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Context

e Letus say that we want to optimize log p(y).

e Taking avariational approach, we can introduce g, (2 |y) and optimize the
evidence lower bound:

ELBO(0,v) = Eqy, log ps(y|z) — K L(gy(y|z)||p(z))

< log p(y)

e If the bound is not tight, one ends up optimizing for the bias without improving
the marginal likelihood objective.
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Context

e Two main approaches exist to tighten the bound:

o Model gy (z|y) from a large distribution family so that it can closely match the posterior
distribution (i.e. efficiently optimize KL (g (z|y)||p(z|y))).

o Tighten the bound using more work (Importance Weighted Autoencoders, IWAEs):

iEk Pe \wk)
L (¢, ) =1lo E i

Variational Inference with Normalizing Flows, arXiv:1505.05770.
Importance Weighted Autoencoders, arXiv:1509.00519.
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IWAESs

e The bias and variance of the estimator vanish for K’ — oo atarate O(1/K).
Iw Iw
logp(y) > L1 = Lx
and

lim L2V =logp(y).

K—oo

Debiasing Evidence Approximations: On Importance-weighted Autoencoders and Jackknife Variational Inference. 4/26



Can we get an unbiased estimate with finite
computational resources?
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e The objective can be unbiased based on random truncation of an infinite
convergent serie — Russian roulette, Kahn (1955).

e Rediscovered more recently and independently.
o MclLeish (2011).
o Rhee and Glynn (2012).

Use of Different Monte Carlo Sampling Techniques.
A general method for debiasing a Monte Carlo estimator, arXiv:1005.2228.

A new approach to unbiased estimation for SDE's, arXiv:1207.2452. ey



A general method for debiasing a
Monte Carlo estimator

McLeish, 2011



Unbiased estimator: derivation

e Assume the convergent sequence { X, X1, ... }.

e Suppose /C is a random variable taking finite non-negative integer values with
P(K>k)>0,Vk > 0.

e Let usdefine the random variable

K
B VX,
Y_Xo—i_;P(]CZk)

where VX = X}, — X;, 1and K ~ P(K).

e Y canberewritten as

= I(k <K)
X0+;VXkP(IC>k)'
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Unbiased estimator: derivation

e Y =X, + Zk , VX, P(( )) is an unbiased estimate of the limit X ..
Ex~pioyll(k < K)]
Ex-pi))Y]=Xo+ » VX
(K) ; (/C > k)
=Xo+ ) VX =

k=1



Unbiased estimator: variance

e Any distribution satisfying P(JC > k) > 0,Vk > 0 yields an unbiased
estimator.

e P(K > k) should be chosen in order to provide a low-variance estimator.
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Unbiased estimator: variance

e |t can be shown that:

o = E[; P((YCXZk)k) (1—P(K > k)
+2 2 kgl foc’“zjj; (1— P(K > j5))]

e Thus, the variance can be unbiasedly estimated using:

N
E[
k=1

(VX3)?
P(K > k)?

(1- P(K > k))

g VX VX
#2202 pres jppies Rt P2 R

j=1 k=j+1




Unbiased estimator: variance

e The variance can also be written as:

2 2(Xoo = &)V, — Vo2
P(K > k)

oy = — (Xoo — Xo)?

k=1
+g—
where & = B2 V) = g — p-1, Vo, = 0k — k1.

e Suppose we wish to minimize the variance subject to a constraint on the
expected value of K, i.e.

minp(;CZk){J%}

subject to

Y P(K>k)=C.
k
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Unbiased estimator: variance

¢ Introducing the Lagrangian

oy —M) _P(K>k)-C
k

and differentiating with respect to P(/C > k) gives the minimum variance

P(K 2 k) ~ ey /12(Xo = &)V, — Vg

1. . ,
where ¢ = 3 is determined by the contraint ) , P(IC > k) = C.
e The minimum variance P(/C > k) depends on X which is not practical.

e Yet,itis common to have information about the rate of convergence of the
sequence that can be used to design an asymptotically appropriate sequence

P(K > k).
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Unbiased estimator: variance

Example

o Letusassume X, — X5 ~ ar® r| < land X, = b.

e Let us use a shifted geometric distribution P(JC > k) = ¢" .
e Solving the constrained problem with ]Ep(,c) [K] = cgives the optimum values

7|

of ¢ = \r|ands~c—1_—|r|.
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Unbiased estimator: variance

Example

* Solving the constrained problem with [, | K| = cgives the optimum values

ofg = |rlands ~ c — 1Y|‘r|.

e Intuitively, when the rate of convergence if fast (r is small), the minimum
variance is achieved by a large guarantee on the value of K (s is large).

e Theresidual budgetc — s = 1|_L’|T’ is used to produce unbiasedness.

—— ~ Variance reduction /

~ Budget to produce /
unbiasedness /
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Unbiased estimator: variance

Example: bias-variance tradeoff

e MSE = Variance +Bias> .

e |f we were to stop after citerations (compute X . which is biased), the MSE
=2
would be smaller by a factor of approximately || /.

4 £ 5 1 i L 1 1 L i
o oA [ -3 0.3 (a1} [ ] [a N =3 o oo (=R ]

Figure 1: Relative increase in MSE due to debiasing the sequence.



Unbiased estimator: example

Simpson's rule

, , . o 1 .
e Consider using the trapezoidal rule for estimating fo sin(mx)dz.

e Here, X}, is the estimate of the integral with 2k+1 function evaluations on the
. 1 .
grid 0, Az, ..., 28 Az = 1. Of course, limy,_, oo X = fo sin(mwz)dz.

« P(IC > k)ischosenasp(1 — p)* * withp = 2 and s = 2 which gives an
expected number of function evaluations of 7.
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Unbiased estimator: example

Simpson's rule

e Variance of the Monte Carlo estimator: ~ 0.0135.
e Variance of the unbiased estimator: ~ 6.41 x 1075,

e More than a two thousand-fold gain in efficiency over crude Monte Carlo!
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Let us go back to IWAEs

e Anunbiased estimator of the log marginal likelihood can be computed as

- ﬁIW £IW
= ! +Z PIES ) L K ~ p(K).

SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models , arXiv:2004.00353. 50
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e Unbiasing the estimator may potentially introduce high variance.
o This may not be an important issue with SGD.

o Lower bias is prefered over lower variance.

Table 1: Test negative log-likelihood of the trained model, estimated using IWAE(k=5000). For
SUMO, k refers to the expected number of computed terms.

MNIST OMNIGLOT
Training Objective k=5 k=15 k=50 k=5 k=15 k=50
ELBO (Burda et 2., 2016) 86.47 — 86.35 107.62 — 107.80
IWAE (Burda et 2., 2016) 85.54 — 84.78 106.12 — 104.67
ELBO (0ur impl) 85.97+£0.01 85.99+0.05 85.88+0.07 106.79+0.08 106.98+0.19 106.8440.13
IWAE (ur impl.) 85.28+0.01 84.89+0.03 84.50+0.02 104.96+0.04 104.53+0.05 103.99+0.12
JVT (Our impl.) — — 84.75+0.03 — — 104.08+0.11
SUMO 85.09+0.01 84.71+0.02 84.40+0.03 104.85+0.04 104.29+0.12 103.79+0.14

Target log probability ~ Training w/ IWAE (k=15) Training w/ SUMO (k=15) Model samples
Figure 1: We trained latent variable models for posterior inference, which requires minimizing log

probability under the model. Training with IWAE leads to optimizing for the bias while leaving the
true model in an unstable state, whereas training with SUMO—though noisy—leads to convergence.

Credits: SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models, arXiv:2004.00353.
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6 — == |WAE (k= 15) — == IWAE (k= 1500)
- == |WAE (k=175) —_— SUMO(K = 15)
4 — == |WAE (k=150) = SUMO(k = 150)

Estimate of KL(pg||p ")
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Figure 2: Training with reverse KL requires min-
imizing log p(z). SUMO estimates are unbiased
and trains well, but minimizing the lower bound
IWAE with small & leads to estimates of —oo.

Credits: SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models, arXiv:2004.00353. T
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Other application

Residual Flows for Invertible Generative Modeling

Residual Flows for Invertible Generative Modeling, arXiv:1906.02735. 22/26



Residual Flows for Invertible Generative Modeling

e |nvertible residual networks (i-ResNets) are composed of simple
transformationsy = « + g(«). These transformations are invertible (Banach

fixed point theorem) if g is contractive, i.e. with Lipschitz constant strictly less
than unity, which can be enforced using spectral normalization.
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Figure 1: Pathways to designing scal-
able normalizing flows and their en-
forced Jacobian structure. Residual
Flows fall under unbiased estimation
with free-form Jacobian.

Credits: Residual Flows for Invertible Generative Modeling, arXiv:1906.02735.
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Residual Flows for Invertible Generative Modeling

e Using the change of variables theorem allows to evaluate the log marginal
likelihood:

0 Nk41
log p(y) = logp(F()) + tr(3" 2 (7, ()]

k
k=1
e Previous work used a fixed truncation to approximate the infinite serie.

o This naive approach has a bias that grows with the number of dimensions of ¢ and the
Lipschitz constant of g.

o As such, the fixed truncation estimator requires a careful balance between bias and
expressiveness, and cannot scale to higher dimensional data.
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Residual Flows for Invertible Generative Modeling

e Without decoupling the objective and estimation bias, i-ResNets end up
optimizing for the bias without improving the actual maximum likelihood
objective.

e Residual flows use the Russian roulette estimator in order to produce an
unbiased estimate of the infinite serie.

o Competitive with state-of-the-art flow-based models.
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The end.
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