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Chapter 1
Evolutionarily stable strategies and replicator
dynamics in asymmetric two-population games

Elvio Accinelli and Edgar J. Sánchez Carrera

Abstract We analyze the main dynamical properties of the evolutionarily sta-
ble strategy (E S S ) for asymmetric two-population games of finite size and its
corresponding replicator dynamics. We introduce a definition of E S S for two-
population asymmetric games and a method of symmetrizing such an asymmetric
game. We show that every strategy profile of the asymmetric game corresponds to a
strategy in the symmetric game, and that every Nash equilibrium (N E ) of the asym-
metric game corresponds to a (symmetric) N E of the symmetric version game. We
study the (standard) replicator dynamics for the asymmetric game and we define the
corresponding (non-standard) dynamics of the symmetric game. We claim that the
relationship between N E , E S S and the stationary states (S S ) of the dynamical
system for the asymmetric game can be studied by analyzing the dynamics of the
symmetric game.

1.1 Introduction

Evolutionary dynamics originally appeared in biology and then started to be used in
economics. Evolutionary stability, introduced by Maynard Smith and Price (1973),
is a criterion for the robustness of an incumbent strategy against the entry of indi-
viduals or mutants using a different strategy. The framework considered is a conflict
within a homogenous population. This game is symmetric since all players have the
same strategy set and the payoff for a given strategy depends only on the strategies
being played and not on who is playing them.
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2 Elvio Accinelli and Edgar J. Sánchez Carrera

Nevertheless, many economic applications come from multi-population rather
than single-population dynamics on asymmetric environments. So, in most appli-
cations, the game is not symmetric and involves at least two players with different
strategies and each player’s role is represented by a different population. In the spirit
of Nash’s (1950) “mass action interpretation”, each type of player is drawn from
his or her “player-role population”. For instance, the players may play the role of
buyers or sellers, incumbents or entrants in oligopolistic markets, workers or firms,
or the social relationships between migrants and residents; all of them with non-
homogeneous behaviors on the state of the economy and different attitudes towards
- and perceptions about - development efforts or environmental quality of the state
of the economy and so forth.

Recall that, from the framework of symmetric games, there is a seminal refine-
ment of the Nash equilibrium (N E ) concept that is the notion of Evolutionarily
Stable Strategy (E S S ) (see Maynard Smith and Price (1973) and Maynard Smith
(1974)). We know that every E S S is a stable strategy against mutants, i.e. the
strategy is robust when the ***** population is invaded by a small population play-
ing a different strategy. Furthermore, an E S S is an asymptotically stable steady
state of the associated replicator dynamics. The relationship between N E , E S S
and the steady states (S S ) of the replicator dynamics are well known (see Weibull
(1995)).

In this paper, we consider the evolution of two populations facing a conflictive
situation modeled by an asymmetric normal form game. The main purpose of this
work is to analyze the evolution and stability of the behaviors of the populations,
involved in asymmetric games. Our approach is to symmetrize the asymmetric game
because it give us the possibility to characterize the E S S , using the well known
properties of these strategies for the case of symmetric games. We introduce an
approach to symmetrize a game that differs from the usual ones of symmetrizing a
bimatrix game (see Hofbauer and Sigmund (1998) and Cressman (2003)).

We extend the concept of E S S for asymmetric two-population games, fol-
lowing the definition of Selten (1980) and Samuelson (1998), but in those papers
it was not analyzed the evolutionary dynamics of such a population. We exhibit
connections between E S S , N E and S S for these two dynamics. Close to our
argument is the one by Fishman (2008). In particular, we consider the necessity
of requiring independence in the invader’s frequencies that precludes ”symmetriza-
tion”. By symmetrizing the game, we get the advantage of generalizing the standard
definition of E S S and its relationship with the stability of the dynamical equilib-
ria of the replicator dynamics and with the strategic stability for asymmetric games.
We note that, much of the topic of this paper can be generalized for cases of fi-
nite (n > 2) asymmetric populations. However, to simplify the notation, we shall
consider the case of two asymmetric populations.

Following this approach it is straightforward to see that a strategic profile is an
E S S if and only if it is a strict Nash equilibrium (see Balkenborg and Schlag
(1995, 2007); Cressman (1992, 2003, 2006); Samuelson (1998); Selten (1980);
Weibull (1995)) and that every E S S is an asymptotically stable steady state of
the replicator dynamics (see Retchkiman (2007); Samuelson and Zhang (1992)).
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The paper is organized as follows. Section 1.2 draws the notation and basic defi-
nitions to set up the baseline model, namely a two-player asymmetric normal-form
game. Section 1.3 defines the E S S for our model. In section 1.4, we introduce the
symmetric version of an asymmetric two population game. Section 1.5 studies the
dynamics of our model. Section 1.6 states the relationships between E S S , N E
and S S . Section 1.7 draws some concluding remarks.

1.2 The model

Consider a normal-form (strategic) game with a player set composed by individuals
that comprise τ populations, namely residents R and migrants M i.e. τ = {R,M}.
Each population splits in different clubs denoted by nτ

i with i ∈ {1, ...,kτ}, i.e.
(nR

1 , ...,nR
kR

) and (nM
1 , ...,nM

kM
). The split depends on the strategy agents play or the

behavior that agents follow. Strategies are in correspondence with the clubs. Individ-
uals belonging to the nτ

i club are called i−strategists. Thus, the set Sτ of pure strate-

gies are SR =
{

nR
1 , ...,nR

kR

}
and SM =

{
nM

1 , ...,nM
kM

}
. For each population τ ∈{M,R}

we represent the set of mixed strategies by

∆
τ =

{
x ∈ Rkτ :

kτ

∑
j=1

x j = 1, x j ≥ 0, j = 1, ...,ni

}
A profile distribution x = (x1, ...,xkτ

) ∈ ∆ τ can bee seen as the individual behavior
of a player spending a part of his time x j in the nτ

j−club. Hence, the population state
represents the vector of individuals’ share belonging to each club i ∈ {1, ...,kτ}, for
all τ ∈ {R,M}. The normal form representation of our described game is given by
the next matrix payoff

R� M y1 · · · ykM

x1 a11,b11 · · · a1kM ,b1kM
...

... · · ·
...

xkR akR1,bkR1 · · · akRkM ,bkRkM

(1.1)

where ai j denotes the payoff of an i−strategist from population R playing against a
j−strategist from population M. Similarly, we define bi j by replacing M by R and
vice-versa.

The matching between individuals from different populations is random. The
i−strategist’s expected payoff, supposing that the i−strategist’s belongs to the
nR

i −club from population R is given by

ER(nR
i | y) =

kM

∑
j=1

ai jy j, ∀ nR
i ∈ SR
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where x is the clubs’ distribution for the other population M.
Similarly, the expected payoff of the i−strategist belonging to nM

i −club from
population M is given by

EM(nM
i /x) =

kR

∑
j=1

bi jx j, ∀nM
i ∈ SM

where x is the clubs’ distribution for the other population R. Rational individuals
follow the strategic profile that maximizes their expected payoffs.

1.3 The asymmetric game and the definition of E S S

Consider the two-population normal form game

G =
{
(τ = {R,M}) , Sτ , (A = (ai j) , B = (bi j))

}
(1.2)

where each population splits into clubs denoted by nτ
i with i ∈ {1, ...,kτ} and τ =

{R,M}. Hence:

• The population of residents is the set: R =
⋃kR

i=1 nR
i , and ∀ h 6= j nR

h
⋂

nR
j = /0.

• The population of migrants is the set: M =
⋃kM

i=1 nM
i , and ∀ h 6= j nM

h
⋂

nM
j = /0.

Let p ∈ ∆ R be the profile distribution of individuals’ behavior from population R
and let q ∈ ∆ M be the profile distribution of individuals’ behavior in population M
is at time t0.

Let us postulate that an invasion occurs like a post-entry population at a post-
period of time t1 > t0, by a small number of individuals of both types associated
with an alternative strategy profile (q̄, p̄). The profile distribution from population R
after suffering a small mutation is

qε = (1− ε)q+ ε q̄,

which is called the fitness of the post-entry population in M. Similarly, the profile
distribution from population R after suffering a small mutation is

pε = (1− ε)p+ ε p̄.

Definition 1. Let (p∗,q∗) ∈ ∆ R×∆ M be a profile of mixed strategies. We say that
the profile (p∗,q∗) is an E S S for an asymmetric two-population normal form
game G, if for each pair (p̄, q̄) 6= (p∗,q∗) ∈ ∆ R×∆ M there exists ε̄ such that:

1) ER(p∗/q∗ε) > ER(p̄/q∗ε)

2) EM(q∗/p∗ε) > EM(q̄/p∗ε),
(1.3)
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for all ε , 0 < ε ≤ ε̄ , where p∗ε = (1− ε)p∗+ ε p̄ and q∗ε = (1− ε)q∗+ ε q̄ are the
respective post-entry populations.

Hence, individuals’ behavior who adopt an E S S brings more offspring (with
higher fitness) than the mutant individuals’ behavior from the post-entry population.
It has already been noticed by Selten (1980) that an evolutionary stable strategy
pair is not only stable when mutants appear in one of the populations but also if
mutants appear in both populations. Definition 1 can be extended to the case of
multipopulation models.

The following Theorem characterizes the E S S in terms of Nash equilibria (see,
for instance, Swinkels J., 1992).

Proposition 1. A profile x is E S S if and only if x is a strict Nash equilibrium.

The evolutive properties of the E S S and its relationship with the set of Nash
equilibria and the stationary states (S S ) of the replicator dynamics for the case
of symmetric games are well known (see Hofbauer and Sigmund (1998); Weibull
(1995)). Then, with the purpose of analyzing the dynamical properties of E S S , we
introduce the symmetric (one-population) version of the asymmetric two-population
game G.

1.4 The symmetrized game

Consider the asymmetric two-population normal form game G (see (1.2)), where
each population splits into clubs nR

1 , ...,nR
kR

and nM
1 , ...,nM

kM
and the payoff matrixes

are A and B, respectively. Now, instead of pairwise matching, we consider the case
that all players are interacting together, i.e. all players are “playing the field”. Thus,
the payoff of a player is determined by his own strategy and the strategies of all
other players. So, the corresponding symmetrized one-population game is defined
by as follows:

Let G be an asymmetric game defined by (1.2). Let P = R∪M be the big popula-
tion. Let N =

{
nR

1 , ...,nR
kR

,nM
1 , ...,mM

kM

}
be the set of pure strategy for P. The matrix

payoff for the big population P is given by:

Π =
[

0 A
BT 0

]
(1.4)

where we assume that the elements of A(·) and B(·) are “well behaved” in the sense
of being continuously differentiable.

The symmetrized game version of the asymmetric game G is Gs = {P, N, Π}.
For each asymmetric two-population game G, there exists a corresponding sym-
metric version Gs. It is worth to note that, these two versions are not equivalent in
several aspects but every Nash equilibrium of the asymmetric game is a Nash equi-
librium of its symmetric version. Our purpose is to characterize the main dynamics
properties of the E S S .
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Let us consider the strategic profile (p, q) ∈ ∆ R×∆ M and the profile distribution
x = (x1, ...,xkR+kM ) verifying the following identities:

xi =


pi

|R|
|R|+|M| if 1≤ i≤ kR

qi
|M|
|R|+|M| if kR < i≤ kR + kM

(1.5)

where |·| denotes the cardinality on the sets R and M defining the corresponding
mixed strategy for the symmetric version Gs.

Proposition 2. For each strategic profile (p, q) ∈ ∆ R × ∆ M , there exists a mixed
strategy x ∈ ∆ P of the corresponding one-population game, and vice-versa.

Proof. Let (p, q) ∈ ∆ R×∆ M be a strategic profile for the asymmetric game. Con-
sider x ∈ ∆ P given by the expression (1.5), i.e. x =

(
|R|

|M|+|R| p, |M|
|M|+|R|q

)
. Thus, x

is a mixed strategy for the symmetric game. To see the reciprocal, suppose that
x ∈ ∆ P. Since xi = |Ri|

|R|+|M| if 1≤ i≤ kR and xi = |Mi|
|R|+|M| if kR < i≤ kR + kM , we get

pi = |R|+|M|
|R| xi, and qi = |R|+|M|

|M| xi.

Let us denote by Bτ(z) the set of best replies for the population τ = {M,R},
where the profile distribution over the clubs in the opposite population τ ′ 6= τ is
given by z.

The following propositions offer an insight about the relationship between the set
of N E and the set of E S S for asymmetric games and their respective symmetric
versions.

Proposition 3. If the strategic profile (p∗, q∗) is a N E of the original asymmetric
two-population game, then the corresponding x∗ defined by the expression (1.5) is
the symmetric N E in the corresponding symmetric version.

Proof. Suppose that the profile (p∗,q∗) is a N E of the asymmetric two-population
game. Let x∗ = (x∗1, ...,x

∗
kM+kR

) be the corresponding strategy in the corresponding
symmetrized one-population game. Then, p∗ ∈BR(q∗) and q∗ ∈BM(p∗) implies that
x∗Px∗ ≥ yPx∗, for all y ∈ ∆ P because

yPx∗ =
|M||R|

(|M|+ |R|)2

(
qBT p∗+ p∗Aq

)
≤ |M||R|

(|M|+ |R|)2

(
q∗BT p∗+ p∗Aq∗

)
= x∗Px∗.

Proposition 4. If the profile (p∗, q∗) is a strict Nash equilibrium for the asymmetric
two population game, then the corresponding x∗ is a strict Nash equilibrium for the
symmetric version.

Proof. Let (p∗,q∗) be a strict Nash equilibrium for the asymmetric two population
game and let x∗ be the corresponding profile for the symmetric version. Assume that
there exist y 6= x∗ ∈ ∆ p, such that yΠx∗ = x∗Πx∗. Using Proposition 2, there exist
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p 6= p∗ such that pAq∗ ≥ p∗Aq∗ or, there exist q 6= q∗ such that p∗Bq≥ p∗Bq, which
is in contradiction with our assumption.

Proposition 5. If the profile (p∗,q∗) is an E S S for the asymmetric two-population
game, then the corresponding x∗ is an E S S for the symmetric version.

Proof. Let (p∗,q∗) be an E S S . By Proposition 1, (p∗,q∗) is a strict Nash equilib-
rium. From Proposition 4, the corresponding strategy x∗ is a strict Nash equilibrium
for the symmetric version and it is straightforward to see that the reciprocal of this
Proposition does not hold.

1.5 The dynamics of the model

The symmetric version of the asymmetric game allows us to characterize the main
dynamical properties of the asymmetric game, because these properties are well
known in the symmetric case.

Consider the asymmetric two-population normal form game G (see 1.2).
Let nτ

i (t) be the number of individuals at time t belonging to the i−club in the
population τ . Let pi(t) be the share of individuals in the i−club from the population
R and, similarly, let qi(t) the share of individuals in the i−club from the population
M, at time t. Hence,

pi(t) =
nR

i
|R|

and

qi(t) =
nM

i
|M|.

The vector (p(t), q(t)) is the profile distribution (or population state) at time t. Fur-
thermore, p(t) ∈ ∆ R and q(t) ∈ ∆ M .

Recall that the members of the i− club from population τ are called i−strategists
from the population τ ∈ {R,M}. Rational individuals choose strategies to maximize
their expected payoffs. Let z0 = (p0,q0) be the strategic profile at time t = 0 for the
asymmetric two-population game G. According to the rationality assumption, we
define:

ṗi = ((eR
i − p)Aq)pi, i = 1, ...,kR

q̇i = ((eM
i −q)BT p))qi, i = 1, ...,kM,

(1.6)

where eR
i is the i−canonical vector in RR and eM

i is the canonical i−th vector in
the RM . The differential equation (1.6) represents the clubs’ evolution for each pop-
ulation. For the system (1.6), a solution of the form ξ (t,z0) = (ξ1(t,z0),ξ2(t,z0))
represents the evolution of the population states with initial state given by z0.

From system (1.6), each time t the club of the i−strategists in each population
increases if and only if the expected payoff of the i−strategy is greater than the
average payoff, and reciprocally.
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For each pair (p(t),q(t)) in G, there exists a corresponding mixed strategy x(t)
in the symmetric version Gs given by the expression (1.5).

The dynamical system (1.6) has a corresponding dynamical system, namely the
replicator dynamics, (see Taylor and Jonker, 1978) of the symmetric one-population
game given by

ẋi = ((ei− x)Px)xi (1.7)

where x = (x1, ...,xkR+kM ), xi is given by the expression (1.5), and ei is the i− canon-
ical vector in RkR+kM .

We analyse the relationship between N E , E S S and S S of the system (1.6)
of the symmetric version game Gs.

If a pair (p̄, q̄) is a stationary state of the system (1.6) then the corresponding x̄ is
a stationary state for the dynamical system (1.7). Furthermore, every strictly positive
stationary state of the dynamical system (1.6) is a N E for the corresponding asym-
metric two-population game. Every N E of an asymmetric two-population game
is a stationary state for its corresponding dynamical system given by (1.6). Hence,
we can conclude that the set of N E of an asymmetric two-population game is a
subset of the set S S corresponding to the dynamical system (1.6). Every N E of
a two-population game is a stationary state for the corresponding dynamical system
(1.7).

1.6 Evolutionarily stable strategies and Liapunov’s stability

Denote by A S the set of asymptotically stable steady states. From the well known
relations between E S S , N E and S S for the symmetric cases (see Weibull
(1995)), the following relationship holds for every asymmetric two-population game

E S S ⊆A S , (1.8)

and
N E ⊆S S . (1.9)

Proposition 6. For an asymmetric two-population game, if (p∗,q∗) is an asymptot-
ically stable steady state of the dynamical system (1.6), then (p∗,q∗) is a N E .

Proof. If (p∗,q∗) ∈ AS for the dynamical system (1.6) then it is stationary state. If
p∗> 0 and q∗> 0 then (p∗,q∗) is a N E for the asymmetric game. Now we consider
the case where some strategy is absent in p∗ or in q∗. Without loss of generality we
assume that p∗j = 0. Suppose that (p∗,q∗) is not a N E . Then, there exists some
pure strategy j 6∈ supp(p∗) such that ER(eR

j /q∗) = eR
j Aq∗ > p∗Aq∗ = ER(p∗/q∗).

Assume that a perturbation affects the distribution p∗ and that in the population
R some j−strategist appears. The post-entry population at time t, is pε(t) = (1−
ε(t))p∗+ ε(t)eR

j . Substituting in the j− differential equation of (1.6), we obtain
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ṗε j = ε̇ = [(eR
j − pε)Aq∗]ε. (1.10)

Define F(ε) = (eR
j − pε)Aq∗. Note that F(0) = (eR

j − p∗)Aq∗ and F ′(0) = (p∗−
eR

j )Aq∗. The Taylor polynomial is F(ε) = F(0)+ F ′(0)ε + 0(ε2). Considering the
first order approximation equation (1.10) gives

ε̇ = [(eR
j − p∗)Aq∗]ε.

In the population R, the members in the nR
j club increase, contradicting our claim

that (p∗,q∗) is an asymptotically stable steady state with nR
j = 0.

We now study the connection between E S S and the replicator dynamics in an
asymmetric game. We will use the following Proposition (see Taylor and Jonker
1978).

Proposition 7. For symmetric homogeneous population game every E S S is an
asymptotically stable steady state of the replicator dynamics.

Theorem 1. For the asymmetric two-population game, we obtain the following
chain of inclusions:

E S S ⊆A S ⊆N E ⊆S S .

Proof. Let (p∗,q∗) be an E S S for an asymmetric game and let x∗ be the corre-
sponding strategic profile in its symmetric version. So, from Proposition 1, it follows
that (p∗,q∗) is a strict Nash equilibrium. By Proposition 4, it follows that the sym-
metric strategic profile of every strict Nash equilibrium of an asymmetric game is
an strict N E . Then x∗ is a strict Nash equilibrium for the symmetric version, and
then x∗ is a E S S . By Proposition 7, it follows that x∗ is an asymptotically sta-
ble steady state of the replicator dynamics. Then, (p∗q∗) is an asymptotically stable
steady state for the asymmetric version and is a N E .

Bomze, I. (1986) shows that every asymptotically stable steady state in the ho-
mogeneous population replicator dynamics corresponds to a Nash equilibrium that
is trembling hand. However, using the symmetric version of a non-homogeneous
asymmetric n−population the following Proposition holds:

Corollary 1. Every E S S of a non-homogeneous asymmetric n−population game
is trembling hand and isolate.

Proof. Let (p∗,q∗) be an E S S for an asymmetric game and let x∗ be the cor-
responding strategic profile in its symmetric version. By Theorem 1, it follows that
every E S S is asymptotically stable for the symmetric version. Hence, x∗ is asymp-
totically stable steady state for the symmetric version. By Bomze (1986), it follows
that x∗ is trembling hand and isolate equilibrium, and so (p∗,q∗) verifies this prop-
erty in the original asymmetric game.
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1.7 Concluding remarks

We extended the definition of evolutionarily stable strategies (E S S ) of symmet-
ric games to asymmetric two-population games. We did it by taking as the strategy
space for the symmetrized game the union of strategies from the two-population
asymmetric game and assigning zero payoffs to all strategy combinations that be-
long to the same player position in the asymmetric game. Hence, evolutionary dy-
namics in a two-population asymmetric game can be analyzed using the well known
properties of the replicator dynamics corresponding to the symmetric version of this
game. This fact may have interest for economic theory and social analysis, where
asymmetric games are useful to analyze the behavior of two populations engaged in
non-cooperative games such as, buyers and suppliers, firms and workers or residents
and migrant populations interacting in a given country or economy.
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