[]1:

[1:

[]1:

randomiforest

March 25, 2024

import os

import datetime as dt # Python standard library datetime module
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import netCDF4 as nc

import xarray as Xr

from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_selection import RFE

from sklearn import metrics

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import RandomizedSearchCV

from eofs.xarray import Eof

from matplotlib import pyplot as plt

from matplotlib import colors

import matplotlib as mpl

import cartopy

from utils import data_path, normalize_co2, normalize_ch4

from xskillscore import rmse, pearson_r, spearman_r, r2, smape, mae, me, mse

def global_mean(ds):
weights = np.cos(np.deg2rad(ds.lat))
return ds.weighted(weights) .mean(['lat', 'lon'])

def global_sum(ds):
weights = np.cos(np.deg2rad(ds.lat))
return ds.weighted(weights) .sum(['lat', 'lon'])

#*x*parameters & hyperparameters

RSCV = False
path_output='output_path/output.nc'

Number of trees in random forest

n_estimators = [int(x) for x in np.linspace(start = 100, stop = 300, num = 5)]
Number of features to comnsider at every split

max_features = ['log2', 'sqrt', None]

[1:

Maxzimum number of levels in tree

max_depth = [int(x) for x in np.linspace(5,55, num = 11)]
max_depth.append(None)

Minimum number of samples required to split a node
min_samples_split = [5, 10, 15, 25]

Minimum number of samples required at each leaf node
min_samples_leaf = [4, 8, 12]

Method of selecting samples for training each tree
bootstrap = [True, False]

Create the random grid

random_grid = {'n_estimators': n_estimators,
'max_features': max_features,
'max_depth': max_depth,
'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf,
'bootstrap': bootstrap}

from glob import glob

data_path = '/p/lustre2/shiduan/climatebench/'
inputs = glob(data_path + "inputs_s*.nc")
SECONDS_IN_YEAR = 60*60%24*365 #s

fig, axes = plt.subplots(2, 2, figsize=(8, 8))

for input in inputs:
label=input.split('_') [1][:-3]
X = xr.open_dataset (input)
x = range(2015, 2101)

weights = np.cos(np.deg2rad(X.latitude))

axes[0, 0].plot(x, X['C02'].data, label=label)

axes[0, 0].set_ylabel("Cumulative anthropogenic C02 \nemissions since 1850
~(Gtco2)")

axes[0, 1].plot(x, X['CH4'].data, label=label)

axes[0, 1].set_ylabel("Anthropogenic CH4 \nemissions (GtCH4 / year)")

FIXME: Not sure where thts factor of 1000 comes from...! Maybe the CEDS,
sdata is really g/m-2/s?

axes[1, 0].plot(x, X['S02'] .weighted(weights) .sum(['latitude’,
~'longitude']) .data*SECONDS_IN_YEARxle-9, label=label)

axes[1, 0].set_ylabel("Anthropogenic S02 \nemissions (GtS02 / year)")

axes[1, 1].plot(x, X['BC'].weighted(weights).sum(['latitude', 'longitude']).
~data*SECONDS_IN_YEAR*1e-9, label=label)

axes[1, 1].set_ylabel("Anthropogenic BC \nemissions (GtBC / year)")

axes[0, 0] .set_title('C02')

[]:

axes[0, 1].set_title('CH4')
axes[1, 0] .set_title('S02')
axes[1, 1].set_title('BC')
axes[0, 0].legend()
plt.tight_layout ()

test_data_path=data_path+'/test/inputs_ssp245.nc'

coz

ssp370
sspl26
ssp370-lowNTCF
s5p585

29000

h =] [sx]

S & &

(=] o [=]
1 L L

5000 A

4000 A

3000 ~

Cumulative anthropogenic CO2
emissions since 1850 (GtC0O2)

2000 4

T T T T T
2020 2040 2060 2080 2100
1le—9 S02

= = = =
(=] rJ = [=3]
1 | 1 1

Anthropogenic SO2
emissions (GtSO2 [year)
o
oo
1

e e
=Y [=3]
1 |

<
(8]
1

T T T T T
2020 2040 2060 2080 2100

Anthropogenic CH4
emissions (GtCH4 [year)

Anthropogenic BC
emissions (GtBC [year)

0.7

0.6

0.5

0.4 1

0.3 ~

0.2

0.1

CH4

T
2020

1le—10

T
2040

2 DISO
BC

T
2080

T
2100

1.6 4

1.4

1.2 4

1.0+

0.8 4

0.6

0.4 1

0.2 1

T
2020

T
2040

T
2060

T
2080

T
2100

Get one combined historical + sspb85 + sspl26 + ssp370 timeseries for now

[]1:

[]:

X = xr.concat([xr.open_dataset(data_path + 'inputs_historical.nc'), xr.
—open_dataset(data_path + 'inputs_ssp585.nc'),xr.open_dataset(data_path+,
«'inputs_sspl26.nc') ,xr.open_dataset(data_path+ 'inputs_ssp370.nc'),xr.
—open_dataset(data_path+ 'inputs_hist-aer.nc'),xr.open_dataset(data_path+
o'inputs_hist-GHG.nc')], dim='time').compute()

Take the average member for the historical, sspb85, sspl26, ssp370, hist-aer,

~htst-ghg

Y = xr.concat([xr.open_dataset(data_path + 'outputs_historical.nc').
~mean (dim="member"), xr.open_dataset(data_path + 'outputs_ssp585.nc').

<mean (dim="member") ,xr.
~mean(dim="member") ,xr.
<mean (dim="member") ,xr.
~mean(dim="member") ,xr.

open_dataset (data_path+
open_dataset(data_path+
open_dataset(data_path+
open_dataset(data_path+

~mean (dim="member")], dim='time').compute()

Convert the precip values to mm/day

Y["pr"] *= 86400
Y["pr90"] *= 86400

'outputs_sspl26.nc').
'outputs_ssp370.nc').
'outputs_hist-aer.nc').
'outputs_hist-GHG.nc').

X["time"]=np.arange(1l, 424 + 165 + 165) ## 165+86+86+86+65+165+1
Y["time"]=np.arange(l, 424 + 165 + 165)

Create an EOF solver to do the EOF analysis. Square-root of cosine of
latitude weights are applied before the computation of EOFs.

bc_solver = Eof (X['BC'])

Retrieve the leading EOF, expressed as the correlation between the leading
PC time series and the input SST anomalies at each grid point, and the

leading PC time series itself.

bc_eofs = bc_solver.eofsAsCorrelation(neofs=5)
bc_pcs = bc_solver.pcs(npcs=5, pcscaling=1)

Create an EOF solver to do the EUF analysis. Square-root of cosine of
latitude weights are applied before the computation of EUFs.
so2_solver = Eof (X['S02'])

Retrieve the leading EUF, ezpressed as the correlation between the leading
PC time series and the input SST anomalies at each grid point, and the
leading PC time series itself.

so2_eofs = so02_solver.eofsAsCorrelation(neofs=5)

so2_pcs = so2_solver.pcs(npcs=5, pcscaling=1)

[]1:

[1:

[]:

[]1:

[1:

[1:

[]:

Convert the Principle Components of the aerosol emissions (calculated above)
<in to Pandas DataFrames

bc_df = bc_pcs.to_dataframe() .unstack('mode')

bc_df.columns = [£"BC_{i}" for i in range(5)]

so2_df = so2_pcs.to_dataframe() .unstack('mode')
so2_df.columns = [£"S02_{i}" for i in range(5)]

Bring the emissions data back together again and normalise
leading_historical_inputs = pd.DataFrame ({

"CO2": normalize_co2(X["C02"].data),

"CH4": normalize_ch4(X["CH4"] .data)
}, index=X["C02"].coords['time'].data)

Combine with aerosol EOFs
leading_historical_inputs=pd.concat([leading_historical_inputs, bc_df, so2_df],
<axis=1)

def get_rmse(truth, pred):
weights = np.cos(np.deg2rad(truth.lat))
return np.sqrt(((truth-pred)**2) .weighted(weights) .mean(['lat', 'lon'])).
~data.mean()

y_inp_tas=Y["tas"].stack(dim=["1lat", "lon"])
y_inp_pr=Y["pr"].stack(dim=["lat", "lon"])
y_inp_pr90=Y["pr90"].stack(dim=["lat", "lon"])
y_inp_dtr=Y["diurnal_temperature_range"].stack(dim=["lat", "lon"])

df_y_input_tas = pd.DataFrame(y_inp_tas.to_pandas())
df _y_input_pr = pd.DataFrame(y_inp_pr.to_pandas())
df_y_input_pr90 = pd.DataFrame(y_inp_pr90.to_pandas())
df _y_input_dtr = pd.DataFrame(y_inp_dtr.to_pandas())

Xy_train_tas_ = pd.concat([leading historical_inputs, df_y_input_tas], axis=1)
Xy_train_pr_ = pd.concat([leading historical_inputs, df_y_input_pr], axis=1)
Xy_train_pr90_ = pd.concat([leading historical_inputs, df_y_input_pr90], axis=1)
Xy_train_dtr_ = pd.concat([leading_historical_inputs, df_y_input_dtr], axis=1)

Xy_train_tas = Xy_train_tas_.to_numpy()
Xy_train_pr = Xy_train_pr_.to_numpy()
Xy_train_pr90 = Xy_train_pr90_.to_numpy()
Xy_train_dtr = Xy_train_dtr_.to_numpy()

n_inp=leading_historical_inputs.shape[1]
n_iout=Xy_train_tas_.shape[1]

X_train_tas=Xy_train_tas[:,0:n_inp]

[]1:

[1:

[1:

y_train_tas=Xy_train_tas[:,n_inp:n_iout]

X_train_pr=Xy_train_pr[:,0:n_inp]
y_train_pr=Xy_train_pr[:,n_inp:n_iout]

X_train_pr90=Xy_train_pr90[:,0:n_inp]
y_train_pr90=Xy_train_pr90[:,n_inp:n_iout]

X_train_dtr=Xy_train_dtr[:,0:n_inp]
y_train_dtr=Xy_train_dtr[:,n_inp:n_iout]

np.sum(np.isnan(y_train_pr90))
0

use github parameters
"''reg0 = RandomForestRegressor(random_state=0, bootstrap=True, mazr_features=1.
-0,
**%{'n_estimators': 250, 'min_samples_split': 5,
o 'min_samples_leaf': 7, 'maz_depth': 5,}F)'"’
regl = RandomForestRegressor(random_state=0, max_features=1.0, bootstrap=True,
~n_estimators=250,
min_samples_split=5, min_samples_leaf=7,
~max_depth=5)
regl = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,
**{'n_estimators': 150, 'min_samples_split': 15,
<'min_samples_leaf': 8, 'max_depth': 40,})
reg2 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,
**{'n_estimators': 250, 'min_samples_split': 15,
<'min_samples_leaf': 12, 'max_depth': 25,3})
reg3 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,
**{'n_estimators': 300, 'min_samples_split': 10,
o'min_samples_leaf': 12, 'max_depth': 20,3})

if (RSCV==False):
rf_tas = reg0.fit(X_train_tas, y_train_tas)
rf_pr = regl. fit(X_train_pr, y_train_pr)
rf_pr90 = reg2.fit(X_train_pr90, y_train_pr0)
rf_dtr = reg3.fit(X_train_dtr, y_train_dtr)
else:
rf_random0 = RandomizedSearchCV(estimator = regO, param_distributions =
orandom_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)
rf_randoml = RandomizedSearchCV(estimator = regl, param_distributions =,
srandom_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)
rf_random2 = RandomizedSearchCV(estimator = reg2, param_distributions =,
srandom_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)

[]1:

[]1:

[1:

rf_random3 = RandomizedSearchCV(estimator = reg3, param_distributions =,
srandom_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)

#n_t1ter = 29

rf_tas = rf_randomO.fit(X_train_tas, y_train_tas)

rf_pr = rf_randoml. fit(X_train_pr, y_train_pr)

rf_pr90 = rf_random2.fit(X_train_pr90, y_train_pr90)
rf_dtr = rf_random3. fit (X_train_dtr, y_train_dtr)

if (RSCV==True) :
print (rf_tas.best_params_)
print(rf_pr.best_params_)
print(rf_pr90.best_params_)
print(rf_dtr.best_params_)

{'n_estimators': 200, 'min_samples_split': 25, 'min_samples_leaf': 4,
'max_features': None, 'max_depth': 50, 'bootstrap': True}

Test on SSP245

test_Y = xr.open_dataset(data_path + 'test/outputs_ssp245.nc').compute()
test_X = xr.open_dataset(data_path + 'test/inputs_ssp245.nc').compute()

tas_truth = test_Y["tas"].mean('member')

pr_truth = test_Y["pr"] .mean('member') * 86400

pro0_truth = test_Y["pr90"] .mean('member') * 86400

dtr_truth = test_Y["diurnal_temperature_range"] .mean('member"')

test_inputs = pd.DataFrame ({
"CO2": normalize_co2(test_X["C02"].data),
"CH4": normalize_ch4(test_X["CH4"] .data)
}, index=test_X["C02"].coords['time'].data)

Combine with aerosol EOFs
test_inputs=pd.concat([test_inputs,
bc_solver.projectField(test_X["BC"], neofs=5,
—~eofscaling=1) .to_dataframe() .unstack('mode') .rename(columns={i:f"BC_{i}" for,
<1 in range(5)}),
so2_solver.projectField(test_X["S02"], neofs=5,,
~eofscaling=1) .to_dataframe() .unstack('mode') .rename (columns={i:f"_{i}" for i,
-in range(5)}),
], axis=1)

test_inputs

[]1:

2015
2016
2017
2018
2019

2096
2097
2098
2099
2100

2015
2016
2017
2018
2019

2096
2097
2098
2099
2100

2015
2016
2017
2018
2019

2096
2097
2098
2099
2100

2015
2016
2017
2018
2019

2096

c02
.161692
.165480
.169305
.173166
.177064

O O O O O

.469755
471474
.473128
.474718
.476242

O O O O O

CH4
0.467171
0.467151
0.467130
0.467110
0.467090

0.352172
0.351729
0.351287
0.350845
0.350403

(pseudo_pcs, BC_2)

-0.819380
-0.707064
-0.594749
-0.482433
-0.370117

-0.115759
-0.101978
-0.088197
-0.074416
-0.060636

(pseudo_pcs, _0)

0.

O O O O

O O O O O

903505
.857117
.810728
. 764340
. 717951

.178097
.177501
.176905
.176309
.175713

(pseudo_pcs, _4)

(I

o O O O

.045259
.977491
.909724
.841956
. 774188

.033707

(pseudo_

(pseudo_

(pseudo_pcs, _1)

2.
.261433
.191129
.120826
.050622

NN NN

oo oo o,

pcs, BC_0)
2.706810
2.648897
2.590985
2.533072
2.475159

0.434483
0.422541
0.410599
0.398656
0.386714

pcs, BC_3)
-0.256301
-0.314685
-0.373069
-0.431453
-0.489837

-0.230166
-0.213992
-0.197818
-0.181644
-0.165471

331736

.697813
.687329
.676844
.666359
.655874

(pseudo_pcs, BC_1) \

-1.375172
-1.303500
-1.231828
-1.160157
-1.088485

-0.189906
-0.181722
-0.173539
-0.165355
-0.157171

(pseudo_pcs, BC_4) \

O O O

[T

-1.716714
-1.616016
-1.515319
-1.414621
-1.313923

0.147331
0.169751
0.192172
0.214592
0.237013

(pseudo_pcs, _2) (pseudo
-0.
0.
.260569
.442987
.625405

104266
078151

.189839
.167448
.145056
.122665
.100274

_pcs, _3)

-1.
.083139
.028166
.973193
.918221

138111

.064685
.080802
.096920
.113037
.129154

[1:

[1:

[]1:

[]:

[1:

2097 0.006906

2098 -0.019895
2099 -0.046696
2100 -0.073497

[86 rows x 12 columns]
rf_tas

RandomizedSearchCV(cv=3, estimator=RandomForestRegressor (random_state=0),

n_iter=9, n_jobs=-1,

param_distributions={'bootstrap': [True, False],
'max_depth': [56, 10, 15, 20, 25, 30, 35,

40, 45, 50, 55, None],
'max_features': ['log2', 'sqrt', Nonel,
'min_samples_leaf': [4, 8, 12],
'min_samples_split': [5, 10, 15, 25],
'n_estimators': [100, 150, 200, 250,
3001},
verbose=2)

m_out_t = rf_tas.predict(test_inputs.values)

m_out_p = rf_pr.predict(test_inputs.values)

m_out_p90 = rf_pr90.predict (test_inputs.values)
m_out_d = rf_dtr.predict(test_inputs.values)

m_out_tas = m_out_t.reshape(86, 96, 144)

m_out_pr = m_out_p.reshape(86, 96, 144)

m_out_pr90 = m_out_p90.reshape (86, 96, 144)
m_out_dtr = m_out_d.reshape(86, 96, 144)

plt.plot(m_out_t.mean(axis=-1))

[<matplotlib.lines.Line2D at 0x155331b48be0>]

[1:

[]1:

2.75 7

2.50 ~

2.25 H

2.00 ~

1.75 +

1.50 4

1.25 +

1.00 +

0.75

xr_output=xr.Dataset(coords={'time': test_X.time.values, 'lat': test_X.latitude.
~values, 'lon': test_X.longitude.values})

xr_output["tas"]=(['time', 'lat', 'lon'], m_out_tas)

zr_output["diurnal_temperature_range"]=(['time', 'lat', 'lon'], m_out_dtr)

or_output["pr"]=(['time', 'lat’', 'lon'], m_out_pr)

zr_output ["pr90"]=(["'time', 'lat’', 'lon'], m_out_pr90)

norm_diff = colors.TwoSlopeNorm(vmin=-2, vcenter=0, vmax=2)
cmap = 'coolwarm'
for i in [0, 35, 85]:
fig = plt.figure(figsize=(16, 3))
ax = fig.add_subplot(131, projection=cartopy.crs.
~Robinson(central_longitude=180))
X = tas_truth.isel (time=i)
x_max = np.max(x)
norm = colors.TwoSlopeNorm(vmin=-np.abs(x_max), vcenter=0, vmax=np.
~abs(x_max))
ax.contourf (tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.
~PlateCarree(),
norm=norm, cmap=cmap)
ax.add_feature(cartopy.feature.COASTLINE)
fig.colorbar(mpl.cm.ScalarMappable (norm=norm, cmap=cmap),

10

ax=ax, orientation='vertical', extend='both', shrink=.8)

ax = fig.add_subplot (132, projection=cartopy.crs.
~Robinson(central_longitude=180))

x = xr_output['tas'].isel(time=1i)

ax.contourf (tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.
~PlateCarree(),

norm=norm, cmap=cmap)

ax.add_feature(cartopy.feature.COASTLINE)

plt.suptitle(str(2015+i))

fig.colorbar(mpl.cm.ScalarMappable (norm=norm, cmap=cmap),

ax=ax, orientation='vertical', extend='both', shrink=.8)

ax = fig.add_subplot (133, projection=cartopy.crs.
~Robinson(central_longitude=180))

x = tas_truth.isel(time=i)-xr_output['tas'].isel(time=1)

x_max = np.max(x)

norm = colors.TwoSlopeNorm(vmin=-np.abs(x_max), vcenter=0, vmax=np.
~abs (x_max))

ax.contourf (tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.
«PlateCarree(),

norm=norm, cmap=cmap)
fig.colorbar(mpl.cm.ScalarMappable (norm=norm, cmap=cmap),
ax=ax, orientation='vertical', extend='both', shrink=.8)
ax.add_feature(cartopy.feature.COASTLINE)
plt.show()

2015

10
0.5
0.0
—0.5
-1.0

2050

15
10
0.5
0.0
—0.5
-1.0
-1.5

11

2100

0.6
0.4
0.2
0.0
-0.2
—0.4

—0.6

[1: variable = 'tas'
start = 2080
weights = np.cos(np.deg2rad(Y['tas'].lat)) .expand_dims(lon=144).
~assign_coords(lon=Y.lon)
nrmse = rmse(tas_truth.sel(time=slice(start, None)) .mean('time'),
xr_output [variable] .sel(time=slice(start, None)) .mean('time'),,
weights=weights) .data/ np.abs(
global _mean(tas_truth.sel(time=slice(start, None)).
omean('time')) .data)
print (nrmse)
r2e = rmse(global_mean(tas_truth.sel(time=slice(start, Nomne))),
global_mean(xr_output[variable] .sel(time=slice(start, None)))).data/,,
~np. abs(
global _mean(tas_truth.sel(time=slice(start, None)) .mean('time')).
~data)
print(r2e)
print (nrmse+5%r2e)

0.08411859630678128
0.162332797972665
0.8957825861701063

[1: global_mean(tas_truth.sel(time=slice(start, None))).plot(label='target')
global_mean(xr_output [variable] .sel(time=slice(start, None))).plot()
plt.legend ()

[]: <matplotlib.legend.Legend at 0x15532a191c40>

12

2.44 —— target

2.2

2.0

tas

1.8 1

1.6

T T T T T T T T T
2080.0 2082.5 2085.0 2087.5 2090.0 2092.5 2095.0 2097.5 2100.0
time

[1: print(£"RMSE: {get_rmse(tas_truth[35:], m_out_tas[35:]) .mean()}")
print("\n")

RMSE: 0.5244521282584569

[1:

13

