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Context
Let us say that we want to optimize .

Taking a variational approach, we can introduce  and optimize the

evidence lower bound:

If the bound is not tight, one ends up optimizing for the bias without improving
the marginal likelihood objective.

log p(y)

q  (x∣y)ψ

ELBO(θ,ψ) = E  log p  (y∣x) − KL(q  (y∣x)∣∣p(x))qψ θ ψ

≤ log p(y)
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Context
Two main approaches exist to tighten the bound:

Model  from a large distribution family so that it can closely match the posterior

distribution (i.e. ef�ciently optimize ).

Tighten the bound using more work (Importance Weighted Autoencoders, IWAEs):

q  (x∣y)ψ

KL(q  (x∣y)∣∣p(x∣y))ψ

L  (ϕ,ψ) = log    .K
IW

K

1

k=1

∑
K

q  (x  ∣y)ψ k

p(x  )p  (y∣x  )k θ k

―――

Variational Inference with Normalizing Flows, arXiv:1505.05770. 
Importance Weighted Autoencoders , arXiv:1509.00519.
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IWAEs
The bias and variance of the estimator vanish for  at a rate .

and

K  ∞ O(1/K)

log p(y) ≥ L  ≥ L  K+1
IW

K
IW

 L  = log p(y).
K  ∞
lim K

IW

―――
Debiasing Evidence Approximations: On Importance-weighted Autoencoders and Jackknife Variational Inference. 4 / 26



Can we get an unbiased estimate with �nite

computational resources?
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The objective can be unbiased based on random truncation of an in�nite
convergent serie  Russian roulette, Kahn (1955).

Rediscovered more recently and independently.

McLeish (2011).

Rhee and Glynn (2012).

 

―――

Use of Different Monte Carlo Sampling Techniques. 
A general method for debiasing a Monte Carlo estimator , arXiv:1005.2228. 
A new approach to unbiased estimation for SDE's, arXiv:1207.2452.

6 / 26



A general method for debiasing a
Monte Carlo estimator

McLeish, 2011
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Unbiased estimator: derivation
Assume the convergent sequence .

Suppose  is a random variable taking �nite non-negative integer values with

Let us de�ne the random variable

where  and .

 can be rewritten as

{X  ,X  , ...}0 1

K

P (K ≥ k) > 0, ∀k > 0.

Y = X  +   0

k=1

∑
K

P (K ≥ k)
∇X  k

∇X  = X  − X  k k k−1 K ∼ P (K)

Y

X  +  ∇X   .0

k=1

∑
∞

k
P (K ≥ k)
I(k ≤ K)
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Unbiased estimator: derivation
 is an unbiased estimate of the limit .Y = X  +  ∇X   0 ∑k=1

∞
k P (K≥k)

I(k≤K)
X  ∞

E  [Y ] = X  +  ∇X   K∼P (K) 0

k=1

∑
∞

k
P (K ≥ k)

E  [I(k ≤ K)]K∼P (K)

= X  +  ∇X  = X  .0

k=1

∑
∞

k ∞
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Unbiased estimator: variance
Any distribution satisfying  yields an unbiased

estimator.

 should be chosen in order to provide a low-variance estimator.

P (K ≥ k) > 0, ∀k > 0

P (K ≥ k)
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Unbiased estimator: variance
It can be shown that:

Thus, the variance can be unbiasedly estimated using:

σ  = E[   (1 − P (K ≥ k))Y
2

k=1

∑
∞

P (K ≥ k)
(∇X  )k

2

+2    (1 − P (K ≥ j))].
j=1

∑
∞

k=j+1

∑
∞

P (K ≥ j)
∇X  ∇X  k j

E[   (1 − P (K ≥ k))
k=1

∑
N

P (K ≥ k)2

(∇X  )k
2

+2    (1 − P (K ≥ k))].
j=1

∑
N

k=j+1

∑
N

P (K ≥ j) P (K ≥ k)2

∇X  ∇X  k j
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Unbiased estimator: variance
The variance can also be written as:

where , , .

Suppose we wish to minimize the variance subject to a constraint on the
expected value of K, i.e.

subject to

σ  =   − (X  − X  )Y
2

k=1

∑
∞

P (K ≥ k)

2(X  − ξ  )∇  − ∇  ∞ k u  k σ  

k
2

∞ 0
2

ξ  =  k 2
μ  +μ  k k−1 ∇  = μ  − μ  μ  k k k−1 ∇  = σ  − σ  σ  k k k−1

min  {σ  }P (K≥k) Y
2

 P (K ≥ k) = C.
k

∑
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Unbiased estimator: variance
Introducing the Lagrangian

and differentiating with respect to  gives the minimum variance

where  is determined by the contraint .

The minimum variance  depends on  which is not practical.

Yet, it is common to have information about the rate of convergence of the
sequence that can be used to design an asymptotically appropriate sequence 

.

σ  − λ(  P (K ≥ k) − CY
2

k

∑

P (K ≥ k)

P (K ≥ k) ∼ c  ∣2(X  − ξ  )∇  − ∇  ∣∞ k μ  k σ  

k
2

c =  

λ
1

 P (K ≥ k) = C∑k

P (K ≥ k) X∞

P (K ≥ k)
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Unbiased estimator: variance

Example

Let us assume ,  and .

Let us use a shifted geometric distribution .

Solving the constrained problem with  gives the optimum values

of  and .

X  − X  ∼ ar∞ k
k ∣r∣ < 1 X  = b∞

P (K ≥ k) = qk−s

E  [K] = cp(K)

q = ∣r∣ s ∼ c −  1−∣r∣
∣r∣
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Unbiased estimator: variance

Example

Solving the constrained problem with  gives the optimum values

of  and .

Intuitively, when the rate of convergence if fast (  is small), the minimum

variance is achieved by a large guarantee on the value of  (  is large).

The residual budget  is used to produce unbiasedness.

E  [K] = cp(K)

q = ∣r∣ s ∼ c −  1−∣r∣
∣r∣

r

K s

c − s =  1−∣r∣
∣r∣

15 / 26



Unbiased estimator: variance

Example: bias-variance tradeoff

.

If we were to stop after  iterations (compute  which is biased), the MSE

would be smaller by a factor of approximately .

MSE = V ariance +Bias2

c X  c

∣r∣  1−∣r∣
−2∣r∣
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Unbiased estimator: example

Simpson's rule

Consider using the trapezoidal rule for estimating .

Here,  is the estimate of the integral with  function evaluations on the

grid . Of course, .

 is chosen as  with  and  which gives an

expected number of function evaluations of 7.

 sin(πx)dx∫0
1

X  k 2k+1

0, Δx, ..., 2 Δx = 1k lim  X  =  sin(πx)dxk  ∞ k ∫0
1

P (K ≥ k) p(1 − p)k−s p =  4
3 s = 2
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Unbiased estimator: example

Simpson's rule

Variance of the Monte Carlo estimator: .

Variance of the unbiased estimator: .

More than a two thousand-fold gain in ef�ciency over crude Monte Carlo!

≈ 0.0135

≈ 6.41 × 10−6
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Let us go back to IWAEs

An unbiased estimator of the log marginal likelihood can be computed as

= L  +   ,K ∼ p(K).L̂ 1
IW

k=1

∑
K

P (K ≥ k)
L  − L  k

IW
k−1
IW

―――

SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models , arXiv:2004.00353.
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Unbiasing the estimator may potentially introduce high variance.

This may not be an important issue with SGD.

Lower bias is prefered over lower variance.

―――

Credits: SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models , arXiv:2004.00353.
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―――

Credits: SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models , arXiv:2004.00353.
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Other application

Residual Flows for Invertible Generative Modeling

―――
Residual Flows for Invertible Generative Modeling, arXiv:1906.02735. 22 / 26



Residual Flows for Invertible Generative Modeling

Invertible residual networks (i-ResNets) are composed of simple
transformations . These transformations are invertible (Banach

�xed point theorem) if  is contractive, i.e. with Lipschitz constant strictly less

than unity, which can be enforced using spectral normalization.

y = x+ g(x)
g

―――
Credits: Residual Flows for Invertible Generative Modeling, arXiv:1906.02735. 23 / 26



Residual Flows for Invertible Generative Modeling

Using the change of variables theorem allows to evaluate the log marginal
likelihood:

Previous work used a �xed truncation to approximate the in�nite serie.

This naïve approach has a bias that grows with the number of dimensions of  and the

Lipschitz constant of .

As such, the �xed truncation estimator requires a careful balance between bias and
expressiveness, and cannot scale to higher dimensional data.

log p(y) = log p(f(y)) + tr(   [J  (y)] ).
k=1

∑
∞

k

(−1)k+1

g
k

y

g
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Residual Flows for Invertible Generative Modeling

Without decoupling the objective and estimation bias, i-ResNets end up
optimizing for the bias without improving the actual maximum likelihood
objective.

Residual �ows use the Russian roulette estimator in order to produce an
unbiased estimate of the in�nite serie.

Competitive with state-of-the-art �ow-based models.

―――
Credits: Residual Flows for Invertible Generative Modeling, arXiv:1906.02735. 25 / 26



The end.
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