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March 25, 2024

import os

import datetime as dt # Python standard library datetime module
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import netCDF4 as nc

import xarray as Xr

from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_selection import RFE

from sklearn import metrics

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import RandomizedSearchCV

from eofs.xarray import Eof

from matplotlib import pyplot as plt

from matplotlib import colors

import matplotlib as mpl

import cartopy

from utils import data_path, normalize_co2, normalize_ch4

from xskillscore import rmse, pearson_r, spearman_r, r2, smape, mae, me, mse

def global_mean(ds):
weights = np.cos(np.deg2rad(ds.lat))
return ds.weighted(weights) .mean(['lat', 'lon'])

def global_sum(ds):
weights = np.cos(np.deg2rad(ds.lat))
return ds.weighted(weights) .sum(['lat', 'lon'])

#*x*parameters & hyperparameters

RSCV = False
path_output='output_path/output.nc'

# Number of trees in random forest

n_estimators = [int(x) for x in np.linspace(start = 100, stop = 300, num = 5)]
# Number of features to comnsider at every split

max_features = ['log2', 'sqrt', None]
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# Maxzimum number of levels in tree

max_depth = [int(x) for x in np.linspace(5,55, num = 11)]
max_depth.append(None)

# Minimum number of samples required to split a node
min_samples_split = [5, 10, 15, 25]

# Minimum number of samples required at each leaf node
min_samples_leaf = [4, 8, 12]

# Method of selecting samples for training each tree
bootstrap = [True, False]

# Create the random grid

random_grid = {'n_estimators': n_estimators,
'max_features': max_features,
'max_depth': max_depth,
'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf,
'bootstrap': bootstrap}

from glob import glob

data_path = '/p/lustre2/shiduan/climatebench/'
inputs = glob(data_path + "inputs_s*.nc")
SECONDS_IN_YEAR = 60*60%24*365 #s

fig, axes = plt.subplots(2, 2, figsize=(8, 8))

for input in inputs:
label=input.split('_') [1][:-3]
X = xr.open_dataset (input)
x = range(2015, 2101)

weights = np.cos(np.deg2rad(X.latitude))

axes[0, 0].plot(x, X['C02'].data, label=label)

axes[0, 0].set_ylabel("Cumulative anthropogenic C02 \nemissions since 1850
~(Gtco2)")

axes[0, 1].plot(x, X['CH4'].data, label=label)

axes[0, 1].set_ylabel("Anthropogenic CH4 \nemissions (GtCH4 / year)")

# FIXME: Not sure where thts factor of 1000 comes from...! Maybe the CEDS,
sdata is really g/m-2/s?

axes[1, 0].plot(x, X['S02'] .weighted(weights) .sum(['latitude’,
~'longitude']) .data*SECONDS_IN_YEARxle-9, label=label)

axes[1, 0].set_ylabel("Anthropogenic S02 \nemissions (GtS02 / year)")

axes[1, 1].plot(x, X['BC'].weighted(weights).sum(['latitude', 'longitude']).
~data*SECONDS_IN_YEAR*1e-9, label=label)

axes[1, 1].set_ylabel("Anthropogenic BC \nemissions (GtBC / year)")

axes[0, 0] .set_title('C02')
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axes[0, 1].set_title('CH4')
axes[1, 0] .set_title('S02')
axes[1, 1].set_title('BC')
axes[0, 0].legend()
plt.tight_layout ()

test_data_path=data_path+'/test/inputs_ssp245.nc'
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# Get one combined historical + sspb85 + sspl26 + ssp370 timeseries for now
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X = xr.concat([xr.open_dataset(data_path + 'inputs_historical.nc'), xr.
—open_dataset(data_path + 'inputs_ssp585.nc'),xr.open_dataset(data_path+,
«'inputs_sspl26.nc') ,xr.open_dataset(data_path+ 'inputs_ssp370.nc'),xr.
—open_dataset(data_path+ 'inputs_hist-aer.nc'),xr.open_dataset(data_path+
o'inputs_hist-GHG.nc')], dim='time').compute()

# Take the average member for the historical, sspb85, sspl26, ssp370, hist-aer,

~htst-ghg

Y = xr.concat([xr.open_dataset(data_path + 'outputs_historical.nc').
~mean (dim="member"), xr.open_dataset(data_path + 'outputs_ssp585.nc').

<mean (dim="member") ,xr.
~mean(dim="member") ,xr.
<mean (dim="member") ,xr.
~mean(dim="member") ,xr.

open_dataset (data_path+
open_dataset(data_path+
open_dataset(data_path+
open_dataset(data_path+

~mean (dim="member")], dim='time').compute()

# Convert the precip values to mm/day

Y["pr"] *= 86400
Y["pr90"] *= 86400

'outputs_sspl26.nc').
'outputs_ssp370.nc').
'outputs_hist-aer.nc').
'outputs_hist-GHG.nc').

X["time"]=np.arange(1l, 424 + 165 + 165) ## 165+86+86+86+65+165+1
Y["time"]=np.arange(l, 424 + 165 + 165)

# Create an EOF solver to do the EOF analysis. Square-root of cosine of
# latitude weights are applied before the computation of EOFs.

bc_solver = Eof (X['BC'])

# Retrieve the leading EOF, expressed as the correlation between the leading
# PC time series and the input SST anomalies at each grid point, and the

# leading PC time series itself.

bc_eofs = bc_solver.eofsAsCorrelation(neofs=5)
bc_pcs = bc_solver.pcs(npcs=5, pcscaling=1)

# Create an EOF solver to do the EUF analysis. Square-root of cosine of
# latitude weights are applied before the computation of EUFs.
so2_solver = Eof (X['S02'])

# Retrieve the leading EUF, ezpressed as the correlation between the leading
# PC time series and the input SST anomalies at each grid point, and the
# leading PC time series itself.

so2_eofs = so02_solver.eofsAsCorrelation(neofs=5)

so2_pcs = so2_solver.pcs(npcs=5, pcscaling=1)
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# Convert the Principle Components of the aerosol emissions (calculated above)
<in to Pandas DataFrames

bc_df = bc_pcs.to_dataframe() .unstack('mode')

bc_df.columns = [£"BC_{i}" for i in range(5)]

so2_df = so2_pcs.to_dataframe() .unstack('mode')
so2_df.columns = [£"S02_{i}" for i in range(5)]

# Bring the emissions data back together again and normalise
leading_historical_inputs = pd.DataFrame ({

"CO2": normalize_co2(X["C02"].data),

"CH4": normalize_ch4(X["CH4"] .data)
}, index=X["C02"].coords['time'].data)

# Combine with aerosol EOFs
leading_historical_inputs=pd.concat([leading_historical_inputs, bc_df, so2_df],
<axis=1)

def get_rmse(truth, pred):
weights = np.cos(np.deg2rad(truth.lat))
return np.sqrt(((truth-pred)**2) .weighted(weights) .mean(['lat', 'lon'])).
~data.mean()

y_inp_tas=Y["tas"].stack(dim=["1lat", "lon"])
y_inp_pr=Y["pr"].stack(dim=["lat", "lon"])
y_inp_pr90=Y["pr90"].stack(dim=["lat", "lon"])
y_inp_dtr=Y["diurnal_temperature_range"].stack(dim=["lat", "lon"])

df_y_input_tas = pd.DataFrame(y_inp_tas.to_pandas())
df _y_input_pr = pd.DataFrame(y_inp_pr.to_pandas())
df_y_input_pr90 = pd.DataFrame(y_inp_pr90.to_pandas())
df _y_input_dtr = pd.DataFrame(y_inp_dtr.to_pandas())

Xy_train_tas_ = pd.concat([leading historical_inputs, df_y_input_tas], axis=1)
Xy_train_pr_ = pd.concat([leading historical_inputs, df_y_input_pr], axis=1)
Xy_train_pr90_ = pd.concat([leading historical_inputs, df_y_input_pr90], axis=1)
Xy_train_dtr_ = pd.concat([leading_historical_inputs, df_y_input_dtr], axis=1)

Xy_train_tas = Xy_train_tas_.to_numpy()
Xy_train_pr = Xy_train_pr_.to_numpy()
Xy_train_pr90 = Xy_train_pr90_.to_numpy()
Xy_train_dtr = Xy_train_dtr_.to_numpy()

n_inp=leading_historical_inputs.shape[1]
n_iout=Xy_train_tas_.shape[1]

X_train_tas=Xy_train_tas[:,0:n_inp]
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y_train_tas=Xy_train_tas[:,n_inp:n_iout]

X_train_pr=Xy_train_pr[:,0:n_inp]
y_train_pr=Xy_train_pr[:,n_inp:n_iout]

X_train_pr90=Xy_train_pr90[:,0:n_inp]
y_train_pr90=Xy_train_pr90[:,n_inp:n_iout]

X_train_dtr=Xy_train_dtr[:,0:n_inp]
y_train_dtr=Xy_train_dtr[:,n_inp:n_iout]

np.sum(np.isnan(y_train_pr90))
0

# use github parameters
"''reg0 = RandomForestRegressor(random_state=0, bootstrap=True, mazr_features=1.
-0,
**%{'n_estimators': 250, 'min_samples_split': 5,
o 'min_samples_leaf': 7, 'maz_depth': 5,}F)'"’
regl = RandomForestRegressor(random_state=0, max_features=1.0, bootstrap=True,
~n_estimators=250,
min_samples_split=5, min_samples_leaf=7,
~max_depth=5)
regl = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,
**{'n_estimators': 150, 'min_samples_split': 15,
<'min_samples_leaf': 8, 'max_depth': 40,})
reg2 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,
**{'n_estimators': 250, 'min_samples_split': 15,
<'min_samples_leaf': 12, 'max_depth': 25,3})
reg3 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,
**{'n_estimators': 300, 'min_samples_split': 10,
o'min_samples_leaf': 12, 'max_depth': 20,3})

if (RSCV==False):
rf_tas = reg0.fit(X_train_tas, y_train_tas)
# rf_pr = regl. fit(X_train_pr, y_train_pr)
# rf_pr90 = reg2.fit(X_train_pr90, y_train_pr0)
# rf_dtr = reg3.fit(X_train_dtr, y_train_dtr)
else:
rf_random0 = RandomizedSearchCV(estimator = regO, param_distributions =
orandom_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)
# rf_randoml = RandomizedSearchCV(estimator = regl, param_distributions =,
srandom_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)
# rf_random2 = RandomizedSearchCV(estimator = reg2, param_distributions =,
srandom_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)
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# rf_random3 = RandomizedSearchCV(estimator = reg3, param_distributions =,
srandom_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)

#n_t1ter = 29

rf_tas = rf_randomO.fit(X_train_tas, y_train_tas)

# rf_pr = rf_randoml. fit(X_train_pr, y_train_pr)

# rf_pr90 = rf_random2.fit(X_train_pr90, y_train_pr90)
# rf_dtr = rf_random3. fit (X_train_dtr, y_train_dtr)

if (RSCV==True) :
print (rf_tas.best_params_)
# print(rf_pr.best_params_)
# print(rf_pr90.best_params_)
# print(rf_dtr.best_params_)

{'n_estimators': 200, 'min_samples_split': 25, 'min_samples_leaf': 4,
'max_features': None, 'max_depth': 50, 'bootstrap': True}

## Test on SSP245

test_Y = xr.open_dataset(data_path + 'test/outputs_ssp245.nc').compute()
test_X = xr.open_dataset(data_path + 'test/inputs_ssp245.nc').compute()

tas_truth = test_Y["tas"].mean('member')

pr_truth = test_Y["pr"] .mean('member') * 86400

pro0_truth = test_Y["pr90"] .mean('member') * 86400

dtr_truth = test_Y["diurnal_temperature_range"] .mean('member"')

test_inputs = pd.DataFrame ({
"CO2": normalize_co2(test_X["C02"].data),
"CH4": normalize_ch4(test_X["CH4"] .data)
}, index=test_X["C02"].coords['time'].data)

### Combine with aerosol EOFs
test_inputs=pd.concat([test_inputs,
bc_solver.projectField(test_X["BC"], neofs=5,
—~eofscaling=1) .to_dataframe() .unstack('mode') .rename(columns={i:f"BC_{i}" for,
<1 in range(5)}),
so2_solver.projectField(test_X["S02"], neofs=5,,
~eofscaling=1) .to_dataframe() .unstack('mode') .rename (columns={i:f"_{i}" for i,
-in range(5)}),
], axis=1)

test_inputs
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2016
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2096

c02
.161692
.165480
.169305
.173166
.177064

O O O O O

.469755
471474
.473128
.474718
.476242

O O O O O

CH4
0.467171
0.467151
0.467130
0.467110
0.467090

0.352172
0.351729
0.351287
0.350845
0.350403

(pseudo_pcs, BC_2)

-0.819380
-0.707064
-0.594749
-0.482433
-0.370117

-0.115759
-0.101978
-0.088197
-0.074416
-0.060636

(pseudo_pcs, _0)

0.

O O O O

O O O O O

903505
.857117
.810728
. 764340
. 717951

.178097
.177501
.176905
.176309
.175713

(pseudo_pcs, _4)

(I

o O O O

.045259
.977491
.909724
.841956
. 774188

.033707

(pseudo_

(pseudo_

(pseudo_pcs, _1)

2.
.261433
.191129
.120826
.050622

NN NN

oo oo o,

pcs, BC_0)
2.706810
2.648897
2.590985
2.533072
2.475159

0.434483
0.422541
0.410599
0.398656
0.386714

pcs, BC_3)
-0.256301
-0.314685
-0.373069
-0.431453
-0.489837

-0.230166
-0.213992
-0.197818
-0.181644
-0.165471

331736

.697813
.687329
.676844
.666359
.655874

(pseudo_pcs, BC_1) \

-1.375172
-1.303500
-1.231828
-1.160157
-1.088485

-0.189906
-0.181722
-0.173539
-0.165355
-0.157171

(pseudo_pcs, BC_4) \

O O O

[T

-1.716714
-1.616016
-1.515319
-1.414621
-1.313923

0.147331
0.169751
0.192172
0.214592
0.237013

(pseudo_pcs, _2) (pseudo
-0.
0.
.260569
.442987
.625405

104266
078151

.189839
.167448
.145056
.122665
.100274

_pcs, _3)

-1.
.083139
.028166
.973193
.918221

138111

.064685
.080802
.096920
.113037
.129154
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2097 0.006906

2098 -0.019895
2099 -0.046696
2100 -0.073497

[86 rows x 12 columns]
rf_tas

RandomizedSearchCV(cv=3, estimator=RandomForestRegressor (random_state=0),

n_iter=9, n_jobs=-1,

param_distributions={'bootstrap': [True, False],
'max_depth': [56, 10, 15, 20, 25, 30, 35,

40, 45, 50, 55, None],
'max_features': ['log2', 'sqrt', Nonel,
'min_samples_leaf': [4, 8, 12],
'min_samples_split': [5, 10, 15, 25],
'n_estimators': [100, 150, 200, 250,
3001},
verbose=2)

m_out_t = rf_tas.predict(test_inputs.values)

# m_out_p = rf_pr.predict(test_inputs.values)

# m_out_p90 = rf_pr90.predict (test_inputs.values)
# m_out_d = rf_dtr.predict(test_inputs.values)

m_out_tas = m_out_t.reshape(86, 96, 144)

# m_out_pr = m_out_p.reshape(86, 96, 144)

# m_out_pr90 = m_out_p90.reshape (86, 96, 144)
# m_out_dtr = m_out_d.reshape(86, 96, 144)

plt.plot(m_out_t.mean(axis=-1))

[<matplotlib.lines.Line2D at 0x155331b48be0>]
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xr_output=xr.Dataset(coords={'time': test_X.time.values, 'lat': test_X.latitude.
~values, 'lon': test_X.longitude.values})

xr_output["tas"]=(['time', 'lat', 'lon'], m_out_tas)

# zr_output["diurnal_temperature_range"]=(['time', 'lat', 'lon'], m_out_dtr)

# or_output["pr"]=(['time', 'lat’', 'lon'], m_out_pr)

# zr_output ["pr90"]=(["'time', 'lat’', 'lon'], m_out_pr90)

norm_diff = colors.TwoSlopeNorm(vmin=-2, vcenter=0, vmax=2)
cmap = 'coolwarm'
for i in [0, 35, 85]:
fig = plt.figure(figsize=(16, 3))
ax = fig.add_subplot(131, projection=cartopy.crs.
~Robinson(central_longitude=180))
X = tas_truth.isel (time=i)
x_max = np.max(x)
norm = colors.TwoSlopeNorm(vmin=-np.abs(x_max), vcenter=0, vmax=np.
~abs(x_max))
ax.contourf (tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.
~PlateCarree(),
norm=norm, cmap=cmap)
ax.add_feature(cartopy.feature.COASTLINE)
fig.colorbar(mpl.cm.ScalarMappable (norm=norm, cmap=cmap),

10



ax=ax, orientation='vertical', extend='both', shrink=.8)

ax = fig.add_subplot (132, projection=cartopy.crs.
~Robinson(central_longitude=180))

x = xr_output['tas'].isel(time=1i)

ax.contourf (tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.
~PlateCarree(),

norm=norm, cmap=cmap)

ax.add_feature(cartopy.feature.COASTLINE)

plt.suptitle(str(2015+i))

fig.colorbar(mpl.cm.ScalarMappable (norm=norm, cmap=cmap),

ax=ax, orientation='vertical', extend='both', shrink=.8)

ax = fig.add_subplot (133, projection=cartopy.crs.
~Robinson(central_longitude=180))

x = tas_truth.isel(time=i)-xr_output['tas'].isel(time=1)

x_max = np.max(x)

norm = colors.TwoSlopeNorm(vmin=-np.abs(x_max), vcenter=0, vmax=np.
~abs (x_max))

ax.contourf (tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.
«PlateCarree(),

norm=norm, cmap=cmap)
fig.colorbar(mpl.cm.ScalarMappable (norm=norm, cmap=cmap),
ax=ax, orientation='vertical', extend='both', shrink=.8)
ax.add_feature(cartopy.feature.COASTLINE)
plt.show()
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[ 1: variable = 'tas'
start = 2080
weights = np.cos(np.deg2rad(Y['tas'].lat)) .expand_dims(lon=144).
~assign_coords(lon=Y.lon)
nrmse = rmse(tas_truth.sel(time=slice(start, None)) .mean('time'),
xr_output [variable] .sel(time=slice(start, None)) .mean('time'),,
weights=weights) .data/ np.abs(
global _mean(tas_truth.sel(time=slice(start, None)).
omean('time')) .data)
print (nrmse)
r2e = rmse(global_mean(tas_truth.sel(time=slice(start, Nomne))),
global_mean(xr_output[variable] .sel(time=slice(start, None)))).data/,,
~np. abs(
global _mean(tas_truth.sel(time=slice(start, None)) .mean('time')).
~data)
print(r2e)
print (nrmse+5%r2e)

0.08411859630678128
0.162332797972665
0.8957825861701063

[ 1: global_mean(tas_truth.sel(time=slice(start, None))).plot(label='target')
global_mean(xr_output [variable] .sel(time=slice(start, None))).plot()
plt.legend ()

[ ]: <matplotlib.legend.Legend at 0x15532a191c40>
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[ 1: print(£"RMSE: {get_rmse(tas_truth[35:], m_out_tas[35:]) .mean()}")
print("\n")

RMSE: 0.5244521282584569

[ 1:
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