No description, website, or topics provided.
Switch branches/tags
Clone or download
Type Name Latest commit message Commit time
Failed to load latest commit information.
bin init May 12, 2016
project init May 12, 2016
src fix model Jun 3, 2016
.gitignore init May 12, 2016
Procfile fix procfile May 20, 2016 More clear instructions Aug 1, 2016
app.json More details on DREAMHOUSE_WEB_APP_URL value - fixes #1 Aug 1, 2016
build.sbt working with dreamhouse data May 19, 2016
engine.json app name is configurable May 18, 2016
sbt app name is configurable May 18, 2016
sbt-launch.jar app name is configurable May 18, 2016
sbt.bat app name is configurable May 18, 2016

DreamHouse PredictionIO Recommendation Engine

This app uses PredictionIO to provide property recommendations based on users' favorites.

Check out a demo:


Run on Heroku:

  1. Sign up for a free Heroku account

  2. Install the Heroku Toolbelt

  3. Deploy the PredictionIO Event Server on Heroku: Deploy on Heroku

  4. Create a new app in the PredictionIO Event Server:

     heroku run console app new dreamhouse -a <YOUR EVENT SERVER APP NAME>
  5. Deploy the DreamHouse Web App (pio branch): Deploy on Heroku

  6. Deploy the recommendation engine: Deploy on Heroku

  7. Attach your PredictionIO Event Server's Postgres to the recommendation engine app:

    Remove the auto-added Heroku Postgres addon:

     heroku addons:destroy heroku-postgresql -a <YOUR ENGINE APP NAME>

    Lookup the Heroku Postgres Addon ID for the Event Server's Postgres:

     heroku addons -a <YOUR EVENT SERVER HEROKU APP NAME>

    Attach the Postgres Addon to the Engine:

     heroku addons:attach <YOUR ADDON ID> -a <YOUR ENGINE APP NAME>
  8. Configure the DreamHouse Web App to know where to pull recommendations from by setting the PIO_ENGINE_URL to the base URL of your PIO Engine app (e.g.

  9. Check out the recommendation in the DreamHouse Web App

Run Locally:

  1. Setup a local PredictionIO Event Server:

  2. Setup a local DreamHouse Web App using the pio branch:

  3. Setup a local PredictionIO Recommendation Engine:

  4. Train the app and run the recommendation engine:

     cd dreamhouse-pio
     source bin/ && DREAMHOUSE_WEB_APP_URL=http://localhost:8200 ACCESS_KEY=<YOUR ACCESS KEY> ./sbt "runMain ServerApp"
  5. Check the status of your engine:


  6. Check out the recommendations for an item:

     curl -H "Content-Type: application/json" -d '{"userId": "c1", "numResults": 3 }' -k http://localhost:8000/queries.json