
Aivika 3 User Guide:

Version for .NET Framework and Mono

David E. Sorokin <david.sorokin@gmail.com>,
Yoshkar-Ola, Mari El, Russia

May 4, 2015

mailto:david.sorokin@gmail.com

2

Contents

1 Getting Started 7
1.1 Simulation . 7
1.2 External Parameters . 8
1.3 Ordinary Differential Equations 10
1.4 Simulation Experiment . 13

2 Discrete Event Simulation 17
2.1 Event-oriented Simulation . 17
2.2 Mutable Reference . 19
2.3 Example: Event-oriented Simulation 19
2.4 Variable with Memory . 21
2.5 Process-oriented Simulation . 22
2.6 Example: Process-oriented Simulation 27
2.7 Activity-oriented Simulation . 30
2.8 Example: Activity-oriented Simulation 30

3 Resources 35
3.1 Queue Strategies . 35
3.2 Resource . 36
3.3 Example: Using Resources . 38
3.4 Example: Passivating and Reactivating Processes 40
3.5 Resource Preemption . 43

4 Signals and Tasks 45
4.1 Signals . 45
4.2 Tasks . 47

5 Statistics 49
5.1 Statistics based upon Observations 49
5.2 Statistics for Time Persistent Variables 50

6 Queue Network 53
6.1 Finite Queues . 53
6.2 Infinite Queues . 56
6.3 Stream . 57
6.4 Processor . 60
6.5 Server . 64
6.6 Timing Arrivals . 67

3

4 CONTENTS

6.7 Experiment Providers . 67
6.8 Example: Work Stations in Series 69
6.9 Example: A Machine Tool with Breakdowns 72
6.10 Example: Inspection and Adjustment Stations 78

7 Parameters 85
7.1 Latin Square . 85
7.2 Reading Data from Excel . 85

8 System Dynamics 87
8.1 Memoizing Sequential Computations 87
8.2 Table Function . 89
8.3 Differential Equations . 89
8.4 Difference Equations . 90
8.5 Example: Parametric Financial Model 90
8.6 Example: Linear Array . 96
8.7 Example: Bouncing Ball . 97

9 Agent-based Modeling 99
9.1 Agents and States . 99
9.2 Example: Agent-based Modeling 100

Introduction

... A fews words about simulation in general and Aivika in particular ...

5

6 CONTENTS

Chapter 1

Getting Started

Before we build our first simulation model, we have to introduce some basic
concepts that lie in foundation of the Aivika simulation approach. They widely
use a notion of abstract computation and their practical usability essential de-
pends on the special feature of the F# programming language, which is known
as computation expressions.

If you are already familiar with the F# asynchronous workflow then you
can find the Aivika approach simple and easy to use. Otherwise, it is strongly
recommended that you should be acquainted with the mentioned asynchronous
workflow first.

1.1 Simulation

We can treat the simulation as a function of the simulation run:

namespace Simulation.Aivika

type Simulation<’a> = Simulation of (Run -> ’a)

Here the Run type denotes some object that contains the information about
the current simulation run. Its definition is quite implementation dependent.

There is also a computation expression builder that allows us to create
Simulation computations. The builder has name simulation:

let x : Simulation<’a> = simulation { .. }

Given the specified simulation Specs, we can create a simulation Run and
then launch the simulation to receive the result:

module Simulation =

val run : Specs -> Simulation<’a> -> ’a

val runSeries : int -> Specs -> Simulation<’a> -> seq<Async<’a>>

The simulation specs can contain the information about the start time and
final time of modeling. Since Aivika also allows us to integrate the differential
equations, we must provide the integration time step and the method regardless
of whether they are actually used. Also the specs can define the random number
generator that we can use in the model.

7

8 CHAPTER 1. GETTING STARTED

type Time = float

type Method = Euler | RungeKutta2 | RungeKutta4

type Specs =

{ StartTime : Time;

StopTime : Time;

DT : Time;

Method : Method;

GeneratorType : GeneratorType }

The omitted GeneratorType type allows specifying the random number gen-
erator.

For example, we can use the same seed with the SimpleGeneratorWithSeed

data constructor to get always a reproducible sequence of numbers, which can
be helpful for testing. Below we will use the StrongGenerator data constructor
to get a random number generator of high quality. But you can also use the
SimpleGenerator data constructor. It is quite fast on every platform, but it
returns random numbers of rather poor quality on Windows, while the random
numbers generated on OS X seem to be quite good.

Returning to the main topic, the main idea is that many simulation models
can be ultimately reduced to the Simulation computation. Hence they can
be trivially simulated using the mentioned above run functions by the specified
specs. At least, all models that we will build with help of Aivika are such ones.

Now the following concept may look difficult at a glance, but it is very
important for understanding. All simulation computations in Aivika are in-
terconnected. They can be either transformed to others or can be run within
others. The transformation of computation is usually called lifting in functional
programming.

Aivika defines in different modules a set of inline functions that all have a
common name lift. The following function allows transforming an arbitrary
Simulation computation to something equivalent but defined as another com-
putation denoted below as awkward type with letter m.

module Simulation =

val inline lift : Simulation<’a> -> ^m

It allows transforming the Simulation computation to anything else:

Simulation<’a>

Simulation.lift

��...

1.2 External Parameters

In practice many models depend on external parameters, which is useful for
providing the Sensitivity Analysis.

To represent such parameters, Aivika uses almost the same definition that
it uses for representing the Simulation computation.

type Parameter<’a> = Parameter of (Run -> ’a)

The corresponding computation builder is called parameter:

1.2. EXTERNAL PARAMETERS 9

let x: Parameter<’a> = parameter { .. }

A key difference between two computations Simulation and Parameter is
that the parameter can be memoized before running the simulation so that the
resulting Parameter computation would return a constant value within every
simulation run and then its value would be updated for other runs (in a thread-
safe way).

module Parameter =

val memo : Parameter<’a> -> Parameter<’a>

We usually have to memoize the parameter if its computation is impure and
it depends on performing some side effect such as reading an external file or
generating a random number.

It is natural to represent the simulation specs as external parameters when
modeling.

module Parameter =

val starttime : Parameter<Time>

val stoptime : Parameter<Time>

val dt : Parameter<Time>

Since we provide the random number generator with the simulation specs,
it is also natural to generate the random numbers within the Parameter com-
putation.

module Parameter =

val randomUniform : float -> float -> Parameter<float>

val randomNormal : float -> float -> Parameter<float>

val randomExponential : float -> Parameter<float>

val randomErlang : float -> int -> Parameter<float>

val randomPoisson : float -> Parameter<int>

val randomBinomial : float -> int -> Parameter<int>

To support the Design of Experiments (DoE), Aivika defines two additional
computations that return the current simulation run index and the total run
count respectively, when launching the Monte-Carlo simulation.

module Parameter =

val runIndex : Parameter<int>

val runCount : Parameter<int>

As before, there is the lift function that allows transforming an arbitrary
Parameter computation.

module Parameter =

val inline lift : Parameter<’a> -> ^m

For example, an arbitrary Parameter computation can be transformed to
the Simulation one. It means that the former can be used in every piece of the
code, where the Simulation computation is expected. It is just enough to call
the lift function:

let x1 : Parameter<’a> = ...

let x2 : Simulation<’a> = x1 |> Parameter.lift

10 CHAPTER 1. GETTING STARTED

It allows using the external parameters within the simulation:

Parameter<’a>

Parameter.lift

��
Simulation<’a>

Simulation.lift

��...

1.3 Ordinary Differential Equations

Although the main strength of the Aivika library is its orientation on dis-
crete event simulation, it is simpler to demonstrate the method using another
paradigm. So, our first simulation model will be described by a set of ordinary
differential equations (ODEs).

Assuming that the Point type represents a modeling time point within the
current simulation run, we can define a time varying function which would be
suitable for approximating the integrals.

Let us call it the Dynamics computation to emphasize that it can model
some dynamic processes defined usually with help of differential equations and
difference equations of System Dynamics.

type Dynamics<’a> = Dynamics of (Point -> ’a)

The corresponding computation builder is called dynamics:

let x: Dynamics<’a> = dynamics { .. }

Since the modeling time is passed in to every part of the Dynamics compu-
tation, it is natural to define the following computation that would return the
current time.

module Dynamics =

val time : Dynamics<Time>

There are different functions that allow running the Dynamics computation
within the simulation: in the start time, in the final time, in all integration time
points and in arbitrary time points defined by their numeric values.

module Dynamics =

val runInStartTime : Dynamics<’a> -> Simulation<’a>

val runInStopTime : Dynamics<’a> -> Simulation<’a>

val runInIntegTimes : Dynamics<’a> -> Simulation<seq<’a>>

val runInTimes : seq<Time> -> Dynamics<’a> -> Simulation<seq<’a>>

A key feature of the Dynamics computation is that it allows approximating
the integral by the specified derivative and initial value:

module SD =

val integ : Lazy<Dynamics<float>> -> Dynamics<float> -> Dynamics<float>

1.3. ORDINARY DIFFERENTIAL EQUATIONS 11

The point is that the ordinary differential and difference equations can be
defined declaratively almost as in maths and as in many commercial simula-
tion software tools of System Dynamics such as Vensim[18], ithink/Stella[5],
Berkeley-Madonna[6] and Simtegra MapSys1.

Aivika overloads arithmetic operators for type Dynamics<float>. It allows
us to treat these computations as numbers.

Moreover, we can create new computations from real numbers:

module SD =

val num : ’a -> Dynamics<’a>

Actually, this is a synonym of the dynamics.Return method but the former
is more convenient for using within differential equations as it will be shown
below.

To demonstrate the approach, we can rewrite a model from the 5-Minute
Tutorial of Berkeley-Madonna[6] with the following equations.

ȧ = −ka× a, a(t0) = 100,

ḃ = ka× a− kb× b, b(t0) = 0,

ċ = kb× b, c(t0) = 0,

ka = 1,

kb = 1.

For example, we can return the integral values in the final simulation time.
In the same way, we could return the integral values in arbitrary time points
that we would specify using other run functions.

But there is another way. We can return a ResultSet object that encom-
passes all results we are interested in.

Assuming that the library implementation files Simulation.Aivika.dll

and Simulation.Aivika.Results.dll are referenced properly, we can write
the following complete script with the definition of our simulation model in file
Model.fsx.

// File ChemicalReaction/Model.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

#nowarn "40"

open System

open Simulation.Aivika

open Simulation.Aivika.Results

open Simulation.Aivika.SD

let specs = {

StartTime=0.0; StopTime=13.0; DT=0.01;

Method=RungeKutta4; GeneratorType=StrongGenerator

1In the past the author of Aivika developed visual simulation software tool Simtegra

MapSys, but the software is unfortunately not available for the wide audience any more.

12 CHAPTER 1. GETTING STARTED

}

let model : Simulation<ResultSet> = simulation {

let rec a = integ (lazy (- ka * a)) (num 100.0)

and b = integ (lazy (ka * a - kb * b)) (num 0.0)

and c = integ (lazy (kb * b)) (num 0.0)

and ka = 1.0

and kb = 1.0

return

[ResultSource.From ("A", a, "Var A");

ResultSource.From ("B", b, "Var B");

ResultSource.From ("C", c, "Var C")]

|> ResultSet.create

}

To show the results in the final time point, for example, we can call the
corresponding function.

We can write the code in another file Run.fs, which will allow us to use the
model repeatedely for another goal as we will see soon.

// File ChemicalReaction/Run.fsx

#load "Model.fsx"

open Simulation.Aivika

open Simulation.Aivika.Results

ResultSet.printInStopTime Model.specs Model.model

It prints the following information in terminal:

// time

t = 13

// Var A

A = 0,000226032940945024

// Var B

B = 0,00293842823104866

// Var C

C = 99,9968355388281

Like other computations, there is a transforming function for the Dynamics

computation as well.

module Dynamics =

val inline lift : Dynamics<’a> -> ^m

It allows using the Dynamics computation is those places, where something
different is expected. It is worth noting that the F# compiler checks the types
and it won’t allow transforming the computation if it makes no sense. So, the
lifting functions are quite safe.

The Parameter and Simulation computations can be transformed to the
Dynamics one:

1.4. SIMULATION EXPERIMENT 13

Parameter<’a>

Parameter.lift

��
Simulation<’a>

Simulation.lift

��
Dynamics<’a>

Dynamics.run

HH

Dynamics.lift

��...

1.4 Simulation Experiment

The model constructing is very important by no means but it is not sufficient.
To validate the model or to analyze it, we have to automate the process of
displaying the most important simulation results. Aivika provides with such an
ability.

The simulation library allows saving the results in CSV files that can be then
opened in the Office application or R statistics tool for the further analysis. Also
the library allows plotting the results on charts as well plotting the histograms
by collected statistics.

One of the important charts is so called the Deviation Chart that plots the
trend and probabilistic bounds by rule 3-sigma. There are also Time Series and
XY Chart that draw the simulation results for each run, while the deviation
chart is cumulative and it is displayed for the whole Monte-Carlo simulation
experiment.

When running the simulation experiment, Aivika creates a Web page con-
taining file index.html and corresponding auxiliary files in a separate directory.
Then you can open the Web page in your favorite Internet browser to observe
the simulation results.

This approach actually allows running thousands of simulation runs within
one experiment, when only necessary data are kept in memory. At the same
time, the Internet browser becomes a tool for final displaying the results.

We define an Experiment object specifying the simulation specs and a num-
ber of runs.

let experiment = Experiment ()

experiment.Specs <- Model.specs

experiment.RunCount <- 1

Then we define the IExperimentProvider providers that already know how
to render the results.

let provider1 = ExperimentSpecsProvider ()

let provider2 = TimeSeriesProvider ()

let provider3 = LastValueProvider ()

let provider4 = TableProvider ()

The most important property of the provider is Series or something differ-
ent with similar name.

14 CHAPTER 1. GETTING STARTED

So, we could ask the Time Series provider to render three variables A, B and
C that we return from the model.

provider2.Series <-

[ResultSet.findByName "A";

ResultSet.findByName "B";

ResultSet.findByName "C"]

|> ResultTransform.concat

By default many providers render all variables that are returned by the
model. Therefore, we could omit this assignment statement.

Then we ask the experiment to render HTML by the specified model using
our providers.

experiment.RenderHtml (Model.model, providers)

|> Async.RunSynchronously

Below is stated a complete simulation experiment script2 written in F#.

// File ChemicalReaction/RunExperiment.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

#r "../../bin/Simulation.Aivika.Experiments.dll"

#r "../../bin/Simulation.Aivika.Charting.dll"

#load "Model.fsx"

open System

open System.Web.UI

open Simulation.Aivika

open Simulation.Aivika.Results

open Simulation.Aivika.Experiments

open Simulation.Aivika.Experiments.Web

open Simulation.Aivika.Charting.Web

let experiment = Experiment ()

experiment.Specs <- Model.specs

experiment.RunCount <- 1

let provider1 = ExperimentSpecsProvider ()

let provider2 = TimeSeriesProvider ()

let provider3 = LastValueProvider ()

let provider4 = TableProvider ()

let providers =

[provider1 :> IExperimentProvider<HtmlTextWriter>;

provider2 :> IExperimentProvider<HtmlTextWriter>;

provider3 :> IExperimentProvider<HtmlTextWriter>;

provider4 :> IExperimentProvider<HtmlTextWriter>]

experiment.RenderHtml (Model.model, providers)

|> Async.RunSynchronously

When running this script, we receive in the terminal of Microsoft Windows
something like this

2On Linux and OS X we have to replace assembly Simulation.Aivika.Charting.dll with
its GTK version as well as have to use the Simulation.Aivika.Charting.Web.Gtk namespace.

1.4. SIMULATION EXPERIMENT 15

C:\Docs\Projects\Aivika\examples\ChemicalReaction>fsi RunExperiment.fsx

Updating directory experiment

Generated file experiment\TimeSeries(1).png

Generated file experiment\Table(1).csv

Generated file index.html

It means that the script created directory experiment containing the Web
page that we can open in the Internet browser.

Figure 1.1: The rendered simulation experiment in the Internet browser.

The Web page shows the simulation experiments specs, the time series chart,
the last values and provides with a hyper-link to load the CSV file with the
results.

16 CHAPTER 1. GETTING STARTED

Figure 1.2: The time series chart for chemical reaction.

Chapter 2

Discrete Event Simulation

The main focus of the Aivika library is the discrete event simulation (DES).
Below are described basic ideas used in Aivika for formalizing the simulation
model and reasoning in terms of this paradigm.

2.1 Event-oriented Simulation

Under the event-oriented paradigm[10, 7] of DES, we put all pending events in
the priority queue, where the first event has the minimal activation time. Then
we sequentially activate the events removing them from the queue. During such
an activation we can add new events. This scheme is also called event-driven.

We can use almost the same time-varying function for the event-oriented
simulation, which we used for approximating the integrals with help of the
Dynamics workflow.

namespace Simulation.Aivika

type Eventive<’a> = Eventive of (Point -> ’a)

The difference is that we can strongly guarantee1 on level of the type system
of F# that the Eventive computation is always synchronized with the event
queue. Here we imply that every simulation run has an internal event queue,
which is contained in the Run object.

A key feature of the Eventive computation is an ability to specify the event
handler that should be actuated at the desired modeling time, when the corre-
sponding event occurs.

module Eventive =

val enqueue : Time -> Eventive<unit> -> Eventive<unit>

To pass in a message or some other data to the event handler, we just use a
closure when specifying the event handler in the second argument.

The event cancellation can be implemented trivially. We create a wrapper
for the source event handler and pass in namely this wrapper to the enqueue

function. Then the wrapper already decides whether it should call the underly-
ing source event handler. Then we have to provide some means for notifying the

1Actually, there is a room in Aivika for some hacking that may break this strong guarantee.

17

18 CHAPTER 2. DISCRETE EVENT SIMULATION

wrapper that the source event handler must be cancelled. The Aivika library
has the corresponded support.

The same technique of canceling the event can be adapted to implement-
ing the timer and time-out handlers used in the agent-based modeling as it is
described later.

To involve in the simulation, the Eventive computation must be run ex-
plicitly or implicitly within the Dynamics computation. The most simple run
function is stated below. It actuates all pending event handlers from the event
queue relative to the current modeling time and then runs the specified compu-
tation.

module Eventive =

val run : Eventive<’a> -> Dynamics<’a>

The corresponding computation builder has name eventive:

let x : Eventive<’a> = eventive { .. }

There is a subtle thing related to the Dynamics computation. In general,
the modeling time flows unpredictably within Dynamics, while there is a guar-
antee that the time is synchronized with the event queue within the Eventive

computation.
Some other run functions are destined for the most important use cases,

when we can run the input computation directly within Simulation in the
initial and final modeling time points, respectively.

module Eventive =

val runInStartTime : Eventive<’a> -> Simulation<’a>

val runInStopTime : Eventive<’a> -> Simulation<’a>

Following the rule, an arbitrary Dynamics computation can be transformed
to the Eventive computation. The latter in its turn can be transformed to
another with help of the corresponding lift function.

module Eventive =

val inline lift : Eventive<’a> -> ^m

It literally means that the integrals, external parameters and computations
on level of the simulation run can be directly used in the event-oriented simu-
lation:

Parameter<’a>

Parameter.lift

��
Simulation<’a>

Simulation.lift

��
Dynamics<’a>

Dynamics.run

HH

Dynamics.lift

��
Eventive<’a>

Eventive.run

II

Eventive.lift

��...

2.2. MUTABLE REFERENCE 19

2.2 Mutable Reference

Many DES models need a mutable reference. F# already provides with the ref

reference type. We can use it in the simulation model whenever it can be re-
placed with the following Ref type under simple obligations: the reference must
be created within Simulation computation and then be used within Eventive

or another computation to which the latter can be transformed with help of the
lift function.

type Ref<’a>

module Ref =

val create : ’a -> Simulation<Ref<’a>>

val read : Ref<’a> -> Eventive<’a>

val write : ’a -> Ref<’a> -> Eventive<unit>

val modify : (’a -> ’a) -> Ref<’a> -> Eventive<unit>

val inc : Ref<int> -> Eventive<unit>

val dec : Ref<int> -> Eventive<unit>

If the standard ref reference of F# can be safely replaced with the Ref type
then we will prefer the former as more easy-to-use.

2.3 Example: Event-oriented Simulation

The Aivika distribution contains examples of using the mutable references in
the DES models, one of which is provided below. The task itself is described in
the documentation of SimPy[7].

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons,
so the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

The corresponding model is as follows.

// File MachRep1EventDriven/Model.fsx

#nowarn "40"

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

open Simulation.Aivika

open Simulation.Aivika.Queues

open Simulation.Aivika.Results

let specs = {

StartTime=0.0; StopTime=10000.0; DT=0.05;

Method=RungeKutta4; GeneratorType=StrongGenerator

20 CHAPTER 2. DISCRETE EVENT SIMULATION

}

let meanUpTime = 1.0

let meanRepairTime = 0.5

let model = simulation {

// total up time for all machines

let totalUpTime = ref 0.0

let rec machineBroken startUpTime =

eventive {

// the machine is broken

let! finishUpTime =

Dynamics.time |> Dynamics.lift

totalUpTime := !totalUpTime

+ (finishUpTime - startUpTime)

let! repairTime =

Parameter.randomExponential meanRepairTime

|> Parameter.lift

// register a new event

do! machineRepaired

|> Eventive.enqueue

(finishUpTime + repairTime)

}

and machineRepaired =

eventive {

// the machine is repaired

let! startUpTime =

Dynamics.time |> Dynamics.lift

let! upTime =

Parameter.randomExponential meanUpTime

|> Parameter.lift

// register a new event

do! machineBroken startUpTime

|> Eventive.enqueue

(startUpTime + upTime)

}

do! machineRepaired |> Eventive.runInStartTime

do! machineRepaired |> Eventive.runInStartTime

let upTimeProp =

eventive {

let! t = Dynamics.time |> Dynamics.lift

return (!totalUpTime / (2.0 * t))

}

return

[ResultSource.From ("upTimeProp", upTimeProp,

"Long-run proportion of up time \

2.4. VARIABLE WITH MEMORY 21

(must be about 0.66)")]

|> ResultSet.create

}

In the simplest case we can use the next simulation experiment that shows
the results in the final simulation time.

#load "Model.fsx"

open Simulation.Aivika

open Simulation.Aivika.Results

ResultSet.printInStopTime Model.specs Model.model

When running it, we receive in the terminal of OS X something like this

bash-3.2$ fsharpi Run.fsx

// time

t = 10000

// Long-run proportion of up time (must be about 0.66)

upTimeProp = 0,661181942118896

Frankly speaking, the use of the event-oriented paradigm may seem to be
quite tedious. Aivika supports more high-level paradigms. Later it will be
shown how the same task can be solved in a more simple way.

2.4 Variable with Memory

Sometimes we need an analog of the mutable reference that would save the
history of its values. Aivika defines the corresponding Var type. It has almost
the same functions with similar type signatures that the Ref reference has.

type Var<’a>

module Var =

val create : ’a -> Simulation<Var<’a>>

val read : Var<’a> -> Eventive<’a>

val write : ’a -> Var<’a> -> Eventive<unit>

val modify : (’a -> ’a) -> Var<’a> -> Eventive<unit>

val inc : Var<int> -> Eventive<unit>

val dec : Var<int> -> Eventive<unit>

However, we can also use the variable in the differential and difference equa-
tions requesting for the first actual value for each time point with help of the
following function, actuating the pending events if required.

module Var =

val memo : Var<’a> -> Dynamics<’a>

The magic is as follows. The Var variable stores the history of changes.
When updating the mutable variable, or requesting it for a value at new time

22 CHAPTER 2. DISCRETE EVENT SIMULATION

point, the Var data object stores internally the value, which was first for the re-
quested time point. Then it becomes constant within the simulation. Therefore,
the computation returned by the memo function can be used in the differential
and difference equations of System Dynamics.

On the contrary, the read function returns a computation of the recent actual
value for the current simulation time point. This value is already destined to be
used in the discrete event simulation as it is synchronized with the event queue
by the very design of the library. Such is the Eventive computation that it
must be synchronized with the event queue.

In case of need we can freeze temporarily the variable and receive its internal
state: triples of time, the first and last values for each time.

module Var =

val freeze : Var<’a> -> Eventive<Time [] * ’a [] * ’a []>

The time values returned by this function are distinct and sorted in ascending
order.

As a caution, try to avoid using the Var variable as it is rather slow in
comparison to the standard F# reference and even the Ref reference. The
usual mistake of novices is to use the variable for accumulating statistics, but
Aivika contains optimized data structures designed especially for this task as
described in chapter 5.

The Var variable is destined for combining the discrete event simulation
with ordinary differential equations and difference equations and should be used
mainly in such a way.

2.5 Process-oriented Simulation

Under the process-oriented paradigm[10, 7], we model simulation activities with
help of a special kind of processes. We can explicitly suspend and resume
such processes. Also we can request for and release of the resources implicitly
suspending and resuming the processes in case of need.

Aivika actually supports the process-oriented simulation on two different
levels. A higher level which uses streams of data and processors that operate
on these streams is considered further. Below is described a lower level, which
is a foundation for the higher level, nevertheless.

To model a process, Aivika uses the following type as a basis.

type Cont<’a> = Cont of ((’a -> Eventive<unit>) -> Eventive<unit>)

The corresponding computation builder has name cont:

let x : Cont<’a> = cont { .. }

It is known from the theory of functional programming that we can suspend
the Cont computation and then resume later. This is one of the main features
that distinguishes this computation, being based on so called continuations.

A key idea is that the value of type Cont<unit> can be reduced to a function
of type Eventive<unit> -> Eventive<unit>, which is actually an end part of
the type signature for the Eventive.enqueue function mentioned above. That
function enqueues a new event with the desired time of actuating the event
handler.

2.5. PROCESS-ORIENTED SIMULATION 23

It means that we can take an arbitrary computation of type Cont<unit>,
suspend it and then resume it at another modeling time with help of the event
queue.

This technique allows us to hold the process for the specified time interval.
But sometimes we need to passivate the process for indefinite time so that
another simulation activity could reactivate it later.

Therefore, we need some data structure to store the continuation that we
would receive within the Cont computation. The process identifier ProcId can
play a role of such data structure.

data ProcId

module Proc =

val createId : Simulation<ProcId>

Then a discontinuous process can be represented with help of the following
computation.

type Proc<’a> = Proc of (ProcId -> Cont<’a>)

The corresponding computation builder has name proc:

let x : Proc<’a> = proc { .. }

We can run the process within the simulation with help of one of the next
functions.

module Proc =

val run : Proc<unit> -> Eventive<unit>

val runUsingId : ProcId -> Proc<unit> -> Eventive<unit>

val runInStartTime : Proc<unit> -> Simulation<unit>

val runInStartTimeUsingId : ProcId -> Proc<unit> -> Simulation<unit>

val runInStopTime : Proc<unit> -> Simulation<unit>

val runInStopTimeUsingId : ProcId -> Proc<unit> -> Simulation<unit>

If the process identifier is not specified then a new generated identifier is
assigned when running the process. Every process has always its own unique
identifier.

module Proc =

val id : Proc<ProcId>

In case of need we can run a sub-process using another identifier.

module Proc =

val usingId : ProcId -> Proc<’a> -> Proc<’a>

A characteristic feature of the Proc computation is that the process can
be hold for the specified time interval through the event queue, following the
approach described above in this section.

module Proc =

val hold : Time -> Proc<unit>

24 CHAPTER 2. DISCRETE EVENT SIMULATION

Nevertheless, the held process can be immediately interrupted and we can
request for whether it indeed was interrupted. The information about this is
stored until the next call of the hold function.

module Proc =

val interrupt : ProcId -> Eventive<unit>

val isInterrupted : ProcId -> Eventive<bool>

It is worth noting to say more about the types of computations returned by
these functions. The Eventive type of the result means that the computation
executes immediately and it cannot be interrupted. On the contrary, the Proc

type of the result means that the corresponding computation may suspend, even
forever. This is very important for understanding.

To passivate the process for indefinite time to reactive it later, we can use
the following functions.

module Proc =

val passivate : Proc<unit>

val isPassivated : ProcId -> Eventive<bool>

val reactivate : ProcId -> Eventive<unit>

Every process can be immediately cancelled, which is important for modeling
some activities.

module Proc =

val cancelUsingId : ProcId -> Eventive<unit>

val cancel<’a> : Proc<’a>

val isCancelled : ProcId -> Eventive<bool>

Sometimes we need to run an arbitrary sub-process with the specified time-
out.

module Proc =

val timeout : Time -> Proc<’a> -> Proc<’a option>

If the sub-process executes too long and exceeds the time limit, then it
is immediately canceled and None is returned within the Proc computation.
Otherwise; the computed result is returned right after it is received by the
sub-process.

Every simulation computation we considered before can be transformed to
the Proc computation, which in its turn can be transformed to another with
help of the corresponding lift function, at least, it can be transformed to itself.

module Proc =

val inline lift : Proc<’a> -> ^m

It allows using the integrals and external parameters as well as updating
the mutable references and variables within the process-oriented simulation. It
allows combining the event-oriented and process-oriented simulation.

2.5. PROCESS-ORIENTED SIMULATION 25

Parameter<’a>

Parameter.lift

��
Simulation<’a>

Simulation.lift

��
Dynamics<’a>

Dynamics.run

HH

Dynamics.lift

��
Eventive<’a>

Eventive.run

II

Eventive.lift

��
Proc<’a>

Proc.run

HH

Proc.lift

��...

Another process can be forked and spawn on-the-fly. If that process is not
related to the current parent process in any way, then we can run the second
process within the Eventive computation and then transform the result to the
Proc computation. There is no need to add a special function. It is enough to
have Eventive.lift and one of the Proc run functions.

((p : Proc<unit>) |> Proc.run |> Eventive.lift) : Proc<unit>

But if the life cycle of the child process must be bound up with the life cycle
of the parent process so that they would be canceled in some order if required,
then we should use one of the next functions.

module Proc =

val spawn : Proc<unit> -> Proc<unit>

val spawnWith : ContCancellation -> Proc<unit> -> Proc<unit>

Here the first argument of the second function specifies how two processes
are bound.

type ContCancellation =

| CancelTogether

| CancelChildAfterParent

| CancelParentAfterChild

| CancelInIsolation

The stated above timeout function uses spawnWith to run the specified
sub-process within time-out.

Also an arbitrary number of the Proc computations can be launched in
parallel and we can await the completion of all the started sub-processes to
return the final result.

module Proc =

val par : Proc<’a> list -> Proc<’a list>

val par_ : Proc<’a> list -> Proc<unit>

26 CHAPTER 2. DISCRETE EVENT SIMULATION

The Proc computation can be memoized so that the resulting process would
always return the same value within the simulation run regardless of that how
often the process was requested repeatedly.

module Proc =

val memo : Proc<’a> -> Proc<’a>

Using the random number generator and the hold function, we can model
an activity that is performed for some random time, for example, a processing
of item by the machine tool.

Aivika contains a set of built-in random activities that all are defined in the
following way.

module Proc =

let randomUniform minimum maximum = proc {

let! t = Parameter.randomUniform minimum maximum |> Parameter.lift

do! hold t

return t

}

let randomUniform_ minimum maximum = proc {

let! t = Parameter.randomUniform minimum maximum |> Parameter.lift

do! hold t

}

The first function holds the current discontinuous process for a random time
interval distributed uniformly and then returns that interval within the compu-
tation. The second function performs a side effect only without returning the
interval.

Below is provided a list of predefined random activities that hold the current
process for a random time interval according to their distributions.

module Proc =

val randomUniform: minimum:float -> maximum:float -> Proc<float>

val randomUniform_: minimum:float -> maximum:float -> Proc<unit>

val randomUniformInt: minimum:int -> maximum:int -> Proc<int>

val randomUniformInt_: minimum:int -> maximum:int -> Proc<unit>

val randomNormal: mean:float -> deviation:float -> Proc<float>

val randomNormal_: mean:float -> deviation:float -> Proc<unit>

val randomExponential: mean:float -> Proc<float>

val randomExponential_: mean:float -> Proc<unit>

val randomErlang: beta:float -> m:int -> Proc<float>

val randomErlang_: beta:float -> m:int -> Proc<unit>

val randomPoisson: mean:float -> Proc<int>

val randomPoisson_: mean:float -> Proc<unit>

val randomBinomial: prob:float -> trials:int -> Proc<int>

val randomBinomial_: prob:float -> trials:int -> Proc<unit>

Thus, the functions described in this section allow efficiently modeling quite
complex activities. Nevertheless, the Proc computation is still low-level. Aivika
supports more high-level computations described further.

2.6. EXAMPLE: PROCESS-ORIENTED SIMULATION 27

2.6 Example: Process-oriented Simulation

Let us return to the task that was solved in section 2.3 using the event-oriented
paradigm. The problem statement is repeated here. It corresponds to the
documentation of SimPy.

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons,
so the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

Using the processes, we can solve the task in a more elegant way.

// File MachRep1/Model.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

open System

open Simulation.Aivika

open Simulation.Aivika.Results

let specs = {

StartTime=0.0; StopTime=1000.0; DT=1.0;

Method=RungeKutta4; GeneratorType=StrongGenerator

}

let meanUpTime = 1.0

let meanRepairTime = 0.5

let model = simulation {

// total up time for all machines

let totalUpTime = ref 0.0

let machine = proc {

while true do

let! upTime = Proc.randomExponential meanUpTime

totalUpTime := !totalUpTime + upTime

do! Proc.randomExponential_ meanRepairTime

}

do! Proc.runInStartTime machine

do! Proc.runInStartTime machine

let upTimeProp =

eventive {

let! t = Dynamics.time |> Dynamics.lift

return (!totalUpTime / (2.0 * t))

}

return

28 CHAPTER 2. DISCRETE EVENT SIMULATION

[ResultSource.From ("upTimeProp", upTimeProp,

"Long-run proportion of up time \

(must be about 0.66)")]

|> ResultSet.create

}

The reader can compare this model with the previous one. Conceptually,
they do the same thing, use the same event queue and have the same behavior.

Now we will launch a Monte-Carlo simulation with 1000 simultaneous runs.
After running the experiment, we will receive a deviation chart, statistics sum-
mary and histogram for our single variable that our model returns within
Simulation.

// File MachRep1/RunExperiment.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

#r "../../bin/Simulation.Aivika.Experiments.dll"

#r "../../bin/Simulation.Aivika.Charting.dll"

#load "Model.fsx"

open System

open System.Web.UI

open Simulation.Aivika

open Simulation.Aivika.Results

open Simulation.Aivika.Experiments

open Simulation.Aivika.Experiments.Web

open Simulation.Aivika.Charting.Web

let experiment = Experiment ()

experiment.Specs <- Model.specs

experiment.RunCount <- 1000

let provider1 = ExperimentSpecsProvider ()

let provider2 = DeviationChartProvider ()

let provider3 = LastValueStatsProvider ()

let provider4 = LastValueHistogramProvider ()

let providers =

[provider1 :> IExperimentProvider<HtmlTextWriter>;

provider2 :> IExperimentProvider<HtmlTextWriter>;

provider3 :> IExperimentProvider<HtmlTextWriter>;

provider4 :> IExperimentProvider<HtmlTextWriter>]

experiment.RenderHtml (Model.model, providers)

|> Async.RunSynchronously

Figure 2.1 shows the deviation chart, but figure 2.2 displays the histogram
by data collected, when running 1000 simulation runs.

The statistics summary is contained in the generated index.html file. In our
case it is stated in table 2.1. The actual numbers may differ from experiment
to experiment, but the tendency will be always the same.

2.6. EXAMPLE: PROCESS-ORIENTED SIMULATION 29

Figure 2.1: The deviation chart for the long-run proportion of up time.

Figure 2.2: The long-run proportion histogram of up time.

30 CHAPTER 2. DISCRETE EVENT SIMULATION

Table 2.1: The summary for the long-run proportion of up time.

upTimeProp
mean 0.666144947122581
deviation 0.00884072527833155
minimum 0.63948370536354
maximum 0.692046918776428
count 1000

There is also another popular paradigm applied to the discrete event simu-
lation. It usually gives more rough simulation results as we have to scale the
modeling time. The next two sections show how Aivika supports that paradigm
and how we can apply it to solve the same task.

2.7 Activity-oriented Simulation

Under the activity-oriented paradigm[10, 7] of DES, we break time into tiny
increments. At each time point, we look around at all the activities and check
for the possible occurrence of events. Sometimes this scheme is called time-
driven.

An idea is that we can naturally represent the activity as an Eventive

computation, which we will call periodically through the event queue.

module Eventive =

val enqueueWithTimes: #seq<Time> -> Eventive<unit> -> Eventive<unit>

We can also use another predefined function that does almost the same thing,
but only it calls the specified computation directly in the integration time points
specified by the simulation specs.

module Eventive =

val enqueueWithIntegTimes: Eventive<unit> -> Eventive<unit>

Being defined in such a way, the activity-oriented simulation can be combined
with the event-oriented and process-oriented ones.

2.8 Example: Activity-oriented Simulation

To illustrate the activity-oriented paradigm, let us take our old task that was
solved in section 2.3 using the event-oriented paradigm and in section 2.6 using
the process-oriented paradigm of DES. The problem statement is repeated here
again. It corresponds to the documentation of SimPy.

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons,
so the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

2.8. EXAMPLE: ACTIVITY-ORIENTED SIMULATION 31

Now the model looks quite cumbersome. Moreover, we have to scale the
modeling time. The time points at which the events occur are not precise any
more.

// File MachRep1ActivityOriented/Model.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

open System

open Simulation.Aivika

open Simulation.Aivika.Results

let specs = {

StartTime=0.0; StopTime=1000.0; DT=0.05;

Method=RungeKutta4; GeneratorType=StrongGenerator

}

let meanUpTime = 1.0

let meanRepairTime = 0.5

let model = simulation {

// total up time for all machines

let totalUpTime = ref 0.0

let machine () =

// a number of iterations when working

let upNum = ref -1

// a number of iterations when prepairing

let repairNum = ref -1

// the start up time

let startUpTime = ref 0.0

// wait for the break

let untilBroken = eventive {

decr upNum

}

// wait for the repair

let untilRepaired = eventive {

decr repairNum

}

// when the tool is broken

let broken = eventive {

decr upNum

// the machine is broken

let! t = Dynamics.time |> Dynamics.lift

let! dt = Parameter.dt |> Parameter.lift

let! repairTime =

Parameter.randomExponential meanRepairTime

|> Parameter.lift

32 CHAPTER 2. DISCRETE EVENT SIMULATION

totalUpTime := !totalUpTime

+ (t - !startUpTime)

repairNum := int (repairTime / dt)

}

// when the tool is repaired

let repaired = eventive {

decr repairNum

// the machine is repaired

let! t = Dynamics.time |> Dynamics.lift

let! dt = Parameter.dt |> Parameter.lift

let! upTime =

Parameter.randomExponential meanUpTime

|> Parameter.lift

startUpTime := t

upNum := int (upTime / dt)

}

// return a simulation model of the machine

eventive {

if !upNum > 0 then

return! untilBroken

elif !upNum = 0 then

return! broken

elif !repairNum > 0 then

return! untilRepaired

elif !repairNum = 0 then

return! repaired

else

return! repaired

}

// create two machines

let m1 = machine ()

let m2 = machine ()

// start the machines

do! m1 |> Eventive.enqueueWithIntegTimes

|> Eventive.runInStartTime

do! m2 |> Eventive.enqueueWithIntegTimes

|> Eventive.runInStartTime

// return the result

let upTimeProp =

eventive {

let! t = Dynamics.time |> Dynamics.lift

return (!totalUpTime / (2.0 * t))

}

return

[ResultSource.From ("upTimeProp", upTimeProp,

"Long-run proportion of up time \

2.8. EXAMPLE: ACTIVITY-ORIENTED SIMULATION 33

(must be about 0.66)")]

|> ResultSet.create

}

It was the model. Now we write the starting script in a separate file.

// File MachRep1ActivityOriented/Run.fsx

#load "Model.fsx"

open Simulation.Aivika

open Simulation.Aivika.Results

ResultSet.printInStopTime Model.specs Model.model

When running this script on OS X, we receive something similar to the
following result.

bash-3.2$ fsharpi Run.fsx

// time

t = 1000

// Long-run proportion of up time (must be about 0.66)

upTimeProp = 0,66335

We saw that the model written in this style is much longer. Nevertheless,
the activity-oriented paradigm can be exceptionally useful for modeling some
parts that are difficult to represent based on other simulation paradigms.

34 CHAPTER 2. DISCRETE EVENT SIMULATION

Chapter 3

Resources

This document illustrates how more and more high level concepts can be applied
to modeling and simulation, when using Aivika. The resources considered in this
chapter are not exception. They are somewhere of intermediate level, but they
do allow simplifying many models, nevertheless.

3.1 Queue Strategies

Before we proceed to more high level modeling constructs, we need to define
the queue strategies[17] that prescribe how the competitive requests must be
prioritized.

In Aivika the queue strategies are expressed in terms of the IQueueStrategy
interface, where each queue strategy has its own implementation.

type Priority = float

[<Interface>]

type IQueueStorage<’a> =

abstract IsEmpty : unit -> Eventive<bool>

abstract Dequeue : unit -> Eventive<’a>

abstract Enqueue : item:’a -> Eventive<unit>

abstract Enqueue : priority:Priority * item:’a -> Eventive<unit>

[<Interface>]

type IQueueStrategy =

abstract CreateStorage<’a> : unit -> Simulation<IQueueStorage<’a>>

The queue strategy must implement the Dequeue method and one of the
Enqueue methods. Another method must raise an exception when it is called.
The second Enqueue method is destined for strategies based on priorities, while
the first one is implemented by more simple queue strategies.

There are four predefined queue strategies in Aivika at present:

• FCFS (First Come - First Served), or FIFO (First In - First Out);

• LCFS (Last Come - First Served), or LIFO (Last In - First Out);

• SIRO (Service in Random Order);

35

36 CHAPTER 3. RESOURCES

• StaticPriorities (Using Static Priorities), where the less value means a
higher priority.

These strategies are implemented by the corresponded class types.

[<Sealed>]

type FCFS =

interface IQueueStrategy

[<Sealed>]

type LCFS =

interface IQueueStrategy

[<Sealed>]

type SIRO =

interface IQueueStrategy

[<Sealed>]

type StaticPriorities =

interface IQueueStrategy

There is also a module that contains predefined values of these types for
convenience.

module QueueStrategy =

val FCFS : FCFS

val LCFS : LCFS

val SIRO : SIRO

val staticPriorities : StaticPriorities

3.2 Resource

A resource[7] simulates something to be queued for, for example, the machine.

[<Sealed>]

type Resource

The simplest constructor allows us to create a new resource by the specified
queue strategy and initial amount.

module Resource =

val create: strat:#IQueueStrategy -> count:int -> Simulation<Resource>

To acquire the resource, we can use the predefined functions like these ones:

module Resource =

val request : Resource -> Proc<unit>

val requestWithPriority : Priority -> Resource -> Proc<unit>

Each of the both suspends the process in case of the resource deficiency until
some other simulation activity releases the resource.

module Resource =

val releaseWithinEventive : Resource -> Eventive<unit>

3.2. RESOURCE 37

There is also a more convenient version of the last function that works within
the Proc computation, but the provided function emphasizes the fact that releas-
ing the resource cannot block the simulation process and this action is performed
immediately.

module Resource =

val release : Resource -> Proc<unit>

We can request for the current available amount of the specified resource as
well as request for its maximum possible amount and the strategy applied.

module Resource =

val count : Resource -> Eventive<int>

val maxCount : Resource -> int option

val strategy : Resource -> IQueueStrategy

The second function returns an optional value indicating that the maximum
amount could be unspecified when creating the resource.

module Resource =

val createWithMaxCount: strat:#IQueueStrategy

-> count:int

-> maxCount:int option

-> Simulation<Resource>

By default, the maximum possible amount is set equaled to the initial
amount specified when calling the first constructor create.

There are constructors that use the predefined queue strategies. Some of
these constructors are provided below.

module Resource =

val createUsingFCFS : count:int -> Simulation<Resource>

val createUsingLCFS : count:int -> Simulation<Resource>

val createUsingSIRO : count:int -> Simulation<Resource>

val createUsingPriorities : count:int -> Simulation<Resource>

Also there are two helper functions each of the both acquires the resource
and returns IDisposable that in its turn allows releasing the resource regardless
of whether the specified process was cancelled or an exception was raised. It
can be used together with the use! construct of F#.

module Resource =

val take : Resource -> Proc<IDisposable>

val takeWithPriority : Priority -> Resource -> Proc<IDisposable>

Finally, we can increase the available amount of the resource to a new value,
but not greater than the maximum amount defined when constructing the re-
source. Then some awaiting processes in the specified number can be awaken
and they will acquire the resource.

module Resource =

val incCount : n:int -> Resource -> Eventive<unit>

38 CHAPTER 3. RESOURCES

3.3 Example: Using Resources

To illustrates how the resources can be used for modeling, let us again take a
task from the documentation of SimPy[15].

Two machines, but sometimes break down. Up time is exponen-
tially distributed with mean 1.0, and repair time is exponentially
distributed with mean 0.5. In this example, there is only one re-
pairperson, so the two machines cannot be repaired simultaneously
if they are down at the same time.

In addition to finding the long-run proportion of up time, let us also
find the long-run proportion of the time that a given machine does
not have immediate access to the repairperson when the machine
breaks down. Output values should be about 0.6 and 0.67.

In Aivika we can solve this task in the following way.

// File MachRep2/Model.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

open System

open Simulation.Aivika

open Simulation.Aivika.Results

let specs = {

StartTime=0.0; StopTime=1000.0; DT=1.0;

Method=RungeKutta4; GeneratorType=StrongGenerator

}

let meanUpTime = 1.0

let meanRepairTime = 0.5

let model = simulation {

// number of times the machines have broken down

let nRep = ref 0

// number of breakdonws in which the machine

// started repair service right away

let nImmedRep = ref 0

// total up time for all machines

let totalUpTime = ref 0.0

let! repairPerson = Resource.createUsingFCFS 1

let machine = proc {

while true do

let! upTime = Proc.randomExponential meanUpTime

totalUpTime := !totalUpTime + upTime

incr nRep

3.3. EXAMPLE: USING RESOURCES 39

let! n =

Resource.count repairPerson

|> Eventive.lift

if n = 1 then

incr nImmedRep

do! Resource.request repairPerson

let! repairTime = Proc.randomExponential meanRepairTime

do! Resource.release repairPerson

}

do! Proc.runInStartTime machine

do! Proc.runInStartTime machine

let upTimeProp = eventive {

let! t = Dynamics.time |> Dynamics.lift

return !totalUpTime / (2.0 * t)

}

let immedTimeProp = eventive {

return (float !nImmedRep) / (float !nRep)

}

return [ResultSource.From ("upTimeProp", upTimeProp,

"Long-run proportion of up time \

(must be about 0.6)");

ResultSource.From ("immedTimeProp", immedTimeProp,

"Long-run proportion of the time when \

immediate access to the repairperson \

(must be about 0.67)")]

|> ResultSet.create

}

Let’s take the following simulation experiment: specs, the deviation chart,
statistics summary by last values, the histogram for last values. The number of
simultaneous runs is 1000.

// File MachRep2/RunExperiment.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

#r "../../bin/Simulation.Aivika.Experiments.dll"

#r "../../bin/Simulation.Aivika.Charting.dll"

#load "Model.fsx"

open System

open System.Web.UI

open Simulation.Aivika

open Simulation.Aivika.Results

open Simulation.Aivika.Experiments

open Simulation.Aivika.Experiments.Web

open Simulation.Aivika.Charting.Web

let experiment = Experiment ()

experiment.Specs <- Model.specs

40 CHAPTER 3. RESOURCES

experiment.RunCount <- 1000

let provider1 = ExperimentSpecsProvider ()

let provider2 = DeviationChartProvider ()

let provider3 = LastValueStatsProvider ()

let provider4 = LastValueHistogramProvider ()

let providers =

[provider1 :> IExperimentProvider<HtmlTextWriter>;

provider2 :> IExperimentProvider<HtmlTextWriter>;

provider3 :> IExperimentProvider<HtmlTextWriter>;

provider4 :> IExperimentProvider<HtmlTextWriter>]

experiment.RenderHtml (Model.model, providers)

|> Async.RunSynchronously

The corresponding histogram is shown on figure 3.1.

Figure 3.1: The histogram for time proportions, when using the resource.

3.4 Example: Passivating and Reactivating Pro-
cesses

This example illustrates how we can passivate and reactivate processes depend-
ing on that whether the resource is free. The task corresponds to the documen-
tation of SimPy[15].

Variation of the previous models described in sections 2.6 and 3.3.
Two machines, but sometimes break down. Up time is exponen-

3.4. EXAMPLE: PASSIVATING AND REACTIVATING PROCESSES 41

tially distributed with mean 1.0, and repair time is exponentially
distributed with mean 0.5. In this example, there is only one repair-
person, and she is not summoned until both machines are down. We
find the proportion of up time. It should come out to about 0.45.

In Aivika the corresponded model can be defined in the following way.

// File MachRep3/Model.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

open Simulation.Aivika

open Simulation.Aivika.Results

let specs = {

StartTime=0.0; StopTime=1000.0; DT=1.0;

Method=RungeKutta4; GeneratorType=StrongGenerator

}

let meanUpTime = 1.0

let meanRepairTime = 0.5

let model = simulation {

// number of machines currently up

let nUp = ref 0

// total up time for all machines

let totalUpTime = ref 0.0

let! repairPerson = Resource.createUsingFCFS 1

let machine pid’ = proc {

incr nUp

while true do

let! upTime = Proc.randomExponential meanUpTime

totalUpTime := !totalUpTime + upTime

decr nUp

if !nUp = 1 then

do! Proc.passivate

else

let! n =

Resource.count repairPerson

|> Eventive.lift

if n = 1 then

do! Proc.reactivate pid’

|> Eventive.lift

do! Resource.request repairPerson

let! repairTime = Proc.randomExponential meanRepairTime

incr nUp

42 CHAPTER 3. RESOURCES

do! Resource.release repairPerson

}

let! pid1 = Proc.createId

let! pid2 = Proc.createId

do! Proc.runInStartTimeUsingId pid1 (machine pid2)

do! Proc.runInStartTimeUsingId pid2 (machine pid1)

let upTimeProp = eventive {

let! t = Dynamics.time |> Dynamics.lift

return (!totalUpTime / (2.0 * t))

}

return [ResultSource.From ("upTimeProp", upTimeProp,

"The proportion of up time \

(must be about 0.45)")]

|> ResultSet.create

}

Let’s take the same simulation experiment that we used in section 3.3: show
the specs, the deviation chart, statistics summary by last values, the histogram
for last values. The number of simultaneous runs is 1000.

// File MachRep3/RunExperiment.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

#r "../../bin/Simulation.Aivika.Experiments.dll"

#r "../../bin/Simulation.Aivika.Charting.dll"

#load "Model.fsx"

open System

open System.Web.UI

open Simulation.Aivika

open Simulation.Aivika.Results

open Simulation.Aivika.Experiments

open Simulation.Aivika.Experiments.Web

open Simulation.Aivika.Charting.Web

let experiment = Experiment ()

experiment.Specs <- Model.specs

experiment.RunCount <- 1000

let provider1 = ExperimentSpecsProvider ()

let provider2 = DeviationChartProvider ()

let provider3 = LastValueStatsProvider ()

let provider4 = LastValueHistogramProvider ()

let providers =

[provider1 :> IExperimentProvider<HtmlTextWriter>;

provider2 :> IExperimentProvider<HtmlTextWriter>;

provider3 :> IExperimentProvider<HtmlTextWriter>;

provider4 :> IExperimentProvider<HtmlTextWriter>]

experiment.RenderHtml (Model.model, providers)

|> Async.RunSynchronously

3.5. RESOURCE PREEMPTION 43

The corresponding histogram is shown on figure 3.2. We expect to see a
value distributed near 0.45.

Figure 3.2: The histogram for time proportions, when passivating and reacti-
vating the processes.

3.5 Resource Preemption

There are simulation tasks that are modeled better with help of resource pre-
emption. A preemptible resource is like the ordinary resource parameterized
by the queue strategy based on static priorities. The numeric priorities are
necessary to request for the both resources.

However, there is an important difference. When trying to acquire the ordi-
nary resource, the process suspends in case of resource deficiency. In case of the
resource preemption, the resource still can be acquired by the process even if
the resource amount is zero, but then another process with less priority must be
preempted and its ownership of the resource will be transferred to the current
process with higher priority. If the current process that requests for the resource
has a less priority then it waits for releasing of the resource as usual.

So, the priority is used not only to range the process requests, but it allows
also preempting another process transferring its ownership of the resource to
another process.

[<Sealed>]

type PreemptibleResource

module PreemptibleResource =

44 CHAPTER 3. RESOURCES

val count : PreemptibleResource -> Eventive<int>

val maxCount : PreemptibleResource -> int option

val create : count:int -> Simulation<PreemptibleResource>

val createWithMaxCount : count:int

-> maxCount:int option

-> Simulation<PreemptibleResource>

val requestWithPriority : Priority -> PreemptibleResource -> Proc<unit>

val release : PreemptibleResource -> Proc<unit>

val takeWithPriority : Priority -> PreemptibleResource -> Proc<IDisposable>

Note that here the resource must be released only within the corresponded
Proc computation. It is important to know what namely processes took an
ownership of the resource. Having this information, we can preempt one of
these processes if another process with higher priority requests for the resource.

As it was true with the static priority queue strategy, the less value means
a higher priority.

Since the resources can be preempted at any time, we can either increase or
decrease the available amount of the resource.

module PreemptibleResource =

val incCount: n:int -> PreemptibleResource -> Eventive<unit>

val decCount: n:int -> PreemptibleResource -> Eventive<unit>

val alterCount: n:int -> PreemptibleResource -> Eventive<unit>

Section 6.9 illustrates an example of using the resource preemption.

Chapter 4

Signals and Tasks

The constructs considered in this chapter are closer to programming than to
simulation. Nevertheless, they can be very useful for modeling.

4.1 Signals

A signal is a variation of the standard IObservable interface but specialized
for modeling.

[<AbstractClass; NoEquality; NoComparison>]

type Signal<’a> =

new: unit -> Signal<’a>

abstract Subscribe: handler:(’a -> Eventive<unit>) -> Eventive<IDisposable>

The Subscribe method of the signal takes a handler, subscribes the han-
dler for receiving the signal values and then returns a computation of the
IDisposable object that being invoked unsubscribes the specified handler from
receiving the signal.

If we are not going to unsubscribe at all, then we can ignore the nested value
of computation.

[<AutoOpen>]

module SignalExtensions =

type Signal<’a> with

member Add: handler:(’a -> Eventive<unit>) -> Eventive<unit>

We can treat the signals in a functional way, transforming or merging or
filtering them with help of combinators like these ones.

module Signal =

val add : (’a -> Eventive<unit>) -> Signal<’a> -> Eventive<unit>

val subscribe: (’a -> Eventive<unit>) -> Signal<’a> -> Eventive<IDisposable>

val map : (’a -> ’b) -> Signal<’a> -> Signal<’b>

val filter : (’a -> bool) -> Signal<’a> -> Signal<’a>

val empty<’a> : Signal<’a>

val merge : Signal<’a> -> Signal<’a> -> Signal<’a>

val concat : #Signal<’a> list -> Signal<’a>

45

46 CHAPTER 4. SIGNALS AND TASKS

The Ref reference and Var variable provide signals that notify about chang-
ing their state.

module Ref =

val changed : Ref<’a> -> Signal<’a>

val changed_ : Ref<’a> -> Signal<unit>

module Var =

val changed : Var<’a> -> Signal<’a>

val changed_ : Var<’a> -> Signal<unit>

We can create an origin of the signal manually. Distinguishing the origin
from the signal allows us to publish the signal with help of a pure function. But
we must trigger the signal within a computation synchronized with the event
queue, though.

[<Sealed>]

type SignalSource<’a>

module SignalSource =

val create<’a> : Simulation<SignalSource<’a>>

val publish : source:SignalSource<’a> -> Signal<’a>

val trigger : value:’a -> source:SignalSource<’a> -> Eventive<unit>

Moreover, we can register a history of signal values, which can be useful for
accumulating the simulation results.

[<Sealed>]

type SignalHistory<’a>

module SignalHistory =

val create : signal:Signal<’a> -> Eventive<SignalHistory<’a>>

val read : history:SignalHistory<’a> -> Eventive<Time array * ’a array>

The SignalHistory type is widely used in the implementation of simulation
experiments, when the results are accumulated by signals, for which there are
predefined signals.

module Signal =

val inTimes : times:#seq<Time> -> Eventive<Signal<Time>>

val inIntegTimes : Eventive<Signal<Time>>

val inStartTime : Eventive<Signal<Time>>

val inStopTime : Eventive<Signal<Time>>

To plot the histogram, we accumulate the simulation results by the signal
triggered in the final time, while we use the signal triggered in the integration
time points to save the CSV table or draw the time series chart. Only we have
to transform the source signal to receive the values we need.

Finally, you might notice that the Cont and Signal computations have a
similar definition. This relation is expressed by the following function, where
the current process suspends until the next signal value is triggered. Then the
signal value is passed in to the process computation, which is resumed.

4.2. TASKS 47

module Proc =

val await : signal:Signal<’a> -> Proc<’a>

In Aivika there is an opposite transformation from the Proc computation to
a Signal value, but it is a little bit complicated as the process can be actually
canceled or an exception can be raised within the simulation. The corresponded
transformation is defined with help of the Task type.

4.2 Tasks

A task encompasses the process computation started in background.

[<Sealed>]

type Task<’a>

module Task =

val run : comp:Proc<’a> -> Eventive<Task<’a>>

Here we run the specified process in background and immediately return the
corresponded task within the Eventive computation. Later we can request for
the result of the underlying Proc computation, whether it was finished success-
fully, or an exception had occurred or the computation was cancelled.

type TaskResult<’a> =

| TaskCompleted of ’a

| TaskError of exn

| TaskCancelled

module Task =

val tryGetResult : task:Task<’a> -> Eventive<TaskResult<’a> option>

val result : task:Task<’a> -> Proc<TaskResult<’a>>

val resultReceived : task:Task<’a> -> Signal<TaskResult<’a>>

The background task can be cancelled at any time.

module Task =

val cancel : task:Task<’a> -> Eventive<unit>

val isCancelled : task:Task<’a> -> Eventive<bool>

Also we can include the task computation into an arbitrary Proc computa-
tion, making the former a compound part of the latter.

module Task =

val toProc : task:Task<’a> -> Proc<’a>

In some sense the Signal and Task types complement other simulation com-
putations, which illustrates how deeply different computations can be inter-
connected to each other, allowing us to define more comprehensive models.

48 CHAPTER 4. SIGNALS AND TASKS

Chapter 5

Statistics

An accumulation of statistics is an important part of simulation. Aivika uses
an approach, where the statistics summary is treated as an immutable data
structure, which simplifies programming and makes the simulation more safe
and robust.

There are two different types of statistics that we can collect. The first one is
based upon observations, while the latter is based on time-dependent samples.

5.1 Statistics based upon Observations

The generic SamplingStats data type is used for accumulating statistics based
upon observations.

type SamplingStats<’a>

module SamplingStats =

val emptyInts : SamplingStats<int>

val emptyFloats : SamplingStats<float>

val fromInts : samples:int array -> SamplingStats<int>

val fromFloats : samples:float array -> SamplingStats<float>

val add : sample:’a -> stats:SamplingStats<’a> -> SamplingStats<’a>

val append : stats1:SamplingStats<’a>

-> stats2:SamplingStats<’a>

-> SamplingStats<’a>

val appendChoice : stats1:Choice<’a, SamplingStats<’a>>

-> stats2:SamplingStats<’a>

-> SamplingStats<’a>

val appendSeq : samples:seq<’a>

-> stats:SamplingStats<’a>

-> SamplingStats<’a>

val count : stats:SamplingStats<’a> -> int

val minimum : stats:SamplingStats<’a> -> ’a

val maximum : stats:SamplingStats<’a> -> ’a

val mean : stats:SamplingStats<’a> -> float

49

50 CHAPTER 5. STATISTICS

val mean2 : stats:SamplingStats<’a> -> float

val variance : stats:SamplingStats<’a> -> float

val deviation : stats:SamplingStats<’a> -> float

val fromIntsToFloats : stats:SamplingStats<int> -> SamplingStats<float>

The main idea is that this is an immutable data type. Each time we collect
a new sample, we actually create a new instance of the SamplingStats type.

An usual mistake of novices is when they try to use rather a heavy-weight
Var type for collecting statistics. Nevertheless, it is recommended to use the
standard ref reference or predefined Ref type for updating the light-weight
SamplingStats value, which is a more efficient and more simple approach.

let r = ref SamplingStats.emptyFloats

...

r := !r |> SamplingStats.add 1.0

r := !r |> SamplingStats.add 2.0

...

The SamplingStats values within simulation computation can be returned
as a ResultSource.

5.2 Statistics for Time Persistent Variables

The generic TimingStats data type is used for collecting time-dependent statis-
tics.

type TimingStats<’a>

module TimingStats =

val emptyInts : TimingStats<int>

val emptyFloats : TimingStats<float>

val add : time:Time -> sample:’a -> stats:TimingStats<’a> -> TimingStats<’a>

val count : stats:TimingStats<’a> -> int

val minimum : stats:TimingStats<’a> -> ’a

val maximum : stats:TimingStats<’a> -> ’a

val last : stats:TimingStats<’a> -> ’a

val minimumTime : stats:TimingStats<’a> -> Time

val maximumTime : stats:TimingStats<’a> -> Time

val startTime : stats:TimingStats<’a> -> Time

val lastTime : stats:TimingStats<’a> -> Time

val sum : stats:TimingStats<’a> -> float

val sum2 : stats:TimingStats<’a> -> float

val mean : stats:TimingStats<’a> -> float

val mean2 : stats:TimingStats<’a> -> float

val variance : stats:TimingStats<’a> -> float

val deviation : stats:TimingStats<’a> -> float

val fromIntsToFloats : stats:TimingStats<int> -> TimingStats<float>

The TimingStats value is immutable too. As before, it can be used within
references.

5.2. STATISTICS FOR TIME PERSISTENT VARIABLES 51

There is also one function that allows converting the TimingStats statistics
to its normalized representation based upon observations. We interpolate the
former so that it would be statistically similar to the latter by the specified
number of pseudo-observations.

module TimingStats =

val normalise: count:int -> stats:TimingStats<’a> -> SamplingStats<’a>

For example, this function is used when plotting the deviation chart for queue
sizes. These sizes are time persistent variables, while the deviation chart plots
the trend and probabilistic bounds for the statistics based upon observations.
Normalizing the queue size statistics by the iteration number, we receive another
representation of the queue size by which we can plot the deviation chart.

As before, the TimingStats values within simulation computation can be
returned as a ResultSource.

52 CHAPTER 5. STATISTICS

Chapter 6

Queue Network

It is difficult to imagine any complex discrete event simulation without using
queues. This chapter introduces the queues and shows how we can model net-
works based on them.

6.1 Finite Queues

Sometimes we need a location in the network where entities wait for service[10].
They are modeled in Aivika by finite and infinite queues.

The finite queue is a container of elements.

[<Sealed>]

type Queue<’a>

To create a new queue, we should specify the queue strategies that will be
used for ranging the enqueueing operations, internal storing items in the queue
and ranging the dequeueing operations respectively. Also we should specify the
queue capacity as the queue is finite.

•

enqueue

��

•

•

enqueue

''

•

. . . •
storing// •

dequeue

??

dequeue

77

dequeue
''

. . .

•
enqueue

77

•
The enqueueing strategy is used for ranging the enqueueing operations when

the queue is full. The storing strategy is used for ranging the items in the queue
itself. The dequeueing strategy is used for ranging the dequeueing requests when
the queue is empty.

The first and third strategies used for ranging the enqueueing and dequeueing
operations usually should be defined as the FCFS strategy, i.e. first come - first
serviced, which is the most intuitive and suits the most of needs, while the
storing strategy distinguishes the queue itself.

53

54 CHAPTER 6. QUEUE NETWORK

In general case, the queue constructor is as follows.

module Queue =

val create<’si, ’sm, ’so, ’a

when ’si :> IQueueStrategy and

’sm :> IQueueStrategy and

’so :> IQueueStrategy> :

inputStrat:’si

-> storingStrat:’sm

-> outputStrat:’so

-> maxCount:int

-> Eventive<Queue<’a>>

Fortunately, there are specializations that allow creating new queues using
the predefined strategies and these specializations look much shorter.

module Queue =

val createUsingFCFS<’a> : maxCount:int -> Eventive<Queue<’a>>

val createUsingLCFS<’a> : maxCount:int -> Eventive<Queue<’a>>

val createUsingSIRO<’a> : maxCount:int -> Eventive<Queue<’a>>

val createUsingPriorities<’a> : maxCount:int -> Eventive<Queue<’a>>

Each of them uses the FCFS strategy for ranging the enqueueing and dequeue-
ing operations, but uses the corresponded queue strategy for internal storing.

For example, the createUsingFCFS function uses FCFS for the storing oper-
ation too, while the createUsingPriorities function creates already a queue
that uses the static priorities, when storing a new element.

Unlike other data structures, a queue is created within the Eventive com-
putation as we have to know the current simulation time to start gathering the
timing statistics for the queue size. The statistics is initiated at time of invoking
the computation.

There are different enqueueing functions. The most simple one is provided
below.

module Queue =

val enqueue : item:’a -> queue:Queue<’a> -> Proc<unit>

It suspends the process if the finite queue is full. Therefore, this action is
returned as the Proc computation.

Also we can try to enqueue a new item and if the queue is full then the item
is counted as lost.

module Queue =

val enqueueOrLost : item:’a -> queue:Queue<’a> -> Eventive<bool>

This action cannot already suspend the simulation activity and hence it
returns the Eventive computation of a flag indicating whether the item was
successfully stored in the queue.

There is also a similar function that tries to enqueue a new item, but in case
of the full queue the item is not counted as lost and the queue statistics does
not change.

module Queue =

val tryEnqueue : item:’a -> queue:Queue<’a> -> Eventive<bool>

6.1. FINITE QUEUES 55

This function can be useful if we are going to enqueue the item in another
queue in case of failure. We try the first queue Q1, fail and then enqueue the
item in the second queue Q2.

•
tryEnqueue

++

enqueue
��

Q1kk

Q2

If the queue was created by applying the createUsingPriorities function
then we must enqueue a new element specifying also the storing priority.

module Queue =

val enqueueWithStoringPriority : pm:Priority

-> item:’a

-> queue:Queue<’a>

-> Proc<unit>

val enqueueWithStoringPriorityOrLost : pm:Priority

-> item:’a

-> queue:Queue<’a>

-> Eventive<bool>

val tryEnqueueWithStoringPriority : pm:Priority

-> item:’a

-> queue:Queue<’a>

-> Eventive<bool>

There are also other enqueueing functions that allow specifying the priority
used when ranging the enqueueing operations in case of full queue, but these
functions are needed only if we specify the corresponded priority-based enqueue-
ing strategy, when constructing the queue.

As it was mentioned before, the predefined queue constructors use the FCFS

strategy for the enqueueing operation that needs no auxiliary priority, when
ranging the operations if the queue is full. The first operation will have a
priority.

The simplest dequeueing operation suspends the process while the queue is
empty. The result is the Proc computation.

module Queue =

val dequeue : queue:Queue<’a> -> Proc<’a>

Here the very type signatures specify whether the corresponded function
may suspend the simulation activity, or the action is performed immediately.

There are similar dequeueing functions that allow specifying the priority used
when ranging the dequeueing operations if the queue is empty. As before, these
similar functions are needed only if the queue was constructed by specifying the
priority-based dequeueing strategy.

Regarding the predefined queue constructors, they also use the FCFS strategy
for ranging the dequeueing operations, which needs no auxiliary priority. The
first operation will have a priority if the queue is empty.

The queue has a lot of counters that are updated during the simulation.
Actually, these counters are what we are mostly interested in.

For example, we can request the queue for its size and wait time.

56 CHAPTER 6. QUEUE NETWORK

module Queue =

val countStats : queue:Queue<’a> -> Eventive<TimingStats<int>>

val waitTime : queue:Queue<’a> -> Eventive<SamplingStats<Time>>

Finally, we can return an arbitrary queue or a list of queues from the model
as a ResultSource. Then the queue or the list of queues can be used within
the simulation experiment.

6.2 Infinite Queues

An infinite queue is a container of elements.

[<Sealed>]

type InfiniteQueue<’a>

Since the queue is infinite, there is no need to range the enqueueing op-
erations as the queue cannot be full. Therefore, a new queue is created by
specifying the storing and dequeueing strategies respectively.

module InfiniteQueue =

val create<’sm, ’so, ’a

when ’sm :> IQueueStrategy and

’so :> IQueueStrategy> :

storingStrat:’sm

-> outputStrat:’so

-> Eventive<InfiniteQueue<’a>>

The storing strategy is used for ranging the elements in the queue itself. The
dequeueing strategy is used for ranging the dequeueing operations if the queue
is empty.

There are specializations that allow creating new queues based on the pre-
defined queue strategies.

module InfiniteQueue =

val createUsingFCFS<’a> : Eventive<InfiniteQueue<’a>>

val createUsingLCFS<’a> : Eventive<InfiniteQueue<’a>>

val createUsingSIRO<’a> : Eventive<InfiniteQueue<’a>>

val createUsingPriorities<’a> : Eventive<InfiniteQueue<’a>>

Each of them uses the FCFS strategy, i.e. first come - first serviced, for
ranging the dequeueing operations in case of empty queue. The first operation
will have a priority.

There are only two enqueueing functions and their actions are performed
immediately without suspension. The simulation time remains the same after
the operation.

module InfiniteQueue =

val enqueue : item:’a -> queue:InfiniteQueue<’a> -> Eventive<unit>

val enqueueWithStoringPriority : pm:Priority

-> item:’a

-> queue:InfiniteQueue<’a>

-> Eventive<unit>

6.3. STREAM 57

The second function is used when the queue was created by specifying the
priority-based storing strategy. In other cases the first function is used.

The simplest dequeueing operation suspends the process while the queue is
empty. The result is the Proc computation.

module InfiniteQueue =

val dequeue : queue:InfiniteQueue<’a> -> Proc<’a>

It is worth noting again that the type signatures specify whether the corre-
sponded function may suspend the simulation activity, or the action is performed
immediately.

There is a similar dequeueing function that allows specifying the priority
used when ranging the dequeueing operations if the queue is empty. As before,
these similar function is needed only if the queue was constructed by specifying
the priority-based dequeueing strategy.

Regarding the predefined queue constructors, they use the FCFS strategy for
ranging the dequeueing operations, which needs no auxiliary priority. The first
operation will have a priority if the infinite queue is empty.

Like the finite queue, the infinite queue has a lot of counter that are updated
during the simulation.

For example, we can request the infinite queue for its size and wait time.

module InfiniteQueue =

val countStats : queue:InfiniteQueue<’a> -> Eventive<TimingStats<int>>

val waitTime : queue:InfiniteQueue<’a> -> Eventive<SamplingStats<Time>>

Also we can return an arbitrary infinite queue or a list of such queues from
the model as a ResultSource. Then the infinite queue or the list of queues can
be used within the simulation experiment.

6.3 Stream

Many things become significantly more simple for reasoning and understanding
after we introduce a concept of stream of data distributed sequentially in the
modeling time.

type StreamItem<’a> =

| StreamNil

| StreamCons of ’a * Stream<’a>

and Stream<’a> = Stream of Proc<StreamItem<’a>>

The corresponding computation builder has name stream:

let x : Stream<’a> = stream { .. }

It supports F# keywords yield, yield! in obvious way. Also it supports
the let! and do! constructs allowing us to embed arbitrary Proc computation
in the Stream computation.

let x : Stream<’a> = stream {

let a : ’a = ...

yield a

58 CHAPTER 6. QUEUE NETWORK

...

let p : Proc<’b> = ...

let! b : ’b = p

...

}

The Stream type is a kind of the cons-cell, where the cell is returned within
the Proc computation. It means that the stream data can be distributed in the
modeling time and there can be time gaps between sequential data.

The streams themselves are well-known in the functional programming for
a long time[1]. It is obvious that we can map, filter, transform the streams.

module Stream =

val map : (’a -> ’b) -> Stream<’a> -> Stream<’b>

val mapc : (’a -> Proc<’b>) -> Stream<’a> -> Stream<’b>

val filter : (’a -> bool) -> Stream<’a> -> Stream<’a>

val filterc : (’a -> Proc<bool>) -> Stream<’a> -> Stream<’a>

Passivating the underlying process forever1, we receive a stream that never
returns data.

module Stream =

val empty<’a> : Stream<’a>

Moreover, we can merge two streams applying the FCFS strategy when en-
queueing input data.

module Stream =

val append : Stream<’a> -> Stream<’a> -> Stream<’a>

Actually, the latter is a partial case of more general functions that allow
concatenating the streams like a multiplexor.

module Stream =

val merge : Stream<’a> list -> Stream<’a>

val mergeQueueing : #IQueueStrategy -> Stream<’a> list -> Stream<’a>

val mergePrioritising : #IQueueStrategy

-> Stream<Priority * ’a> list

-> Stream<’a>

The functions use the resources to concatenate different streams of data.

•

merge

��

•

''
. . . •

•

77

1The underlying process can still be canceled, though.

6.3. STREAM 59

There is an opposite ability to split the input stream into the specified num-
ber of output streams like a demultiplexor. We have to do it to model a parallel
work of services.

module Stream =

val split : int -> Stream<’a> -> Stream<’a> list

val splitQueueing : #IQueueStrategy -> int -> Stream<’a> -> Stream<’a> list

val splitPrioritising : #IQueueStrategy

-> Stream<Priority> list

-> Stream<’a>

-> Stream<’a> list

These functions use also the resources to split the stream.

•

•

•

split

??

77

''

. . .

•

An implementation uses an auxiliary function that creates a new stream as
a result of the repetitive execution of some process.

module Stream =

val repeat : Proc<’a> -> Stream<’a>

A key idea is that many simulation models can be defined as a network of
the Stream computations.

Such a network must have external input streams, usually random streams
like these ones.

module Stream =

val randomUniform : minimum:float -> maximum:float -> Stream<Arrival<float>>

val randomUniformInt : minimum:int -> maximum:int -> Stream<Arrival<int>>

val randomNormal : mean:float -> deviation:float -> Stream<Arrival<float>>

val randomExponential : mean:float -> Stream<Arrival<float>>

val randomErlang : beta:float -> m:int -> Stream<Arrival<float>>

val randomPoisson : mean:float -> Stream<Arrival<int>>

val randomBinomial : prob:float -> trials:int -> Stream<Arrival<int>>

Here a value of type Arrival<’a> contains the modeling time at which the
external event has arrived, the event itself of type ’a and the delay time which
has passed from the time of arriving the previous event.

type Arrival<’a> =

{ Value : ’a;

Time : float;

Delay : float option }

60 CHAPTER 6. QUEUE NETWORK

To process the input stream in parallel, we split the input with help of
the split function, process new streams in parallel and then concatenate the
intermediate results into one output stream using the merge function. Later
will be provided the Processor.par function that does namely this.

•
process // •

merge

��

•
process // •

''•

split

??

77

''

. . . •

•
process // •

77

To process the specified stream sequentially by some servers, we need a
helper function that would read one more data item in advance, playing a role
of the intermediate buffer between the servers.

module Stream =

val prefetch : Stream<’a> -> Stream<’a>

Now we need the moving force that would run the whole network of streams.

module Stream =

val sink : Stream<’a> -> Proc<unit>

It infinitely reads data from the specified stream.
When building queue networks, the following function can be useful too.

module Stream =

val memo : Stream<’a> -> Stream<’a>

It memoizes the stream so that the resulting stream would always return the
same data within the simulation run.

6.4 Processor

Having a stream of data, it would be natural to operate on its transformation
which we will call a processor :

type Processor<’a, ’b> = Stream<’a> -> Stream<’b>

We can construct the processors directly from the streams. Omitting the
obvious cases, we consider only the most important ones.

A new processor can be created by the specified handling function producing
output that can be either pure or the Proc computation.

module Processor =

val arr : (’a -> ’b) -> Processor<’a, ’b>

val arrc : (’a -> Proc<’b>) -> Processor<’a, ’b>

6.4. PROCESSOR 61

Also we can use an accumulator to save the intermediate state of the proces-
sor. When processing the input stream and generating an output one, we can
update the state.

module Processor =

val accum : (’st -> ’a -> Proc<’st * ’b>) -> ’st -> Processor<’a, ’b>

We can involve the Proc computation with side effect, when processing every
element of the input stream of data.

module Processor =

val within : Proc<unit> -> Processor<’a, ’a>

An arbitrary number of processors can be united to work in parallel using
the default FCFS queue strategy:

module Processor =

val par : Processor<’a, ’b> list -> Processor<’a, ’b>

Its implementation is based on using the multiplexing an demultiplexing
functions considered before. We split the input stream, process the interme-
diated streams in parallel and then concatenate the resulting streams into one
output steam.

There are other versions of the par function, where we can specify the queue
strategies and priorities if required.

To create a sequence of autonomously working processors, we can use the
next function based on the prefetching function for streams considered above
too:

module Processor =

val seq : Processor<’a, ’a> list -> Processor<’a, ’a>

For example, having two complementing processors p1 and p2, we can create
two new processors, where the first one implies a parallel work, while another
implies a sequential processing:

let pPar = Processor.par [p1; p2]

let pSeq = Processor.seq [p1; p2]

The latter could be written explicitly as

let pSeq = p1 >> Stream.prefetch >> p2

•
p1 // •

merge

''•

split

77

split

''

•

•
p2 // •

merge

77

•
p1 // •

prefetch// •
p2 // •

We could connect two processors p1 and p2 directly, but it would be a
monolithic processor, where input element is requested only after output element
is requested outside.

62 CHAPTER 6. QUEUE NETWORK

let pWhole = p1 >> p2

When creating a sequence of processors, we have to isolate the processors
with help of intermediate buffer and the Stream.prefetch processor plays a
role of such an active buffer that requests one more element in advance.

Table 6.1: Composing Processors.

Function Description
Processor.par Parallel processors
Processor.seq Sequential processors
(>>) Processor composition

By the same reason we can connect directly to the queue processor as the
queue is also an example of active buffer.

Basing on the described approach, we can model quite complex queue net-
works in an easy-to-use high-level declarative manner, which makes the Aivika
library similar to some specialized simulation software tools by the capabilities
of expression.

Regarding the queues themselves, we can model them using rather general-
purpose helper combinators like this one:

module Processor =

val queue : enqueue:(’a -> Proc<unit>)

-> dequeue:Proc<’b>

-> Processor<’a, ’b>

An idea is that there is a plenty of cases how the queues could be united in
the network. When enqueueing, we can either wait while the queue is full, or
we can count such an item as lost. We can use the priorities for the Proc com-
putations that enqueue or dequeue. Moreover, different processes can enqueue
and dequeue simultaneously.

Therefore, it was decided to introduce such general-purpose helper functions
for modeling the queues, where the details of how the queues are simulated can
be shortly described with help of combinators like enqueue, enqueueOrLost and
dequeue stated above.

However, there are three predefined combinators that cover the most of cases.
Each of them returns a processor corresponding to the queue and adding the
desired behavior.

module Queue =

val processor : Queue<’a> -> Processor<’a, ’a>

val processorWithLost : Queue<’a> -> Processor<’a, ’a>

module InfiniteQueue =

val processor : InfiniteQueue<’a> -> Processor<’a, ’a>

6.4. PROCESSOR 63

The definition of these three queue processors is quite simple. We pass in two
computations to the queue combinator. The first computation defines how the
input elements are enqueued. The second computation defines how the output
elements are dequeued.

module Queue =

let processor (queue: Queue<’a>) =

Processor.queue

(fun a -> queue |> Queue.enqueue a)

(Queue.dequeue queue)

let processorWithLost (queue:Queue<’a>) =

Processor.queue

(fun a -> queue |> Queue.enqueueOrLost_ a |> Eventive.lift)

(Queue.dequeue queue)

module InfiniteQueue =

let processor (queue: InfiniteQueue<’a>) =

Processor.queue

(fun a -> queue |> InfiniteQueue.enqueue a |> Eventive.lift)

(InfiniteQueue.dequeue queue)

Also we can model the queue networks with loopbacks using the intermediate
queues to delay the stream. One of the possible combinators is provided below.

module Processor =

val queueLoopSeq : enqueue:(’a -> Proc<unit>)

-> dequeue:Proc<’c>

-> cond:Processor<’c, Choice<’e, ’b>>

-> body:Processor<’e, ’a>

-> Processor<’a, ’b>

Moreover, there are helper functions that hold the active process for a ran-
dom time interval according to the desired distribution.

module Processor =

val randomUniform : minimum:float -> maximum:float -> Processor<’a, ’a>

val randomUniformInt : minimum:int -> maximum:int -> Processor<’a, ’a>

val randomNormal : mean:float -> deviation:float -> Processor<’a, ’a>

val randomExponential : mean:float -> Processor<’a, ’a>

val randomErlang : beta:float -> m:int -> Processor<’a, ’a>

val randomPoisson : mean:float -> Processor<’a, ’a>

val randomBinomial : prob:float -> trials:int -> Processor<’a, ’a>

There is no magic in these random processors. Their definition is quite
simple too:

module Processor =

let randomUniform minimum maximum =

Proc.randomUniform_ minimum maximum |> within

An example model that would use the streams and queue processors is pro-
vided further in section 6.8.

Using the processors, we can model a complicated enough behavior, for
example, we can model the Round-Robbin strategy[17] of the processing.

64 CHAPTER 6. QUEUE NETWORK

module Processor =

val roundRobbin : Processor<Proc<Time> * Proc<’a>, ’a>

It tries to perform a task within the specified timeout. If the task times
out, then it is canceled and returned to the processor again; otherwise, the
successful result is redirected to output. The timeout and task are passed in to
the processor from the input stream.

Both the processors and streams allow modeling the process-oriented simula-
tion on a higher level in a way somewhere similar to that one which is described
in book [10] by A. Alan B. Pritsker and Jean J. O’Reilly.

At the same time, all computations are well integrated in Aivika and we can
combine different approaches within the same model, for example, transforming
an arbitrary Dynamics computation such as an integral to the high-level Proc
computation and then using it in the Processor computation.

By the way, each time we use the modeling time and other simulation pa-
rameters such as the start time of final time, we use the same lifting functions
that do exactly the same thing that they do, when lifting the integral. There is
no difference.

Such is an essence of the approach suggested by this library, where the
simulation computations are just functions, but the computation expressions
of F# are an easy-to-use practical tool to build complex models from simple
parts. Therefore, the syntax sugar provided by the F# compiler for creating
simulation computations plays a very significant role and essentially determines
how useful can be the approach in real practice.

6.5 Server

In Aivika there is a Server data type that allows modeling a statefull working
place and gathering its statistics.

[<Sealed>]

type Server<’state, ’a, ’b>

module Server =

val create : f:(’a -> Proc<’b>) -> Simulation<Server<unit, ’a, ’b>>

val createAccum : f:(’state -> ’a -> Proc<’state * ’b>)

-> state:’state

-> Simulation<Server<’state, ’a, ’b>>

To create a server, we provide a handling function that takes the input,
process it and generates an output within the Proc computation. The handling
function may use an accumulator to save the server state when processing.

By default, the server does not take into account a possible resource pre-
emption, because its handling is quite a costly operation. Therefore, you should
use more general constructors to create a server that would be able to properly
gather its statistics in case of possible resource preemption.

module Server =

val createPreemptible : preemptible:bool

-> f:(’a -> Proc<’b>)

6.5. SERVER 65

-> Simulation<Server<unit, ’a, ’b>>

val createAccumPreemptible : preemptible:bool

-> f:(’state -> ’a -> Proc<’state * ’b>)

-> state:’state

-> Simulation<Server<’state, ’a, ’b>>

Here the first argument defines whether the underlying process can be pre-
empted, when acquiring the PreemptibleResource resource.

To involve the server in simulation, we can use its processor that performs
a service and updates the internal counters.

module Server =

val processor : Server<’state, ’a, ’b> -> Processor<’a, ’b>

For example, we can request for the statistics of time spent by the server
while processing the tasks.

module Server =

val processingTime: Server<’state, ’a, ’b> -> Eventive<SamplingStats<float>>

There is one subtle thing. Each time we use the processor function, we
actually create a new processor that refers to the same server and hence updates
the same statistics counters. It can be useful if we are going to gather the
statistics for a group of servers working in parallel, although the best practice
would still be to use the processor function only once per each server.

There are predefined servers that model an activity that holds the underlying
process for a random time interval, when processing every input element.

module Server =

val createRandomUniformPreemptible :

preemptible:bool

-> minimum:float

-> maximum:float

-> Simulation<Server<unit, ’a, ’a>>

val createRandomUniform :

minimum:float

-> maximum:float

-> Simulation<Server<unit, ’a, ’a>>

val createRandomUniformIntPreemptible :

preemptible:bool

-> minimum:int

-> maximum:int

-> Simulation<Server<unit, ’a, ’a>>

val createRandomUniformInt :

minimum:int

-> maximum:int

-> Simulation<Server<unit, ’a, ’a>>

val createRandomNormalPreemptible :

preemptible:bool

-> mean:float

-> deviation:float

-> Simulation<Server<unit, ’a, ’a>>

66 CHAPTER 6. QUEUE NETWORK

val createRandomNormal :

mean:float

-> deviation:float

-> Simulation<Server<unit, ’a, ’a>>

val createRandomExponentialPreemptible :

preemptible:bool

-> mean:float

-> Simulation<Server<unit, ’a, ’a>>

val createRandomExponential :

mean:float

-> Simulation<Server<unit, ’a, ’a>>

val createRandomErlangPreemptible :

preemptible:bool

-> beta:float

-> m:int

-> Simulation<Server<unit, ’a, ’a>>

val createRandomErlang :

beta:float

-> m:int

-> Simulation<Server<unit, ’a, ’a>>

val createRandomPoissonPreemptible :

preemptible:bool

-> mean:float

-> Simulation<Server<unit, ’a, ’a>>

val createRandomPoisson :

mean:float

-> Simulation<Server<unit, ’a, ’a>>

val createRandomBinomialPreemptible :

preemptible:bool

-> prob:float

-> trials:int

-> Simulation<Server<unit, ’a, ’a>>

val createRandomBinomial :

prob:float

-> trials:int

-> Simulation<Server<unit, ’a, ’a>>

The definition of these predefined servers with random activity is quite sim-
ple, which demonstrates how you can define your own activity.

module Server =

let createRandomUniformPreemptible preemptible minimum maximum =

createPreemptible preemptible (fun a -> proc {

do! Proc.randomUniform_ minimum maximum

return a

})

let createRandomUniform minimum maximum =

createRandomUniformPreemptible false minimum maximum

There is no difference between the predefined servers and custom-made ones.
Moreover, the resource preemption will work even in case if the activity is defined
as a complicated Proc computation with branches, calculations and so on.

6.6. TIMING ARRIVALS 67

6.6 Timing Arrivals

Usually, an input of the queue network is expressed as a random stream of
Arrival values. While processing, we can modify data that come with the
arrival. We can add new attributes, remove them and change. It is quite simple
as the processors usually work with generic data. In the end we have to measure
the time which the specified arrival spent being in a system.

We can do this, using the following data type.

[<Sealed>]

type ArrivalTimer

module ArrivalTimer =

val create : Simulation<ArrivalTimer>

An idea is that we pass the input data through a special processor that
counts the time spent by arrivals.

module ArrivalTimer =

val processor : ArrivalTimer -> Processor<Arrival<’a>, Arrival<’a>>

Then we request the timer for the processing time statistics collected.

module ArrivalTimer =

val processingTime : ArrivalTimer -> Eventive<SamplingStats<float>>

Finally, the arrival timer can be returned as a ResultSource from the model.

6.7 Experiment Providers

The introduced above compound simulation entities such as queues and servers
have a lot of counters. Either the compound entitity or its specific counter can
be returned from the model as a ResultSource.

For example, to show the deviation chart and summary for the size statistics
of the queue with name queue1, we could write:

let series : ResultTransform =

ResultSet.findByName "queue1" >>

ResultSet.findById QueueCountStatsId

let provider1 = DeviationChartProvider ()

let provider2 = LastValueStatsProvider ()

provider1.Series <- series

provider2.Series <- series

The pros of this approach is that the queue has many counters and we can
specify precisely those ones we need as well as we can specify how we want to
display the simulation results. But such an approach seems to be quite tedious
in practice as we usually need a small set of counters for quick analysis, for
example, when validating the model.

Therefore, there is another way. An idea is that we can display only the most
important information about the simulation entities writing rather small code,
where we just define what entity we want to display the information about.

At first, the basic experiment providers are redefined as easy-to-use combi-
nators:

68 CHAPTER 6. QUEUE NETWORK

namespace Simulation.Aivika.Experiments.Web

module ExperimentProvider =

/// Shows the experiment specs.

val experimentSpecs: IExperimentProvider<HtmlTextWriter>

/// Shows the information about the specified series.

val description: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

/// Renders the last values for the specified series.

val lastValue: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

/// Renders the CSV file with results for the specified series.

val table: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

/// Renders the CSV file with last results for the specified series.

val lastValueTable: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

/// Renders the last value statistics for the specified series.

val lastValueStats: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

Similar combinators are defined at level of the charting component for fast
creation of the predefined simulation providers.

namespace Simulation.Aivika.Charting.Web

module ExperimentProvider =

/// Renders the time series for the specified series.

val timeSeries: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

/// Renders the XY Chart for the specified series.

val xyChart: seriesX:ResultTransform

-> seriesY:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

/// Renders the deviation chart for the specified series.

val deviationChart: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

/// Renders the last value histogram for the specified series.

val lastValueHistogram: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

Now we use the property of providers to be combined, when we can take a
list of the providers and create a new one that would behave as a whole.

namespace Simulation.Aivika.Experiments

module ExperimentProvider =

/// Appends two providers.

val append: p1:IExperimentProvider<’a>

-> p2:IExperimentProvider<’a>

-> IExperimentProvider<’a>

6.8. EXAMPLE: WORK STATIONS IN SERIES 69

/// Concatenates the specified providers.

val concat: ps:IExperimentProvider<’a> list -> IExperimentProvider<’a>

/// A provider that renders nothing.

val empty<’a> : IExperimentProvider<’a>

Using this property, we can create easy-to-use simulation providers for some
compound simulation entities displaying only the most important information.

namespace Simulation.Aivika.Charting.Web

module ExperimentProvider =

/// Renders the basic queue properties for the specified series.

val queue: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

/// Renders the basic queue properties for the specified series.

val infiniteQueue: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

/// Renders the basic server properties for the specified series.

val server: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

/// Renders the basic arrival timer properties for the specified series.

val arrivalTimer: series:ResultTransform

-> IExperimentProvider<HtmlTextWriter>

For example, the queue provider can be defined in the following way.

module ExperimentProvider =

let queue (series: ResultTransform) =

let series1 = series >> ResultSet.findById QueueCountStatsId

let series2 = series >> ResultSet.findById QueueWaitTimeId

let series3 = series >> ResultSet.findById QueueLostCountId

let series’ = ResultTransform.concat [series; series1; series2; series3]

[ExperimentProvider.description series’;

deviationChart series1;

ExperimentProvider.lastValueStats series1;

deviationChart series2;

ExperimentProvider.lastValueStats series2;

deviationChart series3;

ExperimentProvider.lastValueStats series3;

lastValueHistogram series3]

|> ExperimentProvider.concat

We see that this provider displays the information about the size statistics,
wait time and the count of lost items for the queues specified.

6.8 Example: Work Stations in Series

To illustrate how the streams and processors can be used for modeling, let us
consider a model [10, 17] of two work stations connected in a series and separated
by finite queues.

70 CHAPTER 6. QUEUE NETWORK

The maintenance facility of a large manufacturer performs two op-
erations. These operations must be performed in series; operation 2
always follows operation 1. The units that are maintained are bulky,
and space is available for only eight units including the units being
worked on. A proposed design leaves space for two units between
the work stations, and space for four units before work station 1. [..]
Current company policy is to subcontract the maintenance of a unit
if it cannot gain access to the in-house facility.

Historical data indicates that the time interval between requests for
maintenance is exponentially distributed with a mean of 0.4 time
units. Service times are also exponentially distributed with the first
station requiring on the average 0.25 time units and the second sta-
tion, 0.5 time units. Units are transported automatically from work
station 1 to work station 2 in a negligible amount of time. If the
queue of work station 2 is full, that is, if there are two units awaiting
for work station 2, the first station is blocked and a unit cannot leave
the station. A blocked work station cannot server other units.

Below is provided the corresponding simulation model.

// File WorkStationsInSeries/Model.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

open Simulation.Aivika

open Simulation.Aivika.Queues

open Simulation.Aivika.Results

/// the simulation specs

let specs = {

StartTime=0.0; StopTime=300.0; DT=0.1;

Method=RungeKutta4; GeneratorType=StrongGenerator

}

/// the mean delay of the input arrivals distributed exponentially

let meanOrderDelay = 0.4

/// the capacity of the queue before the first work places

let queueMaxCount1 = 4

/// the capacity of the queue before the second work places

let queueMaxCount2 = 2

/// the mean processing time distributed exponentially in

/// the first work stations

let meanProcessingTime1 = 0.25

/// the mean processing time distributed exponentially in

/// the second work stations

let meanProcessingTime2 = 0.5

/// the simulation model

let model = simulation {

// it will gather the statistics about the processing time

6.8. EXAMPLE: WORK STATIONS IN SERIES 71

let! arrivalTimer = ArrivalTimer.create

// define a stream of input events

let inputStream = Stream.randomExponential meanOrderDelay

// create a queue in front of the first work stations

let! queue1 =

Queue.createUsingFCFS queueMaxCount1

|> Eventive.runInStartTime

// create a queue between the first and second work stations

let! queue2 =

Queue.createUsingFCFS queueMaxCount2

|> Eventive.runInStartTime

// create the first work station (server)

let! workStation1 =

Server.createRandomExponential meanProcessingTime1

// create the second work station (server)

let! workStation2 =

Server.createRandomExponential meanProcessingTime2

// the entire processor from input to output

let entireProcessor =

Queue.processorWithLost queue1 >>

Server.processor workStation1 >>

Queue.processor queue2 >>

Server.processor workStation2 >>

ArrivalTimer.processor arrivalTimer

// start simulating the model

do! inputStream

|> entireProcessor

|> Stream.sink

|> Proc.runInStartTime

// return the simulation results

return [ResultSource.From ("queue1", queue1,

"Queue no. 1");

ResultSource.From ("workStation1", workStation1,

"Work Station no. 1");

ResultSource.From ("queue2", queue2,

"Queue no. 2");

ResultSource.From ("workStation2", workStation2,

"Work Station no. 2");

ResultSource.From ("arrivalTimer", arrivalTimer,

"The arrival timer")]

|> ResultSet.create

}

/// the model summary

let modelSummary =

model |> Simulation.map ResultSet.summary

The end part shows how we should run the queue network. We have to
read permanently data from the output stream generated by the second work
station. It initiates the process of receiving data from the queue located in
a space between the both work stations. The corresponding queue processor
begins requesting the first work station, which in its turn initiates the process
of receiving data from the first queue, which processor begins reading data from

72 CHAPTER 6. QUEUE NETWORK

the input random stream of data distributed exponentially.
The simulation experiment file mostly mimics the last return function, where

the result sources are defined.

// File WorkStationsInSeries/RunExperiment.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

#r "../../bin/Simulation.Aivika.Experiments.dll"

#r "../../bin/Simulation.Aivika.Charting.dll"

#load "Model.fsx"

open System

open System.Web.UI

open Simulation.Aivika

open Simulation.Aivika.Results

open Simulation.Aivika.Experiments

open Simulation.Aivika.Experiments.Web

open Simulation.Aivika.Charting.Web

let experiment = Experiment ()

experiment.Specs <- Model.specs

experiment.RunCount <- 1000

let queueSeries1 = ResultSet.findByName "queue1"

let queueSeries2 = ResultSet.findByName "queue2"

let serverSeries1 = ResultSet.findByName "workStation1"

let serverSeries2 = ResultSet.findByName "workStation2"

let timerSeries = ResultSet.findByName "arrivalTimer"

let providers =

[ExperimentProvider.experimentSpecs;

ExperimentProvider.queue queueSeries1;

ExperimentProvider.server serverSeries1;

ExperimentProvider.queue queueSeries2;

ExperimentProvider.server serverSeries2;

ExperimentProvider.arrivalTimer timerSeries]

experiment.RenderHtml (Model.model, providers)

|> Async.RunSynchronously

The experiment file creates a lot of information. For brevity, only two charts
are provided on figures 6.1 and 6.2. The first chart shows the trend and prob-
abilistic bounds for the first queue size, while the second chart shows the lost
item count for the first queue.

6.9 Example: A Machine Tool with Breakdowns

The next example[10] illustrates the use of resource preemption.

Jobs arrive to a machine tool on the average of one per hour. The
distribution of these interarrival times is exponential. During normal
operation, the jobs are processed on a first-in, first-out basis. The

6.9. EXAMPLE: A MACHINE TOOL WITH BREAKDOWNS 73

Figure 6.1: The first queue size trend and probabilistic bounds.

Figure 6.2: The lost item count for the first queue.

74 CHAPTER 6. QUEUE NETWORK

time to process a job in hours is normally distributed with a mean
of 0.5 and a standard deviation of 0.1. In addition to the processing
time, there is a set up time that is uniformly distributed between 0.2
and 0.5 of an hour. Jobs that have been processed by the machine
tool are routed to a different section of the shop and are considered
to have left the machine tool area.

The machine tool experiences breakdowns during which time it can
no longer process jobs. The time between breakdowns is normally
distributed with a mean of 20 hours and a standard deviation of 2
hours. When a breakdown occurs, the job being processed is re-
moved from the machine tool and is placed at the head of the queue
of jobs waiting to be processed. Jobs preempted restart from the
point at which they were interrupted.

When the machine tool breaks down, a repair process is initiated
which is accomplished in three phases. Each phase is exponentially
distributed with a mean of 3/4 of an hour. Since the repair time
is the sum of independent and identically distributed exponential
random variables, the repair time is Erlang distributed. The machine
tool is to be analyzed for 500 hours to obtain information on the
utilization of the machine tool and the time required to process a
job. Statistics are to be collected for thousand simulation runs.

We create two difference processes. The first process models the processing
of jobs, while another models breakdowns. The both processes try to acquire a
shared resource but with different preemption priorities, where the breakdown
and the further repairing of the machine tool have a higher priority than the
processing of jobs.

// File MachineBreakdowns/Model.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

open Simulation.Aivika

open Simulation.Aivika.Queues

open Simulation.Aivika.Results

/// the simulation specs

let specs = {

StartTime=0.0; StopTime=500.0; DT=0.1;

Method=RungeKutta4; GeneratorType=StrongGenerator

}

/// How often do jobs arrive to a machine tool (exponential)?

let jobArrivingMu = 1.0

/// A mean of time to process a job (normal).

let jobProcessingMu = 0.5

/// The standard deviation of time to process a job (normal).

let jobProcessingSigma = 0.1

/// The minimum set-up time (uniform).

6.9. EXAMPLE: A MACHINE TOOL WITH BREAKDOWNS 75

let minSetUpTime = 0.2

/// The maximum set-up time (uniform).

let maxSetUpTime = 0.5

/// A mean of time between breakdowns (normal).

let breakdownMu = 20.0

/// The standard deviation of time between breakdowns (normal).

let breakdownSigma = 2.0

/// A mean of each of the three repair phases (Erlang).

let repairMu = 3.0 / 4.0

/// A priority of the job (less is higher)

let jobPriority = 1.0

/// A priority of the breakdown (less is higher)

let breakdownPriority = 0.0

/// The simulation model.

let model: Simulation<ResultSet> = simulation {

// create an input queue

let! inputQueue =

InfiniteQueue.createUsingFCFS

|> Eventive.runInStartTime

// a counter of jobs completed

let! jobsCompleted = ArrivalTimer.create

// a counter of interrupted jobs

let jobsInterrupted = ref 0

// create an input stream

let inputStream = Stream.randomExponential jobArrivingMu

// create a preemptible resource

let! tool = PreemptibleResource.create 1

// the machine setting up

let! machineSettingUp =

Server.createRandomUniformPreemptible

true minSetUpTime maxSetUpTime

// the machine processing

let! machineProcessing =

Server.createRandomNormalPreemptible

true jobProcessingMu jobProcessingSigma

// the machine breakdown

let machineBreakdown = proc {

while true do

do! Proc.randomNormal_ breakdownMu breakdownSigma

use! h =

PreemptibleResource.takeWithPriority

breakdownPriority tool

do! Proc.randomErlang_ repairMu 3

}

// start the process of breakdowns

do! machineBreakdown

|> Proc.runInStartTime

// update a counter of job interruptions

do! machineProcessing

|> Server.taskPreempting

|> Signal.add (fun a -> eventive { incr jobsInterrupted })

|> Eventive.runInStartTime

// define the queue network

let network =

InfiniteQueue.processor inputQueue >>

76 CHAPTER 6. QUEUE NETWORK

Processor.within

(PreemptibleResource.requestWithPriority jobPriority tool) >>

Server.processor machineSettingUp >>

Server.processor machineProcessing >>

Processor.within

(PreemptibleResource.release tool) >>

ArrivalTimer.processor jobsCompleted

// start the machine tool

do! network inputStream

|> Stream.sink

|> Proc.runInStartTime

// return the simulation results in start time

return

[ResultSource.From ("inputQueue",

inputQueue, "the queue of jobs");

ResultSource.From ("machineSettingUp",

machineSettingUp, "the machine setting up");

ResultSource.From ("machineProcessing",

machineProcessing, "the machine processing");

ResultSource.From ("jobsInterrupted",

jobsInterrupted, "a counter of the interrupted jobs");

ResultSource.From ("jobsCompleted",

jobsCompleted, "a counter of the completed jobs")]

|> ResultSet.create

}

let modelSummary =

model |> Simulation.map ResultSet.summary

The simulation experiment file mainly repeats the names of sources returned
from the model. The Monte-Carlo simulation contains 1000 runs.

// File MachineBreakdowns/RunExperiment.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

#r "../../bin/Simulation.Aivika.Experiments.dll"

#r "../../bin/Simulation.Aivika.Charting.dll"

#load "Model.fsx"

open System

open System.Web.UI

open Simulation.Aivika

open Simulation.Aivika.Results

open Simulation.Aivika.Experiments

open Simulation.Aivika.Experiments.Web

open Simulation.Aivika.Charting.Web

let experiment = Experiment ()

experiment.Specs <- Model.specs

experiment.RunCount <- 1000

let inputQueue = ResultSet.findByName "inputQueue"

let machineSettingUp = ResultSet.findByName "machineSettingUp"

let machineProcessing = ResultSet.findByName "machineProcessing"

let jobsInterrupted = ResultSet.findByName "jobsInterrupted"

6.9. EXAMPLE: A MACHINE TOOL WITH BREAKDOWNS 77

let jobsCompleted = ResultSet.findByName "jobsCompleted"

let providers =

[ExperimentProvider.experimentSpecs;

ExperimentProvider.infiniteQueue inputQueue;

ExperimentProvider.server machineSettingUp;

ExperimentProvider.server machineProcessing;

ExperimentProvider.description jobsInterrupted;

ExperimentProvider.lastValueStats jobsInterrupted;

ExperimentProvider.arrivalTimer jobsCompleted]

experiment.RenderHtml (Model.model, providers)

|> Async.RunSynchronously

We receive a lot of results. The chart displaying the utilization of the machine
tool is shown on figure 6.3, but the chart of the time required to process a job
is illustrated on figure 6.4.

Figure 6.3: The utilization of the machine tool.

The processing time cannot be negative, but it has so huge deviation that
the chart shows negative values according to rule 3-sigma.

Actually, we could save the results in CSV files with help of TableProvider
and then analyze them in R, for example, but now we use the Aivika embedded
capabilities that automate the process of quick analysis significantly.

78 CHAPTER 6. QUEUE NETWORK

6.10 Example: Inspection and Adjustment Sta-
tions

This example[10] illustrates how we can model a parallel work of servers. Also
it shows how we can create queue networks with loopbacks.

Assembled television sets move through a series of testing stations
in the final stage of their production. At the last of these stations,
the vertical control setting on the TV sets is tested. If the setting is
found to be functioning improperly, the offending set is routed to an
adjustment station where the setting is adjusted. After adjustment,
the television set is sent back to the last inspection station where the
setting is again inspected. Television sets passing the final inspec-
tion phase, whether for the first time of after one or more routings
through the adjustment station, are routed to a packing area.

The time between arrivals of television sets to the final inspection
station is uniformly distributed between 3.5 and 7.5 minutes. Two
inspectors work side-by-side at the final inspection station. The time
required to inspect a set is uniformly distributed between 6 and 12
minutes. On the average, 85 percent of the sets are routed to the
adjustment station which is manned by a single worker. Adjustment
of the vertical control setting requires between 20 and 40 minutes,
uniformly distributed.

The inspection station and adjustor are to be simulated for 480 min-
utes to estimate the time to process television sets through the final
production stage and to determine the utilization of the inspectors
and the adjustors.

The simulation model is as follows.

// File InspectionAdjustmentStations/Model.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

open Simulation.Aivika

open Simulation.Aivika.Queues

open Simulation.Aivika.Results

/// the simulation specs

let specs = {

StartTime=0.0; StopTime=480.0; DT=0.1;

Method=RungeKutta4; GeneratorType=StrongGenerator

}

/// the minimum delay of arriving the next TV set

let minArrivalDelay = 3.5

/// the maximum delay of arriving the next TV set

let maxArrivalDelay = 7.5

/// the minimum time to inspect the TV set

let minInspectionTime = 6.0

6.10. EXAMPLE: INSPECTION AND ADJUSTMENT STATIONS 79

/// the maximum time to inspect the TV set

let maxInspectionTime = 12.0

/// the probability of passing the inspection phase

let inspectionPassingProb = 0.85

/// how many are inspection stations?

let inspectionStationCount = 2

/// the minimum time to adjust an improper TV set

let minAdjustmentTime = 20.0

/// the maximum time to adjust an improper TV set

let maxAdjustmentTime = 40.0

/// how many are adjustment stations?

let adjustmentStationCount = 1

let model: Simulation<ResultSet> = simulation {

// to count the arrived TV sets for inspecting and adjusting

let! inputArrivalTimer = ArrivalTimer.create

// it will gather the statistics of the processing time

let! outputArrivalTimer = ArrivalTimer.create

// define a stream of input events

let inputStream =

Stream.randomUniform minArrivalDelay maxArrivalDelay

// create a queue before the inspection stations

let! inspectionQueue =

InfiniteQueue.createUsingFCFS

|> Eventive.runInStartTime

// create a queue before the adjustment stations

let! adjustmentQueue =

InfiniteQueue.createUsingFCFS

|> Eventive.runInStartTime

// create the inspection stations (servers)

let! inspectionStations =

[for i = 1 to inspectionStationCount do

yield Server.createRandomUniform

minInspectionTime maxInspectionTime]

|> Simulation.ofList

// create the adjustment stations (servers)

let! adjustmentStations =

[for i = 1 to adjustmentStationCount do

yield Server.createRandomUniform

minAdjustmentTime maxAdjustmentTime]

|> Simulation.ofList

// the line of parallel inspection stations

let inspectionProcessor =

inspectionStations

|> List.map Server.processor

|> Processor.par

// the line of adjustment stations

let adjustmentProcessor =

adjustmentStations

|> List.map Server.processor

|> Processor.par

// an output stream that comes after the inspection stations

let rec outputStream = stream {

let xs: Stream<_> =

inspectionQueue

|> InfiniteQueue.dequeue

80 CHAPTER 6. QUEUE NETWORK

|> Stream.repeat

|> inspectionProcessor

for a in xs do

let! passed =

Parameter.randomTrue inspectionPassingProb

|> Parameter.lift

if passed then

yield a

else

do! adjustmentQueue

|> InfiniteQueue.enqueue a

|> Eventive.lift

}

// the terminal processor

and terminalProcessor =

outputStream

|> ArrivalTimer.processor outputArrivalTimer

// the process of adjusting TV sets

and adjustmentProcess = proc {

let xs: Stream<_> =

adjustmentQueue

|> InfiniteQueue.dequeue

|> Stream.repeat

|> adjustmentProcessor

for a in xs do

do! inspectionQueue

|> InfiniteQueue.enqueue a

|> Eventive.lift

}

// the input process

and inputProcess = proc {

let xs: Stream<_> =

inputStream

|> ArrivalTimer.processor inputArrivalTimer

for a in xs do

do! inspectionQueue

|> InfiniteQueue.enqueue a

|> Eventive.lift

}

// run the process of adjustment

do! adjustmentProcess

|> Proc.runInStartTime

// run the input process

do! inputProcess

|> Proc.runInStartTime

// run the terminal processor

do! terminalProcessor

|> Stream.sink

|> Proc.runInStartTime

// return the simulation results

return

[ResultSource.From ("inspectionQueue", inspectionQueue,

"the inspection queue");

ResultSource.From ("adjustmentQueue", adjustmentQueue,

"the adjustment queue");

ResultSource.From ("inputArrivalTimer", inputArrivalTimer,

"the input arrival timer");

ResultSource.From ("outputArrivalTimer", outputArrivalTimer,

"the output arrival timer");

ResultSource.From ("inspectionStations", inspectionStations,

"the inspection stations");

ResultSource.From ("adjustmentStations", adjustmentStations,

6.10. EXAMPLE: INSPECTION AND ADJUSTMENT STATIONS 81

"the adjustment stations")]

|> ResultSet.create

}

let modelSummary: Simulation<ResultSet> =

model |> Simulation.map ResultSet.summary

We will use the following simulation experiment.

// File InspectionAdjustmentStations/RunExperiment.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

#r "../../bin/Simulation.Aivika.Experiments.dll"

#r "../../bin/Simulation.Aivika.Charting.dll"

#load "Model.fsx"

open System

open System.Web.UI

open Simulation.Aivika

open Simulation.Aivika.Results

open Simulation.Aivika.Experiments

open Simulation.Aivika.Experiments.Web

open Simulation.Aivika.Charting.Web

let experiment = Experiment ()

experiment.Specs <- Model.specs

experiment.RunCount <- 1000

let inspectionQueue = ResultSet.findByName "inspectionQueue"

let adjustmentQueue = ResultSet.findByName "adjustmentQueue"

let inspectionStations = ResultSet.findByName "inspectionStations"

let adjustmentStations = ResultSet.findByName "adjustmentStations"

let outputTimer = ResultSet.findByName "outputArrivalTimer"

let providers =

[ExperimentProvider.experimentSpecs;

ExperimentProvider.infiniteQueue inspectionQueue;

ExperimentProvider.infiniteQueue adjustmentQueue;

ExperimentProvider.server inspectionStations;

ExperimentProvider.server adjustmentStations;

ExperimentProvider.arrivalTimer outputTimer]

experiment.RenderHtml (Model.model, providers)

|> Async.RunSynchronously

Some of the results are shown on figures 6.5, 6.6 and 6.7.

82 CHAPTER 6. QUEUE NETWORK

Figure 6.4: The time required to process a job.

Figure 6.5: The processing time of television sets.

6.10. EXAMPLE: INSPECTION AND ADJUSTMENT STATIONS 83

Figure 6.6: The utilization of the inspectors.

Figure 6.7: The utilization of the adjustor.

84 CHAPTER 6. QUEUE NETWORK

Chapter 7

Parameters

7.1 Latin Square

7.2 Reading Data from Excel

85

86 CHAPTER 7. PARAMETERS

Chapter 8

System Dynamics

The Aivika library was mainly designed and created for the field of discrete
event simulation. However, the library can be used for solving tasks of System
Dynamics too. Moreover, the both fields can be naturally combined. Actu-
ally, the discrete event simulation computations are implemented on top of the
Dynamics computation, which is used for System Dynamics.

8.1 Memoizing Sequential Computations

A key feature that distinguishes the Dynamics computation from the Eventive

one is that the modeling time flows in an unpredictable order within the former
computation.

For example, the past value can be requested from the future: the initial
value of the integral can be requested at any time and so on.

Aivika solves this task by ordering and memoizing the computations in in-
tegration time points.

module Dynamics =

val memo : comp:Dynamics<’a> -> Dynamics<’a>

val memo0 : comp:Dynamics<’a> -> Dynamics<’a>

The both functions return a new computation that sequentially calls the
input computation in the integration time points by demand and saves the values
in array so that the next call in the same integration time point will return the
already calculated value without calling the input computation twice.

In other non-integration time points the values are interpolated so that the
closest past integration time point is selected, which allows using the resulting
computation in the discrete event simulation. Also we cannot request for the
future value from the past. Otherwise, we might receive a deadlock. This is a
step-wise linear interpolation.

The functions differ in that how they behave when specifying the Runge-
Kutta integration method.

The memo function is destined for integrating by the Runge-Kutta method.
It consumes more memory to allocate an array that stores the values in the
intermediate integration time points that are used by this integration technique.

87

88 CHAPTER 8. SYSTEM DYNAMICS

The memo0 function is more fast. It uses only the basic integration time
points as it would always be Euler’s integration method.

Usually, the memo function is needed only for integrals, while the memo0 is
suitable for other cases.

To emphasize the difference between the integration time points, there are
two functions that make the idea more clear.

module Dynamics =

val interpolate : comp:Dynamics<’a> -> Dynamics<’a>

val discrete : comp:Dynamics<’a> -> Dynamics<’a>

The interpolate function is used by the memo function. This is the very
interpolation, when the values in the integration time points including the in-
termediate integration time points are returned as they are, while in other time
points we return a value for the closest past integration time point.

The discrete function is used by the memo0 function. This is the interpo-
lation, where only the basic integration time points are used, i.e. those time
points that are defined by Euler’s method.

Some simulation software tools for System Dynamics such as Vensim define
functions that have an effect, when the value returned by the function changes
only in the integration time point regardless on the integration method used.
The discrete function gives namely this effect.

To complete the picture, there is a function that returns the initial value
of the computation that was defined in the start time, but the initial value is
returned in the current simulation time.

module Dynamics =

val runInStartTime : comp:Dynamics<’a> -> Simulation<’a>

For example, this function can be used for receiving the initial value of the
integral.

Returning to the memoization functions, they can be used not only for inte-
grals. They can also be used for creating random processes that can be defined
in the differential and difference equations of System Dynamics.

module Dynamics =

val memoRandomUniform : minimum:Dynamics<float>

-> maximum:Dynamics<float>

-> Dynamics<float>

val memoRandomUniformInt : minimum:Dynamics<int>

-> maximum:Dynamics<int>

-> Dynamics<int>

val memoRandomNormal : mean:Dynamics<float>

-> deviation:Dynamics<float>

-> Dynamics<float>

val memoRandomExponential : mean:Dynamics<float> -> Dynamics<float>

val memoRandomErlang : beta:Dynamics<float>

-> m:Dynamics<int>

-> Dynamics<float>

8.2. TABLE FUNCTION 89

val memoRandomPoisson : mean:Dynamics<float> -> Dynamics<int>

val memoRandomBinomial : prob:Dynamics<float>

-> trials:Dynamics<int>

-> Dynamics<int>

They are based on the memo0 function, i.e. the result changes only in the
integration time point.

8.2 Table Function

Many simulation models of System Dynamics use graphical functions based on
tables of pairs (x,y).

[<Sealed>]

type Table =

new : xys:(float * float) [] -> Table

member Lookup : x:float -> float

member LookupStepwise : x:float -> float

The first lookup method uses the linear interpolation, while the second
method uses a step-wise linear interpolation.

To make the table functions more easy-to-use, the library defines convenient
helper functions to be used in the differential and difference equations.

module Dynamics =

val lookup : x:Dynamics<float> -> tbl:Table -> Dynamics<float>

val lookupStepwise : x:Dynamics<float> -> tbl:Table -> Dynamics<float>

For example, the first function could be trivially defined as

module Dynamics =

let lookup (x: Dynamics<float>) (t: Table) =

dynamics {

let! a = x

return t.Lookup (a)

}

Note the use of the computation expression syntax. It literally means that
you can include your own functions in the differential and difference equations
as they are actually a system of Dynamics computations.

8.3 Differential Equations

The integral function signature was stated before and it is repeated here again
for convenience.

module SD =

val integ : derivative:Lazy<Dynamics<float>>

-> init:Dynamics<float>

-> Dynamics<float>

90 CHAPTER 8. SYSTEM DYNAMICS

It creates an integral by the specified derivative and initial value.
Comparing to specialized simulation software tools, this function is rather

slow but it works. Moreover, it can be used in the combined discrete continuous
simulation models.

We can create the ordinary differential equations of almost any complexity
based on the integ function.

Below is provided an implementation of the n’th order exponential smooth
function.

module SD =

let smoothN (x: Dynamics<float>) (t: Lazy<Dynamics<float>>) n =

let rec s = [|

for k = 0 to n-1 do

if k = 0 then

yield integ (lazy ((x - s.[k]) /

(t.Value / (float n)))) x

else

yield integ (lazy ((s.[k-1] - s.[k]) /

(t.Value / (float n)))) x |]

in s.[n-1]

A key point is that the integrals are just Dynamics computations that can
be combined in very sophisticated manner.

Earlier we saw a few examples of the discrete event simulation models that
extensively used the computation expression syntax of F#. The same syntax
can be used for extending the differential equations, which allows embed your
own functions in the equations.

For example, see a possible implementation of the table lookup function in
section 8.2.

Regarding the combination with discrete event simulation, there are two
points, at least. An arbitrary Dynamics computation can be transformed to the
Eventive computation. Then, we can use the Var data type to create entities
that could be used in the differential equations but would be updated from the
discrete event simulation.

8.4 Difference Equations

The difference equations are much like the differential ones, only another func-
tion is used for creating a sum by the specified difference and initial value.

module SD =

val diffsum: difference:Lazy<Dynamics<float>>

-> init:Dynamics<float>

-> Dynamics<float>

8.5 Example: Parametric Financial Model

The next example illustrates a parametric model in combination with the Monte-
Carlo simulation. The results received can be useful for the sensitivity analysis.
The approach described works for the discrete event simulation too.

8.5. EXAMPLE: PARAMETRIC FINANCIAL MODEL 91

We will take the financial model[18] described in Vensim 5 Modeling Guide,
Chapter Financial Modeling and Risk. Probably, the best way to describe the
model is just to show its equations.

The equations use the npv function from System Dynamics. It returns the
Net Present Value (NPV) of the stream computed using the specified discount
rate, the initial value and some factor (usually 1).

module SD =

let npv stream rate init factor =

let rec dt’ = Parameter.dt |> Parameter.lift

and df = integ (lazy (- df * rate)) (num 1.0)

and accum = integ (lazy (stream * df)) init

in (accum + dt’ * stream * df) * factor

Also we need a helper conditional combinator that allows simplifying the
equations in some cases.

module SD =

val ifThenElse: cond:Dynamics<bool>

-> thenPart:Dynamics<’a>

-> elsePart:Dynamics<’a>

-> Dynamics<’a>

After we finished the necessary preliminaries, now we can show how the
parametric model can be prepared for the Monte-Carlo simulation.

We represent each external parameter as a Parameter computation. To
be reproducible within every simulation run, the random parameter must be
memoized with help of the Parameter.memo function.

// File Financial/Model.fsx

#nowarn "40"

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

open Simulation.Aivika

open Simulation.Aivika.SD

open Simulation.Aivika.Results

/// The simulation specs

let specs =

{ StartTime = 0.0;

StopTime = 5.0;

DT = 0.015625;

Method = RungeKutta4;

GeneratorType = StrongGenerator }

/// The model parameters.

type Parameters =

{ TaxDepreciationTime : Parameter<float>;

TaxRate : Parameter<float>;

AveragePayableDelay : Parameter<float>;

BillingProcessingTime : Parameter<float>;

BuildingTime : Parameter<float>;

DebtFinancingFraction : Parameter<float>;

DebtRetirementTime : Parameter<float>;

92 CHAPTER 8. SYSTEM DYNAMICS

DiscountRate : Parameter<float>;

FractionalLossRate : Parameter<float>;

InterestRate : Parameter<float>;

Price : Parameter<float>;

ProductionCapacity : Parameter<float>;

RequiredInvestment : Parameter<float>;

VariableProductionCost : Parameter<float> }

/// The default model parameters.

let defaultParams =

{ TaxDepreciationTime = parameter.Return 10.0;

TaxRate = parameter.Return 0.4;

AveragePayableDelay = parameter.Return 0.09;

BillingProcessingTime = parameter.Return 0.04;

BuildingTime = parameter.Return 1.0;

DebtFinancingFraction = parameter.Return 0.6;

DebtRetirementTime = parameter.Return 3.0;

DiscountRate = parameter.Return 0.12;

FractionalLossRate = parameter.Return 0.06;

InterestRate = parameter.Return 0.12;

Price = parameter.Return 1.0;

ProductionCapacity = parameter.Return 2400.0;

RequiredInvestment = parameter.Return 2000.0;

VariableProductionCost = parameter.Return 0.6 }

/// Random parameters for the Monte-Carlo simulation.

let randomParams =

let averagePayableDelay = Parameter.randomUniform 0.07 0.11

let billingProcessingTime = Parameter.randomUniform 0.03 0.05

let buildingTime = Parameter.randomUniform 0.8 1.2

let fractionalLossRate = Parameter.randomUniform 0.05 0.08

let interestRate = Parameter.randomUniform 0.09 0.15

let price = Parameter.randomUniform 0.9 1.2

let productionCapacity = Parameter.randomUniform 2200.0 2600.0

let requiredInvestment = Parameter.randomUniform 1800.0 2200.0

let variableProductionCost = Parameter.randomUniform 0.5 0.7

{ defaultParams with

AveragePayableDelay = Parameter.memo averagePayableDelay;

BillingProcessingTime = Parameter.memo billingProcessingTime;

BuildingTime = Parameter.memo buildingTime;

FractionalLossRate = Parameter.memo fractionalLossRate;

InterestRate = Parameter.memo interestRate;

Price = Parameter.memo price;

ProductionCapacity = Parameter.memo productionCapacity;

RequiredInvestment = Parameter.memo requiredInvestment;

VariableProductionCost = Parameter.memo variableProductionCost }

/// This is the model itself that returns experimental data.

let model (ps: Parameters) : Simulation<ResultSet> = simulation {

let get (x: Parameter<_>) : Dynamics<_> = Parameter.lift x

let taxDepreciationTime = get ps.TaxDepreciationTime

let taxRate = get ps.TaxRate

let averagePayableDelay = get ps.AveragePayableDelay

let billingProcessingTime = get ps.BillingProcessingTime

let buildingTime = get ps.BuildingTime;

let debtFinancingFraction = get ps.DebtFinancingFraction

let debtRetirementTime = get ps.DebtRetirementTime

let discountRate = get ps.DiscountRate

let fractionalLossRate = get ps.FractionalLossRate

let interestRate = get ps.InterestRate

8.5. EXAMPLE: PARAMETRIC FINANCIAL MODEL 93

let price = get ps.Price

let productionCapacity = get ps.ProductionCapacity

let requiredInvestment = get ps.RequiredInvestment

let variableProductionCost = get ps.VariableProductionCost

// the equations below are given in an arbitrary order!

let rec bookValue =

integ (lazy (newInvestment - taxDepreciation)) (num 0.0)

and taxDepreciation = bookValue / taxDepreciationTime

and taxableIncome =

grossIncome - directCosts - losses

- interestPayments - taxDepreciation

and production = availableCapacity

and availableCapacity =

ifThenElse (Dynamics.time .>=. buildingTime)

productionCapacity (num 0.0)

and accountsReceivable =

integ (lazy (billings - cashReceipts - losses))

(billings / (num 1.0 / averagePayableDelay

+ fractionalLossRate))

and awaitingBilling =

integ (lazy (price * production - billings))

(price * production * billingProcessingTime)

and billings = awaitingBilling / billingProcessingTime

and borrowing = newInvestment * debtFinancingFraction

and cashReceipts = accountsReceivable / averagePayableDelay

and debt =

integ (lazy (borrowing - principalRepayment)) (num 0.0)

and directCosts = production * variableProductionCost

and grossIncome = billings

and interestPayments = debt * interestRate

and losses = accountsReceivable * fractionalLossRate

and netCashFlow =

cashReceipts + borrowing - newInvestment

- directCosts - interestPayments

- principalRepayment - taxes

and netIncome = taxableIncome - taxes

and newInvestment =

ifThenElse (Dynamics.time .>=. buildingTime)

(num 0.0) (requiredInvestment / buildingTime)

and npvCashFlow =

npv netCashFlow discountRate (num 0.0) (num 1.0)

and npvIncome =

npv netIncome discountRate (num 0.0) (num 1.0)

and principalRepayment = debt / debtRetirementTime

and taxes = taxableIncome * taxRate

return

[ResultSource.From ("netIncome",

netIncome, "Net income");

ResultSource.From ("netCashFlow",

netCashFlow, "Net cash flow");

ResultSource.From ("npvIncome",

npvIncome, "NPV income");

ResultSource.From ("npvCashFlow",

npvCashFlow, "NPV cash flow")]

|> ResultSet.create

}

Now we can apply the Monte-Carlo simulation to this parametric model,
for example, to define how sensitive are some variables to the random external

94 CHAPTER 8. SYSTEM DYNAMICS

parameters.

The point is that not only ODEs can be parametric. There is not any differ-
ence, whether we integrate numerically, or run the discrete event simulation, or
simulate the agents. The external parameters are just Parameter computations
that can be used within other simulation computations.

Returning to this example, we will use the following simulation experiment.

// File Financial/RunExperiment.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

#r "../../bin/Simulation.Aivika.Experiments.dll"

#r "../../bin/Simulation.Aivika.Charting.dll"

#load "Model.fsx"

open System

open System.Web.UI

open Simulation.Aivika

open Simulation.Aivika.Results

open Simulation.Aivika.Experiments

open Simulation.Aivika.Experiments.Web

open Simulation.Aivika.Charting.Web

let specs = Model.specs

let model = Model.model Model.randomParams

let experiment = Experiment ()

experiment.Specs <- specs

experiment.RunCount <- 1000

let income =

[ResultSet.findByName "netIncome";

ResultSet.findByName "netCashFlow"]

|> ResultTransform.concat

let cashFlow =

[ResultSet.findByName "npvIncome";

ResultSet.findByName "npvCashFlow"]

|> ResultTransform.concat

let providers =

[ExperimentProvider.experimentSpecs;

ExperimentProvider.description income;

ExperimentProvider.deviationChart income

ExperimentProvider.lastValueStats income;

ExperimentProvider.lastValueHistogram income;

ExperimentProvider.description cashFlow;

ExperimentProvider.deviationChart cashFlow;

ExperimentProvider.lastValueStats cashFlow;

ExperimentProvider.lastValueHistogram cashFlow]

experiment.RenderHtml (model, providers)

|> Async.RunSynchronously

The resulting deviation charts are shown on figures 8.1 and 8.2.

8.5. EXAMPLE: PARAMETRIC FINANCIAL MODEL 95

Figure 8.1: The net income and net cash flow.

Figure 8.2: The NPV income and cash flow.

96 CHAPTER 8. SYSTEM DYNAMICS

8.6 Example: Linear Array

This example illustrates the use of arrays. There is no need in special support
for them. They can be naturally used with the simulation computations.

Let us take model Linear Array from Berkeley Madonna[6] to demonstrate
the main idea.

// File LinearArray/Model.fsx

#nowarn "40"

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

open Simulation.Aivika

open Simulation.Aivika.SD

open Simulation.Aivika.Results

let specs =

{ StartTime = 0.0;

StopTime = 500.0;

DT = 0.1;

Method = RungeKutta4;

GeneratorType = StrongGenerator }

let model (n: int) : Simulation<ResultSet> = simulation {

let rec m : Dynamics<float> array =

[| for i = 1 to n do

yield integ

(lazy (q

+ k * (c.[i - 1] - c.[i])

+ k * (c.[i + 1] - c.[i])))

(num 0.0) |]

and c : Dynamics<float> array =

[| for i = 0 to n + 1 do

if i = 0 || i = n + 1 then

yield (num 0.0)

else

yield (m.[i - 1] / v) |]

and q = 1.0

and k = 2.0

and v = 0.75

return

[ResultSource.From("M", m, "M");

ResultSource.From("C", c, "C")]

|> ResultSet.create

}

Here we create two linear arrays M and C, where the first array consists of
integrals. Similarly, we could use arrays in the discrete event simulation or
agent-based model.

The simulation experiment shows the both arrays.

// File LinearArray/RunExperiment.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

8.7. EXAMPLE: BOUNCING BALL 97

#r "../../bin/Simulation.Aivika.Experiments.dll"

#r "../../bin/Simulation.Aivika.Charting.dll"

#load "Model.fsx"

open System

open System.Web.UI

open Simulation.Aivika

open Simulation.Aivika.Results

open Simulation.Aivika.Experiments

open Simulation.Aivika.Experiments.Web

open Simulation.Aivika.Charting.Web

let experiment = Experiment ()

experiment.Specs <- Model.specs

experiment.RunCount <- 1

let m = ResultSet.findByName "M"

let c = ResultSet.findByName "C"

let provider1 = TimeSeriesProvider ()

let provider2 = TimeSeriesProvider ()

provider1.Series <- m

provider2.Series <- c

let providers =

[ExperimentProvider.experimentSpecs;

provider1 :> IExperimentProvider<HtmlTextWriter>;

provider2 :> IExperimentProvider<HtmlTextWriter>]

experiment.RenderHtml (Model.model 51, providers)

|> Async.RunSynchronously

The charts are provided in figures 8.3 and 8.4.

8.7 Example: Bouncing Ball

98 CHAPTER 8. SYSTEM DYNAMICS

Figure 8.3: The array of integrals.

Figure 8.4: The second linear array.

Chapter 9

Agent-based Modeling

Aivika supports the agent-based modeling[16] on basic level and this support is
well integrated with other simulation computations of the library.

9.1 Agents and States

An idea is to try to describe a model as a cooperative behavior of a relatively
large number of small agents. The agents can have states and these states can
be either active or inactive. We can assign to the state a handler that is actuated
under the condition that the state remains active.

We create new agents within the Simulation computation, but define the
states as dependent objects.

type [<Sealed>] Agent =

...

and [<AbstractClass>] AgentState =

new : agent:Agent -> AgentState

new : parent:AgentState -> AgentState

...

module Agent =

val create : Simulation<Agent>

Only one of the states can be selected for each agent at the modeling time.
All ancestor states remain active if they were active before, or they become
active if they were deactivated. Other states are deactivated if they were active
on the contrary.

module Agent =

val selectedState : agent:Agent -> Eventive<AgentState option>

val selectedStateChanged : agent:Agent -> Signal<AgentState option>

val selectedStateChanged_ : agent:Agent -> Signal<unit>

module AgentState =

val select : state:AgentState -> Eventive<unit>

The selectedState function returns the currently selected state or None if
the agent was not yet initiated, but the select function allows selecting a new

99

100 CHAPTER 9. AGENT-BASED MODELING

state. The both functions return actions within the Eventive computation,
which means that the state selection is always synchronized with the event
queue.

We can assign the Eventive handlers to be performed when activating or
deactivating the specified third state during such a selection. They are defined
as the object methods.

type [<AbstractClass>] AgentState =

abstract Activate : unit -> Eventive<unit>

abstract Deactivate : unit -> Eventive<unit>

default Activate: unit -> Eventive<unit>

default Deactivate: unit -> Eventive<unit>

...

When the target state is selected, we can define the next target set if needed.

type [<AbstractClass>] AgentState =

abstract Transit : unit -> Eventive<AgentState option>

default Transit: unit -> Eventive<AgentState option>

...

What differs the agents from other simulation concepts is an ability to assign
so called timeout and timer handlers. The timeout handler is an Eventive

computation which is actuated in the specified time interval if the sate remains
active. The timer handler is similar, but only the handler is repeated while the
state still remains active. Therefore, the timeout handler accepts the time as
a pure value, while the timer handler recalculates the time interval within the
Eventive computation after each successful actualization.

module AgentState =

val addTimeout : Time -> Eventive<unit> -> AgentState

-> Eventive<unit>

val addTimer : Eventive<Time> -> Eventive<unit> -> AgentState

-> Eventive<unit>

The implementation is quite simple. By the specified state handler, we create
a wrapper handler which we pass in to the Eventive.enqueue function with the
desired time of actuating. If the state becomes deactivated before the planned
time comes then we invalidate the wrapper. After the wrapper is actuated by
the event queue at the planned time, we do not call the corresponded state
handler if the wrapper was invalidated earlier.

We use the Eventive computation to synchronize the agents with the event
queue. It literally means that the agent-based modeling can be integrated with
other simulation methods within one combined model.

9.2 Example: Agent-based Modeling

To illustrate the use of agents, let us take the Bass Diffusion model from the
AnyLogic documentation [16].

9.2. EXAMPLE: AGENT-BASED MODELING 101

The model describes a product diffusion process. Potential adopters
of a product are influenced into buying the product by advertising
and by word of mouth from adopters, those who have already pur-
chased the new product. Adoption of a new product driven by word
of mouth is likewise an epidemic. Potential adopters come into con-
tact with adopters through social interactions. A fraction of these
contacts results in the purchase of the new product. The advertis-
ing causes a constant fraction of the potential adopter population to
adopt each time period.

The simulation model is as follows.

// File BassDiffusion/Model.fsx

#nowarn "40"

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

open System

open System.Collections.Generic

open Simulation.Aivika

open Simulation.Aivika.Results

let n = 100 // the number of agents

let advertisingEffectiveness = 0.011

let contactRate = 100.0

let adoptionFraction = 0.015

let specs =

{ StartTime = 0.0; StopTime = 8.0; DT = 0.1;

Method = RungeKutta4;

GeneratorType = StrongGenerator }

type PersonContext =

{ PotentialAdopters: int ref;

Adopters: int ref;

Persons: List<Person> }

and Person (ctx: PersonContext, agent: Agent) =

let rec potentialAdopter =

{ new AgentState (agent) with

member x.Activate () = eventive {

incr ctx.PotentialAdopters

// create a timeout that will hold while the state is active

let! t = Parameter.randomExponential

(1.0 / advertisingEffectiveness)

|> Parameter.lift

do! potentialAdopter

|> AgentState.addTimeout t

(AgentState.select adopter)

}

102 CHAPTER 9. AGENT-BASED MODELING

member x.Deactivate () = eventive {

decr ctx.PotentialAdopters

}

}

and adopter =

{ new AgentState (agent) with

member x.Activate () = eventive {

incr ctx.Adopters

// create a timer that will hold while the state is active

let t = Parameter.randomExponential

(1.0 / contactRate)

|> Parameter.lift

let m =

eventive {

let! i = Parameter.randomUniformInt

0 (ctx.Persons.Count - 1)

|> Parameter.lift

do! ctx.Persons.[i].Buy ()

}

do! adopter |> AgentState.addTimer t m

}

member x.Deactivate () = eventive {

decr ctx.Adopters

}

}

member x.Agent = agent

member x.PotentialAdopter = potentialAdopter

member x.Adopter = adopter

member private x.Buy () = eventive {

let! st = Agent.selectedState agent

if st = Some potentialAdopter then

let! x = Parameter.randomTrue adoptionFraction

|> Parameter.lift

if x then

do! AgentState.select adopter

}

member x.Init () = eventive {

ctx.Persons.Add (x)

do! AgentState.select potentialAdopter

}

let model: Simulation<ResultSet> = simulation {

let ctx =

{ PotentialAdopters = ref 0;

Adopters = ref 0;

Persons = List<_> () }

for i = 1 to n do

9.2. EXAMPLE: AGENT-BASED MODELING 103

let! agent = Agent.create

let person = Person (ctx, agent)

do! person.Init () |> Eventive.runInStartTime

return

[ResultSource.From ("potentialAdopters",

ctx.PotentialAdopters, "Potential Adopters");

ResultSource.From ("adopters",

ctx.Adopters, "Adopters")]

|> ResultSet.create

}

The reader can notice that the model uses the same computations that we
used for the ordinary differential equations and discrete event simulation.

Now we will define an experiment trying to plot the deviation chart for
potential adopters and adopters. Unlike other cases, we will launch a hundred
of simulation runs as this model requires more computations because of multiple
agents.

// File BassDiffusion/RunExperiment.fsx

#I "../../bin"

#r "../../bin/Simulation.Aivika.dll"

#r "../../bin/Simulation.Aivika.Results.dll"

#r "../../bin/Simulation.Aivika.Experiments.dll"

#r "../../bin/Simulation.Aivika.Charting.dll"

#load "Model.fsx"

open System

open System.Web.UI

open Simulation.Aivika

open Simulation.Aivika.Results

open Simulation.Aivika.Experiments

open Simulation.Aivika.Experiments.Web

open Simulation.Aivika.Charting.Web

let experiment = Experiment ()

experiment.Specs <- Model.specs

experiment.RunCount <- 100

let series =

[ResultSet.findByName "potentialAdopters";

ResultSet.findByName "adopters"]

|> ResultTransform.concat

let providers =

[ExperimentProvider.experimentSpecs;

ExperimentProvider.description series;

ExperimentProvider.deviationChart series]

experiment.RenderHtml (Model.model, providers)

|> Async.RunSynchronously

The resulting chart is shown on figure 9.1

104 CHAPTER 9. AGENT-BASED MODELING

Figure 9.1: The potential adopters and adopters.

Bibliography

[1] H. Abelson and G. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, Mass., USA, 1985.

[2] Nicolaos Bezirgiannis. Improving performance of simulation software using
Haskell’s concurrency and parallelism. Master’s thesis, Dept. of Information
and Computing Sciences, Utrecht University, 2013.

[3] John Hughes. Generalising monads to arrows. Science of Computer Pro-
gramming, 37:67–111, 1998.

[4] John Hughes. Programming with arrows. In Advanced Functional Pro-
gramming, pages 73–129, 2004.

[5] iThink Software. http://www.iseesystems.com, 2014. Accessed: 1-May-
2014.

[6] Robert Macey and George Oster. Berkeley Madonna Software. http:

//www.berkeleymadonna.com, 2014. Accessed: 1-May-2014.

[7] Norm Matloff. Introduction to discrete-event simulation and the SimPy

language. http://simpy.readthedocs.org/en/latest/, 2008. Accessed:
1-May-2014.

[8] Ross Paterson. A new notation for Arrows. In In International Conference
on Functional Programming, ICFP ’01, pages 229–240. ACM, 2001.

[9] Tomas Petricek and Jon Skeet. Programming user interfaces us-
ing F# workflows. http://dotnetslackers.com/articles/net/

Programming-user-interfaces-using-f-sharp-workflows.aspx,
2010. Accessed: 1-May-2014.

[10] A.A.B. Pritsker and J.J. O’Reilly. Simulation with Visual SLAM and
AweSim. John Wiley & Sons, Inc., New York, NY, USA, 2nd edition,
1999.

[11] David E. Sorokin. Aivika Experiment Cairo Library, Version 1.3. http:
//hackage.haskell.org/package/aivika-experiment-cairo, 2014.

[12] David E. Sorokin. Aivika Experiment Chart Library, Version 1.3.
http://hackage.haskell.org/package/aivika-experiment-chart,
2014. Accessed: 28-June-2014.

105

http://www.iseesystems.com
http://www.berkeleymadonna.com
http://www.berkeleymadonna.com
http://simpy.readthedocs.org/en/latest/
http://dotnetslackers.com/articles/net/Programming-user-interfaces-using-f-sharp-workflows.aspx
http://dotnetslackers.com/articles/net/Programming-user-interfaces-using-f-sharp-workflows.aspx
http://hackage.haskell.org/package/aivika-experiment-cairo
http://hackage.haskell.org/package/aivika-experiment-cairo
http://hackage.haskell.org/package/aivika-experiment-chart

106 BIBLIOGRAPHY

[13] David E. Sorokin. Aivika Experiment Diagrams Library, Version 1.3.
http://hackage.haskell.org/package/aivika-experiment-diagrams,
2014.

[14] David E. Sorokin. Aivika Experiment Library, Version 1.3. http:

//hackage.haskell.org/package/aivika-experiment, 2014. Accessed:
28-June-2014.

[15] SimPy Library. http://simpy.readthedocs.org/en/latest/, 2014. Ac-
cessed: 1-May-2014.

[16] AnyLogic Software. http://www.anylogic.com, 2014. Accessed: 1-May-
2014.

[17] Ilya I. Trub. An Object-oriented Modeling in C++. Piter, Russia, 2006.
(In Russian).

[18] Vensim Software. http://vensim.com, 2013. Accessed: 1-May-2014.

[19] M. Douglas Williams. Simulation Collection Library, Version 3.5.
http://planet.racket-lang.org/display.ss?package=simulation.

plt&owner=williams, 2012. Accessed: 1-May-2014.

http://hackage.haskell.org/package/aivika-experiment-diagrams
http://hackage.haskell.org/package/aivika-experiment
http://hackage.haskell.org/package/aivika-experiment
http://simpy.readthedocs.org/en/latest/
http://www.anylogic.com
http://vensim.com
http://planet.racket-lang.org/display.ss?package=simulation.plt&owner=williams
http://planet.racket-lang.org/display.ss?package=simulation.plt&owner=williams

	Getting Started
	Simulation
	External Parameters
	Ordinary Differential Equations
	Simulation Experiment

	Discrete Event Simulation
	Event-oriented Simulation
	Mutable Reference
	Example: Event-oriented Simulation
	Variable with Memory
	Process-oriented Simulation
	Example: Process-oriented Simulation
	Activity-oriented Simulation
	Example: Activity-oriented Simulation

	Resources
	Queue Strategies
	Resource
	Example: Using Resources
	Example: Passivating and Reactivating Processes
	Resource Preemption

	Signals and Tasks
	Signals
	Tasks

	Statistics
	Statistics based upon Observations
	Statistics for Time Persistent Variables

	Queue Network
	Finite Queues
	Infinite Queues
	Stream
	Processor
	Server
	Timing Arrivals
	Experiment Providers
	Example: Work Stations in Series
	Example: A Machine Tool with Breakdowns
	Example: Inspection and Adjustment Stations

	Parameters
	Latin Square
	Reading Data from Excel

	System Dynamics
	Memoizing Sequential Computations
	Table Function
	Differential Equations
	Difference Equations
	Example: Parametric Financial Model
	Example: Linear Array
	Example: Bouncing Ball

	Agent-based Modeling
	Agents and States
	Example: Agent-based Modeling

