-
Notifications
You must be signed in to change notification settings - Fork 5
/
train.py
308 lines (257 loc) · 14.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""
/* Copyright (c) 2024 modifications for radio autoencoder project
by David Rowe */
/* Copyright (c) 2022 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import os
import argparse
import torch
import tqdm
from matplotlib import pyplot as plt
import numpy as np
import sys
from radae import RADAE, RADAEDataset, distortion_loss
parser = argparse.ArgumentParser()
parser.add_argument('features', type=str, help='path to feature file in .f32 format')
parser.add_argument('output', type=str, help='path to output folder')
parser.add_argument('--cuda-visible-devices', type=str, help="comma separates list of cuda visible device indices, default: ''", default="")
parser.add_argument('--latent-dim', type=int, help="number of symbols produced by encoder, default: 80", default=80)
parser.add_argument('--EbNodB', type=float, default=0, help='BPSK Eb/No in dB')
parser.add_argument('--range_EbNo', action='store_true', help='Use a range of Eb/No during training')
parser.add_argument('--range_EbNo_start', type=float, default=-6.0, help='starting value for Eb/No during training')
parser.add_argument('--h_file', type=str, default="", help='path to rate Rs multipath file, rate Rs time steps by Nc carriers .f32 format')
parser.add_argument('--g_file', type=str, default="", help='path to rate Fs multipath file, ...G1G2... .f32 format')
parser.add_argument('--rate_Fs', action='store_true', help='rate Fs simulation (default rate Rs)')
parser.add_argument('--freq_rand', action='store_true', help='random phase and freq offset for each sequence')
parser.add_argument('--gain_rand', action='store_true', help='random rx gain -20 .. +20dB, SNR unchanged')
parser.add_argument('--bottleneck', type=int, default=1, help='1-1D rate Rs, 2-2D rate Rs, 3-2D rate Fs time domain')
parser.add_argument('--pilots', action='store_true', help='insert pilot symbols')
parser.add_argument('--pilot_eq', action='store_true', help='use pilots to EQ data symbols using classical DSP')
parser.add_argument('--eq_ls', action='store_true', help='Use per carrier least squares EQ (default mean6)')
parser.add_argument('--cp', type=float, default=0.0, help='Length of cyclic prefix in seconds [--Ncp..0], (default 0)')
training_group = parser.add_argument_group(title="training parameters")
training_group.add_argument('--batch-size', type=int, help="batch size, default: 32", default=32)
training_group.add_argument('--lr', type=float, help='learning rate, default: 3e-4', default=3e-4)
training_group.add_argument('--epochs', type=int, help='number of training epochs, default: 100', default=100)
training_group.add_argument('--sequence-length', type=int, help='sequence length, needs to be divisible by 4, default: 256', default=256)
training_group.add_argument('--lr-decay-factor', type=float, help='learning rate decay factor, default: 2.5e-5', default=2.5e-5)
training_group.add_argument('--initial-checkpoint', type=str, help='initial checkpoint to start training from, default: None', default=None)
training_group.add_argument('--plot_loss', action='store_true', help='plot loss versus epoch as we train')
training_group.add_argument('--plot_EqNo', type=str, default="", help='plot loss versus Eq/No for final epoch')
training_group.add_argument('--auxdata', action='store_true', help='inject auxillary data symbol')
args = parser.parse_args()
# set visible devices
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_visible_devices
# checkpoints
checkpoint_dir = os.path.join(args.output, 'checkpoints')
checkpoint = dict()
os.makedirs(checkpoint_dir, exist_ok=True)
# training parameters
batch_size = args.batch_size
lr = args.lr
epochs = args.epochs
sequence_length = args.sequence_length
lr_decay_factor = args.lr_decay_factor
# not exposed
adam_betas = [0.8, 0.95]
adam_eps = 1e-8
checkpoint['batch_size'] = batch_size
checkpoint['lr'] = lr
checkpoint['lr_decay_factor'] = lr_decay_factor
checkpoint['epochs'] = epochs
checkpoint['sequence_length'] = sequence_length
checkpoint['adam_betas'] = adam_betas
# logging
log_interval = 10
# device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using {device} device")
# model parameters
latent_dim = args.latent_dim
num_features = 20
if args.auxdata:
num_features += 1
# training data
feature_file = args.features
# model
checkpoint['model_args'] = (num_features, latent_dim, args.EbNodB, args.range_EbNo, args.rate_Fs)
model = RADAE(num_features, latent_dim, args.EbNodB, range_EbNo=args.range_EbNo,
rate_Fs = args.rate_Fs,
range_EbNo_start=args.range_EbNo_start,
freq_rand=args.freq_rand,gain_rand=args.gain_rand, bottleneck=args.bottleneck,
pilots=args.pilots, pilot_eq=args.pilot_eq, eq_mean6 = not args.eq_ls, cyclic_prefix = args.cp)
if type(args.initial_checkpoint) != type(None):
print(f"Loading from checkpoint: {args.initial_checkpoint}")
checkpoint = torch.load(args.initial_checkpoint, map_location='cpu', weights_only=True)
model.load_state_dict(checkpoint['state_dict'], strict=False)
checkpoint['state_dict'] = model.state_dict()
# dataloader
Nc = model.Nc
H_sequence_length = model.num_timesteps_at_rate_Rs(sequence_length)
G_sequence_length = model.num_timesteps_at_rate_Fs(H_sequence_length)
checkpoint['dataset_args'] = (feature_file, sequence_length, H_sequence_length, Nc, G_sequence_length)
checkpoint['dataset_kwargs'] = {'enc_stride': model.enc_stride}
dataset = RADAEDataset(*checkpoint['dataset_args'], h_file = args.h_file, g_file = args.g_file, auxdata=args.auxdata)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
# optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.Adam(params, lr=lr, betas=adam_betas, eps=adam_eps)
# learning rate scheduler
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer=optimizer, lr_lambda=lambda x : 1 / (1 + lr_decay_factor * x))
if __name__ == '__main__':
# push model to device
model.to(device)
model.move_device(device)
# -----------------------------------------------------------------------------------------------
# run through dataset once with current model but training disabled, to gather loss v EqNo stats
# -----------------------------------------------------------------------------------------------
if len(args.plot_EqNo):
# TODO: move this to a function
print("Measuring loss ve Eq/No over training set with training disabled")
model.eval()
EqNodB_loss = np.zeros((dataloader.__len__()*batch_size,2))
running_total_loss = 0
previous_total_loss = 0
current_loss = 0.
with torch.no_grad():
with tqdm.tqdm(dataloader, unit='batch') as tepoch:
for i, (features,H,G) in enumerate(tepoch):
features = features.to(device)
H = H.to(device)
G = G.to(device)
output = model(features,H,G)
loss_by_batch = distortion_loss(features[..., :20], output["features_hat"][..., :20])
total_loss = torch.mean(loss_by_batch)
# collect running Eq/No stats, measured Eq/No and loss for each sequence in batch
if args.rate_Fs:
tx = output["tx"].cpu().detach().numpy()
S = np.mean(np.abs(tx)**2,axis=1)
N = output["sigma"][:,0]**2 # noise power in B=Fs
CNodB_meas = 10*np.log10(S*model.Fs/N) # S/N = S/(NoB) = S/(NoFs), C = S, C/No = SFs/N
EqNodB_meas = CNodB_meas - 10*np.log10(model.Rs*model.Nc)
else:
tx_sym = output["tx_sym"].cpu().detach().numpy()
Eq_meas = np.mean(np.abs(tx_sym)**2,axis=(1,2))
No = output["sigma"][:,0,0]**2
EqNodB_meas = 10*np.log10(Eq_meas/No)
EqNodB_loss[i*batch_size:(i+1)*batch_size,0] = EqNodB_meas
EqNodB_loss[i*batch_size:(i+1)*batch_size,1] = loss_by_batch.cpu().detach().numpy()
running_total_loss += float(total_loss.detach().cpu())
if (i + 1) % log_interval == 0:
current_loss = (running_total_loss - previous_total_loss) / log_interval
tepoch.set_postfix(
current_loss=current_loss,
total_loss=running_total_loss / (i + 1),
)
previous_total_loss = running_total_loss
# Plot loss against EqNodB for final epoch, using log of loss and Eq/No for
# each sequence. We group losses into 1dB Eq/No bins, kind of like a histogram.
EqNodB_min = int(np.ceil(np.min(EqNodB_loss[:,0])))
EqNodB_max = int(np.ceil(np.max(EqNodB_loss[:,0])))
EqNodB_mean_loss = np.zeros((EqNodB_max-EqNodB_min,2))
# group the losses from training into 1dB wide bins, and find mean for that bin
r = np.arange(EqNodB_min,EqNodB_max)
for i in np.arange(len(r)):
EqNodB = r[i]
x = np.where(np.abs(EqNodB_loss[:,0] - EqNodB) < 0.5)
EqNodB_mean_loss[i,0] = EqNodB
EqNodB_mean_loss[i,1] = np.mean(EqNodB_loss[x,1])
plt.figure(2)
plt.plot(EqNodB_mean_loss[:,0],EqNodB_mean_loss[:,1],'b+-')
plt.grid()
plt.xlabel('Eq/No (dB)')
plt.ylabel('Loss')
plt.show(block=False)
plt.savefig(args.plot_EqNo + '_loss_EqNodB.png')
np.savetxt(args.plot_EqNo + '_loss_EqNodB' + '.txt', EqNodB_mean_loss)
quit()
# ---------------------------------------------------------------------------------------------
# Regular training loop
# ---------------------------------------------------------------------------------------------
if args.plot_loss:
plt.figure(1)
loss_epoch=np.zeros((args.epochs+1))
# Main training loop
for epoch in range(1, epochs + 1):
print(f"training epoch {epoch}...",file=sys.stderr)
# running stats
running_total_loss = 0
previous_total_loss = 0
current_loss = 0.
if args.plot_loss:
plt.figure(1)
with tqdm.tqdm(dataloader, unit='batch') as tepoch:
for i, (features,H,G) in enumerate(tepoch):
optimizer.zero_grad()
features = features.to(device)
H = H.to(device)
if len(args.g_file):
G = G.to(device)
output = model(features,H,G)
else:
output = model(features,H)
loss_by_batch = distortion_loss(features, output["features_hat"])
total_loss = torch.mean(loss_by_batch)
total_loss.backward()
optimizer.step()
scheduler.step()
running_total_loss += float(total_loss.detach().cpu())
if (i + 1) % log_interval == 0:
current_loss = (running_total_loss - previous_total_loss) / log_interval
if args.auxdata:
# sample latest BER
x = features[..., 20:21]*output["features_hat"][..., 20:21]
x = torch.flatten(x)
n_errors = int(torch.sum(x < 0))
n_bits = int(torch.numel(x))
BER = n_errors/n_bits
tepoch.set_postfix(
current_loss=current_loss,
total_loss=running_total_loss / (i + 1),
BER=BER
)
else:
tepoch.set_postfix(
current_loss=current_loss,
total_loss=running_total_loss / (i + 1),
)
previous_total_loss = running_total_loss
if args.plot_loss:
loss_epoch[epoch] = current_loss
if args.plot_loss:
plt.clf()
plt.semilogy(range(1,epoch+1),loss_epoch[1:epoch+1])
plt.grid()
plt.show(block=False)
plt.pause(0.01)
# save checkpoint
checkpoint_path = os.path.join(checkpoint_dir, f'checkpoint_epoch_{epoch}.pth')
checkpoint['state_dict'] = model.state_dict()
checkpoint['loss'] = running_total_loss / len(dataloader)
checkpoint['epoch'] = epoch
torch.save(checkpoint, checkpoint_path)
if args.plot_loss:
plt.savefig(args.output + '_loss.png')
np.savetxt(args.output + '_loss' + '.txt', loss_epoch[1:epoch+1])