System Specifications

KNXnet/IP

Core

Summary
This document provides the Core KNXnet/IP specification.
Version 01.05.01 is a KNX Approved Standard.
This document is part of the KNX Specifications v2.1.

KNX Standard

Core KNXnet/IP

Document updates

Version Date Modifications
1.0 DP 2004.01.07 | Draft Proposal provided for Release for Voting
1.1 DV 2005.05.27 | Preparation of the Draft for Voting.
1.3 AS 2008.07.02 | Publication of the Approved Standard.
1.4 AS 2008.09.05 |e AN106 "Phasing out TPQ" integrated
e AN109 "Phasing out PL132" integrated
1.4AS 2009.06.29 |e Preparation for inclusion in the KNX Specifications v2.0: editorial
update.
1.4.01 AS 2011.01.04 |e AN115 “Mask 5705h” — added “KNX IP” as medium to Table 2.
1.5.00 2010.06.10 |e AN123 “KNXnet/IP Remote Diagnosis and Configuration” integrated.
01.05.01 2013.10.28 | Editorial updates for the publication of KNX Specifications 2.1.
References

A general reference is made to the RFCs b defining the Internet Protocol. These documents can be
obtained on the Internet at http://www.ietf.org/rfc.html.

[01] Chapter 3/5/1 “Resources”

[02] Chapter 3/6/3 “External Message Interface”
[03] Chapter 3/7/2 “Datapoint Types”

[04] Chapter 3/8/1 “Overview” (KNXnet/IP)

Filename:
Version:
Status:
Savedate:

03 08 02 Core v01.05.01 AS.docx
01.05.01
Approved Standard

2013.10.28

Number of pages: 49

1) Request for Comment: Internet Standards defined by the Internet Engineering Task Force (IETF) are first
published as RFCs.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 2 of 49

http://www.ietf.org/rfc.html

KNX Standard Core KNXnet/IP

Content
R 11 4 o [¥ o1 £ o] o ISR 6
O T ol o oL TP TRTPPPPT 6
1.2 Definitions, acronyms and abbreviations ... 6
2 KINXNEUIP FrAIMES. ...ttt ettt b ettt n e 7
2.1 General AefiNITIONS.coviiiiiiiiiisie e bbbt 7
2.1.1 Data fOrMALeoiiiieeie e 7
N O = 1/ (=T (o [T USSR 7
2.1.3 SETUCTUIES ...ttt ettt sttt et e sbe e e bt e s be e e be e san e e nbeesnneas 7
2.2 Frame TOMMALoouiiieieiee ettt bbb sb ettt r s 7
p B o 1= U0 (<] USROS 7
0 TNt R B 1= ox o] o] o OSSPSR 7
2.3.2 Header 1eNngth . ..o s 8
2.3.3 ProtOCOI VEISION ...cuviuiiiiiiiiiicisie et bbb 8
2.3 4 KINXNEUIP SEIVICE ...ouviiiieiieie sttt sttt nneas 8
2.3.5 Total IENQEN ..o 8
3 Host protocol INAEPENUENCEcveiieiieeee ettt sae e 9
T8 A o [0S o (0] (ot SR 9
3.2 ENAPOINTS ...t bbb re et enes 9
4 Discovery and Self deSCriPION........ccoiiiiiiiieierie e e 10
Nt 1T (1ot A o] o PO RSP OP PSPPSR 10
4.2 DISCOVEIY ..uveeteeueeeteesteeteeteeste et e steestaastesseesteeseease e seastesse e seaseeaseeseeneeaseeseaneesneenaeaneenneas 10
4.3 SeIf AESCIIPLION ...ttt be et nbeaneenneas 11
5 Communication ChaNNEISooiiiiiie e e 12
T8 A 11 oo (3 Tox £ [0 o USRS 12
5.2 EStabliSNiNg @ HNK......ccouiiieiiee et nne e 12
5.3 CONNECLION HEAUE ..ottt bbb 13
5.3. 1 DESCIIPLION ...ttt bbbt bbbttt 13
5.3.2 SHUCIUIE IENQLN ..o e s 13
5.3.3 Communication Channel IDccceiiiiiiiieieiie e 13
5.3.4 SEOUENCE COUNTET ..uviiiiiie ittt ettt ettt ettt e bbb e e s b e e st e e saeeenes 14
5.3.5 Connection Type specific Header ItemScoovviiiiinenc e, 14
5.4 Heartbeat MONItOIINGc.coiviii et e 14
5.5 DISCONNECTING ...ttt sttt b bbb bbbt e e 14
6 General implementation UIAEIINESccoiiiiiiiieie e 15
G T0 A 10T L3 T [o TSR 15
6.2 KNXNEUIP SEIVELScvviiiie ittt bbb bbbt 15
6.3 KINXNEUIP ClIENTS.....cciiiiieiiee ettt neenne e 15
6.4 KNXNEt/IP ROULET SEIINGScviivieiieeie ettt 15
6.4.1 KNXnet/IP Router factory default SEttings..........ccoovvereniiinienininceeee, 15
6.4.2 KNXnet/IP Router IP address assignment...........ccccvveveeveevesieseese e 16
6.5 Initial setup procedures for KNXNEt/IP SEIVEIS........ccoviiiiiiiiieie e, 16
B.5.1 GENEIAL.......oiiiiiiiieie e e 16
6.5.2 Configuration Procedure for configuration via KNXnet/IP Routing................ 17
6.5.3 Configuration Procedure for configuration via KNXnet/IP Device

MaANAGEIMENT.......eeiiiiiieec e 18

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 3 of 49

KNX Standard Core KNXnet/IP

T FTaME STFUCTUIES ...ttt e et e e e bbb b e e s bb e e s neeeenes 19
% A 11 oo [F T [USRS T USRI 19
7.2 COMMON CONSTANTS.eiiiieeieeeieesie et n e e e r e s e nneennne s 19

7.2.1 HEADER SIZE 10 .ottt 19
7.2.2 KNXNETIP_VERSION_10 ..ottt 19
7.3 COMMON BITON COUBS. ... vetietieiieitiesteetestee sttt e ste st e be et e e sbeesbesseesbeenbesreesbeenbesneenne e 19
7.3.1 E_NO _ERROR ...ttt bbbttt 19
7.3.2 E_HOST _PROTOCOL_TYPE....ccoi ittt 19
7.3.3 E_VERSION_NOT_SUPPORTED.......ccsitiiririiiiienienie e 19
7.3.4 E_SEQUENCE_NUMBER......ccceooiiiiiitiestseeeie e 19
T4 KINXNEUIP SEIVICES ...eeueiiiieiiieieciiesieeiestee e te st e et e st et saesteesteaseesseenteaneesreeneeaneenseens 20
741 Core KNXNEUIP SEIVICES.....cuiieieiiieiie sttt 20
R T o - V=] T] (o[- TSR 21
7.5.1 Host Protocol Address Information (HPAI)ccoeiviiiiicieccecce e 21
7.5.2 Connection Request Information (CRI).......c.coovviiiiiiiiiieeeeee, 21
7.5.3 Connection Response Data BIOCK (CRD)........cccccovveviiieiieiece e 22
7.5.4 Description Information BIOCK (DIB).........ccccuviiiiiiiiiiecescseseeeeeee e, 22
A T B 1[S00)Y/ oY SO OSSR 28
7.6.1 SEARCH _REQUESTcciiii ittt 28
7.6.2 SEARCH_RESPONSE.......ccotiiiiiiiiiiie sttt 28
7.7 SEIT ESCIIPLION ...t bbbt 29
7.7.1 DESCRIPTION_REQUESTccoiiiiiiirititrie sttt 29
7.7.2 DESCRIPTION_RESPONSE.......cccoiiiiiiie it 29
7.8 CoNNECLION MANAGEMENT ...c.vieieiieecie ettt e s ra et e e et e e e e reeeeanaenneens 30
7.8.1 CONNECT _REQUESTcccitiieieieie ettt 30
7.8.2 CONNECT _RESPONSE........cotiiiiiiiiieit et 31
7.8.3 CONNECTIONSTATE_REQUESTocciiiiiicieeieieiesie e 32
7.8.4 CONNECTIONSTATE_RESPONSEcccotiiiiiiiiieienie e 32
7.85 DISCONNECT _REQUEST ...ccociieiiiiiecte ettt 33
7.8.6 DISCONNECT_RESPONSEccociiiiriiiiiiiesiisitseeeeie et 34

8 TP INEBLWOIKS ..ottt bbbt et bbb b e bt ne st e e e e 35
ST [7T [¥Tox (o] o PR SUR PR PRRSRP 35
8.2 Physical vs. 10gical NEIWOIKccoiiiiiiii e 35
8.3 Transport MECHANISIMSccviiiiiiiie ettt r e ane e 35
8.4 UDP NG TCP ..ttt et b e ste st e teeraene e e e e e 36
8.5 1P AdUress ASSIGNMENL.......ceciuiiiiiiieiecie i ee st ste et ste e sreeste s e s e e ste s e e s reereareenneens 37

8.5.1 TP UNICASE AUAIESS. ... ccueeieieiectiesieeie ettt ettt sre e enes 37
8.5.2 1P MUILICAST AUAIESSESceiveiriiiierieieie ettt 38
8.6 KINXNE/IP hOSt PrOtOCOL ..ot 38
8.6.1 DeVice SPECITICALION.......c.ccveiiciice e 38
8.6.2 Host Protocol Address INfOrmationcccovveieiieeninie i 38
8.6.3 KINXNEU/IP ENAPOINTSocuveiiiiieeiesiee sttt 39
8.7 General implementation gUIdEliNeS ..ot 40
8.8 Binary examples of KNXNet/IP IP framescccoveiieii i 40
8.8.1 SEARCH _REQUEST ..ottt 40
8.8.2 SEARCH_RESPONSE........cotiitiiiiiieitse ettt 41
8.8.3 DESCRIPTION_REQUESTcoiiiiiiiriiie st ste ettt 43
8.8.4 DESCRIPTION_RESPONSE........cceootitiiiiiisinissie et 43
8.85 CONNECT REQUESTcccitiieieieie sttt 45
8.8.6 CONNECT _RESPONSE.......cceiiiiiinitie et 46

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 4 of 49

KNX Standard Core KNXnet/IP

8.8.7 CONNECTIONSTATE_REQUESTocciiiiiriiiinieienie e 47

8.8.80 CONNECTIONSTATE_RESPONSEcccotiitiiiieieniene et 47

8.8.9 DISCONNECT_REQUESTooiiiiiiiiiiie ettt 48
8.8.10 DISCONNECT_RESPONSEccociiiriiiiiieitieieeieeeie et 48

O O 1) or= 1 {o] o PSSP PRSP 49
S50 R [01 (0T L1 A o] PSSR ORPSOPRS 49
0.2 SUPPOIEA SEIVICESvveueeerieitieieeteesieetesteesteeeesteesteeseessaesteaseesreeteaseesseenseaneesreeseeaseenseens 49

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 5 of 49

KNX Standard Core KNXnet/IP

1 Introduction

1.1 Scope

This specification defines the integration of KNX protocol implementations on top of Internet Protocol
(IP) networks, called KNXnet/IP. It describes a standard protocol for KNX devices connected to an IP
network, called KNXnet/IP devices. The IP network acts as a fast (compared to KNX transmission speed)
backbone in KNX installations.

An overview of KNXnet/IP is presented in [04].

This Chapter 3/8/2 “Core” of the KNXnet/IP specification provides a general host protocol-independent
framework that accommodates several specialized “Service Protocols” in a modular and extendible
fashion.

This specification addresses

o definition of data packets sent over the non-KNX “host protocol” network for KNXnet/IP
communication,

e discovery and self-description of KNXnet/IP Servers, and

e configuring, establishing and maintaining a communication channel between a KNXnet/IP Client
and a KNXnet/IP Server.

This document defines a standard protocol that is implemented within KNX devices and the Engineering
Tool Software (ETS) to support KNX data exchange over IP networks or other systems.

1.2 Definitions, acronyms and abbreviations
Refer to [04] for a list of definitions for the KNXnet/IP specification.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 6 of 49

KNX Standard Core KNXnet/IP

2 KNXnet/IP frames
2.1 General definitions

2.1.1 Data format
The KNXnet/IP frames described within this specification are coded binary.

The data structure specifications are always noted in binary format.

2.1.2 Byte order

For binary structures, if not explicitly stated otherwise, the byte order shall be big endian mode
(Motorola, non-swapped). For plain text formats, the byte order and formatting shall be according to the
related protocol specifications.

2.1.3 Structures

All KNXnet/IP structures follow a common rule: the first octet shall always be the length of the complete
structure (as some structures may have fields of variable length e.g. strings) and the second octet shall
always be an identifier that shall specify the type of the structure. From the third octet on the structure
data shall follow. If the amount of data exceeds 252 octets, the length octet shall be FFh and the next tow
octets shall contain the length as a 16 bit value. Then the structure data shall start at the fifth octet.

2.2 Frame format

The communication between KNXnet/IP devices shall be based on KNXnet/IP frames. A KNXnet/IP
frame shall be a data packet sent over the non-KNX network protocol that consists of a header,
comparable to the IP header of an internet protocol data packet and an optional body of variable length.

Sy +
| KNXnet/IP Frame |
| (Fixed Length) |
| |
Sy +
| KNXnet/IP Frame |
| (Variable Length) |
| Optional

Sy +

Figure 1 — KNXnet/IP frame binary format

The type of KNXnet/IP frame is described by a KNXnet/IP service type identifier in the header.
KNXnet/IP services include, but are not limited to, information regarding discovery and description,
communication channel (connection) management and KNX data transfer.

2.3 Header

2.3.1 Description

Every KNXnet/IP frame, without any exception, shall consist of at least the common KNXnet/IP header
that shall contain information about the protocol version, the header and total packet length and the
KNXnet/IP service type identifier. The KNXnet/IP header may be followed by a KNXnet/IP body,
depending on the KNXnet/IP service.

Timestamp information and frame counters are not included in the common KNXnet/IP frame header as
this information is closely linked with certain KNXnet/IP service types and will therefore be included in
the body of these services as additional information for certain communication channel types.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 7 of 49

KNX Standard Core KNXnet/IP

+-7—+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4—-+-3-+-2-+-1-+-0-
| Header Length | Protocol Version
| (1 Octet) | (1 Octet)

+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-
| Service Type ldentifier

| (2 Octet)
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-
| Total Length

| (2 Octet)
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-

o o——— e —— e —

Figure 2 — KNXnet/IP header binary format

2.3.2 Header length

Although the length of the header is always fixed, it is possible that the size of the header changes with a
new version of the protocol. The header length can be used as an index into the KNXnet/IP frame data to
find the beginning of the KNXnet/IP body.

2.3.3 Protocol version

The protocol version information states the revision of the KNXnet/IP protocol that the following
KNXnet/IP frame is subject to. It will be stored in binary coded decimal format. The only valid protocol
version at this time is 1.0 (represented as hexadecimal 10h).

2.3.4 KNXnet/IP service

The KNXnet/IP service type identifier defines the kind of action to be performed and the type of the data
payload contained in the KNXnet/IP body if applicable. The high octet of the KNXnet/IP service type
identifier denotes the service type family and the low octet the actual service type in that family. For a
detailed description of the services, see below.

2.3.5 Total length

The total length shall express the total KNXnet/IP frame length in octets. The length shall include the
complete KNXnet/IP frame, starting with the header length of the KNXnet/IP header and including the
whole KNXnet/IP body.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 8 of 49

KNX Standard Core KNXnet/IP

3 Host protocol independence

3.1 Host protocol

The KNXnet/IP core specification defines the integration of KNX protocol implementations on top of the
Internet Protocol (IP). It describes the general and host protocol independent as well as the host protocol
specific parts of the KNXnet/IP communication.

3.2 Endpoints

KNXnet/IP defines the Host Protocol Address Information (HPAI) structure, which shall be the
combination of IP address and port number. The HPAI shall be the data required to send a KNXnet/IP
frame to another device. The KNXnet/IP specification uses the term KNXnet/IP endpoint as a logical
view of a HPAI to address another KNXnet/IP device for certain well-defined purposes.

Every KNXnet/IP device shall support exactly one device related, bidirectional and connectionless
endpoint for discovery if the host protocol requires discovery services. It shall support at least one
bidirectional and connectionless endpoint for controlling and at least one bidirectional and connection
oriented endpoint for service type related data transmission.

-

EIBnet/IP server
N

Service container
Control

Data

KNX subnetwork

Discovery [)

KNX subnetwork

Figure 3 — KNXnet/IP Server endpoints sample configuration

The control endpoint shall uniquely address one entity inside the KNXnet/IP Server device that shall be
capable of providing at least one KNXnet/IP service type.

This entity, called service container, may be connected to a KNX Subnetwork. If the KNXnet/IP Server
device supports more than one KNX Subnetwork connections, it is required that every KNX Subnetwork
shall be represented by a different control endpoint. The KNXnet/IP Client shall therefore consider every
service container represented by a control endpoint as one independent entity no matter if they are
implemented in only one or two separate KNXnet/IP Server devices.

These KNXnet/IP endpoints shall present a logical view to the communication of a KNXnet/IP device.
The actual implementation of these endpoints with different host protocols may use transport medium
dependent approaches that differ from this logical view. For example the bidirectional KNXnet/IP
endpoints could be implemented using two unidirectional channels with the host protocol. Therefore it is
possible for one KNXnet/IP endpoint to be represented by multiple HPAISs.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 9 of 49

KNX Standard Core KNXnet/IP

4 Discovery and self description

4.1 Introduction

Especially for networks supporting hot-plug and where probably even the address assignment takes place
at runtime (e.g. IP address assignment via BootP or DHCP), it is of significant importance to search for
devices within a subnetwork without having the need to retrieve network parameters through a
non-standardized way and manually input them in the client tool to establish a connection. Furthermore,
to get a precise picture of the services supported by the KNXnet/IP Server without implementing trial and
error, a self description mechanism is an important feature.

4.2 Discovery

Any KNXnet/IP Server shall implement discovery according to this procedure. If applicable for the host
protocol, it is recommended that a KNXnet/IP Client implementation supports searching for KNXnet/IP
Servers instead of requiring manual input.

The discovery operation shall consist of a SEARCH_REQUEST data packet, sent via multicast using the
discovery endpoint, which shall contain the HPAI of the KNXnet/IP Client’s discovery endpoint. The
HPAI may contain a unicast IP address to receive the answers from the different KNXnet/IP Servers
directly in a point-to-point manner. Typically it should contain the KNXnet/IP System Setup multicast
address to ensure reception from KNXnet/IP Servers that are on a different subnetwork.

KNXnet/IP D) Discovery /7 \KNXnet/IP
(client “5 "\ server
Search.req @))
Service container
Search.resp @ Control
"N

Search.resp ‘g"

@ J

Figure 4 — Discovery procedure

After sending the request, the KNXnet/IP Client shall wait for time SEARCH_TIMEOUT for
SEARCH_RESPONSE frames from KNXnet/IP Servers. After that period of time, any received
SEARCH_RESPONSE frame shall be ignored by that client until it starts another discovery cycle.
SEARCH_REQUEST frames received by clients from other clients shall be ignored.

Any KNXnet/IP Server receiving a SEARCH_REQUEST service shall respond immediately with a
SEARCH_RESPONSE frame to the given HPAI using its discovery endpoint. Such a response shall
contain only the HPAI of the KNXnet/IP Server’s control endpoint for all further communication.

Any KNXnet/IP Server shall support discovery by processing search requests and sending correct
responses. A KNXnet/IP Server may support links to more than one KNX Subnetwork, however it shall
send a SEARCH_RESPONSE data packet for the control endpoint of each KNX Subnetwork it supports
connections to, even if it supports only one data connection at a time.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 10 of 49

KNX Standard Core KNXnet/IP

4.3 Self description

Typically, after discovering a KNXnet/IP Server, the KNXnet/IP Client sends a DESCRIPTION_-
REQUEST through a unicast or point-to-point connection to all control endpoints of the KNXnet/IP
Server. It is required that every KNXnet/IP implementation supports description requests. Furthermore
before a KNXnet/IP Client communicates with a KNXnet/IP Server, it should check if the server supports
the services requested by the client using the self description mechanism.

If a KNXnet/IP Server receives a valid description request, it shall reply with a DESCRIPTION_-
RESPONSE frame providing information on the supported protocol version range, its own capabilities,
state information and optionally a friendly name for this KNXnet/IP Server’s KNX connection. As a
KNXnet/IP Server may support links to more than one KNX Subnetwork, it shall support responding to
discovery requests for each potential KNX Subnetwork connection announced by the discovery
responses.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 11 of 49

KNX Standard Core KNXnet/IP

5 Communication Channels

5.1 Introduction

A communication channel shall be the data endpoint connection between a KNXnet/IP Client and a
KNXnet/IP Server. Data endpoint connections shall be established for services requiring point-to-point
communication e.g. KNXnet/IP Tunnelling or Device Management. Any point-to-point connection
between a KNXnet/IP Client and a KNXnet/IP Server shall be initiated by the client. Any KNXnet/IP
Server shall support at least one client connection at a time. It may support more than one client
connection at a time; however it shall ensure that existing connections are not affected by accepting new
connections (e.g. a KNXnet/IP Server shall not accept a KNXnet/IP Tunnelling connection on the same
physical access to a KNX Subnetwork in different modes — Normal Mode or Busmonitor Mode).

5.2 Establishing a link

To establish a link between a KNXnet/IP Client and a KNXnet/IP Server, the client shall send a
CONNECT_REQUEST frame to the control endpoint of the server. This request shall provide
information on the requested connection type (e.g. data tunnelling or remote logging), general and
connection type specific options (e.g. Data Link Layer or Busmonitor Mode 2 and the data endpoint
HPAI that the client wants to use for this communication channel.

Before sending a connection request of a specific type (with specific options) the KNXnet/IP Client
should check against the self description information received from the KNXnet/IP Server if the server
supports the requested connection type and/or all the requested options.

The KNXnet/IP Server shall then send a CONNECT_RESPONSE frame in any case back to the
KNXnet/IP Client requesting to establish the connection, providing the status of the request (with
extended status information if applicable). If the request could be accepted by the server, the
CONNECT_RESPONSE frame shall additionally contain an identifier as well as the HPAI of the data
endpoint that the server now prepared for this communication channel 3.

After sending the connection request, the KNXnet/IP Client shall wait for the host protocol dependent
time CONNECT_REQUEST_TIMEOUT (= 10 seconds) for the response frame from KNXnet/IP Server.
After that period of time, any received response frame shall be ignored by that client until it starts another
connection request.

The current protocol specification assumes that a connection shall not be shared by multiple clients.
Therefore a KNXnet/IP Server shall not accept multiple connect requests of the same type on e.g. the
same physical KNX connection, though it may of course implement numerous physical connections,
exposing each logically as an independent KNXnet/IP Server, if supported by the used host protocol. The
client implementation can rely on that restriction and is not required to handle such a connection sharing
scenario. Service family exceptions to this general rule are described in the corresponding service family
KNXnet/IP chapter.

2) The list of supported layers and services is supposed to be extended in further versions.
3) Note that an KNXnet/IP connection may consist due to technical reasons of multiple logical connections at the
host protocol layer.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 12 of 49

KNX Standard Core KNXnet/IP

NV
KNXnet/IP KNXnet/IP
client server
Service container
C\‘ Control -
J‘ »
Connect.req (:)
Connect.resp @
N Data -)
@) 2
’ Data.req)

- k:/

Figure 5 — Establishing a data connection
5.3 Connection Header

5.3.1 Description

The body of every KNXnet/IP frame sent over an established communication channel shall start with data
fields that shall contain additional general information about the data connection. The amount of this data
and what type of information is included there in particular shall be determined by several options during
the connection phase of a communication channel. The total of these data fields is called connection
header and its appearance varies greatly depending on the already mentioned connection options. Only
the order in which the different data fields are stored in the connection header is fixed.

Connection Type Specific Header |
(variable length, optional) |
ottt ———+

S S

S S

+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Structure Length | Communication Channel ID |
| (1 Octet) | (1 Octet) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Sequence Counter | service type specific |
| (1 Octet) | (1 Octet) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
|

|

Figure 6 — Common connection header

5.3.2 Structure length
Structure Length shall be the total length of the connection header.

5.3.3 Communication Channel ID

The KNXnet/IP Server shall assign a Communication Channel ID to each established communication
channel.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 13 of 49

KNX Standard Core KNXnet/IP

5.3.4 Sequence Counter

The sequence counter shall be maintained for each communication channel. It shall be incremented by
one independently for every communication channel for each KNXnet/IP frame sent over the data
connection. Both KNXnet/IP devices maintaining the communication channel shall have independent
sequence counters.

Every time a connection is established, the counter for this connection shall be set to 0, so the first
KNXnet/IP frame sent on an established communication channel shall have a sequence counter of 0.

5.3.5 Connection Type specific Header Items

The connection type specific header items are optional and of variable length depending on the type of the
connection.

5.4 Heartbeat monitoring

Host protocols not providing mechanisms for life time check like UDP/IP need a procedure to identify
failure of communication, may it be on the KNX or the tunnelling network. To detect such situations
heartbeat monitoring is defined and shall be implemented by both KNXnet/IP Clients and KNXnet/IP
Servers.

The client shall send a CONNECTIONSTATE_REQUEST frame regularly, i.e. every 60 seconds, to the
server’s control endpoint, which shall respond immediately with a CONNECTIONSTATE_RESPONSE
frame (this counts as heartbeat response).

If the KN Xnet/IP Client does not receive the heartbeat response within the CONNECTIONSTATE_-
REQUEST_TIMEOUT (= 10 seconds) or the status of a received heartbeat response signalled any kind of
error condition, the client shall repeat the CONNECTIONSTATE_REQUEST three (3) times and then
terminate the connection by sending a DISCONNECT_REQUEST to the server’s control endpoint.

If the KN Xnet/IP Server does not receive a heartbeat request within 120 seconds of the last correctly
received message frame, the server shall terminate the connection by sending a DISCONNECT _-
REQUEST to the client’s control endpoint. The server shall not retrigger the timeout after messages
received with unexpected sequence number.

5.5 Disconnecting
Typically the client terminates the connection. During normal operation, the client shall send a

DISCONNECT_REQUEST frame to the server’s control endpoint to request termination of the data
channel connection.

The client should try to disconnect gracefully if possible, even under error conditions. The server may
disconnect from the client by sending a DISCONNECT_REQUEST in case of internal problems or if it
receives invalid data packets, however it is recommended to let the client terminate the connection.

The KNXnet/IP device receiving the DISCONNECT _REQUEST from the communication partner shall
acknowledge the operation with a DISCONNECT_RESPONSE frame. This data packet shall signal the
final termination of a previously established communication channel.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 14 of 49

KNX Standard Core KNXnet/IP

6 General implementation guidelines

6.1 Introduction

This clause defines programming guidelines that must be taken into account when implementing
KNXnet/IP Servers or clients, respectively. The compliance to these guidelines is a requirement for the
certification of the protocol implementation.

6.2 KNXnet/IP Servers

e Ifaserver receives a data packet with an unsupported version field, it shall reply with a negative
confirmation frame indicating in the status field E_VERSION_NOT_SUPPORTED.

o Ifaninvalid data packet is received, the implementation shall ignore the data packet without taking
any further action.

e If aconnection is established, all data packets shall be sent with the same protocol version.

e If aconnection is established and the protocol version changes within the received data packets, the
server shall shut down the connection.

6.3 KNXnet/IP Clients

o Ifaclient receives a data packet with an unsupported version field, it shall reply with a negative
confirmation frame indicating in the status field E_ VERSION_NOT_SUPPORTED. If a connection
to that server sending with an unsupported protocol version is established, the client shall disconnect.
The client may try to reconnect then and re-establish the connection.

o Ifaninvalid data packet is received, the implementation shall ignore the data packet without taking
any further action.

e If aconnection is established, all data packets shall be sent with the same protocol version.

e If aconnection is established and the protocol version changes within the received data packets, the
client shall disconnect from the server. The client may try to reconnect then and re-establish the
connection.

6.4 KNXnet/IP Router settings

6.4.1 KNXnet/IP Router factory default settings

An important feature for KNXnet/IP Routers is that they shall provide proper KNXnet/IP Routing without
any user intervention. This plug and play Routing behaviour requires a standardized factory default
configuration.

¢ Routers shall be shipped with a default Individual Address of FFOOh.
e The Routing multicast address shall equal the System Setup multicast address.

o KNX broadcast telegrams shall be routed from one KNX Subnetwork to another even if KNXnet/IP
Routing devices are still being used in their factory default configuration.

o KNXnet/IP Routing shall already work even if a valid unicast IP address has not been obtained by or
assigned to the KNXnet/IP Routing device.

e KNXnet/IP Routing shall already work and KNXnet/IP Tunnelling shall be available for (further)
configuration of the KNXnet/IP Router if an Individual Address has been assigned to a KNXnet/IP
Router via KNX Subnetwork.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 15 of 49

KNX Standard Core KNXnet/IP

6.4.2 KNXnet/IP Router IP address assignment

KNXnet/IP Routers shall support plug and play KNXnet/IP Routing out of the box even if a valid unicast
IP address is not acquired from a DHCP server, by manual input, or via ETS configuration. This may
require that the IP stack can send and receive multicast IP messages although a valid unicast IP address is
not acquired.

If an IP stack does not support multicasting without an assigned unicast IP address then the KNXnet/IP
Router shall acquire a unicast IP address via AutolP or by self-assigning the default KNXnet/IP source
unicast IP address 0.0.0.0.

If a valid unicast IP address is not acquired the KNXnet/IP Router shall use the default KNXnet/IP source
unicast IP address 0.0.0.0 for Routing but shall not support KNXnet/IP Tunnelling.

6.5 Initial setup procedures for KNXnet/IP Servers

6.5.1 General

KNXnet/IP devices shall be configurable in the same way as traditional KNX devices. In an unconfigured
state KNXnet/IP Routers shall operate with default values enabling KNX telegrams to pass from one
KNX Subnetwork to another, enabling KNXnet/IP Routers to transparently replace KNX Routers (Line-
and Backbone Couplers).

This requirement is set under the condition that KNX Individual Addresses shall be unique across the IP
network. If KNXnet/IP devices of two independent installations are connected to the same IP network or
a KNX project consists of multiple installations, the use of one factory default routing configuration
cannot guarantee the delivery of KNX telegrams to the intended destination as the same KNX (Individual
or Group) Address could be present in different installations.

Tool Software
(ETS)

l 11.2

1.1.2 l 1.il..2

[Router } [Router J
-

Oy O (-

Oy G-

1.1.2
KNX KNX KNX
\ subnetwork subnetwork ; \ Subnetwork subnetwork ¢
Installation A Installation B

Figure 7 — KNX project with multiple installations

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 16 of 49

KNX Standard Core KNXnet/IP

Under the precondition that only one installation is connected to the IP network these rules apply.

1. Upon power-up the KNXnet/IP device shall step through the procedure described in KNXnet/IP Core,
clause 8.5 “IP Address Assignment”, to retrieve an individual IP address.

2. If connected to a KNX Serial Interface device (RS232) or KNX USB Interface, the tool software can
only access KNX devices on the local KNX Subnetwork (including the local KNXnet/IP Router) as
long as not all the KNXnet/IP Router devices belonging to one project are successfully configured.

3. The tool software should always attempt to configure KNXnet/IP Router devices first to gain access
to KNX devices behind possibly still unconfigured KNXnet/IP Routers.

4. If directly connected to the IP network, the tool software can access all KNXnet/IP devices and
through configured KNXnet/IP Routers the corresponding KNX Subnetworks.

5. The tool software should use the IP network for the setup of projects containing KNXnet/IP devices.

6. Itis possible to completely configure KNXnet/IP devices in one single configuration procedure
(KNX Individual Address assignment and parameter download).

7. Assignment of KNX Individual Address

If the tool software is connected through a KNX Serial Interface device (RS232) or KNX USB
Interface to the KNX network, the traditional KNX management procedure applies for
KNXnet/IP devices as well as other KNX nodes. Devices behind unconfigured KNXnet/IP
Routers are not reachable. If the tool software is connected to the IP network, the configuration
procedure for KNXnet/IP devices (specified below) shall apply. Before setting up KNX field
media devices the tool software must firstly configure all KNXnet/IP Router devices.

8. Parameter download

If the tool software is connected through a KNX Serial Interface device (RS232) or KNX USB
Interface to the KNX network, the traditional KNX management procedure shall apply for
KNXnet/IP devices as well as other KNX devices. If the tool software is connected to the IP
network, it shall establish management connections to every KNXnet/IP device to download the
device parameters (see configuration procedure). After having configured all KNXnet/IP Router
devices, the tool software can access all other KNX nodes of the project for further set-up and
download through a KNXnet/IP Tunnelling connection.

9. If the SEARCH_RESPONSE answers reveal that KNXnet/IP devices use different IP address spaces
the tool software shall present an error message.

10. If the SEARCH_RESPONSE answers reveal that the IP address of an KNXnet/IP device is different
from the network settings of the tool software and the IP address of the KNXnet/IP device is an
AutolP address, the tool software shall present an error message and user control button that enables
to Reset the KNXnet/IP device via KNXnet/IP Routing with the KNX connectionless restart service.

6.5.2 Configuration Procedure for configuration via KNXnet/IP Routing

The tool software is connected to a KNX Subnetwork (1.1.) via a KNX Serial Interface device (RS232) or
KNX USB interface. A second KNX Subnetwork (1.2) is connected with the first via two KNXnet/IP
Routers and a LAN. All devices including the KNXnet/IP Routers are initially unconfigured.

The tool software uses KNX management procedures and (indirectly) KNXnet/IP Routing to configure
the two KNXnet/IP Routers.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 17 of 49

KNX Standard Core KNXnet/IP

This is the Configuration Procedure for assignment of the KNX Individual Address and configuration of
parameters of a KNXnet/IP device:

a)

b)

d)

€)

f)

6.5.3

The tool software requests the user to activate the Programming Mode of the KNXnet/IP device.
EXAMPLE This can be done by pressing the Programming Button on the KNXnet/IP device.

The tool software sends a KNX read (broadcast). The KNXnet/IP Router on this KNX
Subnetwork sends this broadcast to other KNXnet/IP Routers which in turn forward it to their
KNX Subnetworks and process the telegram themselves if the Programming Mode is active.

The tool software shall check if more than one device answers with ,,programming mode active*
and if so shall abort procedure with a descriptive message about the reason for aborting the
procedure. The KNXnet/IP Router on this KNX Subnetwork shall forward the answer(s) to this
KNX Subnetwork.

The tool software shall send a KNX write (broadcast) to write the KNX Individual Address into
the KNXnet/IP device. The KNXnet/IP Router on this KNX Subnetwork shall send this broadcast
to other KNXnet/IP Routers, which in turn shall forward it to their KNX Subnetworks and
process the telegram themselves if their Programming Mode is active.

The tool software shall establish a KNX Transport Layer connection to the KNXnet/IP device to
download the configuration parameters (Properties).

NOTE This requires that the KNXnet/IP Router existing on the same KNX Subnetwork as the tool software shall be
configured firstly before other KNXnet/IP devices can be configured.

After downloading the parameters the tool software shall reset the KNXnet/IP device for the
parameters to become effective.

Configuration Procedure for configuration via KNXnet/IP Device
Management

The tool software is directly connected to a LAN. Two KNX Subnetworks, (1.1.) and (1.2), are connected
to the LAN via two KNXnet/IP Routers. All devices including the KNXnet/IP Routers are initially
unconfigured.

The tool software shall use KNXnet/IP Device Management to configure the two KNXnet/IP Routers.

This is the Configuration Procedure for assignment of the KNX Individual Address and configuration of
parameters of a KNXnet/IP device.

a)

9)

The tool software shall requests the user to activate the Programming Mode of the KNXnet/IP
device.

EXAMPLE This can be done by pressing the Programming Button on the KNXnet/IP device.
The tool software shall send a KNXnet/IP SEARCH_REQUEST frame.

The tool software shall check if more than one KNXnet/IP device (service container) answers
with device status “button pressed” and if so abort the procedure.

The tool software shall use the IP address from the SEARCH_RESPONSE frame of the
KNXnet/IP device to establish a KNXnet/IP device management connection to the device.

The tool software shall set the KNX Individual Address, project identifier and Subnetwork
information if applicable.

At this point the tool software can download additional parameters if necessary.

After successfully disconnecting the KNXnet/IP device management connection or sending a
reset_req service to the device, the changed values shall be written and the device shall be
restarted.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 18 of 49

KNX Standard Core KNXnet/IP

7 Frame structures

7.1 Introduction

All KNXnet/IP frames shall have a common header, consisting of header length information, the protocol
version, the KNXnet/IP service type identifier, and the total length of the KNXnet/IP frame.

+-7-4+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 | KNXNETIP_VERSION |
I (06h) I (0h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| KNXNETIP_SERVICE_TYPE |
| (2 octets) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 + sizeof(message body) |
| (2 octets) |
i T e T T e L

Figure 8 - KNXnet/IP frame header

Requests sent to connectionless KNXnet/IP endpoints shall include information about the return address.
This HPAI for the reception of the response information shall always be the first data of the KNXnet/IP
body of all these requests. Additional, KNXnet/IP service related data may follow. Response frames do
not contain this kind of return address information.

7.2 Common constants

7.2.1 HEADER_SIZE 10
This constant with value 06h shall identify the KNXnet/IP header as defined in protocol version 1.0.

7.22 KNXNETIP_VERSION_10
This constant with value 10h shall identify the KNXnet/IP protocol version 1.0.

7.3 Common error codes

7.3.1 E_NO_ERROR
This constant with value 00h shall identify a successful operation.

732 E_HOST_PROTOCOL_TYPE

This constant with value 01h shall identify that the requested host protocol is not supported by the
KNXnet/IP device.

7.3.3 E_VERSION_NOT_SUPPORTED

This constant with value 02h shall identify that the requested protocol version is not supported by the
KNXnet/IP device.

7.3.4 E_SEQUENCE_NUMBER
This constant with value 04h shall identify that the received sequence number is out of order.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 19 of 49

KNX Standard Core KNXnet/IP

7.4 KNXnet/IP services
7.4.1 Core KNXnet/IP services

7411 SEARCH_REQUEST

This constant with value 0201h shall identify the KNXnet/IP service type sent by KNXnet/IP Client to
search available KNXnet/IP Servers.

7.4.1.2 SEARCH_RESPONSE

This constant with value 0202h shall identify the KNXnet/IP service type sent by KNXnet/IP Server
when responding to a KNXnet/IP SEARCH_REQUEST.

7.4.1.3 DESCRIPTION_REQUEST

This constant with value 0203h shall identify the KNXnet/IP service type sent by KNXnet/IP Client to a
KNXnet/IP Server to retrieve information about capabilities and supported services.

7.4.1.4 DESCRIPTION_RESPONSE

This constant with value 0204h shall identify the KNXnet/IP service type sent by KNXnet/IP Server in
response to a DESCRIPTION_REQUEST to provide information about the KNXnet/IP Server
implementation.

7.4.15 CONNECT_REQUEST

This constant with value 0205h shall identify the KNXnet/IP service type sent by KNXnet/IP Client to
establish a communication channel with a KNXnet/IP Server.

7.4.1.6 CONNECT_RESPONSE

This constant with value 0206h shall identify the KNXnet/IP service type sent by KNXnet/IP Server in
response to a CONNECT_REQUEST frame.

7.4.1.7 CONNECTIONSTATE_REQUEST

This constant with value 0207h shall identify the KNXnet/IP service type sent by KNXnet/IP Client
requesting the connection state of an established connection with a KNXnet/IP Server.

7.4.1.8 CONNECTIONSTATE_RESPONSE

This constant with value 0208h shall identify the KNXnet/IP service type sent by KNXnet/IP Server
when receiving a CONNECTIONSTATE_REQUEST for an established connection.

7.4.1.9 DISCONNECT_REQUEST

This constant with value 0209h shall identify the KNXnet/IP service type sent by KNXnet/IP device,
typically the KNXnet/IP client, to terminate an established connection.

7.4.1.10 DISCONNECT_RESPONSE

This constant with value 020Ah shall identify the KNXnet/IP service type sent by a KNXnet/IP device,
typically the KNXnet/IP Server, in response to a DISCONNECT_REQUEST.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 20 of 49

KNX Standard Core KNXnet/IP

7.5 Placeholders

7.5.1 Host Protocol Address Information (HPAI)

The Host Protocol Address Information structure (HPALI) shall be the address information required to
uniquely identify a communication channel on the host protocol. Its size shall vary between different host

protocols. For the specific definition of the HPAI consult the host protocol dependent addendums of the
KNXnet/IP specification.

+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-
| Structure Length | Host Protocol Code

| (1 Octet) | (1 Octet)
+-7—+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4—-+-3-+-2-+-1-+-0-
| Host Protocol Dependent Data

| (variable length)
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-
1—7—+—6—+—5—+—4—+—3—+—2—+—1—+—O—+—7—+—6—+—5—+—4—+—3—+—2—+—1—+—0—
|

— o —— e ——

Figure 9 — HPAI structure binary format

7.5.2 Connection Request Information (CRI)

The Connection Request Information structure (CRI) shall be the additional information needed for
different types of communication channels to fulfil a connection request. As this structure shall contain
two substructures including host protocol independent data as well as host protocol dependent infor-
mation, the specific definition of the CRI can be found in the description of the connection type with
consultancy of the host protocol dependent parts of the KNXnet/IP specification.

+-7-+-6-+-5-4-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4—+-3-+-2-+-1-+-0-

+
| Structure Length | Connection Type Code |
| (1 Octet) | (1 Octet) |
+-7-+-6-+-5-4+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2—-+-1-+-0-+

| Host Protocol Independent Data
| (variable length, optional)
+-T7—+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4—+-3-+-2—-+-1-+-0-

I
|
+
|
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
|
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Host Protocol Dependent Data |
| (variable length, optional) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+

|
+-7—+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7—+-6-+-5-+-4—+-3—+-2—+-1—-+-0—+
|

Figure 10 — CRI structure binary format

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 21 of 49

KNX Standard Core KNXnet/IP

7.5.3 Connection Response Data Block (CRD)

The Connection Request Data Block structure (CRD) shall be the data block returned with the
CONNECT_RESPONSE frame. As this structure shall contain two substructures including host protocol
independent data as well as host protocol dependent information, the specific definition of the CRD can
be found in the description of the connection type with consultancy of the host protocol dependent parts
of the KNXnet/IP specification.
+-7-4-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-

Structure Length | Connection Type Code

(1 Octet) | (1 Octet)
~7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4—+-3-+-2-+-1-+-0-

Host Protocol Independent Data

(variable length, optional)
~T—+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7—+-6-+-5-+-4—+-3-+-2-+-1-+-0-

-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-

— o —— e ——

-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-
Host Protocol Dependent Data
(variable length, optional)
-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-

+

— e o o—— o ——

-+

Tt -B-t-5t bt -3 4-2-4-1-+-0-F+-T-+-6-+-5-+-4—+-3-+-2—+-1-+-0-
|

— — ——

Figure 11 — CRD structure binary format
7.5.4 Description Information Block (DIB)

7.5.4.1 Use, format and general requirements

The Description Information Block structure (DIB) shall be used by a KNXnet/IP Server to return a
specific block of device information when responding to a DESCRIPTION_REQUEST.

At least two DIB structures shall be returned with information about the device capabilities on (1) device
hardware and (2) supported service families.

More than two DIB structures may be returned in one DESCRIPTION_RESPONSE frame.

The first octet of each DIB shall contain the length of the DIB structure. The second octet shall declare
the DIB structure type. Then the actual data of the DIB shall be appended. The structure shall always
have an even number of octets which may have to be achieved by padding with 00h in the last octet of the
DIB structure.

+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Structure Length | Description Type Code |
| (1 octet) | (1 octet) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Description Information Block data |

| (?? octets) |
+-7-4+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+

Figure 12 — Description structure binary format

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 22 of 49

KNX Standard

Core KNXnet/IP

Table 1 lists the valid description type codes.

Table 1 - Description type codes

Description type Value Description
DEVICE_INFO 01h Device information e.g. KNX medium.
SUPP_SVC_FAMILIES ([02h Service families supported by the device.
IP_CONFIG 03h IP configuration
IP_CUR_CONFIG 04h current configuration
KNX_ADDRESSES 05h KNX addresses
Reserved 06h to FDh | Reserved for future use.

MFR_DATA FEh DIB structure for further data defined by device
manufacturer.
not used FFh Not used.
© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 23 of 49

KNX Standard Core KNXnet/IP

7.5.4.2 Device information DIB
The device information DIB shall have the structure as given below.
+-7-+-6-+-5-4+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4—-+-3-+-2—-+-1-+-0-+

Structure Length | Description Type Code |
(1 octet) | (1 octet) |
—7—+-6-+-5-+-4-+-3-+-2—+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
KNX medium | Device Status |
(1 Octet) | (1 Octet) |
~7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+

I

|

+

|

|

+

| KNX Individual Address |
| (2 Octets) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Project-Installation identifier [

| (2 Octets) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| KNXnet/1P device KNX Serial Number |

| (6 octets) |

KNXnet/IP device routing multicast address |

|
|
+-7-+-6-+-5-+-4-+-3-+-2—-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
|
| (4 octets) |

KNXnet/1P device MAC address |

I
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2—-+-1-+-0-+
I
| (6 octets) |

Device Friendly Name |

I
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4—-+-3-+-2—-+-1-+-0-+
|
| (30 octets) |

TP Ry S S S R S S SR MR R S S S

¢ KNX medium
The KNX medium codes shall be as specified in Table 2.
Table 2 — KNX medium codes

KNX medium KNX

code medium
01h reserved
02h TP1
04h PL110
08h reserved
10h RF
20h KNX IP

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 24 of 49

KNX Standard Core KNXnet/IP

These values shall be identical to the PID_MEDIUM_TYPE Property specified in [01]. the
encoding is specified as DPT_Media in [03]; exactly one single bit shall be set.

+ Device Status

Device Status octet shall be as specified in Figure 13.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
reserved reserved reserved reserved reserved reserved reserved program

ming

mode

Figure 13 — Device Status

The encoding of bit 0 “programming mode” shall be identical to bit 0 “progmode” in
PID_PROGMODE as specified in [01].
¢ Project-Installation Identifier

The Project-Installation identifier shall be as specified in Figure 14.

bit 15 to 4 bit 3to 0
Project Installation
number number

Figure 14 — Project-Installation Identifier

The Project-Installation identifier shall solely be assigned by ETS and shall be used to uniquely
identify KNXnet/IP devices in a project with more than one KNX installation, i.e. more than 15 Areas
with 15 Lines, or in an environment with more than one KNX project.

¢ KNXnet/IP device KNX Serial Number

The KNXnet/IP device KNX Serial Number shall be the KNX Serial Number of the KNXnet/IP
device. This information may be used to identify the device or set its Individual Address.

¢ KNXnet/IP device routing multicast address

The KNXnet/IP device routing multicast address shall be the multicast address that shall be used by a
KNXnet/IP Router for KNXnet/IP Routing. KNXnet/IP devices that do not implement KNXnet/IP
Routing shall set this value to 0.0.0.0. This information may be used if KNXnet/IP Routing frames
need to be sent to KNXnet/IP Routers that do not use the default KNXnet/IP Routing Multicast
Address, which shall be equal to the KNXnet/IP System Setup Multicast Address.

¢ KNXnet/IP device MAC address

The KNXnet/IP device MAC address shall be the Ethernet MAC address of the KNXnet/IP device.
This information may be used to identify the device on the Ethernet to a server allocating network
resources, specifically the unicast IP address for the KNXnet/IP device.

¢ Device Friendly Name

The Device Friendly Name may be any NULL (00h) terminated 1SO 8859-1 character string with a
maximum length of 30 octets. This name may be used to identify the device to a user. Unused octets
shall be filled with the NULL (00h) character.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 25 of 49

KNX Standard Core KNXnet/IP

7.5.4.3 Supported service families DIB
The supported service families DIB shall have the structure as specified in Figure 15.

-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
Structure Length Description Type Code |

+

-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
Service Family ID Service Family version |
(1 Octet) (1 Octet) |
———teee e e

I |
| (1 octet) | (1 octet) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Service Family ID | Service Family version |
| (1 Octet) | (1 Octet) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Service Family ID | Service Family version |
| (1 Octet) | (1 Octet) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
|- I |
| | |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+

I

|

- ——

Figure 15 — Supported services families DIB

The service family 1Ds shall be the high octet of the Service Type ID. A list of service type IDs can be
found in [04].

The version of a service family shall refer to the version of the corresponding KNXnet/IP document. This
version is only updated when the document itself is updated after it has gone through the KNX
Association’s approval process. Any version of a service family shall be backwards compatible with
previous versions, i.e. all services shall be implemented and supported. The service family version shall
be an integer. It does not represent the manufacturer’s implementation version.

7.5.4.4 1P Config DIB
The IP configuration DIB shall have the following structure.

+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Structure Length | Description Type Code |
| (1 octet) | (1 octet) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| IP Address |
| (4 octets) |
o m o ek ek ke ke ke e e ke e e e e e e e e e e e e e = = +
I |
| |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Subnet Mask |
| (4 octets) |
I e T +
I I
| |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Default Gateway |
| (4 octets) |
T T +
I I
| |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| IP Capabilities | IP assignment method |
| (1 Octet) | (1 Octet) |
Fo - — — - === +

Figure 16 — IP Config DIB

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 26 of 49

KNX Standard Core KNXnet/IP

7.5.4.5 IP Current Config DIB
The IP current configuration DIB shall have the following structure.

+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Structure Length Description Type Code |
| (1 octet) (1 octet) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Current IP Address |
| (4 octets) |

+-7-+-6-+-5-+-4-+-3-+-2—-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Current Subnet Mask |
| (4 octets) |

+-7—+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4—+-3-+-2-+-1-+-0-+
| Current Default Gateway |
| (4 octets) |

+

+-7-4+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2—-+-1-+-0-+
| DHCP Server |

| (4 octets) |
e - - - +
| |
| |
+-7-+-6-+-5-+-4-+-3-+4+-2-4+-1-+-0-+- = = = = = = = = = = — — - - - +
| Current IP assignment method | Reserved |
| (1 Octet) | (1 Octet) |
T +

Figure 17 - IP Current Config DIB

7.5.4.6 KNX Addresses DIB
The KNX address DIB shall have the following structure.
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4—-+-3-+-2—-+-1-+-0-+

| Structure Length | Description Type Code |
| (1 octet) | (1 octet) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| KNX Individual Address |
| (2 octets) |
+-7-4+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Additional Individual Address 1 (optional) |
| (2 octets) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Additional Individual Address 2 (optional) |
| (2 octets) |
Fo m m m m m m - - - - - - m - e e e e - - - - - == - +
| |
| |
Fm m m m m m - - - - - m m - - - - - - e - - - - - - m - == - +

Figure 18 - KNX Addresses DIB

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 27 of 49

KNX Standard Core KNXnet/IP

7.5.4.7 Manufacturer data DIB
The manufacturer data DIB has this structure.

+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Structure Length | Description Type Code |
| (1 octet) | (1 octet) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| KNX Manufacturer ID |
| (2 Octets) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Any manufacturer specific data |
| (?? Octets) |

S S S S S S S S S S S

Figure 19 — Manufacturer data DIB

The KNX manufacturer ID shall be added to clearly identify the manufacturer. This information is not
necessarily encoded in the KNXnet/IP device KNX Serial Number (6 octets).

The manufacturer data DIB may contain any manufacturer specific data.
7.6 Discovery

7.6.1 SEARCH_REQUEST

The SEARCH_REQUEST frame shall be sent by a KNXnet/IP Client via multicast to the discovery
endpoints of any listening KNXnet/IP Server. As communication with the discovery endpoint shall be
connectionless and stateless, the KNXnet/IP Client’s discovery endpoint address information shall be
included in the KNXnet/IP body.

KNXnet/IP header
+-7—+-6-4+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4—+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 | KNXNET IP_VERSION |
I (06h) I (10h) |
+-7-4+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| SEARCH_REQUEST
| (0201h)
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 + sizeof(HPAI) |
| |

S

KNXnet/1P body
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HPAI |
| Discovery endpoint |
T

Figure 20 - SEARCH_REQUEST frame binary format

7.6.2 SEARCH_RESPONSE

The SEARCH_RESPONSE frame shall be sent by the KNXnet/IP Server as an answer to a received
SEARCH_REQUEST frame. It shall be addressed to the KNXnet/IP Client’s discovery endpoint using
the HPAI included in the received SEARCH_REQUEST frame.

The HPAI of the KNXnet/IP Server’s own control endpoint shall be carried in the KNXnet/IP body of the
SEARCH_RESPONSE frame along with the description of the device hardware and the supported service
families. If the KNXnet/IP Server supports more than one KNX connection, the KNXnet/IP Server shall
announce each of its own control endpoints in a single SEARCH_RESPONSE frame.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 28 of 49

KNX Standard Core KNXnet/IP

KNXnet/1P header
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 | KNXNETIP_VERSION |
I (06h) I (0oh) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| SEARCH_RESPONSE |
| (0202h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 + sizeof(HPAl) + sizeof(Description) |
| |

S S S S

KNXnet/1P body
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HPAI |
| Control endpoint |
ottt -ttt —F e+ ———+
| DIB I
| device hardware |
E T LT (TR R S R R R T ts e rep
| DIB |
| supported service families |
-ttt -ttt -ttt F———F———+———+

Figure 21 - SEARCH_RESPONSE frame binary format
7.7 Self description

7.71 DESCRIPTION_REQUEST

The DESCRIPTION_REQUEST frame shall be sent by the KNXnet/IP Client to the control endpoint of
the KNXnet/IP Server to obtain a self-description of the KNXnet/IP Server device.

The KNXnet/IP body shall contain the return address information of the KNXnet/IP Client’s control
endpoint.

KNXnet/IP header
+-7-4+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 | KNXNET IP_VERSION |
I (06h) I (10h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2—-+-1-+-0-+
| DESCRIPTION_REQUEST |
| (0203h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 + sizeof(HPAI) |
| |

TS Ry S S S S S SR MR R S S S

KNXnet/1P body
+-7-+-6-+-5-+-4-+-3—+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2—+-1-+-0-+
| HPAI |
| Control endpoint |
[ST SR S S i —

Figure 22 — DESCRIPTION_REQUEST frame binary format

7.7.2 DESCRIPTION_RESPONSE

The DESCRIPTION_RESPONSE frame shall be sent by the KNXnet/IP Server as an answer to a
received DESCRIPTION_REQUEST frame. It shall be addressed to the KNXnet/IP Client’s control
endpoint using the HPAI included in the received DESCRIPTION_REQUEST frame.

The size of the KNXnet/IP body varies depending on the number of DIB structures sent by the
KNXnet/IP Server in response to the KNXnet/IP Client’s DESCRIPTION_REQUEST.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 29 of 49

KNX Standard Core KNXnet/IP

KNXnet/1P header
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 | KNXNETIP_VERSION |
I (06h) I (0oh) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| DESCRIPTION_RESPONSE |
| (0204h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SI1ZE_10 + sizeof(Description) |
| |
+

S U —

KNXnet/1P body
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| DIB |
| device hardware |
ottt -ttt —F e+ ———+
| DIB |
| supported service families |
E T LT (TR R S R R R T ts e rep
| DIB |
| other device information (optional) |
-ttt -ttt -ttt F———F———+———+

Figure 23 - DESCRIPTION_RESPONSE frame binary format
7.8 Connection management

781 CONNECT REQUEST

The CONNECT_REQUEST frame shall be sent by the KNXnet/IP Client to the control endpoint of the
KNXnet/IP Server. As for every request using control communication the KNXnet/IP body shall begin
with the return address information of the KNXnet/IP Client’s control endpoint.

Next follows the CRI, a variable data structure that shall include all additional information that is specific
to the requested connection type (and to the underlying host protocol). The exact definition of this
structure can be found in the description of the specific connection type.

Table 3 - Connection types

Connection type Value | V. Description

DEVICE_MGMT_CONNECTION |03h 1 | Data connection used to configure a KNXnet/IP
device.

TUNNEL_CONNECTION 04h 1 | Data connection used to forward KNX telegrams
between two KNXnet/IP devices.

REMLOG_CONNECTION 06h 1 | Data connection used for configuration and data
transfer with a remote logging server.

REMCONF_CONNECTION 07h 1 | Data connection used for data transfer with a
remote configuration server.

OBJSVR_CONNECTION 08h 1 | Data connection used for configuration and data
transfer with an Object Server in a KNXnet/IP
device.

Inside the CRI one octet shall determine the type of communication channel requested by this frame and
two octets are reserved for the options for this channel. Additional KNXnet/IP documents may define
more connection types and additional connection type specific connection options.

The host protocol address information of the KNXnet/IP Client’s data endpoint meant for the requested
data connection shall complete the body of the CONNECT_REQUEST frame.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 30 of 49

KNX Standard Core KNXnet/IP

KNXnet/I1P header
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 | KNXNETIP_VERSION |
I (06h) I (a0oh) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| CONNECT_REQUEST |
| (0205h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 + sizeof(HPAl) + sizeof(HPAl) + sizeof(CRI) |
| |

S I

KNXnet/1P body
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HPAI |
| Control endpoint |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HPAI l
| Data endpoint |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| CRI |
| Connection request Information |
-ttt -ttt -ttt ———+———+

Figure 24 - CONNECT_REQUEST frame binary format

7.8.2 CONNECT_RESPONSE

The CONNECT_RESPONSE frame shall be sent by the KNXnet/IP Server as an answer to a received
CONNECT_REQUEST frame. It shall be addressed to the KNXnet/IP Client’s control endpoint using the
HPAI included in the received CONNECT_REQUEST frame.

The size of the KNXnet/IP body varies according to the success or failure of the KNXnet/IP Client’s
CONNECT_REQUEST.

If the connection request is successfully fulfilled with all the requested options, the body of the
CONNECT_REQUEST frame shall contain a communication channel ID that shall uniquely identify this
connection with the KNXnet/IP Server. The communication channel ID shall be the first octet of the
body.

The second octet of the body shall contain the status information of the connection request. This status
information can contain error information regarding the request itself or regarding the connection type
specific information.

Table 4 - Common CONNECT_RESPONSE status information

Error constant Value | V. Description
E_NO_ERROR 00h 1 | The connection is established successfully.
E_CONNECTION_TYPE 22h 1 | The requested connection type is not supported
by the KNXnet/IP Server device.
E_CONNECTION_OPTION 23h 1 [One or more requested connection options are

not supported by the KNXnet/IP Server device.

E_NO_MORE_CONNECTIONS |24h 1 [The KNXnet/IP Server device cannot accept the
new data connection because its maximum
amount of concurrent connections is already
occupied.

The Host Protocol Address Information of the KNXnet/IP Server’s data endpoint prepared for this data
connection shall be the next block of data in the body of a successful CONNECT_RESPONSE frame.

The Connection Response Data Block containing connection type specific response data shall complete
the body of a successful CONNECT_RESPONSE frame.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 31 of 49

KNX Standard Core KNXnet/IP

KNXnet/I1P header
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 | KNXNETIP_VERSION |
I (06h) I (10h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| CONNECT_RESPONSE |
| (0206h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 + 2 + sizeof(HPAl) + sizeof(CRD) |
| |

S S S S

KNXnet/1P body
-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
Communication Channel ID | Status |

—7—+—6—+—5—+—4—+—3—+—2—+—1—+—O—1—7—+—6—+—5—+—4—+—3—+—2—+—1—+—O—1
HPAI l
Data endpoint |

+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+

| CRD |
| Connection Response Data Block |

-ttt -ttt -ttt ———+———+

Figure 25 - CONNECT_RESPONSE frame binary format

7.8.3 CONNECTIONSTATE_REQUEST

The CONNECTIONSTATE_REQUEST frame shall be sent by the KNXnet/IP Client to the control
endpoint of the KNXnet/IP Server. The first octet of the KNXnet/IP body shall contain the communi-
cation channel ID that the KNXnet/IP Server uses to uniquely identify the data connection for this
connection state request. The second octet shall be reserved for future use.

The HPAI with the return address information of the KNXnet/IP Client’s control endpoint shall be added
after the communication channel ID.

KNXnet/IP header
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 | KNXNETIP_VERSION I
I (06h) I (10h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| CONNECTIONSTATE_REQUEST |
| (0207h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2—-+-1-+-0-+
| HEADER_SIZE 10 + 2 + sizeof(HPAI) |
| |

B S S S

KNXnet/1P body
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Communication Channel 1D | reserved |

1-7—+—6-+-5-+—4—+—3-+-2-+—1—+—0—1—7—+—6—+—5—+—4—+—3—+—2—+—1—+—0—l
| HPAI |
| Control endpoint |
g S S o S —

Figure 26 - CONNECTIONSTATE_REQUEST frame binary format

7.84 CONNECTIONSTATE_RESPONSE

The CONNECTIONSTATE_RESPONSE frame shall be sent by the KNXnet/IP Server as an answer to a
received CONNECTIONSTATE_REQUEST frame. It shall be addressed to the KNXnet/IP Client’s
control endpoint using the HPAI included in the received CONNECTIONSTATE_REQUEST frame.

The first octet of the KNXnet/IP body shall contain the communication channel 1D that the KNXnet/IP
Client has passed to the KNXnet/IP Server with the CONNECTIONSTATE_REQUEST frame.

The second octet of the KNXnet/IP body shall contain the status information of the connection state
request. Table 5 lists the status codes that are defined for the CONNECTIONSTATE_RESPONSE frame.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 32 of 49

KNX Standard Core KNXnet/IP

Table 5 - CONNECTIONSTATE_RESPONSE status codes

Error constant Value | V. Description
E_NO_ERROR 00h 1 | The connection state is normal.
E_CONNECTION_ID 21h 1 [The KNXnet/IP Server device cannot find an active

data connection with the specified ID.

E_DATA CONNECTION [26h 1 | The KNXnet/IP Server device detects an error
concerning the data connection with the specified ID.

E_KNX_ CONNECTION 27h 1 | The KNXnet/IP Server device detects an error
concerning the KNX subnetwork connection with the
specified ID.

KNXnet/I1P header
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 | KNXNETIP_VERSION |
I (06h) I (10oh) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| CONNECTIONSTATE_RESPONSE |
| (0208h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 + 2 |
| |

S S

KNXnet/1P body
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Communication Channel 1D | Status |

S S

Figure 27 - CONNECTIONSTATE_RESPONSE frame binary format

7.8.5 DISCONNECT_REQUEST

KNXnet/IP header
+-7-4+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 | KNXNET IP_VERSION |
I (06h) I (10h) |
+-7-4+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| DISCONNECT_REQUEST |
| (0209h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2—-+-1-+-0-+
| HEADER_SIZE_10 + 2 + sizeof(HPAI) |
| |

S S S

KNXnet/1P body
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2—-+-1-+-0-+
| Communication Channel 1D | reserved |
1—7—+—6—+—5—+—4—+—3—+—2—+—l—+—O—1—7—+—6—+—5—+—4—+—3—+—2—+—1—+—0—1
| HPAI |
| Control endpoint |
B ST i A . —

Figure 28 - DISCONNECT_REQUEST frame binary format

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 33 of 49

KNX Standard Core KNXnet/IP

7.8.6 DISCONNECT_RESPONSE

KNXnet/IP header
+-7-4+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 | KNXNETIP_VERSION |
| (06h) I (10h) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| DISCONNECT_RESPONSE |
| (020Ah) |
+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| HEADER_SIZE_10 + 2 |
| |
+

S

KNXnet/1P body
+-7-4+-6-+-5-+-4-+-3-+-2—-+-1-+-0-+-7-+-6-+-5-+-4-+-3-+-2-+-1-+-0-+
| Communication Channel 1D | Status |

S S S

Figure 29 — DISCONNECT_RESPONSE frame binary format

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 34 of 49

KNX Standard Core KNXnet/IP

8 IP Networks

8.1 Introduction

The KNXnet/IP protocol is used to tunnel or route KNX data over the widely spread Internet Protocol
(IP), enabling remote access and maintenance across long distances, as well as usage as high speed
backbone for KNX networks.

This part of the specification defines which IP parameters and features are supported by KNXnet/IP.
It is assumed that the reader is familiar with the Internet Protocols TCP and UDP.

8.2 Physical vs. logical network

IP networks are not like KNX networks. KNX networks are physical busses by nature. This implies that
all devices on the channel will by default receive all telegrams transmitted on the network. In addition
when a new device is added to the network it is not necessary that other devices on the network become
aware of it before they can exchange telegrams. To transmit a telegram over KNX it is only necessary that
a device be capable of physically transmitting the telegram on the bus, nothing more. If a device is simply
physically connected to a KNX network, it is capable of exchanging telegrams with other devices on the
channel.

By contrast an IP network is not physical, but logical in nature. There are a number of different physical
media that can support IP communication and any of them should be capable of supporting tunnelling
KNXnet/IP frames. Because it is dealt with a logical channel it is necessary to “construct” the channel by
informing each device on the channel of the existence of the other devices on that channel. In other words
before a device can transmit a packet to some other device on an IP channel it must be made aware of
how to specifically send a packet to that device, i.e. its IP address.

Another significant difference between physical and logical networks is that in the case of typical
physical networks it is possible to calculate fixed upper bounds on the length of time it will take a packet
to traverse from one device to another once the packet is transmitted on the channel. This is not always
possible for IP networks. The deviation of packet delivery times between KNXnet/IP devices on an IP
channel are much higher than those experienced with native KNX devices.

The IP channel is used as an intermediary transport mechanism for the KNX telegrams by a variety of
KNXnet/IP devices. When a KNXnet/IP frame is transported on an IP channel, an IP message
encapsulating the KNX frame is sent to other KNXnet/IP devices on that IP channel. The IP channel is
specified by the list of unicast IP addresses, exactly one for each KNXnet/IP device. There is no
maximum to the number of KNXnet/IP devices on a single IP network.

8.3 Transport mechanisms

IP is a network level protocol. It is designed to operate over a wide range of physical media and Data
Link Layer protocols. As such this document does not specify anything about the Data Link Layer or
Physical Layers of the IP stack.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 35 of 49

KNX Standard

Core

KNXnet/IP

(

KNXnet/IP Implementation

—/

Application Layer

TCP UubP Transport Layer
g N
IP Network Layer
ICMP / IGMP
. I J
[1
Data Link Layer
Physical Interface
Physical Layer
. J/

Figure 30 — IP protocol stack

Three most common mechanisms used to transport IP packets are raw IP, TCP and UDP. TCP and UDP
are transport protocols built on top of IP.

TCP implements a reliable, connection-oriented end-to-end transport service. It includes provisions to
guarantee the correct transmission and to preserve the ordering of the received data stream.

UDP on the other hand implements a best effort datagram service. Raw IP is a mechanism implemented
by a number of operating systems to provide host applications with direct access to the IP layer,
bypassing any transport service.

Although it is possible to use any of these protocols as a KNXnet/IP host protocol, from an application
point of view it is much easier to simply exclude raw IP and restrict the specification to TCP and UDP.

8.4 UDPand TCP

Since the KNX protocol itself employs end to end acknowledgment it is not necessary to guarantee
tunnelling IP packets containing KNX data telegrams get received between the KNXnet/IP devices. Using
a reliable transport service introduces unnecessary protocol overhead in this case, which makes TCP less
efficient than UDP or raw IP. On the other hand there will be configuration and status messages exchan-
ged between KNXnet/IP devices that do not contain tunnelled KNX data and yet must be received
reliably.

TCP has the advantage of reliable delivery service and hence will guarantee that the received packet
ordering is preserved. On the down side it does not support multicast addressing and is less efficient than
UDP. TCP also consumes more resources of the KNXnet/IP device to implement than UDP. UDP is more
efficient in carrying tunnelled KNX frames, but for the lack of a reliable delivery service will not
guarantee that the packet ordering is preserved.

Given the increased efficiencies of UDP regarding the transport of KNX frames and its support of
multicast addressing, it will be used as the default to communicate between KNXnet/IP devices. All
KNXnet/IP devices shall support UDP. The reliability advantages of TCP may be supported in addition to
UDP. TCP support in KNXnet/IP devices is optional.

To address the sequencing issue there shall be the sequence counter option added to the connection
header to help in sequencing them.

Using UDP, datagrams can be sent using either unicast or multicast addressing. Unicast is point to point
meaning that a datagram is sent from one IP host to a single other IP host. When sending the same
datagram to multiple IP hosts as it is necessary for routing of KNX data, it is much more efficient to use
multicast addressing. Therefore it is recommended that KNXnet/IP devices support both unicast and
multicast IP addressing although it is not required that a KNXnet/IP device supports multicasts in order to
interoperate with a KNXnet/IP device that does.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 36 of 49

KNX Standard Core KNXnet/IP

8.5 IP Address Assignment
8.5.1 IP unicast address

8.5.1.1 Fixed IP address

A fixed IP address is assigned to the device through a user interface, via ETS or some other tool. This IP
address assignment is fixed.

Any KNXnet/IP device shall support fixed assigned IP addresses.

8.5.1.2 BootP / DHCP

A BootP or DHCP server is designed to automatically assign an IP address to a device. Configuration of
both types of servers is part of network administration and is available on all network server platforms
(Windows NT Server, Windows 2000 Server, Windows XP Server, Unix, Linux). Pre-administered
DHCP servers like DSL modems or ISDN routers can also be used.

Either a BootP - or a DHCP client shall be implemented on a KNXnet/IP device.

8.5.1.3 AutolP

A device implementing AutolP is capable of assigning itself a unicast IP address in the range of
169.254.1.0 to 169.254.254.255.

A KNXnet/IP device may implement AutolP.

8.5.1.4 P address assignment procedure
Figure 31 describes the address assignment procedure for KNXnet/IP devices.

1|IF fixed IP address assigned to KNXnet/IP | THEN |> 2

device ELSE |>6
2 |IF BootP or DHCP address assignment is THEN |2 3
enabled ELSE [use fixed IP address already assigned to.
3 |IF BootP or DHCP address assignment is THEN |use newly assigned IP address.
successful ELSE [>4

4 |1F AutolP address assignment is enabled THEN |25

ELSE |[use fixed IP address already assigned to.

5|IF AutolP address assignment is successful | THEN | use newly assigned IP address.

ELSE [use fixed IP address already assigned to.

6 |IF BootP or DHCP address assignment is THEN | > 7

enabled ELSE |>8
7 |IF BootP or DHCP address assignment is THEN |use newly assigned IP address.
successful ELSE [>8

8 |IF AutolP address assignment is enabled THEN |29

ELSE |[no IP address is assigned. Enter 0.0.0.0 in
IP address field of HPAI.

9 |IF AutolP address assignment is successful | THEN | use newly assigned IP address.

ELSE [no IP address is assigned. Enter 0.0.0.0 in
IP address field of HPAI.

Figure 31 — Address assignment procedure

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 37 of 49

KNX Standard Core KNXnet/IP

8.5.2 IP multicast addresses

8.5.2.1 KNXnet/IP system setup multicast address

To ensure that any KNXnet/IP device can be reached by the KNXnet/IP Core discovery services a
»System Setup Multicast Address™ is defined. The value of the ,,System Setup Multicast Address* shall
be 224.0.23.12.

8.5.2.2 KNXnet/IP routing multicast address

Any KNXnet/IP device implementing KNXnet/IP routing shall have a ,,Routing Multicast Address®. This
address shall be derived from the ,,System Setup Multicast Address* by adding an offset. This offset shall
have a default value of zero. If there is more than one installation in a project KNXnet/IP Routers in
separate installations shall be assigned to different Routing Multicast Addresses.

8.6 KNXnet/IP host protocol

8.6.1 Device specification

A KNXnet/IP device shall behave like any standard IP host capable of exchanging IP packets with any
other IP host either on the same IP subnet or anywhere else in the IP network cloud. A KNXnet/IP device
shall have a single unicast IP address, shall belong to at least one IP multicast group, and may be capable
of belonging to up to 16 multicast groups. A KNXnet/IP device shall support multicasting.

A KNXnet/IP device shall support these IP protocols: ARP, ICMP, IGMP, BootP / DHCP 4 and UDP.
Additionally it may support other IP protocols like RARP, TCP, NTP, FTP, HTTP, SMTP, DNS or
SNMP.

In order to initiate communication via TCP/UDP to a KNXnet/IP device a fixed port number shall be
defined for the discovery procedure in addition to the individual IP address.

To support the routing of IP packets between subnets or through the Internet KNXnet/IP devices shall be
compatible with whatever standard mechanisms (IP routers, switches, etc.) are required to perform the IP
routing functions.

8.6.2 Host Protocol Address Information

The Host Protocol Address Information shall contain the information that is necessary to uniquely
identify an Internet Protocol transport connection endpoint. This shall include the Network Layer address
and the Transport Layer identifier called Port number. Both, IP address and port number, shall be stored
binary in network octet order.

F——— F————— +
| 8 | Host Protocol Code |
| | (1 octet) |
B T T +
| IP Address |
| (4 octets) |
T +
| IP port number |
| (2 octets) |
. +

Figure 32 — IP Host Protocol Address Information binary format

4 BootP / DHCP: Either one shall be implemented.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 38 of 49

KNX Standard Core KNXnet/IP

Table 6 — Host protocol codes for IP network

Constant name | Value | V. Description

IPv4_UDP 01h 1 |ldentifies an Internet Protocol version 4 address and port
number for UDP communication.

IPV4_TCP 02h 1 |ldentifies an Internet Protocol version 4 address and port
number for TCP communication.

8.6.3 KNXnet/IP Endpoints

8.6.3.1 General

The use of the KNXnet/IP endpoints as a logical view of the communication between KNXnet/IP devices
results in a big flexibility of the actual implementation using the specific host protocol.

As mentioned above KNXnet/IP devices can support UDP or optionally TCP as the Transport Layer
protocol for IP communication. These IP channels can dynamically be negotiated between the KNXnet/IP
devices using the HPAI structure of the KNXnet/IP frames. Because of the point-to-multipoint
requirement of the discovery communication, UDP at port 3671 is the only allowed transport mechanism.

The KNXnet/IP port number 3671 shall be used for the discovery end point. It may be used for the data
and control end points too. This is not mandatory. The KNXnet/IP Server port number returned in
response to a CONNECT_REQUEST may be any valid port number.

It is therefore possible to implement a KNXnet/IP device that uses only one bidirectional UDP port for all
communication or one could implement an KNXnet/IP device that uses two unidirectional UDP ports for
the discovery endpoint and for each control endpoint and TCP ports for data connections.

8.6.3.2 Discovery Endpoint

Only UDP is allowed for discovery endpoint communication. An attempt to request TCP communication
will result in a host protocol type error.

The KNXnet/IP Client shall send a SEARCH_REQUEST frame using UDP local broadcast from any
source port to the fixed discovery endpoint destination at port 3671. Any KNXnet/IP Server receiving this
request shall ignore the source information at IP level. Only the HPAI of the received KNXnet/IP frame is
relevant. The KNXnet/IP Servers shall then send their SEARCH_RESPONSE frame(s) using UDP
unicast from any source port to the requested destination.

8.6.3.3 Control Endpoint

UDP and TCP are allowed for control endpoint communication. Every KNXnet/IP device shall support
UDP communication. TCP communication is optional.

The KNXnet/IP Client shall receive the port information about the KNXnet/IP Server’s control endpoint
from the HPAI of the SEARCH_RESPONSE frame. A KNXnet/IP server shall not change this port once
it is announced.

The KNXnet/IP Server shall receive the complete address information about the KNXnet/IP Client’s
control endpoint with every new control request. Although possible, it is recommended that the
KNXnet/IP Client does not change this port either.

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 39 of 49

KNX Standard Core KNXnet/IP

8.6.3.4 Data Endpoints

UDP and TCP are allowed for data endpoint communication. Every KNXnet/IP device shall support UDP
communication. TCP communication is optional.

Data endpoints can be connection oriented for point-to-point communication or connectionless for
point-to-multipoint communication as it is necessary for KNXnet/IP Routing. All connectionless data
endpoints use special Host Protocol Address Information structures for KNXnet/IP multicasts. These IP
addresses and port numbers are fixed and defined in the corresponding KNXnet/IP service protocol
description.

8.6.3.5 Network Address Translation (NAT)

If KNXnet/IP communication has to traverse across network routers using Network Address Translation
(NAT) the KNXnet/IP Client shall set the value of the IP address and/or the port number in the HPAI to
zero to indicate NAT traversal to the receiving KNXnet/IP Server.

For the IP address and port number in the datagrams sent from the KNXnet/IP Server to the KNXnet/IP
Client the KNXnet/IP Server shall replace the zero value for the IP address and/or the port number in the
HPAI by the corresponding IP address and/or port number in the IP package received and use this value
as the target IP address or port number for the response to the KNXnet/IP Client.

Typically the KNXnet/IP Client should set both the IP address and the port number to zero but may
choose to set only one (IP address or port number) to zero if required by the application and possible in
the given network configuration.

8.7 General implementation guidelines
Refer to [04] for general IP implementation guidelines.

8.8 Binary examples of KNXnet/IP IP frames
8.8.1 SEARCH_REQUEST

e +
1 | 06h | header size
o e e e +
2 | 10h | protocol version
S +
3 | 02h | \
- - - - - - - - - - - - - - - - + > service type identifier 0201h
4 | 01h | 7
e +
5 | 00h | \
T + > total length, 14 octets
6 | OEh | 7
T +
7 | 08h | structure length
Sy +
8 | 01h | host protocol code, e.g. 0lh, for UDP over IPv4
e +
9 | 192 I \
R T T T e + 1
10 | 168 | |
B T + > IP address of control endpoint,
11 | 200 | 1 e.g. 192.168.200.12
Fo - - - - e e e e e e e e e - + |
12 | 12 | 7
o +
13 | OEh I \
R T + > port number of control endpoint, 3671
14 | 57h | 7
e +

Figure 33 - SEARCH_REQUEST frame binary format: IP example

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 40 of 49

KNX Standard Core KNXnet/IP

8.8.2 SEARCH_RESPONSE

e +
1 | 06h | header size
S +
2 | 10h | protocol version
Sy +
3 | 02h | \
R + > service type identifier 0202h
4 | 02h | 7
e ———————— +
5 | 00h | \
R + > total length, 78 octets
6 | 4Eh | 7
e —————————— +
7 | 08h | structure length (HPAI)
- +
8 | 01h | host protocol code, e.g. 0lh, for UDP over IPv4
T +
9 | 192 I \
T + 1
10 | 168 | 1
- - - - - - - - - - - - - - - - + > IP address of control endpoint,
11 | 200 11 e.g. 192.168.200.12
T + 1
12 | 12 | 7
e +
13 | C3h | \
B T T + > port number of control endpoint,
14 | B4h | /7 e.g. 50100
gy +
15 | 36h | structure length (DIB hardware)
S +
16 | 0lh | description type code, 0lh = DEVICE_INFO
- +
17 | 02h | KNX medium, 02h = TP1 (KNX TP)
ey +
18 | 01h | Device Status, 0lh = programming mode
Sy +
19 | 11h | \
R + > KNX Individual Address, e.g. 1.1.0
20 | 00h | 7
o +
21 | 00h | \
e + > Project-Installation ID, e.g. 0011h
22 | 11h | 7
Sy +
23 | 00h I \
E R T T L + 1
24 | 01h | I
- — - - - - - - - - - - - - - = +
25 | 11h 11
t- - - - - - - - - - - - - - - - + > KNX device KNX Serial Number,
26 | 11h | 1
U + 1
27 | 11h 11
F— — — — - - - - - - - - - - - - + 1
28 | 11h | 7
S +
29 | 224 | \
e T + |
30 | 0 11
- - - - - - - - - - - - - - - - + > device routing multicast address
31 | 23 | 1 e.g. 224.0.23.12
T T T + |
32 | 12 | 7

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 41 of 49

KNX Standard Core KNXnet/IP

e +

33 | 45h I \
I e +]

34 | 49h | 1
- - - - - - - - - - - - - - - = + |

35 | 42h I 1
L il T T T T + > KNXnet/IP MAC address

36 | 6Eh | 1
- - - - - - - - - - - - - - - = +]

37 | 65h I 1
R + 1

38 | 74h | 7
e +

39 | “M” | \
T + |

40 | “y” 11
U + 1

a1 “H” 11
R T R + > Device Friendly Name, e.g. “MYHOME™

42 | ‘0’ | |
U + 1

43 I ‘M Il
- - - - - - - - - - - - - - - - + |

44 | ‘E” | |
T T + 1

45 | 00h | 1
R + |
| 11
Fo - - - - - - - - - - - - - - + 1

68 | 00h 17
O +

69 | OAh | structure length (DIB supported service family)
T e T +

70 | 02h | description type code, 02h = SUPP_SVC_FAMILIES
T +

71 | 02h | service family, e.g. 02h = KNXnet/IP Core
e +

72 | O1h | service family version, e.g. 0Olh
o ————————— +

73 | 03h | service family, e.g. 03h = KNXnet/Device Mgmt
e +

74 | O1h | service family version, e.g. Olh
o ————————— +

75 | 04h | service family, e.g. 04h = KNXnet/IP Tunnelling
e +

76 | 01h | service family version, e.g. 01h
o +

77 | 05h | service family, e.g. 05h = KNXnet/IP Routing
e +

78 | 01h | service family version, e.g. 01h
e +

Figure 34 — SEARCH_RESPONSE frame binary format: IP example

© Copyright 2001 - 2013, KNX Association

System Specifications v01.05.01 — page 42 of 49

KNX Standard Core KNXnet/IP

8.8.3 DESCRIPTION_REQUEST

e +
1 | 06h | header size
T e +
2 | 10h | protocol version
Sy +
3 | 02h | \
B i + > service type identifier 0203h
4 | 03h | 7
e ———————— +
5 | 00h | \
R + > total length, 14 octets
6 | OEh | 7
e —————————— +
7 | 08h | structure length
- +
8 | 01h | host protocol code, e.g. 0lh, for UDP over IPv4
T +
9 | 192 I \
T + 1
10 | 168 | 1
- - - - - - - - - - - - - - - - + > IP address of control endpoint,
11 | 200 I 1 e.g. 192.168.200.12
T + 1
12 | 12 | 7
e +
13 | C3h | \
B T + > port number of control endpoint,
14 | B4h | /7 e.g. 50100
gy +

Figure 35 — KNXnet/IP DESCRIPTION_REQUEST frame binary format example

8.84 DESCRIPTION_RESPONSE

T +
1 | 06h | header size
e +
2 | 10h | protocol version
e +
3 | 02h | \
R T + > service type identifier 0204h
4 | 04h | 7
e +
5 | 00h | \
R + > total length, 78 octets
6 | 4Eh | 7
e +
7 | 36h | structure length (DIB hardware)
Sy +
8 | 01h | description type code, 0lh = DEVICE_INFO
T +
9 | 02h | KNX medium, 02h = TP1 (KNX TP)
o +
10 | 01h | Device Status, 0lh = programming mode
T +
11 | 11h I\
R T + > KNX Individual Address, e.g. 1.1.0
12 | 00h | 7
e +
14 | 00h | \
- - - - - - - - - - - - - - - - + > Project-Installation 1D, e.g. 001lh
15 | 11h | 7
o e e e +
16 | 00h | \
U + 1
17 | 01h | 1
o e e e e e e e e e e - - - - - +]
18 | 11h I 1
R T e + > KNX device KNX Serial Number,
19 | 11h | 1 includes manufacturer ID (2 octets)
e - - - - e e - e - - - - - - - + |
20 | 11h | 1
T + 1
21 | 11h | 7

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 43 of 49

KNX Standard Core

KNXnet/IP

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

\
|
|

———— N\ ——

=
.
——— N o o

> device routing multicast address
e.g. 224.0.23.12

> KNXnet/IP MAC address

———————————————— + > Device Friendly Name, e.g. “MYHOME”

o
o
>
N e e e e s o

service

service

service

service

service

service

service

service

\
/
\
________________ |
|

N ——

structure length (DIB supported service family)

description type code, 02h = SUPP_SVC_FAMILIES

family, e.g. 02h = KNXnet/IP Core
family version, e.g. O1lh

family, e.g. 03h = KNXnet/Device Mgmt
family version, e.g. O1lh

family, e.g. 04h = KNXnet/IP Tunnelling
family version, e.g. O1lh

family, e.g. 05h = KNXnet/IP Routing

family version, e.g. Olh

structure length (DIB other device information)

description type code, FEh = MFR_DATA

> KNX Manufacturer 1D, e.g. 0001lh

> Device Type Name, e.g. “N146”

Figure 36 - DESCRIPTION_RESPONSE frame binary format: IP example

© Copyright 2001 - 2013, KNX Association

System Specifications v01.05.01 — page 44 of 49

KNX Standard Core KNXnet/IP

8.8.5 CONNECT_REQUEST

o +
1 | 06h | header size
e +
2 | 10h | protocol version
S +
3 | 02h | \
R i T + > service type identifier 0205h
4 | 05h | 7
S +
5 | 00h | \
R + > total length, 24 octets
6 | 1Ah | 7
gy +
7 | 08h | structure length
Sy +
8 | 01h | host protocol code, e.g. 0lh, for UDP over IPv4
gy +
9 | 192 I \
+— — — — - — — - — - - - - - - - + 1
10 | 168 | 1
R T + > IP address of control endpoint,
11 | 200 11 e.g. 192.168.200.12
- - - - - - - - - - - - - - - = + 1
12 | 12 | 7
S +
13 | C3h | \
R T R + > port number of control endpoint,
14 | B4h | /7 e.g. 50100
e +
15 | 08h | structure length
Sy +
16 | 0lh | host protocol code, e.g. 0lh, for UDP over IPv4
e ———————— +
17 | 192 | \
T T T S + 1
18 | 168 | 1
R + > IP address of data endpoint,
19 | 200 11 e.g. 192.168.200.20
e T + 1
20 | 20 | 7
e ———————— +
21 | C3h | \
R T + > port number of data endpoint,
22 | B4h |l /7 e.g. 50100
e ———————— o +
23 | 04h | structure length
gy +
24 | 04h | connection type code, e.g. 04h, TUNNEL_CONNECTION
F————————___ +
25 | 02h | KNX layer, e.g- TUNNEL_LINKLAYER
gy +
26 | 00h | reserved
F———— - +

Figure 37 — KNXnet/IP CONNECT_REQUEST frame binary format example

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 45 of 49

KNX Standard Core KNXnet/IP

8.8.6 CONNECT_RESPONSE

e +
1 | 06h | header size
T e +
2 | 10h | protocol version
Sy +
3 | 02h | \
B i + > service type identifier 0206h
4 | 06h | 7
e ———————— +
5 | 00h | \
R + > total length, 20 octets
6 | 14h | 7
e —————————— +
7 | 15h | communication channel 1D, e.g. 21
- +
8 | 00h | status code (NO_ERROR)
T +
9 | 08h | structure length
e +
10 | 01h | host protocol code, e.g. 0lh, for UDP over IPv4
F————————__ +
11 | 192 I \
o - - - - - e e - - - - - - - - + 1
12 | 168 | 1
R e T + > IP address of data endpoint,
13 | 200 I 1 e.g. 192.168.200.20
T T + 1
14 | 20 | 7
S +
15 | C3h | \
L + > port number of data endpoint,
16 | B4h | /7 e.g. 50100
Sy +
17 | 04h | structure length of CRD for TUNNELING_CONNECTION
P, +
18 | 04h | connection type code, e.g. 04h, TUNNEL_CONNECTION
Sy +
19 | 11h | \
I T + > Individual Address, e.g. 01.01.10,
20 | OAh | /7 used for TUNNELING_CONNECTION
e +

Figure 38 —- CONNECT_RESPONSE frame binary format: IP example

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 46 of 49

KNX Standard Core KNXnet/IP

8.8.7 CONNECTIONSTATE_REQUEST

e +
1 | 06h | header size
T e +
2 | 10h | protocol version
Sy +
3 | 02h | \
R + > service type identifier 0207h
4 | 07h | 7
e ———————— +
5 | 00h | \
R + > total length, 16 octets
6 | 10h | 7
e —————————— +
7 | 15h | communication channel 1D, e.g. 21
- +
8 | 00h | reserved
T +
9 | 08h | structure length
e +
10 | 01h | host protocol code, e.g. 0lh, for UDP over IPv4
F————————__ +
11 | 192 I \
o - - - - - e e - - - - - - - - + 1
12 | 168 | 1
R e T + > IP address of control endpoint,
13 | 200 I 1 e.g. 192.168.200.12
T T + 1
14 | 12 | 7
S +
15 | C3h | \
L + > port number of control endpoint,
16 | B4h | /7 e.g. 50100
Sy +

Figure 39 - CONNECTIONSTATE_REQUEST frame binary format: IP example

8.8.8 CONNECTIONSTATE_RESPONSE

T +
1 | 06h | header size
e +
2 | 10h | protocol version
e +
3 | 02h I \
R T + > service type identifier 0208h
4 | 08h | 7
e +
5 | 00h | \
R + > total length, 8 octets
6 | 08h | 7
o e +
7 | 15h | communication channel 1D, e.g. 21
Sy +
8 | 00h | status code (NO_ERROR)
T +

Figure 40 - CONNECTIONSTATE_RESPONSE frame binary format: IP example

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 47 of 49

KNX Standard Core KNXnet/IP

8.8.9 DISCONNECT_REQUEST

e +

1 | 06h | header size
T e +

2 | 10h | protocol version
Sy +

3 | 02h | \
B i + > service type identifier 0209h

4 | 09h | 7
e ———————— +

5 | 00h | \
R + > total length, 16 octets

6 | 10h | 7
e —————————— +

7 | 15h | communication channel ID, e.g. 21
Sy +

8 | 00h | reserved
T +

9 | 08h | structure length
e +

10 | 01h | host protocol code, e.g. 0lh, for UDP over IPv4
o ——————— ___ +

11 | 192 I \
T + 1

12 | 168 | 1
- - - - - - - - - - - - - - - - + > IP address of control endpoint,

13 | 200 I 1 e.g. 192.168.200.12
o - - - - - e e - - - - - - - - + |

14 | 12 | 7
S M +

15 | C3h | \
L + > port number of control endpoint,

16 | B4h | /7 e.g. 50100
Sy +

Figure 41 — DISCONNECT_REQUEST frame binary format: IP example

8.8.10 DISCONNECT_RESPONSE

T +
1 | 06h | header size
e +
2 | 10h | protocol version
e +
3 | 02h I \
R T + > service type identifier 020Ah
4 | OAh | 7
e +
5 | 00h | \
R + > total length, 8 octets
6 | 08h | 7
o e +
7 | 15h | communication channel 1D, e.g. 21
Sy +
8 | 00h | status code (NO_ERROR)
T +

Figure 42 - DISCONNECT_RESPONSE frame binary format: IP example

© Copyright 2001 - 2013, KNX Association System Specifications v01.05.01 — page 48 of 49

KNX Standard

Core

KNXnet/IP

9 Certification

9.1 Introduction

This clause provides information on the test procedures and requirements of the certification process.

9.2 Supported services

The supported services for KNXnet/IP and the Internet Protocol (IP) are listed below. IPv6 will be
specified in the future and is listed for completeness only.

Service name

sent from ... to ...

implementation is

Server - Client

SEARCH_REQUEST Client > Server M
SEARCH_RESPONSE Server - Client M
DESCRIPTION_REQUEST Client > Server M
DESCRIPTION_RESPONSE Server - Client M
CONNECT_REQUEST Client > Server M
CONNECT_RESPONSE Server - Client M
CONNECTIONSTATE_REQUEST Client > Server M
CONNECTIONSTATE_RESPONSE Server - Client M
DISCONNECT_REQUEST Client > Server M
Server - Client
DISCONNECT_RESPONSE Client > Server M

Legend: “M” = Mandatory, “O” = Optional, “n.a.” = not applicable

Service Name Client Server
IPV4_UDP R R

IPV4_TCP o} o}
IPV6_UDP to de defined to be defined
IPV6_TCP to be defined to be defined

Legend: “R” = Required, “O” = Optional, “n.a.” = not applicable

© Copyright 2001 - 2013, KNX Association

System Specifications

v01.05.01 — page 49 of 49

	1 Introduction
	1.1 Scope
	1.2 Definitions, acronyms and abbreviations

	2 KNXnet/IP frames
	2.1 General definitions
	2.1.1 Data format
	2.1.2 Byte order
	2.1.3 Structures

	2.2 Frame format
	2.3 Header
	2.3.1 Description
	2.3.2 Header length
	2.3.3 Protocol version
	2.3.4 KNXnet/IP service
	2.3.5 Total length

	3 Host protocol independence
	3.1 Host protocol
	3.2 Endpoints

	4 Discovery and self description
	4.1 Introduction
	4.2 Discovery
	4.3 Self description

	5 Communication Channels
	5.1 Introduction
	5.2 Establishing a link
	5.3 Connection Header
	5.3.1 Description
	5.3.2 Structure length
	5.3.3 Communication Channel ID
	5.3.4 Sequence Counter
	5.3.5 Connection Type specific Header Items

	5.4 Heartbeat monitoring
	5.5 Disconnecting

	6 General implementation guidelines
	6.1 Introduction
	6.2 KNXnet/IP Servers
	6.3 KNXnet/IP Clients
	6.4 KNXnet/IP Router settings
	6.4.1 KNXnet/IP Router factory default settings
	6.4.2 KNXnet/IP Router IP address assignment

	6.5 Initial setup procedures for KNXnet/IP Servers
	6.5.1 General
	6.5.2 Configuration Procedure for configuration via KNXnet/IP Routing
	6.5.3 Configuration Procedure for configuration via KNXnet/IP Device Management

	7 Frame structures
	7.1 Introduction
	7.2 Common constants
	7.2.1 HEADER_SIZE_10
	7.2.2 KNXNETIP_VERSION_10

	7.3 Common error codes
	7.3.1 E_NO_ERROR
	7.3.2 E_HOST_PROTOCOL_TYPE
	7.3.3 E_VERSION_NOT_SUPPORTED
	7.3.4 E_SEQUENCE_NUMBER

	7.4 KNXnet/IP services
	7.4.1 Core KNXnet/IP services
	7.4.1.1 SEARCH_REQUEST
	7.4.1.2 SEARCH_RESPONSE
	7.4.1.3 DESCRIPTION_REQUEST
	7.4.1.4 DESCRIPTION_RESPONSE
	7.4.1.5 CONNECT_REQUEST
	7.4.1.6 CONNECT_RESPONSE
	7.4.1.7 CONNECTIONSTATE_REQUEST
	7.4.1.8 CONNECTIONSTATE_RESPONSE
	7.4.1.9 DISCONNECT_REQUEST
	7.4.1.10 DISCONNECT_RESPONSE

	7.5 Placeholders
	7.5.1 Host Protocol Address Information (HPAI)
	7.5.2 Connection Request Information (CRI)
	7.5.3 Connection Response Data Block (CRD)
	7.5.4 Description Information Block (DIB)
	7.5.4.1 Use, format and general requirements
	7.5.4.2 Device information DIB
	7.5.4.3 Supported service families DIB
	7.5.4.4 IP Config DIB
	7.5.4.5 IP Current Config DIB
	7.5.4.6 KNX Addresses DIB
	7.5.4.7 Manufacturer data DIB

	7.6 Discovery
	7.6.1 SEARCH_REQUEST
	7.6.2 SEARCH_RESPONSE

	7.7 Self description
	7.7.1 DESCRIPTION_REQUEST
	7.7.2 DESCRIPTION_RESPONSE

	7.8 Connection management
	7.8.1 CONNECT_REQUEST
	7.8.2 CONNECT_RESPONSE
	7.8.3 CONNECTIONSTATE_REQUEST
	7.8.4 CONNECTIONSTATE_RESPONSE
	7.8.5 DISCONNECT_REQUEST
	7.8.6 DISCONNECT_RESPONSE

	8 IP Networks
	8.1 Introduction
	8.2 Physical vs. logical network
	8.3 Transport mechanisms
	8.4 UDP and TCP
	8.5 IP Address Assignment
	8.5.1 IP unicast address
	8.5.1.1 Fixed IP address
	8.5.1.2 BootP / DHCP
	8.5.1.3 AutoIP
	8.5.1.4 IP address assignment procedure

	8.5.2 IP multicast addresses
	8.5.2.1 KNXnet/IP system setup multicast address
	8.5.2.2 KNXnet/IP routing multicast address

	8.6 KNXnet/IP host protocol
	8.6.1 Device specification
	8.6.2 Host Protocol Address Information
	8.6.3 KNXnet/IP Endpoints
	8.6.3.1 General
	8.6.3.2 Discovery Endpoint
	8.6.3.3 Control Endpoint
	8.6.3.4 Data Endpoints
	8.6.3.5 Network Address Translation (NAT)

	8.7 General implementation guidelines
	8.8 Binary examples of KNXnet/IP IP frames
	8.8.1 SEARCH_REQUEST
	8.8.2 SEARCH_RESPONSE
	8.8.3 DESCRIPTION_REQUEST
	8.8.4 DESCRIPTION_RESPONSE
	8.8.5 CONNECT_REQUEST
	8.8.6 CONNECT_RESPONSE
	8.8.7 CONNECTIONSTATE_REQUEST
	8.8.8 CONNECTIONSTATE_RESPONSE
	8.8.9 DISCONNECT_REQUEST
	8.8.10 DISCONNECT_RESPONSE

	9 Certification
	9.1 Introduction
	9.2 Supported services

		2013-10-28T14:42:24+0100
	KNX Association cvba

