
303 response.setHeader("Location", constructedAuthUrl);
304 }
305 } catch (Exception e) {
306 logger.error("Error in getting Authorization with Server");

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

11

Insecure Transport: Mail Transmission (2 issues)

Abstract
Establishing an unencrypted connection to a mail server allows an attacker to carry out a man-in-the-
middle attack and read all the mail transmissions.

Explanation
Sensitive data sent over the wire unencrypted is subject to be read/modified by any attacker that can
intercept the network traffic.

Recommendation
Most of the modern mail service providers offer encrypted alternatives on different ports that use SSL/TLS
to encrypt all the data being sent over the wire or to upgrade an existing unencrypted connection to SSL/
TLS. Always use these alternatives when possible.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Insecure Transport: Mail Transmission 2 0 0 2
Total 2 0 0 2

Insecure Transport: Mail Transmission Critical
Package: com.drajer.routing.impl
routing/impl/DirectResponseReceiver.java, line 67 (Insecure Transport: Mail
Transmission) Critical

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Sink Details

Sink: FunctionCall: getStore
Enclosing Method: readMail()
File: routing/impl/DirectResponseReceiver.java:67

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

12

Insecure Transport: Mail Transmission Critical
Package: com.drajer.routing.impl
routing/impl/DirectResponseReceiver.java, line 67 (Insecure Transport: Mail
Transmission) Critical

Taint Flags:

64 Properties props = new Properties();
65 Session session = Session.getInstance(props, null);
66
67 Store store = session.getStore("imap");
68 int port = 143; // Integer.parseInt(prop.getProperty("port"));
69 logger.info("Connecting to IMAP Inbox");
70 store.connect(details.getDirectHost(), port, details.getDirectUser(),
details.getDirectPwd());

routing/impl/DirectResponseReceiver.java, line 134 (Insecure Transport: Mail
Transmission) Critical

Issue Details

Kingdom: Security Features
Scan Engine: SCA (Structural)

Sink Details

Sink: FunctionCall: getStore
Enclosing Method: deleteMail()
File: routing/impl/DirectResponseReceiver.java:134
Taint Flags:

131 Properties props = new Properties();
132 Session session = Session.getInstance(props, null);
133
134 Store store = session.getStore("imap");
135 int port = 143; // Integer.parseInt(prop.getProperty("port"));
136 store.connect(host, username, password);
137

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

13

Path Manipulation (2 issues)

Abstract
Allowing user input to control paths used in file system operations could enable an attacker to access or
modify otherwise protected system resources.

Explanation
Path manipulation errors occur when the following two conditions are met: 1. An attacker is able to specify
a path used in an operation on the file system. 2. By specifying the resource, the attacker gains a capability
that would not otherwise be permitted. For example, the program may give the attacker the ability to
overwrite the specified file or run with a configuration controlled by the attacker. Example 1: The following
code uses input from an HTTP request to create a file name. The programmer has not considered the
possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml",
which causes the application to delete one of its own configuration files.
String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);
...
rFile.delete();
Example 2: The following code uses input from a configuration file to determine which file to open and
echo back to the user. If the program runs with adequate privileges and malicious users can change the
configuration file, they can use the program to read any file on the system that ends with the extension
.txt.
fis = new FileInputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr);
out.println(arr);
Some think that in the mobile world, classic vulnerabilities, such as path manipulation, do not make sense
-- why would the user attack themself? However, keep in mind that the essence of mobile platforms is
applications that are downloaded from various sources and run alongside each other on the same device.
The likelihood of running a piece of malware next to a banking application is high, which necessitates
expanding the attack surface of mobile applications to include inter-process communication. Example 3:
The following code adapts Example 1 to the Android platform.
...
 String rName = this.getIntent().getExtras().getString("reportName");
 File rFile = getBaseContext().getFileStreamPath(rName);
...
 rFile.delete();
...

Recommendation
The best way to prevent path manipulation is with a level of indirection: create a list of legitimate resource
names that a user is allowed to specify, and only allow the user to select from the list. With this approach
the input provided by the user is never used directly to specify the resource name. In some situations this
approach is impractical because the set of legitimate resource names is too large or too hard to keep track
of. Programmers often resort to blacklisting in these situations. Blacklisting selectively rejects or escapes
potentially dangerous characters before using the input. However, any such list of unsafe characters is
likely to be incomplete and will almost certainly become out of date. A better approach is to create a
whitelist of characters that are allowed to appear in the resource name and accept input composed
exclusively of characters in the approved set.

Issue Summary

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

14

Engine Breakdown

SCA WebInspect SecurityScope Total
Path Manipulation 2 0 0 2
Total 2 0 0 2

Path Manipulation Critical
Package: com.drajer.routing.impl
routing/impl/DirectResponseReceiver.java, line 107 (Path Manipulation) Critical
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: javax.mail.Store.getFolder()
From: com.drajer.routing.impl.DirectResponseReceiver.readMail
File: routing/impl/DirectResponseReceiver.java:72

69 logger.info("Connecting to IMAP Inbox");
70 store.connect(details.getDirectHost(), port, details.getDirectUser(),
details.getDirectPwd());
71
72 Folder inbox = store.getFolder("Inbox");
73 inbox.open(Folder.READ_WRITE);
74
75 Flags seen = new Flags(Flags.Flag.SEEN);

Sink Details

Sink: java.io.File.File()
Enclosing Method: readMail()
File: routing/impl/DirectResponseReceiver.java:107
Taint Flags: NETWORK, XSS

104
105 try (InputStream stream = bodyPart.getInputStream()) {
106 byte[] targetArray = IOUtils.toByteArray(stream);
107 FileUtils.writeByteArrayToFile(new File(filename), targetArray);

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

15

Path Manipulation Critical
Package: com.drajer.routing.impl
routing/impl/DirectResponseReceiver.java, line 107 (Path Manipulation) Critical
108 }

109 File file1 = new File(filename);
110 FileBody fileBody = new FileBody(file1);

routing/impl/DirectResponseReceiver.java, line 109 (Path Manipulation) Critical
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Source: javax.mail.Store.getFolder()
From: com.drajer.routing.impl.DirectResponseReceiver.readMail
File: routing/impl/DirectResponseReceiver.java:72

69 logger.info("Connecting to IMAP Inbox");
70 store.connect(details.getDirectHost(), port, details.getDirectUser(),
details.getDirectPwd());
71
72 Folder inbox = store.getFolder("Inbox");
73 inbox.open(Folder.READ_WRITE);
74
75 Flags seen = new Flags(Flags.Flag.SEEN);

Sink Details

Sink: java.io.File.File()
Enclosing Method: readMail()
File: routing/impl/DirectResponseReceiver.java:109
Taint Flags: NETWORK, XSS

106 byte[] targetArray = IOUtils.toByteArray(stream);
107 FileUtils.writeByteArrayToFile(new File(filename), targetArray);
108 }
109 File file1 = new File(filename);
110 FileBody fileBody = new FileBody(file1);
111
112 logger.info(

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

16

Poor Error Handling: Overly Broad Throws (6 issues)

Abstract
The method throws a generic exception making it harder for callers to do a good job of error handling and
recovery.

Explanation
Declaring a method to throw Exception or Throwable makes it difficult for callers to do good error
handling and error recovery. Java's exception mechanism is set up to make it easy for callers to anticipate
what can go wrong and write code to handle each specific exceptional circumstance. Declaring that a
method throws a generic form of exception defeats this system. Example: The following method throws
three types of exceptions.
public void doExchange()
 throws IOException, InvocationTargetException,
 SQLException {
 ...
}

While it might seem tidier to write
public void doExchange()
 throws Exception {
 ...
}
doing so hampers the caller's ability to understand and handle the exceptions that occur. Further, if a later
revision of doExchange() introduces a new type of exception that should be treated differently than
previous exceptions, there is no easy way to enforce this requirement.

Recommendation
Do not declare methods to throw Exception or Throwable. If the exceptions thrown by a method are not
recoverable or should not generally be caught by the caller, consider throwing unchecked exceptions rather
than checked exceptions. This can be accomplished by implementing exception classes that extend
RuntimeException or Error instead of Exception, or add a try/catch wrapper in your method to
convert checked exceptions to unchecked exceptions.

Issue Summary

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

17

Engine Breakdown

SCA WebInspect SecurityScope Total
Poor Error Handling: Overly Broad Throws 6 0 0 6
Total 6 0 0 6

Poor Error Handling: Overly Broad Throws Low
Package: com.drajer.ecrapp.config
ecrapp/config/WebSecurityConfig.java, line 24 (Poor Error Handling: Overly
Broad Throws) Low

Issue Details

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink Details

Sink: Function: configure
Enclosing Method: configure()
File: ecrapp/config/WebSecurityConfig.java:24
Taint Flags:

21 private String tokenFilterClassName;
22
23 @Override
24 public void configure(WebSecurity web) throws Exception {
25 web.ignoring().antMatchers("/meta/**");
26 }
27

ecrapp/config/WebSecurityConfig.java, line 29 (Poor Error Handling: Overly
Broad Throws) Low

Issue Details

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink Details

Sink: Function: configure
Enclosing Method: configure()
File: ecrapp/config/WebSecurityConfig.java:29
Taint Flags:

26 }
27
28 @Override
29 protected void configure(HttpSecurity http) throws Exception {
30 logger.info("***");
31 logger.info("Security Configuration" + tokenFilterClassName);
32 logger.info("***");

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

18

Poor Error Handling: Overly Broad Throws Low
Package: com.drajer.routing.impl
routing/impl/DirectEicrSender.java, line 72 (Poor Error Handling: Overly Broad
Throws) Low

Issue Details

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink Details

Sink: Function: sendMail
Enclosing Method: sendMail()
File: routing/impl/DirectEicrSender.java:72
Taint Flags:

69 }
70 }
71
72 public void sendMail(
73 String host,
74 String username,
75 String password,

routing/impl/DirectResponseReceiver.java, line 129 (Poor Error Handling: Overly
Broad Throws) Low

Issue Details

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink Details

Sink: Function: deleteMail
Enclosing Method: deleteMail()
File: routing/impl/DirectResponseReceiver.java:129
Taint Flags:

126 }
127 }
128
129 public void deleteMail(String host, String username, String password) throws Exception {
130
131 Properties props = new Properties();
132 Session session = Session.getInstance(props, null);

Package: com.drajer.sof.launch
sof/launch/LaunchController.java, line 243 (Poor Error Handling: Overly Broad
Throws) Low

Issue Details

Kingdom: Errors

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

19

Poor Error Handling: Overly Broad Throws Low
Package: com.drajer.sof.launch
sof/launch/LaunchController.java, line 243 (Poor Error Handling: Overly Broad
Throws) Low

Scan Engine: SCA (Structural)

Sink Details

Sink: Function: launchApp
Enclosing Method: launchApp()
File: sof/launch/LaunchController.java:243
Taint Flags:

240
241 @CrossOrigin
242 @RequestMapping(value = "/api/launch")
243 public void launchApp(
244 @RequestParam String launch,
245 @RequestParam String iss,
246 HttpServletRequest request,

sof/launch/LaunchController.java, line 315 (Poor Error Handling: Overly Broad
Throws) Low

Issue Details

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink Details

Sink: Function: redirectEndPoint
Enclosing Method: redirectEndPoint()
File: sof/launch/LaunchController.java:315
Taint Flags:

312
313 @CrossOrigin
314 @RequestMapping(value = "/api/redirect")
315 public void redirectEndPoint(
316 @RequestParam String code,
317 @RequestParam String state,
318 HttpServletRequest request,

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

20

Redundant Null Check (8 issues)

Abstract
The program can potentially dereference a null pointer, thereby causing a null pointer exception.

Explanation
Null pointer exceptions usually occur when one or more of the programmer's assumptions is violated. A
check-after-dereference error occurs when a program dereferences an object that can be null before
checking if the object is null. Most null pointer issues result in general software reliability problems, but if
attackers can intentionally trigger a null pointer dereference, they can use the resulting exception to bypass
security logic or to cause the application to reveal debugging information that will be valuable in planning
subsequent attacks. Example: In the following code, the programmer assumes that the variable foo is not
null and confirms this assumption by dereferencing the object. However, the programmer later contradicts
the assumption by checking foo against null. If foo can be null when it is checked in the if statement
then it can also be null when it is dereferenced and might cause a null pointer exception. Either the
dereference is unsafe or the subsequent check is unnecessary.
foo.setBar(val);
...
if (foo != null) {
 ...
}

Recommendation
Implement careful checks before dereferencing objects that might be null. When possible, abstract null
checks into wrappers around code that manipulates resources to ensure that they are applied in all cases
and to minimize the places where mistakes can occur.

Issue Summary

Engine Breakdown

SCA WebInspect SecurityScope Total
Redundant Null Check 8 0 0 8
Total 8 0 0 8

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

21

Redundant Null Check Low
Package: com.drajer.sof.service
sof/service/LoadingQueryDstu2Bundle.java, line 255 (Redundant Null Check) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink Details

Sink: Dereferenced : medication
Enclosing Method: createDSTU2Bundle()
File: sof/service/LoadingQueryDstu2Bundle.java:255
Taint Flags:

252 Medication medication =
253 dstu2ResourcesData.getMedicationData(
254 context, client, launchDetails, dstu2FhirData, medReference);
255 Entry medicationEntry = new Entry().setResource(medication);
256 bundle.addEntry(medicationEntry);
257 if (medication != null) {
258 List<Medication> medicationList = new ArrayList<Medication>();

sof/service/TriggerQueryDstu2Bundle.java, line 221 (Redundant Null Check) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink Details

Sink: Dereferenced : medication
Enclosing Method: createDSTU2Bundle()
File: sof/service/TriggerQueryDstu2Bundle.java:221
Taint Flags:

218 Medication medication =
219 dstu2ResourcesData.getMedicationData(
220 context, client, launchDetails, dstu2FhirData, medReference);
221 Entry medicationEntry = new Entry().setResource(medication);
222 bundle.addEntry(medicationEntry);
223 if (medication != null) {
224 List<Medication> medicationList = new ArrayList<Medication>();

sof/service/LoadingQueryDstu2Bundle.java, line 255 (Redundant Null Check) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink Details

Sink: Dereferenced : medication

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

22

Redundant Null Check Low
Package: com.drajer.sof.service
sof/service/LoadingQueryDstu2Bundle.java, line 255 (Redundant Null Check) Low

Enclosing Method: createDSTU2Bundle()
File: sof/service/LoadingQueryDstu2Bundle.java:255
Taint Flags:

252 Medication medication =
253 dstu2ResourcesData.getMedicationData(
254 context, client, launchDetails, dstu2FhirData, medReference);
255 Entry medicationEntry = new Entry().setResource(medication);
256 bundle.addEntry(medicationEntry);
257 if (medication != null) {
258 List<Medication> medicationList = new ArrayList<Medication>();

sof/service/TriggerQueryDstu2Bundle.java, line 221 (Redundant Null Check) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink Details

Sink: Dereferenced : medication
Enclosing Method: createDSTU2Bundle()
File: sof/service/TriggerQueryDstu2Bundle.java:221
Taint Flags:

218 Medication medication =
219 dstu2ResourcesData.getMedicationData(
220 context, client, launchDetails, dstu2FhirData, medReference);
221 Entry medicationEntry = new Entry().setResource(medication);
222 bundle.addEntry(medicationEntry);
223 if (medication != null) {
224 List<Medication> medicationList = new ArrayList<Medication>();

Package: com.drajer.sof.utils
sof/utils/R4ResourcesData.java, line 948 (Redundant Null Check) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink Details

Sink: Dereferenced : medication
Enclosing Method: getCommonResources()
File: sof/utils/R4ResourcesData.java:948
Taint Flags:

945 Medication medication =
946 getMedicationData(context, client, launchDetails, r4FhirData, medReference);

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

23

Redundant Null Check Low
Package: com.drajer.sof.utils
sof/utils/R4ResourcesData.java, line 948 (Redundant Null Check) Low
947 BundleEntryComponent medicationEntry =

948 new BundleEntryComponent().setResource(medication);
949 bundle.addEntry(medicationEntry);
950 if (medication != null) {
951 List<Medication> medicationList = new ArrayList<>();

sof/utils/R4ResourcesData.java, line 992 (Redundant Null Check) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink Details

Sink: Dereferenced : medication
Enclosing Method: getCommonResources()
File: sof/utils/R4ResourcesData.java:992
Taint Flags:

989 Medication medication =
990 getMedicationData(context, client, launchDetails, r4FhirData, medReference);
991 BundleEntryComponent medicationEntry =
992 new BundleEntryComponent().setResource(medication);
993 bundle.addEntry(medicationEntry);
994 if (medication != null) {
995 List<Medication> medicationList = new ArrayList<Medication>();

sof/utils/R4ResourcesData.java, line 948 (Redundant Null Check) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink Details

Sink: Dereferenced : medication
Enclosing Method: getCommonResources()
File: sof/utils/R4ResourcesData.java:948
Taint Flags:

945 Medication medication =
946 getMedicationData(context, client, launchDetails, r4FhirData, medReference);
947 BundleEntryComponent medicationEntry =
948 new BundleEntryComponent().setResource(medication);
949 bundle.addEntry(medicationEntry);
950 if (medication != null) {
951 List<Medication> medicationList = new ArrayList<>();

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

24

Redundant Null Check Low
Package: com.drajer.sof.utils
sof/utils/R4ResourcesData.java, line 992 (Redundant Null Check) Low
Issue Details

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink Details

Sink: Dereferenced : medication
Enclosing Method: getCommonResources()
File: sof/utils/R4ResourcesData.java:992
Taint Flags:

989 Medication medication =
990 getMedicationData(context, client, launchDetails, r4FhirData, medReference);
991 BundleEntryComponent medicationEntry =
992 new BundleEntryComponent().setResource(medication);
993 bundle.addEntry(medicationEntry);
994 if (medication != null) {
995 List<Medication> medicationList = new ArrayList<Medication>();

Dec 7, 2020, 8:47 PM
© Copyright 2017 Hewlett Packard Enterprise Development LP

25

	Title Page
	Table of Contents
	Executive Summary
	Executive Summary

	Project Description
	Issue Breakdown by Fortify Categories
	Results Outline
	Results Outline
	Header Manipulation
	Header Manipulation (2 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Header Manipulation - High
	Header Manipulation - Low

	Insecure Transport: Mail Transmission
	Insecure Transport: Mail Transmission (2 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Insecure Transport: Mail Transmission - Critical

	Path Manipulation
	Path Manipulation (2 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Path Manipulation - Critical

	Poor Error Handling: Overly Broad Throws
	Poor Error Handling: Overly Broad Throws (6 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Poor Error Handling: Overly Broad Throws - Low

	Redundant Null Check
	Redundant Null Check (8 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Redundant Null Check - Low

