—

Hewlett Packard
Enterprise

HPE Security Fortify Audit Workbench

Developer Workbook

ecrnow

.EQRTIFY”

Table of Contents

Executive Summary
Project Description

Issue Breakdown by Fortify Categories
Results Outline

About HPE Security Enterprise Security Products

FDRT'FY Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Executive Summary

This workbook is intended to provide all necessary details and information for a developer to understand and
remediate the different issues discovered during the ecrnow project audit. The information contained in this
workbook is targeted at project managers and developers.

This section provides an overview of the issues uncovered during analysis.

Project Name: ecrnow Issues by Priority
Project Version:
SCA: Results Present
Weblnspect: Results Not Present

Impact
Weblnspect Agent: Results Not Present 24 o
Other: Results Not Present Lo Medium

»
>

Likelihood

Top Ten Critical Categories

50% (2)

- Path Manipulation
|:| Weak Encryption: Insecure Mode of Oper...

\50% (2)

o Dec 10, 2020, 9:34 AM
FORTIFY _ _
| "4 © Copyright 2017 Hewlett Packard Enterprise Development LP

Project Description

This section provides an overview of the HPE Security Fortify scan engines used for this project, as well as
the project meta-information.

SCA

Date of Last Analysis: Dec 10, 2020, 9:21 AM Engine Version: 17.20.0183

Host Name: W1970528 Certification: VALID

Number of Files: 134 Lines of Code: 15,653
FDRTIFY Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Issue Breakdown by Fortify Categories

The following table depicts a summary of all issues grouped vertically by Fortify Category. For each category,
the total number of issues is shown by Fortify Priority Order, including information about the number of
audited issues.

(0£:1{-To [o]3% Fortify Priority (audited/total) Total
Medium Low [LEEllE

Missing Check against Null 0 0 0 0/1 0/1
Path Manipulation 0/2 0 0 0 0/2
Poor Error Handling: Overly Broad Catch 0 0 0 0/54 0/54
Poor Error Handling: Overly Broad Throws 0 0 0 0/6 0/6
Redundant Null Check 0 0 0 0/8 0/8
System Information Leak 0 0 0 0/2 0/2
System Information Leak: Internal 0 0 0 0/2 0/2
Weak Cryptographic Hash 0 0 0 0/1 0/1
Weak Encryption: Insecure Mode of Operation 0/2 0 0 0 0/2

FDRTIFY® Dec 10, 2020, 9:34 AM 5
= © Copyright 2017 Hewlett Packard Enterprise Development LP

Results Outline

Missing Check against Null (1 issue)

Abstract

The program can dereference a null pointer because it does not check the return value of a function that
might return null.

Explanation

Just about every serious attack on a software system begins with the violation of a programmer's
assumptions. After the attack, the programmer's assumptions seem flimsy and poorly founded, but before
an attack many programmers would defend their assumptions well past the end of their lunch break. Two
dubious assumptions that are easy to spot in code are "this function call can never fail" and "it doesn't
matter if this function call fails". When a programmer ignores the return value from a function, they implicitly
state that they are operating under one of these assumptions. Example 1: The following code does not
check to see if the string returned by get Par anet er () is nul | before calling the member function
conpar eTo(), potentially causing a null dereference.
String itenName = request. get Paraneter (| TEM _NAME) ;

if (itemNanme.conpareTo(l MPORTANT_ITEM) {

}

Example 2:. The following code shows a system property that is set to nul | and later dereferenced by a
programmer who mistakenly assumes it will always be defined.
System cl ear Property("os. nane");

String os = System get Property("os. nanme");
i f (os.equal sl gnoreCase("W ndows 95"))

System out. println("Not supported");
The traditional defense of this coding error is: "I know the requested value will always exist because.... If it
does not exist, the program cannot perform the desired behavior so it doesn't matter whether | handle the
error or simply allow the program to die dereferencing a null value." But attackers are skilled at finding
unexpected paths through programs, particularly when exceptions are involved.

Recommendation

If a function can return an error code or any other evidence of its success or failure, always check for the
error condition, even if there is no obvious way for it to occur. In addition to preventing security errors,
many initially mysterious bugs have eventually led back to a failed method call with an unchecked return
value. Create an easy to use and standard way for dealing with failure in your application. If error handling
is straightforward, programmers will be less inclined to omit it. One approach to standardized error handling
is to write wrappers around commonly-used functions that check and handle error conditions without
additional programmer intervention. When wrappers are implemented and adopted, the use of non-
wrapped equivalents can be prohibited and enforced by using custom rules. Example 3: The following
code implements a wrapper around get Par anet er () that checks the return value of get Par anet er ()
against nul | and uses a default value if the requested parameter is not defined.

String saf eGet Paraneter (HttpRequest request, String name)

String val ue = request. get Paranet er (nane) ;
if (value == null) {
return get Def aul t Val ue(nane)

return val ue;

FORTIFY

Issue Summary

Analysis

Gov Reviewed NAI -
Exploitable |-
Suspicious |-

Bad Practice |-
Reliability Issue |-
Not an Issue |-
<None>-I-

0 1 2
Issues

@ critical |-High |EMedium |ELOW

Engine Breakdown

SCA Weblnspect SecurityScope Total
Missing Check against Null 1 0 0 1
Total 1 0 0 1

Missing Check against Null

Package: com.drajer.cda.utils

Kingdom: APl Abuse
Scan Engine: SCA (Control Flow)

Sink: getClassLoader() : Class.getClassl oader may return NULL
Enclosing Method: ()
File: cda/utils/CdaGeneratorConstants,java:853

Taint Flags:
850 static {
851 try (InputStream input =
852 CdaGeneratorConstants.class
853 .getClassLoader ()
854 .getResourceAsStream("oid-uri-mapping-r4.properties")) {
855 Properties prop = new Properties();
856 prop.load(input);
EJRTIFY” | Dec 10, 2020, 9:34 AM 7
© Copyright 2017 Hewlett Packard Enterprise Development LP

Path Manipulation (2 issues)

Abstract

Allowing user input to control paths used in file system operations could enable an attacker to access or
modify otherwise protected system resources.

Explanation

Path manipulation errors occur when the following two conditions are met: 1. An attacker is able to specify
a path used in an operation on the file system. 2. By specifying the resource, the attacker gains a capability
that would not otherwise be permitted. For example, the program may give the attacker the ability to
overwrite the specified file or run with a configuration controlled by the attacker. Example 1: The following
code uses input from an HTTP request to create a file name. The programmer has not considered the
possibility that an attacker could provide a file name suchas". ./../tontat/conf/server.xm ",
which causes the application to delete one of its own configuration files.

String rNane = request. get Paraneter("reportNanme");

File rFile = new File("/usr/local/apfr/reports/"™ + rName);

rFile.delete();

Example 2: The following code uses input from a configuration file to determine which file to open and
echo back to the user. If the program runs with adequate privileges and malicious users can change the
configuration file, they can use the program to read any file on the system that ends with the extension
txt.

fis = new FilelnputStrean(cfg. getProperty("sub")+".txt");

amt = fis.read(arr);

out.println(arr);

Some think that in the mobile world, classic vulnerabilities, such as path manipulation, do not make sense
-- why would the user attack themself? However, keep in mind that the essence of mobile platforms is
applications that are downloaded from various sources and run alongside each other on the same device.
The likelihood of running a piece of malware next to a banking application is high, which necessitates
expanding the attack surface of mobile applications to include inter-process communication. Example 3:
The following code adapts Example 1 to the Android platform.

String rNane = this.getlntent().getExtras().getString("reportNane");
File rFile = getBaseContext().getFileStreanPat h(r Nane) ;

rFile.delete();

Recommendation

The best way to prevent path manipulation is with a level of indirection: create a list of legitimate resource
names that a user is allowed to specify, and only allow the user to select from the list. With this approach
the input provided by the user is never used directly to specify the resource name. In some situations this
approach is impractical because the set of legitimate resource names is too large or too hard to keep track
of. Programmers often resort to blacklisting in these situations. Blacklisting selectively rejects or escapes
potentially dangerous characters before using the input. However, any such list of unsafe characters is
likely to be incomplete and will almost certainly become out of date. A better approach is to create a
whitelist of characters that are allowed to appear in the resource name and accept input composed
exclusively of characters in the approved set.

Issue Summary

FDRTIFY‘” Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Gov Reviewed NAI
Exploitable
Suspicious

Bad Practice
Reliability Issue
Not an Issue
<None>

Analysis

Issues

@ citical | @Prigh | EFIMediom | = FLow

Engine Breakdown

SCA Weblinspect SecurityScope Total
Path Manipulation 2 0 0 2
Total 2 0 0 2

Path Manipulation
Package: com.drajer.routing.impl

routing/impl/DirectResponseReceiver.java, line 110 (Path Manipulation)
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Sour ce: javax.mail.Store.getFolder()
From: com.drajer.routing.impl.DirectResponseReceiver.readMail
File: routing/impl/DirectResponseReceiver.java: 75

72 logger.info("Connecting to IMAP Inbox");

73 store.connect (details.getDirectHost (), port, details.getDirectUser(),
details.getDirectPwd()) ;

74

75 Folder inbox = store.getFolder (INBOX) ;
76 inbox.open(Folder.READ WRITE);

77

78 Flags seen = new Flags (Flags.Flag.SEEN);

Sink Details

Sink: javaio.File.File()

Enclosing Method: readMail()

File: routing/impl/DirectResponseReceiver.java: 110
Taint Flags: NETWORK, XSS

108 try (InputStream stream = bodyPart.getInputStream()) {
109 Dbyte[] targetArray = IOUtils.toByteArray (stream) ;
110 FileUtils.writeByteArrayToFile (new File (filename), targetArray);

FDRTIFYO Dec 10, 2020, 9:34 AM 9
==

© Copyright 2017 Hewlett Packard Enterprise Development LP

Path Manipulation

Package: com.drajer.routing.impl

routing/impl/DirectResponseReceiver.java, line 110 (Path Manipulation)

111 }
112 File filel = new File(filename);
113 FileBody fileBody = new FileBody (filel);

routing/impl/DirectResponseReceiver.java, line 112 (Path Manipulation)
Issue Details

Kingdom: Input Validation and Representation
Scan Engine: SCA (Data Flow)

Source Details

Sour ce: javax.mail.Store.getFolder()
From: com.drger.routing.impl.DirectResponseReceiver.readMail
File: routing/impl/DirectResponseReceiver.java: 75

72 logger.info ("Connecting to IMAP Inbox");

73 store.connect (details.getDirectHost (), port, details.getDirectUser(),
details.getDirectPwd()) ;

74

75 Folder inbox = store.getFolder (INBOX) ;
76 inbox.open(Folder.READ WRITE) ;

77

78 Flags seen = new Flags (Flags.Flag.SEEN) ;

Sink Details

Sink: javaio.File.File)
Enclosing M ethod: readMail()
File: routing/impl/DirectResponseReceiver.java:112
Taint Flags: NETWORK, XSS
109 Dbyte[] targetArray = IOUtils.toByteArray (stream);
110 FileUtils.writeByteArrayToFile(new File(filename), targetArray);
111}
112 File filel = new File(filename) ;
113 FileBody fileBody = new FileBody (filel);

115 1logger.info(

FDRTIFYO Dec 10, 2020, 9:34 AM 10
==

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch (54 issues)

Abstract

The catch block handles a broad swath of exceptions, potentially trapping dissimilar issues or problems
that should not be dealt with at this point in the program.

Explanation

Multiple catch blocks can get repetitive, but "condensing" catch blocks by catching a high-level class such
as Except i on can obscure exceptions that deserve special treatment or that should not be caught at this
point in the program. Catching an overly broad exception essentially defeats the purpose of Java's typed
exceptions, and can become particularly dangerous if the program grows and begins to throw new types of
exceptions. The new exception types will not receive any attention. Example: The following code excerpt
handles three types of exceptions in an identical fashion.

try {
doExchange() ;

catch (1 Oexception e) {
| ogger. error("doExchange failed", e);

catch (I nvocati onTar get Exception e) {
| ogger. error("doExchange fail ed", e);

catch (SQ.Exception e) {
| ogger. error("doExchange fail ed", e);

At first blush, it may seem preferable to deal with these exceptions in a single catch block, as follows:

try {
doExchange() ;

catch (Exception e) {
| ogger.error("doExchange failed", e);

However, if doExchange() is modified to throw a new type of exception that should be handled in some
different kind of way, the broad catch block will prevent the compiler from pointing out the situation. Further,
the new catch block will now also handle exceptions derived from Runt i neExcept i on such as

Cl assCast Excepti on, and Nul | Poi nt er Except i on, which is not the programmer's intent.

Recommendation

Do not catch broad exception classes such as Except i on, Thr owabl e, Error, or Runt i neExcepti on
except at the very top level of the program or thread.

Issue Summary

FDRTIFY‘” Dec 10, 2020, 9:34 AM 11

© Copyright 2017 Hewlett Packard Enterprise Development LP

Gov Reviewed NAI -|-
Exploitable |
Suspicious -

Bad Practice |-
Reliability Issue|
Not an Issue -
<None> -

Analysis

T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
Issues

@ citical | @Prigh | EFIMediom | = FLow

Engine Breakdown

SCA Weblinspect SecurityScope Total
Poor Error Handling: Overly Broad Catch 54 0 0 54
Total 54 0 0 54

Poor Error Handling: Overly Broad Catch

Package: com.drajer.cda.utils

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: validateEicrToSchematron()
File: cda/utils/CdaVaidatorUtil.java: 106

Taint Flags:

103 1logger.info("Found Valid Schematron which can be applied EICR ");

104 output =

105 aResSCH.applySchematronValidationToSVRL (new StreamSource (new StringReader (ecrData)));
106 } catch (Exception e) {

107 1logger.error ("Unable to read/write execution state: " + e.getMessage());

108 }

Package: com.drajer.ecrapp.security

Kingdom: Errors
Scan Engine: SCA (Structural)

-
N

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.ecrapp.security

Sink: CatchBlock
Enclosing Method: decrypt()
File: ecrapp/security/ AESEncryption.java:58
Taint Flags:
55 Cipher cipher = Cipher.getInstance ("AES/ECB/PKCS5PADDING") ;
56 cipher.init (Cipher.DECRYPT MODE, secretKey);
57 return new String(cipher.doFinal (Base64.getDecoder () .decode (strToDecrypt)));
58 } catch (Exception e) {
59 System.out.println("Error while decrypting: " + e.toString()):;
60 }
61 return null;

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: encrypt()

File: ecrapp/security/AESEncryption.java:46
Taint Flags:

43 Cipher cipher = Cipher.getInstance ("AES/ECB/PKCS5Padding") ;
44 cipher.init (Cipher.ENCRYPT MODE, secretKey):;

45 return Base64.getEncoder () .encodeToString (cipher.doFinal (strToEncrypt.getBytes ("UTF-8"))) ;
46 } catch (Exception e) {

47 System.out.println ("Error while encrypting: " + e.toString()):;

48 }

49 return null;

Package: com.drajer.ecrapp.service

Kingdom: Errors
Scan Engine; SCA (Structural)

Sink: CatchBlock
Enclosing M ethod: readErsdBundleFromFile()
File: ecrapp/service/PlanDefinitionProcessor.java: 382

-
w

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

379
380
381
382
383
384
385

452
453
454
455
456
457
458

Package: com.drajer.ecrapp.service

Package: com.drajer.ecrapp.util

Taint Flags:

bundle = jsonParser.parseResource (Bundle.class, in);
logger.info ("Completed Reading ERSD File");

} catch (Exception e) {

logger.error ("Exception Reading ERSD File", e);

}

return bundle;

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: readBundleFromFile()
File: ecrapp/util/ApplicationUtils,java:455
Taint Flags:

bundle = jsonParser.parseResource (Bundle.class, in);
logger.info ("Completed Reading File");

} catch (Exception e) {

logger.error ("Exception Reading File", e);

}

return bundle;

Package: com.drajer.routing

Kingdom: Errors
Scan Engine: SCA (Structural)

EﬂRTlFY“ Dec 10, 2020, 9:34 AM 1

Sink: CatchBlock

Enclosing Method: submitBundle()
File: routing/FhirEicrSender.java:52
Taint Flags:

N

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch _

Package: com.drajer.routing

logger.info ("Saving response to file:::::{}", fileName) ;

50 ApplicationUtils.saveDataToFile (response.getBody (), fileName) ;

51

52 } catch (Exception e) {

53 logger.error ("Error in Submitting Bundle to FHIR Endpoint: " + fhirServerURL) ;
54 }

55 return bundleResponse;

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock
Enclosing M ethod: sendEicrXmlDocument()
File: routing/RestApiSender.java: 73

Taint Flags:
70 logger.info("Received response: {}", bundleResponse.toString());
71}
72
73 } catch (Exception e) {
74

75 if (ub != null) {
76 logger.error ("Error in Sending Eicr XML to Endpoint: {}", ub.toString());

Package: com.drajer.routing.impl

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock
Enclosing Method: readMail()
File: routing/impl/DirectResponseReceiver.java: 126
Taint Flags:
123
124 deleteMail (details.getDirectHost (), details.getDirectUser (), details.getDirectPwd());
125
126 } catch (Exception e) {

EﬂRTlFY“ Dec 10, 2020, 9:34 AM 15

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch _

Package: com.drajer.routing.impl

127
128 logger.error ("Error while reading mail", e);
129 }

Package: com.drajer.sof.launch

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing M ethod: launchApp()

File: sof/launch/LaunchController.java:323
Taint Flags:

320 // response.setStatus (HttpServletResponse.SC TEMPORARY REDIRECT) ;
321 // response.setHeader ("Location", constructedAuthUrl) ;

322 }

323 } catch (Exception e) {

324 logger.error ("Error in getting Authorization with Server");

325 }

326 } else {

Package: com.drajer.sof.service

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundl&()

File: sof/service/TriggerQueryDstu2Bundle.java:66
Taint Flags:

63 Entry patientEntry = new Entry();

64 patientEntry.setResource (patient);

65 Dbundle.addEntry (patientEntry) ;

66 } catch (Exception e) {

67 logger.error ("Error in getting Patient Data");

-
[e>)

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.service

68 }
69 // Step 1l: Get Encounters for Patient based on encId. (Create a method to get

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundle()

File: sof/service/TriggerQueryDstu2Bundle.java:133
Taint Flags:

130 }

131 Entry encounterEntry = new Entry().setResource (encounter) ;
132 Dbundle.addEntry(encounterEntry) ;

133 } catch (Exception e) {

134 logger.error ("Error in getting Encounter Data");

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundl&()

File: sof/service/TriggerQueryDstu2Bundle,java: 156
Taint Flags:

153 Entry conditionsEntry = new Entry () .setResource (condition) ;
154 Dbundle.addEntry(conditionsEntry);

155 }

156 } catch (Exception e) {

157 logger.error ("Error in getting Condition Data");

158 }
159
o Dec 10, 2020, 9:34 AM 17
IFEIRTIFY , e ,
© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.service

Kingdom: Errors
Scan Engine; SCA (Structural)

Sink: CatchBlock

Enclosing M ethod: createDSTU2Bundl&()

File: sof/service/TriggerQueryDstu2Bundlejava:178
Taint Flags:

175 Entry observationsEntry = new Entry () .setResource (observation) ;
176 Dbundle.addEntry(observationsEntry);

177 }

178 } catch (Exception e) {

179 logger.error ("Error in getting Observation Data");
180 }

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundle()

File: sof/service/TriggerQueryDstu2Bundlejava:234
Taint Flags:

231 Entry medAdministrationEntry = new Entry() .setResource (medAdministration);
232 Dbundle.addEntry(medAdministrationEntry) ;

233 }

234 } catch (Exception e) {

235 logger.error ("Error in getting the MedicationAdministration Data");
236 }

Kingdom: Errors
Scan Engine: SCA (Structural)

-
©

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.service

Sink: CatchBlock

Enclosing Method: createDSTU2Bundle()

File: sof/service/TriggerQueryDstu2Bundle.java: 258
Taint Flags:

255 Entry diagnosticOrderEntry = new Entry () .setResource (diagnosticOrder) ;
256 Dbundle.addEntry(diagnosticOrderEntry);

257 }

258 } catch (Exception e) {

259 logger.error ("Error in getting the DiagnosticOrder Data");

260 }

261

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundl&()

File: sof/service/TriggerQueryDstu2Bundle.java:272
Taint Flags:

269 Entry diagnosticReportEntry = new Entry() .setResource (diagnosticReport) ;
270 Dbundle.addEntry(diagnosticReportEntry);

271 }

272 } catch (Exception e) {

273 logger.error ("Error in getting the DiagnosticReport Data");
274 }
275

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock
Enclosing Method: getData()
File: sof/service/lLoadingQueryServicejava:35

-
©

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.service

Taint Flags:
32 Bundle bundle = new Bundle();
33 try {

34 bundle = generateDSTU2Bundle.createDSTU2Bundle (launchDetails, dstu2FhirData, start, end);
35 } catch (Exception e) {

36 logger.error ("Error in Generating the DSTU2 Bundle");
37 }
38 dstu2FhirData.setData (bundle) ;

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: getData()

File: sof/service/loadingQueryServicejava:46
Taint Flags:

43 org.hl7.fhir.r4.model.Bundle bundle = new org.hl7.fhir.r4.model.Bundle () ;

44 try {

45 Dbundle = generateR4Bundle.createR4Bundle (launchDetails, r4FhirData, start, end);
46 } catch (Exception e) {

47 logger.error ("Error in Generating the R4 Bundle");
48 }
49 r4fFhirData.setData (bundle) ;

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock
Enclosing Method: getData()
File: sof/service/TriggerQueryService.java:35

Taint Flags:
32 Bundle bundle = new Bundle();
33 try {
o Dec 10, 2020, 9:34 AM 20
IFEIRTIFY . ° .
© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.service

34 bundle = generateDstu2Bundles.createDSTU2Bundle (launchDetails, dstu2FhirData, start, end);
35 } catch (Exception e) {

36 logger.error ("Error in Generating the DSTU2 Bundle");

37 }

38 dstu2FhirData.setData (bundle) ;

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: getData()

File: sof/service/TriggerQueryService.java:49
Taint Flags:

46 org.hl7.fhir.r4.model.Bundle bundle = new org.hl7.fhir.r4.model.Bundle();

47 try {

48 bundle = generateR4Bundles.createR4Bundle (launchDetails, r4FhirData, start, end);
49 } catch (Exception e) {

50 logger.error ("Error in Generating the R4 Bundle");
51 }
52 r4FhirData.setData (bundle);

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createR4Bundle()

File: sof/service/LoadingQueryR4Bundle.java:65
Taint Flags:

62 new BundleEntryComponent () .setResource (observation);

63 Dbundle.addEntry (observationsEntry) ;

64 }

65 } catch (Exception e) {

66 logger.error ("Error in getting Pregnancy Observation Data - {}, ", e, e);
67 }

N
=

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.service

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createR4Bundle()

File: sof/service/lLoadingQueryR4Bundle.java:84
Taint Flags:

81 new BundleEntryComponent () .setResource (observation) ;
82 bundle.addEntry(observationsEntry) ;

83 }

84 } catch (Exception e) {

85 logger.error ("Error in getting Travel Observation Data - {}, ", e, e);
86 }

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createR4Bundle()

File: sof/service/LoadingQueryR4Bundlejava: 103
Taint Flags:

100 new BundleEntryComponent () .setResource (observation);
101 Dbundle.addEntry (observationsEntry) ;

102 }

103 } catch (Exception e) {

104 logger.error ("Error in getting Social History Observation (Occupation) Data");
105 }

N
N

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch _

Package: com.drajer.sof.service

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createR4Bundle()

File: sof/service/LoadingQueryR4Bundlejava: 121
Taint Flags:

118 BundleEntryComponent conditionEntry = new BundleEntryComponent () .setResource (condition);
119 bundle.addEntry(conditionEntry) ;

120 }

121 } catch (Exception e) {

122 logger.error ("Error in getting Pregnancy Conditions");

123 }

124

Kingdom: Errors
Scan Engine; SCA (Structural)

Sink: CatchBlock
Enclosing Method: createR4Bundle()
File: sof/service/LoadingQueryR4Bundle.java: 139

Taint Flags:
136 new BundleEntryComponent () .setResource (medStatement) ;
137 Dbundle.addEntry (medStatementEntry) ;
138 }
139 } catch (Exception e) {
140 logger.error ("Error in getting the MedicationStatement Data - {}, ", e, e);
141 }
142

Kingdom: Errors
Scan Engine: SCA (Structural)

N
w

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.service

Sink: CatchBlock

Enclosing Method: createR4Bundle()

File: sof/service/LoadingQueryR4Bundle.java: 162
Taint Flags:

159 new BundleEntryComponent () .setResource (immunization) ;

160 bundle.addEntry (immunizationEntry) ;

161 }

162 } catch (Exception e) {

163 logger.error ("Error in getting the Immunization Data - {}, ", e, e);
164 }

165

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createR4Bundle()

File: sof/service/LoadingQueryR4Bundlejava: 185
Taint Flags:

182 new BundleEntryComponent () .setResource (diagnosticReport) ;
183 Dbundle.addEntry(diagnosticReportEntry) ;

184 }

185 } catch (Exception e) {

186 logger.error ("Error in getting the DiagnosticReport Data - {}, ", e, e);
187 }
188

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock
Enclosing Method: createDSTU2Bundl&()
File: sof/service/loadingQueryDstu2Bundle.java:67

N
N

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.service

Taint Flags:

64 Entry patientEntry = new Entry();

65 patientEntry.setResource (patient);

66 Dbundle.addEntry(patientEntry);

67 } catch (Exception e) {

68 logger.error ("Error in getting Patient Data");
69 }

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundl&()

File: sof/service/loadingQueryDstu2Bundle.java:135
Taint Flags:

132 }

133 Entry encounterEntry = new Entry () .setResource (encounter) ;
134 Dbundle.addEntry(encounterEntry);

135 } catch (Exception e) {

136 logger.error ("Error in getting Encounter Data");

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundle()
File: sof/service/loadingQueryDstu2Bundle.java: 158
Taint Flags:

155 Entry conditionsEntry = new Entry () .setResource (condition) ;
156 Dbundle.addEntry(conditionsEntry);

N
[

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.service

157 }
158 } catch (Exception e) {

159 logger.error ("Error in getting Condition Data");

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundle()
File: sof/service/loadingQueryDstu2Bundle.java: 180
Taint Flags:

177 Entry observationsEntry = new Entry().setResource (observation) ;
178 Dbundle.addEntry (observationsEntry) ;

179 }

180 } catch (Exception e) {

181 1logger.error ("Error in getting Observation Data");

182 }

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundl&()
File: sof/service/LoadingQueryDstu2Bundle.java: 196
Taint Flags:

193 Entry observationsEntry = new Entry () .setResource (observation) ;
194 Dbundle.addEntry(observationsEntry);

195 }

196 } catch (Exception e) {

197 logger.error ("Error in getting Pregnancy Observation Data");

198 }
o Dec 10, 2020, 9:34 AM 26
IFEIRTIFY . ° .
© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.service

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock
Enclosing Method: createDSTU2Bundle()

File: sof/service/loadingQueryDstu2Bundle.java:212
Taint Flags:

209 Entry observationsEntry = new Entry() .setResource (observation) ;
210 Dbundle.addEntry (observationsEntry) ;
211 }

212 } catch (Exception e) {

213 logger.error ("Error in getting Travel Observation Data");

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock
Enclosing Method: createDSTU2Bundl&()

File: sof/service/LoadingQueryDstu2Bundle.java: 268
Taint Flags:

265 Entry medAdministrationEntry = new Entry() .setResource (medAdministration);
266 bundle.addEntry(medAdministrationEntry) ;
267 }

268 } catch (Exception e) {

269 logger.error ("Error in getting the MedicationAdministration Data");

270 }
271
EJRTIFY” Dec 10, 2020, 9:34 AM 27

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch _

Package: com.drajer.sof.service

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundl&()

File: sof/service/LoadingQueryDstu2Bundle.java: 283
Taint Flags:

280 Dbundle.addEntry(medStatementEntry);

281 }

282 dstu2FhirData.setMedications (medStatementsList);

283 } catch (Exception e) {

284 logger.error ("Error in getting the MedicationStatement Data");
285 }

286

Kingdom: Errors
Scan Engine; SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundl&()

File: sof/service/LoadingQueryDstu2Bundle.java: 307
Taint Flags:

304 Entry diagnosticOrderEntry = new Entry () .setResource (diagnosticOrder) ;
305 Dbundle.addEntry(diagnosticOrderEntry) ;

306 }

307 } catch (Exception e) {

308 logger.error ("Error in getting the DiagnosticOrder Data");

309 }

310

Kingdom: Errors
Scan Engine: SCA (Structural)

N
[e3)

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.service

Sink: CatchBlock

Enclosing Method: createDSTU2Bundle()

File: sof/service/LoadingQueryDstu2Bundle.java: 327
Taint Flags:

324 Entry immunizationEntry = new Entry () .setResource (immunization) ;
325 Dbundle.addEntry (immunizationEntry) ;

326 }

327 } catch (Exception e) {

328 logger.error ("Error in getting the Immunization Data");
329 }
330

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: createDSTU2Bundl&()

File: sof/service/LoadingQueryDstu2Bundle.java: 347
Taint Flags:

344 Entry diagnosticReportEntry = new Entry() .setResource (diagnosticReport) ;
345 Dbundle.addEntry(diagnosticReportEntry) ;

346 }

347 } catch (Exception e) {

348 logger.error ("Error in getting the DiagnosticReport Data");

349 }

350

Package: com.drajer.sof.utils

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

N
©

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.utils

128

Enclosing M ethod: updateA ccessToken()
File: sof/utils/RefreshTokenScheduler.java: 126
Taint Flags:

existingAuthDetails.setLastUpdated (new Date()) ;

authDetailsService.saveOrUpdate (existingAuthDetails) ;

logger.info ("Successfully updated AccessToken value in database");

} catch (Exception e) {

logger.error ("Exrror in Updating the AccessToken value into database: " + e.getMessage()):

}

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing M ethod: getAccessToken()
File: sof/utils/Authorization.java:95
Taint Flags:

logger.info ("Received AccessToken for Client: {}", tokenDetails.getClientId());

logger.info ("Received AccessToken: {}", tokenResponse);

} catch (Exception e) {

logger.error (

"Error in Getting the AccessToken for the client: " + tokenDetails.getClientId()):;
}

Kingdom: Errors
Scan Engine: SCA (Structural)

107
108

[Fo

Sink: CatchBlock

Enclosing Method: getAccessToken()

File: sof/utils/RefreshTokenScheduler.java:110
Taint Flags:

logger.info ("Received AccessToken: {}", tokenResponse) ;
updateAccessToken (authDetails, tokenResponse);

w
o

RTIEY: Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.utils

109

110 } catch (Exception e) {

111 logger.error ("Error in Getting the AccessToken for the client: " +
authDetails.getClientId());

112 }

113 return tokenResponse;

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock
Enclosing Method: submitResource()
File: sof/utils/FhirContextInitializer.java:69

Taint Flags:
66 MethodOutcome outcome = new MethodOutcome () ;
67 try {
68 outcome = genericClient.create() .resource (resource) .prettyPrint () .encodeddson () .execute();

69 } catch (Exception e) {

70 logger.error ("Error in Submitting the resource:::::" + resource.getResourceType () .name());

&g J
N B
—

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: getResouceByld()
File: sof/utils/FhirContextlnitializer.java:88
Taint Flags:

85 resource = genericClient.read() .resource (resourceName) .withId (resourceld) .execute () ;
86 // logger.info(resourceName + ":::::s:zrzsrzczors" +
87 // context.newJsonParser () .encodeResourceToString (resource)) ;

88 } catch (Exception e) {

89 logger.error ("Error in getting " + resourceName + " resource by Id: " + resourceld, e);
o Dec 10, 2020, 9:34 AM 31
IFDRTIFY , e ,
© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.utils

90 }

91 return resource;

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: getMetadata()
File: sof/utils/Authorization.java:42
Taint Flags:

39 response = restTemplate.exchange (serverURL, HttpMethod.GET, entity, String.class);
40 metadata new JSONObject (response.getBody()) ;

41 logger.info("Received Metadata Information from URL::::: {}", serverURL);

42 } catch (Exception e) {

43 logger.error ("Error in getting Metadata information for URL:::::" + serverURL);
44)

45 return metadata;

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: getCommonResources()
File: sof/utilsyR4ResourcesData.java:855
Taint Flags:

852 BundleEntryComponent patientEntry = new BundleEntryComponent () ;
853 patientEntry.setResource (patient);

854 Dbundle.addEntry (patientEntry);

855 } catch (Exception e) {

856 logger.error ("Error in getting Patient Data");

857 }

858 // Step 1l: Get Encounters for Patient based on encId. (Create a method to get

w
N

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch _

Package: com.drajer.sof.utils

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: getCommonResources()
File: sof/utils’R4ResourcesData.java: 942
Taint Flags:

939 }
940 BundleEntryComponent encounterEntry = new BundleEntryComponent () .setResource (encounter) ;

941 bundle.addEntry(encounterEntry) ;
942 } catch (Exception e) {

943 logger.error ("Error in getting Encounter Data");
944)}
945

Kingdom: Errors
Scan Engine; SCA (Structural)

Sink: CatchBlock

Enclosing M ethod: getCommonResources()
File: sof/utils’R4ResourcesData.java: 966
Taint Flags:

963 BundleEntryComponent conditionsEntry = new BundleEntryComponent () .setResource (condition) ;
964 bundle.addEntry(conditionsEntry);

965 }

966 |} catch (Exception e) {

967 logger.error ("Error in getting Condition Data");

968 }

969

Kingdom: Errors
Scan Engine: SCA (Structural)

w
w

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.utils

Sink: CatchBlock

Enclosing Method: getCommonResources()
File: sof/utils'R4ResourcesData.java:990
Taint Flags:

987 new BundleEntryComponent () .setResource (observation) ;

988 bundle.addEntry (observationsEntry);

989 |}

990 } catch (Exception e) {

991 logger.error ("Error in getting Observation Data");
992)

993

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock
Enclosing M ethod: getCommonResources()
File: sof/utils’R4ResourcesData.java: 1048

Taint Flags:
1045 new BundleEntryComponent () .setResource (medAdministration) ;
1046 bundle.addEntry (medAdministrationEntry);
1047 }

1048 } catch (Exception e) {

1049 logger.error ("Error in getting the MedicationAdministration Data", e);
1050 }

1051

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: getCommonResources()
File: sof/utilsyfR4ResourcesData.java: 1091

w
N

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.utils

Taint Flags:
1088 BundleEntryComponent medRequestEntry = new
BundleEntryComponent () . setResource (medRequest) ;
1089 bundle.addEntry (medRequestEntry) ;
1090 }
1091 } catch (Exception e) {

1092 logger.error ("Error in getting the MedicationRequest Data", e);
1093 }
1094

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing M ethod: getCommonResources()
File: sof/utils’fR4ResourcesData.java:1117
Taint Flags:

1114 new BundleEntryComponent () .setResource (serviceRequest) ;

1115 bundle.addEntry(serviceRequestEntry) ;

1116 }

1117 } catch (Exception e) {

1118 logger.error ("Error in getting the ServiceRequest Data");
1119 }

1120 return bundle;

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock
Enclosing Method: getResourceFromBundle()
File: sof/utils’R4ResourcesData,java: 1132

Taint Flags:
1129 }
1130 }
CFG: RTIEY: . Dec 10, 2020, 9:34 AM. 35
© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch

Package: com.drajer.sof.utils

1131 }

1132 } catch (Exception e) {

1133 logger.error ("Error in getting the Resource from Bundle") ;
1134 }

1135 return null;

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: getSystemA ccessT oken()
File: sof/utils/RefreshTokenScheduler.java: 159
Taint Flags:

156 logger.info("Received AccessToken for Client: " + clientDetails.getClientId());
157 logger.info ("Received AccessToken: {}", tokenResponse);

159 } catch (Exception e) {

160 logger.error (

161 "Error in Getting the AccessToken for the client: " + clientDetails.getClientId()):;
162 }

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: CatchBlock

Enclosing Method: getResourceBundleByUrl()
File: sof/utils/FhirContextInitializer.java: 188
Taint Flags:

185 bundle.getEntry().size());
186 }

187 }

188 } catch (Exception e) {
189 logger.info(

190 "Error in getting "

w
[o)]

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Catch _
Package: com.drajer.sof.utils

191 + resourceName

EﬂRTlFY“ Dec 10, 2020, 9:34 AM 37

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Throws (6 issues)

Abstract

The method throws a generic exception making it harder for callers to do a good job of error handling and
recovery.

Explanation

Declaring a method to throw Except i on or Thr owabl e makes it difficult for callers to do good error
handling and error recovery. Java's exception mechanism is set up to make it easy for callers to anticipate
what can go wrong and write code to handle each specific exceptional circumstance. Declaring that a
method throws a generic form of exception defeats this system. Example: The following method throws
three types of exceptions.
public void doExchange()

throws | CException, InvocationTarget Exception,

SQLException {

}

While it might seem tidier to write
public void doExchange()
throws Exception {

}

doing so hampers the caller's ability to understand and handle the exceptions that occur. Further, if a later
revision of doExchange() introduces a new type of exception that should be treated differently than
previous exceptions, there is no easy way to enforce this requirement.

Recommendation

Do not declare methods to throw Except i on or Thr owabl e. If the exceptions thrown by a method are not
recoverable or should not generally be caught by the caller, consider throwing unchecked exceptions rather
than checked exceptions. This can be accomplished by implementing exception classes that extend

Runt i meExcepti on or Error instead of Excepti on, or add a try/catch wrapper in your method to
convert checked exceptions to unchecked exceptions.

Issue Summary

Gov Reviewed NAI
Exploitable
Suspicious

Bad Practice

Reliability Issue

Not an Issue '
<None>

Analysis

0 1 2 3 4 5 6 7
Issues

@ critical | @PHigh | & FIMedium | EFLow

FORTIFY' Dec 10, 2020, 9:34 AM 38

© Copyright 2017 Hewlett Packard Enterprise Development LP

Engine Breakdown

SCA Weblinspect SecurityScope Total
Poor Error Handling: Overly Broad Throws 6 0 0 6
Total 6 0 0 6

Poor Error Handling: Overly Broad Throws

Package: com.drajer.ecrapp.config

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: Function: configure

Enclosing Method: configure()

File: ecrapp/config/WebSecurityConfig.java:24
Taint Flags:

21 private String tokenFilterClassName;

22

23 (@Override

24 public void configure (WebSecurity web) throws Exception {

25 web.ignoring() .antMatchers ("/meta/**");
26 }
27

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: Function: configure

Enclosing M ethod: configure()

File: ecrapp/config/WebSecurityConfig.java:29
Taint Flags:

26 }

27

28 (@Override

29 protected void configure (HttpSecurity http) throws Exception {

30 logger info ("***") ;

31 logger.info("Security Configuration” + tokenFilterClassName) ;

32 logger info ("***") ;

w
©

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Throws _

Package: com.drajer.routing.impl

Kingdom: Errors
Scan Engine; SCA (Structural)

Sink: Function: sendMail
Enclosing Method: sendMail()
File: routing/impl/DirectEicrSender.java: 72

Taint Flags:
69 }
70)

72 public void sendMail (
73 String host,

74 String username,

75 String password,

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: Function: deleteMail
Enclosing Method: deleteMail ()
File: routing/impl/DirectResponseReceiver.java: 132
Taint Flags:
129 }
130 }
131

132 public void deleteMail (String host, String username, String password) throws Exception {

134 Properties props = new Properties();
135 Session session = Session.getInstance (props, null);

Package: com.drajer.sof.launch

Kingdom: Errors

N
o

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Poor Error Handling: Overly Broad Throws

Package: com.drajer.sof.launch

Scan Engine: SCA (Structural)

256
257
258
259
260
261
262

Sink: Function: launchApp

Enclosing Method: launchApp()

File: sof/launch/LaunchController.java:259
Taint Flags:

@CrossOrigin

@RequestMapping (value = "/api/launch")
public void launchApp (

@RequestParam String launch,
@RequestParam String iss,

HttpServletRequest request,

Kingdom: Errors
Scan Engine: SCA (Structural)

Sink: Function: redirectEndPoint
Enclosing Method: redirectEndPoint()
File: sof/launch/LaunchController.java:333

Taint Flags:
330
331 (@CrossOrigin
332 (QRequestMapping(value = "/api/redirect")
333 public void redirectEndPoint (
334 (@QRequestParam String code,
335 (@RequestParam String state,
336 HttpServletRequest request,
EJRTIFY” | Dec 10, 2020, 9:34 AM 41
© Copyright 2017 Hewlett Packard Enterprise Development LP

Redundant Null Check (8 issues)

Abstract

The program can potentially dereference a null pointer, thereby causing a null pointer exception.

Explanation

Null pointer exceptions usually occur when one or more of the programmer's assumptions is violated. A
check-after-dereference error occurs when a program dereferences an object that can be nul | before
checking if the object is nul | . Most null pointer issues result in general software reliability problems, but if
attackers can intentionally trigger a null pointer dereference, they can use the resulting exception to bypass
security logic or to cause the application to reveal debugging information that will be valuable in planning
subsequent attacks. Example: In the following code, the programmer assumes that the variable f 0o is not
nul I and confirms this assumption by dereferencing the object. However, the programmer later contradicts
the assumption by checking f oo against nul | . If f oo can be nul | when itis checked in the i f statement
then it can also be nul | when it is dereferenced and might cause a null pointer exception. Either the
dereference is unsafe or the subsequent check is unnecessary.

foo. setBar(val);

if (foo !'= null) {
Lo

Recommendation

Implement careful checks before dereferencing objects that might be nul | . When possible, abstract null
checks into wrappers around code that manipulates resources to ensure that they are applied in all cases
and to minimize the places where mistakes can occur.

Issue Summary

Gov Reviewed NAI
Exploitable
Suspicious

Bad Practice

Reliability Issue

Not an Issue '
<None>

Analysis

0 1 2 3 4 5 6 7 8 9
Issues

@ critical | @PHigh | = IMedium | EFLow

Engine Breakdown

SCA Weblnspect SecurityScope Total
Redundant Null Check 8 0 0 8
Total 8 0 0 8
FDRTIFY Dec 10, 2020, 9:34 AM 42

© Copyright 2017 Hewlett Packard Enterprise Development LP

Redundant Null Check
Package: com.drajer.sof.service

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink: Dereferenced : medication

Enclosing Method: createDSTU2Bundl&()

File: sof/service/LoadingQueryDstu2Bundle.java: 255
Taint Flags:

252 Medication medication =

253 dstu2ResourcesData.getMedicationData (

254 context, client, launchDetails, dstu2FhirData, medReference);
255 Entry medicationEntry = new Entry () .setResource (medication);
256 Dbundle.addEntry(medicationEntry);

257 if (medication != null) {

258 List<Medication> medicationList = new ArrayList<Medication>();

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink: Dereferenced : medication

Enclosing Method: createDSTU2Bundl&()

File: sof/service/TriggerQueryDstu2Bundle java:221
Taint Flags:

218 Medication medication =

219 dstu2ResourcesData.getMedicationData (

220 context, client, launchDetails, dstu2FhirData, medReference);
221 Entry medicationEntry = new Entry () .setResource (medication);
222 Dbundle.addEntry(medicationEntry);

223 if (medication != null) {

224 List<Medication> medicationlList = new ArrayList<Medication>();

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink: Dereferenced : medication

N
w

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Redundant Null Check
Package: com.drajer.sof.service

Enclosing M ethod: createDSTU2Bundl&()
File: sof/service/LoadingQueryDstu2Bundle.java: 255
Taint Flags:

252 Medication medication =

253 dstu2ResourcesData.getMedicationData (

254 context, client, launchDetails, dstu2FhirData, medReference);
255 Entry medicationEntry = new Entry () .setResource (medication) ;
256 Dbundle.addEntry(medicationEntry) ;

257 if (medication != null) {

258 List<Medication> medicationlList = new ArrayList<Medication>();

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink: Dereferenced : medication

Enclosing Method: createDSTU2Bundl&()

File: sof/service/TriggerQueryDstu2Bundlejava: 221
Taint Flags:

218 Medication medication =

219 dstu2ResourcesData.getMedicationData (

220 context, client, launchDetails, dstu2FhirData, medReference) ;
221 Entry medicationEntry = new Entry () .setResource (medication) ;
222 Dbundle.addEntry(medicationEntry) ;

223 if (medication != null) {

224 List<Medication> medicationlList = new ArrayList<Medication>();

Package: com.drajer.sof.utils

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink: Dereferenced : medication

Enclosing Method: getCommonResources()
File: sof/utils/R4ResourcesData.java: 1034
Taint Flags:

1031 Medication medication =
1032 getMedicationData (context, client, launchDetails, r4FhirData, medReference);

IN
N

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Redundant Null Check

Package: com.drajer.sof.utils

1033 BundleEntryComponent medicationEntry =

1034 new BundleEntryComponent () .setResource (medication) ;
1035 bundle.addEntry(medicationEntry) ;
1036 if (medication != null) {

1037 List<Medication> medicationlList = new ArrayList<>();

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink: Dereferenced : medication

Enclosing M ethod: getCommonResources()
File: sof/utils’R4ResourcesData.java: 1078
Taint Flags:

1075 Medication medication =
1076 getMedicationData (context, client, launchDetails, r4FhirData, medReference);

1077 BundleEntryComponent medicationEntry =

1078 new BundleEntryComponent () .setResource (medication) ;
1079 bundle.addEntry (medicationEntry) ;
1080 if (medication != null) {

1081 List<Medication> medicationList = new ArrayList<Medication> () ;

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink: Dereferenced : medication

Enclosing M ethod: getCommonResources()
File: sof/utils/fR4ResourcesData.java:1034
Taint Flags:

1031 Medication medication =
1032 getMedicationData (context, client, launchDetails, r4FhirData, medReference);

1033 BundleEntryComponent medicationEntry =

1034 new BundleEntryComponent () .setResource (medication) ;
1035 bundle.addEntry (medicationEntry) ;
1036 if (medication != null) {

1037 List<Medication> medicationlList = new ArrayList<>();

N
[&)]

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Redundant Null Check - Low

Package: com.drajer.sof.utils

Kingdom: Code Quality
Scan Engine: SCA (Control Flow)

Sink: Dereferenced : medication
Enclosing Method: getCommonResources()
File: sof/utilsyfR4ResourcesData.java: 1078

Taint Flags:
1075 Medication medication =
1076 getMedicationData (context, client, launchDetails, r4FhirData, medReference);
1077 BundleEntryComponent medicationEntry =
1078 new BundleEntryComponent () .setResource (medication) ;
1079 bundle.addEntry(medicationEntry) ;
1080 if (medication != null) {
1081 List<Medication> medicationList = new ArrayList<Medication> () ;
EJRTIFY” | Dec 10,2020, 9:34 AM 46
© Copyright 2017 Hewlett Packard Enterprise Development LP

System Information Leak (2 issues)

Abstract

Revealing system data or debugging information helps an adversary learn about the system and form a
plan of attack.

Explanation

An information leak occurs when system data or debugging information leaves the program through an
output stream or logging function. Example 1: The following code prints an exception to the standard error
stream:

try {

} cat ch (Exception e) {
e. printStackTrace();
}

Depending upon the system configuration, this information can be dumped to a console, written to a log
file, or exposed to a remote user. For example, with scripting mechanisms it is trivial to redirect output
information from "Standard error" or "Standard output" into a file or another program. Alternatively the
system that the program runs on could have a remote logging mechanism such as a "syslog" server that
will send the logs to a remote device. During development you will have no way of knowing where this
information may end up being displayed. In some cases the error message tells the attacker precisely what
sort of an attack the system is vulnerable to. For example, a database error message can reveal that the
application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues
about the system. In the example above, the leaked information could imply information about the type of
operating system, the applications installed on the system, and the amount of care that the administrators
have put into configuring the program. Here is another scenario, specific to the mobile world. Most mobile
devices now implement a Near-Field Communication (NFC) protocol for quickly sharing information
between devices using radio communication. It works by bringing devices to close proximity or simply
having them touch each other. Even though the communication range of NFC is limited to just a few
centimeters, eavesdropping, data modification and various other types of attacks are possible, since NFC
alone does not ensure secure communication. Example 2: The Android platform provides support for NFC.
The following code creates a message that gets pushed to the other device within the range.

bhblic static final String TAG = "NfcActivity";
private static final String DATA SPLITTER = " :DATA: __";
private static final String MME_TYPE = "application/ny.applications. mnmetype";

publ i c Ndef Message creat eNdef Message(Nf cEvent event) {
Tel ephonyManager tm =
(Tel ephonyManager) Cont ext . get Syst entSer vi ce(Cont ext . TELEPHONY _SERVI CE) ;
String VERSI ON = t m get Devi ceSof t war eVer si on() ;
String text = TAG + DATA SPLI TTER + VERSI ON;
Ndef Record record = new Ndef Recor d(Ndef Record. TNF_M ME_MEDI A,
M ME_TYPE. get Bytes(), new byte[0], text.getBytes());
Ndef Record[] records = { record };
Ndef Message nmsg = new Ndef Message(records);
return neg;

}

NFC Data Exchange Format (NDEF) message contains typed data, a URI, or a custom application
payload. If the message contains information about the application, such as its name, MIME type, or device
software version, this information could be leaked to an eavesdropper. In the example above, Fortify Static
Code Analyzer reports a System Information Leak vulnerability on the return statement.

FDRTIFY‘” Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

47

Recommendation

Write error messages with security in mind. In production environments, turn off detailed error information
in favor of brief messages. Restrict the generation and storage of detailed output that can help
administrators and programmers diagnose problems. Be careful, debugging traces can sometimes appear
in non-obvious places (embedded in comments in the HTML for an error page, for example). Even brief
error messages that do not reveal stack traces or database dumps can potentially aid an attacker. For
example, an "Access Denied" message can reveal that a file or user exists on the system. If you are
concerned about leaking system data via NFC on an Android device, you could do one of the following
three things. Either do not include system data in the messages pushed to other devices in range, or
encrypt the payload of the message, or establish secure communication channel at a higher layer.

Issue Summary

Gov Reviewed NAI
Exploitable
Suspicious

Bad Practice
Reliability Issue

Not an Issue ‘
<None> |
0 1 2 3
Issues

@ critical |iHigh |I:’Medium |I:’Low

Analysis

Engine Breakdown

SCA Weblnspect SecurityScope Total
System Information Leak 2 0 0 2
Total 2 0 0 2

System Information Leak Low
Package: com.drajer.ecrapp.security

ecrapp/security/AESEncryption.java, line 36 (System Information Leak) Low
Issue Details

Kingdom: Encapsulation
Scan Engine: SCA (Semantic)

Sink Details

Sink: printStackTrace()
Enclosing M ethod: setKey()
File: ecrapp/security/ AESEncryption.java: 36
Taint Flags:
33 } catch (NoSuchAlgorithmException e) {
34 e.printStackTrace();
35 } catch (UnsupportedEncodingException e) {
36 e.printStackTrace();

37 1}
38 }
FDRTIFYW Dec 10, 2020, 9:34 AM 48

© Copyright 2017 Hewlett Packard Enterprise Development LP

System Information Leak

Package: com.drajer.ecrapp.security

Kingdom: Encapsulation
Scan Engine: SCA (Semantic)

Sink: printStackTrace()

Enclosing Method: setKey()

File: ecrapp/security/AESEncryption.java:34
Taint Flags:

31 key = Arrays.copyOf (key, 16);
32 secretKey = new SecretKeySpec (key, "AES");
33 } catch (NoSuchAlgorithmException e) {

34 e.printStackTrace();
35 } catch (UnsupportedEncodingException e) {
36 e.printStackTrace();
37 }
EJRTIFY” | Dec 10, 2020, 9:34 AM 49
© Copyright 2017 Hewlett Packard Enterprise Development LP

System Information Leak: Internal (2 issues)

Abstract

Revealing system data or debugging information helps an adversary learn about the system and form a
plan of attack.

Explanation

An internal information leak occurs when system data or debugging information is sent to a local file,
console, or screen via printing or logging. Example 1: The following code prints an exception to the
standard error stream:

try {

} cat ch (Exception e) {
e. printStackTrace();
}

Depending upon the system configuration, this information can be dumped to a console, written to a log
file, or exposed to a user. In some cases the error message tells the attacker precisely what sort of an
attack the system is vulnerable to. For example, a database error message can reveal that the application
is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the
system. In the example above, the leaked information could imply information about the type of operating
system, the applications installed on the system, and the amount of care that the administrators have put
into configuring the program. In the mobile world, information leaks are also a concern. Example 2: The
code below logs the stack trace of a caught exception on the Android platform.

try
} ééfch (Exception e) {
Log. e(TAG Log. get StackTraceString(e));

Recommendation

Write error messages with security in mind. In production environments, turn off detailed error information
in favor of brief messages. Restrict the generation and storage of detailed output that can help
administrators and programmers diagnose problems. Be careful, debugging traces can sometimes appear
in non-obvious places (embedded in comments in the HTML for an error page, for example). Even brief
error messages that do not reveal stack traces or database dumps can potentially aid an attacker. For
example, an "Access Denied" message can reveal that a file or user exists on the system.

Issue Summary

FDRTIFY‘” Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

50

Gov Reviewed NAI -|-
Exploitable |-
Suspicious |-

Bad Practice |-
Reliability Issue |-
Not an Issue |-
<None> -

Analysis

Issues

@ citical | @Prigh | EFIMediom | = FLow

Engine Breakdown

SCA Weblinspect SecurityScope Total
System Information Leak: Internal 2 0 0 2
Total 2 0 0 2

System Information Leak: Internal

Package: com.drajer.ecrapp.security

Kingdom: Encapsulation
Scan Engine: SCA (Data Flow)

Source: Read e
From: com.drajer.ecrapp.security.AESEncryption.decrypt
File: ecrapp/security/AESEncryption.java:59

56 cipher.init (Cipher.DECRYPT MODE, secretKey);

57 return new
String (cipher.doFinal (Base64.getDecoder () .decode (strToDecrypt))) ;

58 } catch (Exception e) {

59 System.out.println ("Error while decrypting: " + e.toString());
60 }

61 return null;

62 }

Sink: javaio.PrintStream.printin()

Enclosing Method: decrypt()

File: ecrapp/security/AESEncryption.java:59

Taint Flags: EXCEPTIONINFO, SY STEMINFO
56 cipher.init (Cipher.DECRYPT MODE, secretKey);
57 return new String(cipher.doFinal (Base64.getDecoder () .decode (strToDecrypt)));
58 } catch (Exception e) {

59 System.out.println("Error while decrypting: " + e.toString()):;
o Dec 10, 2020, 9:34 AM 51
|FDRTIFY , e ,
© Copyright 2017 Hewlett Packard Enterprise Development LP

System Information Leak: Internal

Package: com.drajer.ecrapp.security

60
61
62

}
return null;

}

Kingdom: Encapsulation
Scan Engine: SCA (Data Flow)

44
45

Source: Read e
From: com.drajer.ecrapp.security. AESEncryption.encrypt
File: ecrapp/security/AESEncryption.java:47

cipher.init (Cipher.ENCRYPT MODE, secretKey):;
return

Baseb64.getEncoder () .encodeToString (cipher.doFinal (strToEncrypt.getBytes ("UTF-8'

46
47
48
49
50

} catch (Exception e) {
System.out.println ("Error while encrypting: " + e.toString());
}

return null;

}

Sink: java.io.PrintStream.printin()

Enclosing Method: encrypt()

File: ecrapp/security/AESENcryption.java:47
Taint Flags: EXCEPTIONINFO, SYSTEMINFO

44 cipher.init (Cipher.ENCRYPT MODE, secretKey);
45 return Baseb4.getEncoder () .encodeToString (cipher.doFinal (strToEncrypt.getBytes ("UTF-8"))) ;
46 } catch (Exception e) {
47 System.out.println ("Error while encrypting: " + e.toString());
48 |}
49 return null;
50 }
EJRTIFY° | Dec 10, 2020, 9:34 AM 52
© Copyright 2017 Hewlett Packard Enterprise Development LP

Weak Cryptographic Hash (1 issue)

Abstract

Weak cryptographic hashes cannot guarantee data integrity and should not be used in security-critical
contexts.

Explanation

MD2, MD4, MD5, RIPEMD-160, and SHA-1 are popular cryptographic hash algorithms often used to verify
the integrity of messages and other data. However, as recent cryptanalysis research has revealed
fundamental weaknesses in these algorithms, they should no longer be used within security-critical
contexts. Effective techniques for breaking MD and RIPEMD hashes are widely available, so those
algorithms should not be relied upon for security. In the case of SHA-1, current techniques still require a
significant amount of computational power and are more difficult to implement. However, attackers have
found the Achilles' heel for the algorithm, and techniques for breaking it will likely lead to the discovery of
even faster attacks.

Recommendation

Discontinue the use of MD2, MD4, MD5, RIPEMD-160, and SHA-1 for data-verification in security-critical
contexts. Currently, SHA-224, SHA-256, SHA-384, SHA-512, and SHA-3 are good alternatives. However,
these variants of the Secure Hash Algorithm have not been scrutinized as closely as SHA-1, so be mindful
of future research that might impact the security of these algorithms.

Issue Summary

Gov Reviewed NAI
Exploitable
Suspicious

Bad Practice
Reliability Issue

Not an Issue '
<None> |
0 1 2
Issues

@ critical |EHigh |§Medium |§Low

Analysis

Engine Breakdown

SCA Weblnspect SecurityScope Total
Weak Cryptographic Hash 1 0 0 1
Total 1 0 0 1

Weak Cryptographic Hash Low
Package: com.drajer.ecrapp.security

ecrapp/security/AESEncryption.java, line 29 (Weak Cryptographic Hash) Low
Issue Details

Kingdom: Security Features
Scan Engine: SCA (Semantic)

° Dec 10, 2020, 9:34 AM 53
FDRTIFY ec 10, 2020, 9:3

© Copyright 2017 Hewlett Packard Enterprise Development LP

Weak Cryptographic Hash

Package: com.drajer.ecrapp.security

Sink: getlnstance()

Enclosing Method: setKey()

File: ecrapp/security/AESEncryption.java:29
Taint Flags:

26 MessageDigest sha = null;

27 try {

28 key = myKey.getBytes ("UTF-8");

29 sha = MessageDigest.getInstance ("SHA-1");
30 key
31 key = Arrays.copyOf (key, 16);

sha.digest (key) ;

32 secretKey = new SecretKeySpec (key, "AES");

EﬂRTlFY“ Dec 10, 2020, 9:34 AM 54

© Copyright 2017 Hewlett Packard Enterprise Development LP

Weak Encryption: Insecure Mode of Operation (2 issues)

Abstract

Cryptographic encryption algorithms should not be used with an insecure mode of operation.

Explanation

A mode of operation of a block cipher is an algorithm that describes how to repeatedly apply a cipher's
single-block operation to securely transform amounts of data larger than a block. Some of the modes of
operation include Electronic Codebook (ECB), Cipher Block Chaining (CBC), and Cipher Feedback (CFB).
ECB mode is inherently weak, as it results in the same ciphertext for identical blocks of plain text. CBC
mode is the superior choice as it does not have this weakness. Example 1: The following code uses AES
cipher with ECB mode:

'Séi:reI KeySpec key = new Secr et KeySpec(keyBytes, "AES");
Ci pher cipher = Cipher.getlnstance("AES/ ECB/ PKCS7Paddi ng", "BC');
ci pher.init (G pher. ENCRYPT_MODE, key);

Cipher Transformation Modes: The first argument to Ci pher . get | nst ance is a string parameter
transf or mat i on in the form "algorithm/mode/padding" or "algorithm". If the mode is not specified, then
the mode selected is the provider-specific default, which is likely Electronic Codebook (ECB) mode for Java
and Android. ECB mode is inherently a weaker encryption mode because identical blocks of plain text is
encrypted into identical blocks of ciphertext. CBC (cipher-block chaining) mode is superior because it does
not have this weakness. Example: gaining a Cipher instance with the weak ECB transformation mode:

C pher ¢ = G pher. getlnstance("AES/ ECB/ PKCS5Paddi ng") ;

Example: gaining a Cipher instance with default transformation mode, which could be the weak ECB
mode:

Ci pher ¢ = Ci pher.getlnstance("AES");

This finding is from research found in "An Empirical Study of Cryptographic Misuse in Android
Applications". http://www.cs.ucsb.edu/~chris/research/doc/ccs13_cryptolint.pdf

Recommendation

Avoid using ECB mode of operation when encrypting data larger than a block. CBC mode is superior as it
does not produce identical blocks of ciphertext for identical blocks of plain text. However, CBC mode is
somewhat inefficient and poses serious risk if used with SSL. [1] Instead, use CCM (Counter with CBC-
MAC) mode, or, if performance is a concern, GCM (Galois/Counter Mode) mode where they are available.
Example 2: The following code uses the AES cipher with CBC mode:

'S.ei:ret KeySpec key = new Secr et KeySpec(keyBytes, "AES");

Ci pher cipher = Cipher.getlnstance("AES/ CBC/ PKCS5Paddi ng", "BC');
ci pher.init (G pher. ENCRYPT_MODE, key);

Issue Summary

FORTIFY

Gov Reviewed NAI -|-
Exploitable |-
Suspicious |-

Bad Practice |-
Reliability Issue |-
Not an Issue |-
<None> -

Analysis

Issues

@ citical | @Prigh | EFIMediom | = FLow

Engine Breakdown

SCA Weblinspect SecurityScope Total
Weak Encryption: Insecure Mode of Operation 2 0 0 2
Total 2 0 0 2

Weak Encryption: Insecure Mode of Operation

Package: com.drajer.ecrapp.security

Critical

Kingdom: Security Features
Scan Engine: SCA (Semantic)

Sink: getlnstance()

Enclosing Method: encrypt()

File: ecrapp/security/AESEncryption.java:43
Taint Flags:

40 public static String encrypt(String strToEncrypt) {

41 try {

42 setKey (secret);

43 Cipher cipher = Cipher.getInstance ("AES/ECB/PKCS5Padding") ;

44 cipher.init (Cipher.ENCRYPT MODE, secretKey);

45 return Baseb4.getEncoder () .encodeToString (cipher.doFinal (strToEncrypt.getBytes ("UTF-8"))) ;
46 } catch (Exception e) {

Critical

Kingdom: Security Features
Scan Engine: SCA (Semantic)

Sink: getlnstance()
Enclosing Method: decrypt()

[
[}

EﬂRTlFY“ Dec 10, 2020, 9:34 AM

© Copyright 2017 Hewlett Packard Enterprise Development LP

Weak Encryption: Insecure Mode of Operation
Package: com.drajer.ecrapp.security

File: ecrapp/security/AESEncryption.java:55
Taint Flags:

52 public static String decrypt(String strToDecrypt) {

53 try {

54 setKey(secret);

55 Cipher cipher = Cipher.getInstance ("AES/ECB/PKCS5PADDING") ;

56 cipher.init (Cipher.DECRYPT MODE, secretKey);

57 return new String(cipher.doFinal (Base64.getDecoder () .decode (strToDecrypt))) ;
58 } catch (Exception e) {

EﬂRTlFY° Dec 10, 2020, 9:34 AM 57

© Copyright 2017 Hewlett Packard Enterprise Development LP

About HPE Security Enterprise Security Products

HPE Security is a leading provider of security and compliance solutions for the modern enterprise that wants
to mitigate risk in their hybrid environment and defend against advanced threats. Based on market-leading
products from HPE Security ArcSight and HPE Security Fortify, the HPE Security Security Intelligence
Platform uniquely delivers the advanced correlation, application protection, and network defenses to protect
today's hybrid IT infrastructure from sophisticated cyber threats.

FORTIFY' Dec 10, 2020, 9:34 AM 58

© Copyright 2017 Hewlett Packard Enterprise Development LP

	Title Page
	Table of Contents
	Executive Summary
	Executive Summary

	Project Description
	Issue Breakdown by Fortify Categories
	Results Outline
	Results Outline
	Missing Check against Null
	Missing Check against Null (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Missing Check against Null - Low

	Path Manipulation
	Path Manipulation (2 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Path Manipulation - Critical

	Poor Error Handling: Overly Broad Catch
	Poor Error Handling: Overly Broad Catch (54 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Poor Error Handling: Overly Broad Catch - Low

	Poor Error Handling: Overly Broad Throws
	Poor Error Handling: Overly Broad Throws (6 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Poor Error Handling: Overly Broad Throws - Low

	Redundant Null Check
	Redundant Null Check (8 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Redundant Null Check - Low

	System Information Leak
	System Information Leak (2 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	System Information Leak - Low

	System Information Leak: Internal
	System Information Leak: Internal (2 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	System Information Leak: Internal - Low

	Weak Cryptographic Hash
	Weak Cryptographic Hash (1 issue)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Weak Cryptographic Hash - Low

	Weak Encryption: Insecure Mode of Operation
	Weak Encryption: Insecure Mode of Operation (2 issues)
	Abstract
	Explanation
	Recommendation
	Issue Summary
	Engine Breakdown
	Weak Encryption: Insecure Mode of Operation - Critical

	About HPE Security Enterprise Security Products

