diff --git a/Autoencoder/README.md b/Autoencoder/README.md index c1a8524..64eded3 100755 --- a/Autoencoder/README.md +++ b/Autoencoder/README.md @@ -5,13 +5,15 @@ ## Features +- `Autoencoder is densenet layered with batchnorm layers and multiple skip connections` + - `Select the structure for the DenseNet and see the performance of the model. ` - `Sample autoencoded MNIST Digits can be seen` - `2D Visualize the encoded space of the autoencoder, see the decoded digit for the corresponding latent point` -- `Autoencode your digit drawing` +- `Autoencode your own digit drawing` ## Installation and execution diff --git a/Autoencoder/index.html b/Autoencoder/index.html index 6e84c06..dd3f276 100644 --- a/Autoencoder/index.html +++ b/Autoencoder/index.html @@ -49,25 +49,28 @@ } - +
TensorFlow.js: MNIST Autoencoder
Train a model to autoencode handwritten digits from the MNIST database using the tf.layers
- api.
-
- This examples lets you train a MNIST Autoencoder using a Fully Connected Neural Network (also known as a DenseNet).
+
+ This examples lets you train a MNIST Autoencoder using a Fully Connected Neural Network (also known as a DenseNet) in written in Tfjs
You can select the structure for the DenseNet and see the performance of the model.
The MNIST dataset is used as training data.
+
+
+ Set latent space dimension to 2 for 2d Exploration of the latent space. Otherwise set it high for accurate autoencoding
+
+ Visualization scale determines the scale of 2d pane
@@ -76,7 +79,7 @@