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[ ]: import os
import datetime as dt # Python standard library datetime module
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import netCDF4 as nc
import xarray as xr
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_selection import RFE
from sklearn import metrics
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV
from eofs.xarray import Eof
from matplotlib import pyplot as plt
from matplotlib import colors
import matplotlib as mpl
import cartopy
from utils import data_path, normalize_co2, normalize_ch4
from xskillscore import rmse, pearson_r, spearman_r, r2, smape, mae, me, mse

[ ]: def global_mean(ds):
weights = np.cos(np.deg2rad(ds.lat))
return ds.weighted(weights).mean(['lat', 'lon'])

def global_sum(ds):
weights = np.cos(np.deg2rad(ds.lat))
return ds.weighted(weights).sum(['lat', 'lon'])

[ ]: #**parameters & hyperparameters

RSCV = False
path_output='output_path/output.nc'

# Number of trees in random forest
n_estimators = [int(x) for x in np.linspace(start = 100, stop = 300, num = 5)]
# Number of features to consider at every split
max_features = ['log2', 'sqrt', None]
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# Maximum number of levels in tree
max_depth = [int(x) for x in np.linspace(5,55, num = 11)]
max_depth.append(None)
# Minimum number of samples required to split a node
min_samples_split = [5, 10, 15, 25]
# Minimum number of samples required at each leaf node
min_samples_leaf = [4, 8, 12]
# Method of selecting samples for training each tree
bootstrap = [True, False]

# Create the random grid
random_grid = {'n_estimators': n_estimators,

'max_features': max_features,
'max_depth': max_depth,
'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf,
'bootstrap': bootstrap}

[ ]: from glob import glob
data_path = '/p/lustre2/shiduan/climatebench/'
inputs = glob(data_path + "inputs_s*.nc")
SECONDS_IN_YEAR = 60*60*24*365 #s

fig, axes = plt.subplots(2, 2, figsize=(8, 8))

for input in inputs:
label=input.split('_')[1][:-3]
X = xr.open_dataset(input)
x = range(2015, 2101)

weights = np.cos(np.deg2rad(X.latitude))

axes[0, 0].plot(x, X['CO2'].data, label=label)
axes[0, 0].set_ylabel("Cumulative anthropogenic CO2 \nemissions since 1850␣

↪(GtCO2)")
axes[0, 1].plot(x, X['CH4'].data, label=label)
axes[0, 1].set_ylabel("Anthropogenic CH4 \nemissions (GtCH4 / year)")
# FIXME: Not sure where this factor of 1000 comes from...! Maybe the CEDS␣

↪data is really g/m-2/s?
axes[1, 0].plot(x, X['SO2'].weighted(weights).sum(['latitude',␣

↪'longitude']).data*SECONDS_IN_YEAR*1e-9, label=label)
axes[1, 0].set_ylabel("Anthropogenic SO2 \nemissions (GtSO2 / year)")
axes[1, 1].plot(x, X['BC'].weighted(weights).sum(['latitude', 'longitude']).

↪data*SECONDS_IN_YEAR*1e-9, label=label)
axes[1, 1].set_ylabel("Anthropogenic BC \nemissions (GtBC / year)")

axes[0, 0].set_title('CO2')
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axes[0, 1].set_title('CH4')
axes[1, 0].set_title('SO2')
axes[1, 1].set_title('BC')
axes[0, 0].legend()
plt.tight_layout()

test_data_path=data_path+'/test/inputs_ssp245.nc'

[ ]: # Get one combined historical + ssp585 + ssp126 + ssp370 timeseries for now
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X = xr.concat([xr.open_dataset(data_path + 'inputs_historical.nc'), xr.
↪open_dataset(data_path + 'inputs_ssp585.nc'),xr.open_dataset(data_path+␣
↪'inputs_ssp126.nc'),xr.open_dataset(data_path+ 'inputs_ssp370.nc'),xr.
↪open_dataset(data_path+ 'inputs_hist-aer.nc'),xr.open_dataset(data_path+␣
↪'inputs_hist-GHG.nc')], dim='time').compute()

# Take the average member for the historical, ssp585, ssp126, ssp370, hist-aer,␣
↪hist-ghg

Y = xr.concat([xr.open_dataset(data_path + 'outputs_historical.nc').
↪mean(dim="member"), xr.open_dataset(data_path + 'outputs_ssp585.nc').
↪mean(dim="member"),xr.open_dataset(data_path+ 'outputs_ssp126.nc').
↪mean(dim="member"),xr.open_dataset(data_path+ 'outputs_ssp370.nc').
↪mean(dim="member"),xr.open_dataset(data_path+ 'outputs_hist-aer.nc').
↪mean(dim="member"),xr.open_dataset(data_path+ 'outputs_hist-GHG.nc').
↪mean(dim="member")], dim='time').compute()

# Convert the precip values to mm/day
Y["pr"] *= 86400
Y["pr90"] *= 86400

X["time"]=np.arange(1, 424 + 165 + 165) ## 165+86+86+86+65+165+1
Y["time"]=np.arange(1, 424 + 165 + 165)

[ ]: # Create an EOF solver to do the EOF analysis. Square-root of cosine of
# latitude weights are applied before the computation of EOFs.
bc_solver = Eof(X['BC'])

# Retrieve the leading EOF, expressed as the correlation between the leading
# PC time series and the input SST anomalies at each grid point, and the
# leading PC time series itself.
bc_eofs = bc_solver.eofsAsCorrelation(neofs=5)
bc_pcs = bc_solver.pcs(npcs=5, pcscaling=1)

[ ]: # Create an EOF solver to do the EOF analysis. Square-root of cosine of
# latitude weights are applied before the computation of EOFs.
so2_solver = Eof(X['SO2'])

# Retrieve the leading EOF, expressed as the correlation between the leading
# PC time series and the input SST anomalies at each grid point, and the
# leading PC time series itself.
so2_eofs = so2_solver.eofsAsCorrelation(neofs=5)
so2_pcs = so2_solver.pcs(npcs=5, pcscaling=1)
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[ ]: # Convert the Principle Components of the aerosol emissions (calculated above)␣
↪in to Pandas DataFrames

bc_df = bc_pcs.to_dataframe().unstack('mode')
bc_df.columns = [f"BC_{i}" for i in range(5)]

so2_df = so2_pcs.to_dataframe().unstack('mode')
so2_df.columns = [f"SO2_{i}" for i in range(5)]

[ ]: # Bring the emissions data back together again and normalise
leading_historical_inputs = pd.DataFrame({

"CO2": normalize_co2(X["CO2"].data),
"CH4": normalize_ch4(X["CH4"].data)

}, index=X["CO2"].coords['time'].data)

# Combine with aerosol EOFs
leading_historical_inputs=pd.concat([leading_historical_inputs, bc_df, so2_df],␣

↪axis=1)

[ ]: def get_rmse(truth, pred):
weights = np.cos(np.deg2rad(truth.lat))
return np.sqrt(((truth-pred)**2).weighted(weights).mean(['lat', 'lon'])).

↪data.mean()

[ ]: y_inp_tas=Y["tas"].stack(dim=["lat", "lon"])
y_inp_pr=Y["pr"].stack(dim=["lat", "lon"])
y_inp_pr90=Y["pr90"].stack(dim=["lat", "lon"])
y_inp_dtr=Y["diurnal_temperature_range"].stack(dim=["lat", "lon"])

[ ]: df_y_input_tas = pd.DataFrame(y_inp_tas.to_pandas())
df_y_input_pr = pd.DataFrame(y_inp_pr.to_pandas())
df_y_input_pr90 = pd.DataFrame(y_inp_pr90.to_pandas())
df_y_input_dtr = pd.DataFrame(y_inp_dtr.to_pandas())

Xy_train_tas_ = pd.concat([leading_historical_inputs, df_y_input_tas], axis=1)
Xy_train_pr_ = pd.concat([leading_historical_inputs, df_y_input_pr], axis=1)
Xy_train_pr90_ = pd.concat([leading_historical_inputs, df_y_input_pr90], axis=1)
Xy_train_dtr_ = pd.concat([leading_historical_inputs, df_y_input_dtr], axis=1)

[ ]: Xy_train_tas = Xy_train_tas_.to_numpy()
Xy_train_pr = Xy_train_pr_.to_numpy()
Xy_train_pr90 = Xy_train_pr90_.to_numpy()
Xy_train_dtr = Xy_train_dtr_.to_numpy()

[ ]: n_inp=leading_historical_inputs.shape[1]
n_iout=Xy_train_tas_.shape[1]

X_train_tas=Xy_train_tas[:,0:n_inp]
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y_train_tas=Xy_train_tas[:,n_inp:n_iout]

X_train_pr=Xy_train_pr[:,0:n_inp]
y_train_pr=Xy_train_pr[:,n_inp:n_iout]

X_train_pr90=Xy_train_pr90[:,0:n_inp]
y_train_pr90=Xy_train_pr90[:,n_inp:n_iout]

X_train_dtr=Xy_train_dtr[:,0:n_inp]
y_train_dtr=Xy_train_dtr[:,n_inp:n_iout]

[ ]: np.sum(np.isnan(y_train_pr90))

[ ]: 0

[ ]: # use github parameters
'''reg0 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.

↪0,
**{'n_estimators': 250, 'min_samples_split': 5,␣

↪'min_samples_leaf': 7, 'max_depth': 5,})'''
reg0 = RandomForestRegressor(random_state=0, max_features=1.0, bootstrap=True,␣

↪n_estimators=250,
min_samples_split=5, min_samples_leaf=7,␣

↪max_depth=5)
reg1 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,

**{'n_estimators': 150, 'min_samples_split': 15,␣
↪'min_samples_leaf': 8,'max_depth': 40,})

reg2 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,
**{'n_estimators': 250, 'min_samples_split': 15,␣

↪'min_samples_leaf': 12,'max_depth': 25,})
reg3 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,

**{'n_estimators': 300, 'min_samples_split': 10,␣
↪'min_samples_leaf': 12, 'max_depth': 20,})

if(RSCV==False):
rf_tas = reg0.fit(X_train_tas, y_train_tas)
# rf_pr = reg1.fit(X_train_pr, y_train_pr)
# rf_pr90 = reg2.fit(X_train_pr90, y_train_pr90)
# rf_dtr = reg3.fit(X_train_dtr, y_train_dtr)

else:
rf_random0 = RandomizedSearchCV(estimator = reg0, param_distributions =␣

↪random_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)
# rf_random1 = RandomizedSearchCV(estimator = reg1, param_distributions =␣

↪random_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)
# rf_random2 = RandomizedSearchCV(estimator = reg2, param_distributions =␣

↪random_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)
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# rf_random3 = RandomizedSearchCV(estimator = reg3, param_distributions =␣
↪random_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)

#n_iter = 29

rf_tas = rf_random0.fit(X_train_tas, y_train_tas)
# rf_pr = rf_random1.fit(X_train_pr, y_train_pr)
# rf_pr90 = rf_random2.fit(X_train_pr90, y_train_pr90)
# rf_dtr = rf_random3.fit(X_train_dtr, y_train_dtr)

[ ]: if(RSCV==True):
print(rf_tas.best_params_)
# print(rf_pr.best_params_)
# print(rf_pr90.best_params_)
# print(rf_dtr.best_params_)

{'n_estimators': 200, 'min_samples_split': 25, 'min_samples_leaf': 4,
'max_features': None, 'max_depth': 50, 'bootstrap': True}

[ ]: ## Test on SSP245

test_Y = xr.open_dataset(data_path + 'test/outputs_ssp245.nc').compute()
test_X = xr.open_dataset(data_path + 'test/inputs_ssp245.nc').compute()

tas_truth = test_Y["tas"].mean('member')
pr_truth = test_Y["pr"].mean('member') * 86400
pr90_truth = test_Y["pr90"].mean('member') * 86400
dtr_truth = test_Y["diurnal_temperature_range"].mean('member')

test_inputs = pd.DataFrame({
"CO2": normalize_co2(test_X["CO2"].data),
"CH4": normalize_ch4(test_X["CH4"].data)

}, index=test_X["CO2"].coords['time'].data)

### Combine with aerosol EOFs
test_inputs=pd.concat([test_inputs,

bc_solver.projectField(test_X["BC"], neofs=5,␣
↪eofscaling=1).to_dataframe().unstack('mode').rename(columns={i:f"BC_{i}" for␣
↪i in range(5)}),

so2_solver.projectField(test_X["SO2"], neofs=5,␣
↪eofscaling=1).to_dataframe().unstack('mode').rename(columns={i:f"_{i}" for i␣
↪in range(5)}),

], axis=1)

[ ]: test_inputs
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[ ]: CO2 CH4 (pseudo_pcs, BC_0) (pseudo_pcs, BC_1) \
2015 0.161692 0.467171 2.706810 -1.375172
2016 0.165480 0.467151 2.648897 -1.303500
2017 0.169305 0.467130 2.590985 -1.231828
2018 0.173166 0.467110 2.533072 -1.160157
2019 0.177064 0.467090 2.475159 -1.088485
… … … … …
2096 0.469755 0.352172 0.434483 -0.189906
2097 0.471474 0.351729 0.422541 -0.181722
2098 0.473128 0.351287 0.410599 -0.173539
2099 0.474718 0.350845 0.398656 -0.165355
2100 0.476242 0.350403 0.386714 -0.157171

(pseudo_pcs, BC_2) (pseudo_pcs, BC_3) (pseudo_pcs, BC_4) \
2015 -0.819380 -0.256301 -1.716714
2016 -0.707064 -0.314685 -1.616016
2017 -0.594749 -0.373069 -1.515319
2018 -0.482433 -0.431453 -1.414621
2019 -0.370117 -0.489837 -1.313923
… … … …
2096 -0.115759 -0.230166 0.147331
2097 -0.101978 -0.213992 0.169751
2098 -0.088197 -0.197818 0.192172
2099 -0.074416 -0.181644 0.214592
2100 -0.060636 -0.165471 0.237013

(pseudo_pcs, _0) (pseudo_pcs, _1) (pseudo_pcs, _2) (pseudo_pcs, _3) \
2015 0.903505 2.331736 -0.104266 -1.138111
2016 0.857117 2.261433 0.078151 -1.083139
2017 0.810728 2.191129 0.260569 -1.028166
2018 0.764340 2.120826 0.442987 -0.973193
2019 0.717951 2.050522 0.625405 -0.918221
… … … … …
2096 0.178097 0.697813 1.189839 -0.064685
2097 0.177501 0.687329 1.167448 -0.080802
2098 0.176905 0.676844 1.145056 -0.096920
2099 0.176309 0.666359 1.122665 -0.113037
2100 0.175713 0.655874 1.100274 -0.129154

(pseudo_pcs, _4)
2015 1.045259
2016 0.977491
2017 0.909724
2018 0.841956
2019 0.774188
… …
2096 0.033707
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2097 0.006906
2098 -0.019895
2099 -0.046696
2100 -0.073497

[86 rows x 12 columns]

[ ]: rf_tas

[ ]: RandomizedSearchCV(cv=3, estimator=RandomForestRegressor(random_state=0),
n_iter=9, n_jobs=-1,
param_distributions={'bootstrap': [True, False],

'max_depth': [5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, None],

'max_features': ['log2', 'sqrt', None],
'min_samples_leaf': [4, 8, 12],
'min_samples_split': [5, 10, 15, 25],
'n_estimators': [100, 150, 200, 250,

300]},
verbose=2)

[ ]: m_out_t = rf_tas.predict(test_inputs.values)
# m_out_p = rf_pr.predict(test_inputs.values)
# m_out_p90 = rf_pr90.predict(test_inputs.values)
# m_out_d = rf_dtr.predict(test_inputs.values)

m_out_tas = m_out_t.reshape(86, 96, 144)
# m_out_pr = m_out_p.reshape(86, 96, 144)
# m_out_pr90 = m_out_p90.reshape(86, 96, 144)
# m_out_dtr = m_out_d.reshape(86, 96, 144)

[ ]: plt.plot(m_out_t.mean(axis=-1))

[ ]: [<matplotlib.lines.Line2D at 0x155331b48be0>]
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[ ]: xr_output=xr.Dataset(coords={'time': test_X.time.values, 'lat': test_X.latitude.
↪values, 'lon': test_X.longitude.values})

xr_output["tas"]=(['time', 'lat', 'lon'], m_out_tas)
# xr_output["diurnal_temperature_range"]=(['time', 'lat', 'lon'], m_out_dtr)
# xr_output["pr"]=(['time', 'lat', 'lon'], m_out_pr)
# xr_output["pr90"]=(['time', 'lat', 'lon'], m_out_pr90)

[ ]: norm_diff = colors.TwoSlopeNorm(vmin=-2, vcenter=0, vmax=2)
cmap = 'coolwarm'
for i in [0, 35, 85]:

fig = plt.figure(figsize=(16, 3))
ax = fig.add_subplot(131, projection=cartopy.crs.

↪Robinson(central_longitude=180))
x = tas_truth.isel(time=i)
x_max = np.max(x)
norm = colors.TwoSlopeNorm(vmin=-np.abs(x_max), vcenter=0, vmax=np.

↪abs(x_max))
ax.contourf(tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.

↪PlateCarree(),
norm=norm, cmap=cmap)

ax.add_feature(cartopy.feature.COASTLINE)
fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),
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ax=ax, orientation='vertical', extend='both', shrink=.8)

ax = fig.add_subplot(132, projection=cartopy.crs.
↪Robinson(central_longitude=180))

x = xr_output['tas'].isel(time=i)
ax.contourf(tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.

↪PlateCarree(),
norm=norm, cmap=cmap)

ax.add_feature(cartopy.feature.COASTLINE)
plt.suptitle(str(2015+i))
fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),

ax=ax, orientation='vertical', extend='both', shrink=.8)
ax = fig.add_subplot(133, projection=cartopy.crs.

↪Robinson(central_longitude=180))
x = tas_truth.isel(time=i)-xr_output['tas'].isel(time=i)
x_max = np.max(x)
norm = colors.TwoSlopeNorm(vmin=-np.abs(x_max), vcenter=0, vmax=np.

↪abs(x_max))
ax.contourf(tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.

↪PlateCarree(),
norm=norm, cmap=cmap)

fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),
ax=ax, orientation='vertical', extend='both', shrink=.8)

ax.add_feature(cartopy.feature.COASTLINE)
plt.show()
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[ ]: variable = 'tas'
start = 2080
weights = np.cos(np.deg2rad(Y['tas'].lat)).expand_dims(lon=144).

↪assign_coords(lon=Y.lon)
nrmse = rmse(tas_truth.sel(time=slice(start, None)).mean('time'),

xr_output[variable].sel(time=slice(start, None)).mean('time'),␣
↪weights=weights).data/ np.abs(

global_mean(tas_truth.sel(time=slice(start, None)).
↪mean('time')).data)

print(nrmse)
r2e = rmse(global_mean(tas_truth.sel(time=slice(start, None))),

global_mean(xr_output[variable].sel(time=slice(start, None)))).data/␣
↪np.abs(

global_mean(tas_truth.sel(time=slice(start, None)).mean('time')).
↪data)

print(r2e)
print(nrmse+5*r2e)

0.08411859630678128
0.162332797972665
0.8957825861701063

[ ]: global_mean(tas_truth.sel(time=slice(start, None))).plot(label='target')
global_mean(xr_output[variable].sel(time=slice(start, None))).plot()
plt.legend()

[ ]: <matplotlib.legend.Legend at 0x15532a191c40>
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[ ]: print(f"RMSE: {get_rmse(tas_truth[35:], m_out_tas[35:]).mean()}")
print("\n")

RMSE: 0.5244521282584569

[ ]:
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