
randomforest

March 25, 2024

[]: import os
import datetime as dt # Python standard library datetime module
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import netCDF4 as nc
import xarray as xr
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_selection import RFE
from sklearn import metrics
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV
from eofs.xarray import Eof
from matplotlib import pyplot as plt
from matplotlib import colors
import matplotlib as mpl
import cartopy
from utils import data_path, normalize_co2, normalize_ch4
from xskillscore import rmse, pearson_r, spearman_r, r2, smape, mae, me, mse

[]: def global_mean(ds):
weights = np.cos(np.deg2rad(ds.lat))
return ds.weighted(weights).mean(['lat', 'lon'])

def global_sum(ds):
weights = np.cos(np.deg2rad(ds.lat))
return ds.weighted(weights).sum(['lat', 'lon'])

[]: #**parameters & hyperparameters

RSCV = False
path_output='output_path/output.nc'

Number of trees in random forest
n_estimators = [int(x) for x in np.linspace(start = 100, stop = 300, num = 5)]
Number of features to consider at every split
max_features = ['log2', 'sqrt', None]

1

Maximum number of levels in tree
max_depth = [int(x) for x in np.linspace(5,55, num = 11)]
max_depth.append(None)
Minimum number of samples required to split a node
min_samples_split = [5, 10, 15, 25]
Minimum number of samples required at each leaf node
min_samples_leaf = [4, 8, 12]
Method of selecting samples for training each tree
bootstrap = [True, False]

Create the random grid
random_grid = {'n_estimators': n_estimators,

'max_features': max_features,
'max_depth': max_depth,
'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf,
'bootstrap': bootstrap}

[]: from glob import glob
data_path = '/p/lustre2/shiduan/climatebench/'
inputs = glob(data_path + "inputs_s*.nc")
SECONDS_IN_YEAR = 60*60*24*365 #s

fig, axes = plt.subplots(2, 2, figsize=(8, 8))

for input in inputs:
label=input.split('_')[1][:-3]
X = xr.open_dataset(input)
x = range(2015, 2101)

weights = np.cos(np.deg2rad(X.latitude))

axes[0, 0].plot(x, X['CO2'].data, label=label)
axes[0, 0].set_ylabel("Cumulative anthropogenic CO2 \nemissions since 1850␣

↪(GtCO2)")
axes[0, 1].plot(x, X['CH4'].data, label=label)
axes[0, 1].set_ylabel("Anthropogenic CH4 \nemissions (GtCH4 / year)")
FIXME: Not sure where this factor of 1000 comes from...! Maybe the CEDS␣

↪data is really g/m-2/s?
axes[1, 0].plot(x, X['SO2'].weighted(weights).sum(['latitude',␣

↪'longitude']).data*SECONDS_IN_YEAR*1e-9, label=label)
axes[1, 0].set_ylabel("Anthropogenic SO2 \nemissions (GtSO2 / year)")
axes[1, 1].plot(x, X['BC'].weighted(weights).sum(['latitude', 'longitude']).

↪data*SECONDS_IN_YEAR*1e-9, label=label)
axes[1, 1].set_ylabel("Anthropogenic BC \nemissions (GtBC / year)")

axes[0, 0].set_title('CO2')

2

axes[0, 1].set_title('CH4')
axes[1, 0].set_title('SO2')
axes[1, 1].set_title('BC')
axes[0, 0].legend()
plt.tight_layout()

test_data_path=data_path+'/test/inputs_ssp245.nc'

[]: # Get one combined historical + ssp585 + ssp126 + ssp370 timeseries for now

3

X = xr.concat([xr.open_dataset(data_path + 'inputs_historical.nc'), xr.
↪open_dataset(data_path + 'inputs_ssp585.nc'),xr.open_dataset(data_path+␣
↪'inputs_ssp126.nc'),xr.open_dataset(data_path+ 'inputs_ssp370.nc'),xr.
↪open_dataset(data_path+ 'inputs_hist-aer.nc'),xr.open_dataset(data_path+␣
↪'inputs_hist-GHG.nc')], dim='time').compute()

Take the average member for the historical, ssp585, ssp126, ssp370, hist-aer,␣
↪hist-ghg

Y = xr.concat([xr.open_dataset(data_path + 'outputs_historical.nc').
↪mean(dim="member"), xr.open_dataset(data_path + 'outputs_ssp585.nc').
↪mean(dim="member"),xr.open_dataset(data_path+ 'outputs_ssp126.nc').
↪mean(dim="member"),xr.open_dataset(data_path+ 'outputs_ssp370.nc').
↪mean(dim="member"),xr.open_dataset(data_path+ 'outputs_hist-aer.nc').
↪mean(dim="member"),xr.open_dataset(data_path+ 'outputs_hist-GHG.nc').
↪mean(dim="member")], dim='time').compute()

Convert the precip values to mm/day
Y["pr"] *= 86400
Y["pr90"] *= 86400

X["time"]=np.arange(1, 424 + 165 + 165) ## 165+86+86+86+65+165+1
Y["time"]=np.arange(1, 424 + 165 + 165)

[]: # Create an EOF solver to do the EOF analysis. Square-root of cosine of
latitude weights are applied before the computation of EOFs.
bc_solver = Eof(X['BC'])

Retrieve the leading EOF, expressed as the correlation between the leading
PC time series and the input SST anomalies at each grid point, and the
leading PC time series itself.
bc_eofs = bc_solver.eofsAsCorrelation(neofs=5)
bc_pcs = bc_solver.pcs(npcs=5, pcscaling=1)

[]: # Create an EOF solver to do the EOF analysis. Square-root of cosine of
latitude weights are applied before the computation of EOFs.
so2_solver = Eof(X['SO2'])

Retrieve the leading EOF, expressed as the correlation between the leading
PC time series and the input SST anomalies at each grid point, and the
leading PC time series itself.
so2_eofs = so2_solver.eofsAsCorrelation(neofs=5)
so2_pcs = so2_solver.pcs(npcs=5, pcscaling=1)

4

[]: # Convert the Principle Components of the aerosol emissions (calculated above)␣
↪in to Pandas DataFrames

bc_df = bc_pcs.to_dataframe().unstack('mode')
bc_df.columns = [f"BC_{i}" for i in range(5)]

so2_df = so2_pcs.to_dataframe().unstack('mode')
so2_df.columns = [f"SO2_{i}" for i in range(5)]

[]: # Bring the emissions data back together again and normalise
leading_historical_inputs = pd.DataFrame({

"CO2": normalize_co2(X["CO2"].data),
"CH4": normalize_ch4(X["CH4"].data)

}, index=X["CO2"].coords['time'].data)

Combine with aerosol EOFs
leading_historical_inputs=pd.concat([leading_historical_inputs, bc_df, so2_df],␣

↪axis=1)

[]: def get_rmse(truth, pred):
weights = np.cos(np.deg2rad(truth.lat))
return np.sqrt(((truth-pred)**2).weighted(weights).mean(['lat', 'lon'])).

↪data.mean()

[]: y_inp_tas=Y["tas"].stack(dim=["lat", "lon"])
y_inp_pr=Y["pr"].stack(dim=["lat", "lon"])
y_inp_pr90=Y["pr90"].stack(dim=["lat", "lon"])
y_inp_dtr=Y["diurnal_temperature_range"].stack(dim=["lat", "lon"])

[]: df_y_input_tas = pd.DataFrame(y_inp_tas.to_pandas())
df_y_input_pr = pd.DataFrame(y_inp_pr.to_pandas())
df_y_input_pr90 = pd.DataFrame(y_inp_pr90.to_pandas())
df_y_input_dtr = pd.DataFrame(y_inp_dtr.to_pandas())

Xy_train_tas_ = pd.concat([leading_historical_inputs, df_y_input_tas], axis=1)
Xy_train_pr_ = pd.concat([leading_historical_inputs, df_y_input_pr], axis=1)
Xy_train_pr90_ = pd.concat([leading_historical_inputs, df_y_input_pr90], axis=1)
Xy_train_dtr_ = pd.concat([leading_historical_inputs, df_y_input_dtr], axis=1)

[]: Xy_train_tas = Xy_train_tas_.to_numpy()
Xy_train_pr = Xy_train_pr_.to_numpy()
Xy_train_pr90 = Xy_train_pr90_.to_numpy()
Xy_train_dtr = Xy_train_dtr_.to_numpy()

[]: n_inp=leading_historical_inputs.shape[1]
n_iout=Xy_train_tas_.shape[1]

X_train_tas=Xy_train_tas[:,0:n_inp]

5

y_train_tas=Xy_train_tas[:,n_inp:n_iout]

X_train_pr=Xy_train_pr[:,0:n_inp]
y_train_pr=Xy_train_pr[:,n_inp:n_iout]

X_train_pr90=Xy_train_pr90[:,0:n_inp]
y_train_pr90=Xy_train_pr90[:,n_inp:n_iout]

X_train_dtr=Xy_train_dtr[:,0:n_inp]
y_train_dtr=Xy_train_dtr[:,n_inp:n_iout]

[]: np.sum(np.isnan(y_train_pr90))

[]: 0

[]: # use github parameters
'''reg0 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.

↪0,
**{'n_estimators': 250, 'min_samples_split': 5,␣

↪'min_samples_leaf': 7, 'max_depth': 5,})'''
reg0 = RandomForestRegressor(random_state=0, max_features=1.0, bootstrap=True,␣

↪n_estimators=250,
min_samples_split=5, min_samples_leaf=7,␣

↪max_depth=5)
reg1 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,

**{'n_estimators': 150, 'min_samples_split': 15,␣
↪'min_samples_leaf': 8,'max_depth': 40,})

reg2 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,
**{'n_estimators': 250, 'min_samples_split': 15,␣

↪'min_samples_leaf': 12,'max_depth': 25,})
reg3 = RandomForestRegressor(random_state=0, bootstrap=True, max_features=1.0,

**{'n_estimators': 300, 'min_samples_split': 10,␣
↪'min_samples_leaf': 12, 'max_depth': 20,})

if(RSCV==False):
rf_tas = reg0.fit(X_train_tas, y_train_tas)
rf_pr = reg1.fit(X_train_pr, y_train_pr)
rf_pr90 = reg2.fit(X_train_pr90, y_train_pr90)
rf_dtr = reg3.fit(X_train_dtr, y_train_dtr)

else:
rf_random0 = RandomizedSearchCV(estimator = reg0, param_distributions =␣

↪random_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)
rf_random1 = RandomizedSearchCV(estimator = reg1, param_distributions =␣

↪random_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)
rf_random2 = RandomizedSearchCV(estimator = reg2, param_distributions =␣

↪random_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)

6

rf_random3 = RandomizedSearchCV(estimator = reg3, param_distributions =␣
↪random_grid, n_iter = 9, cv = 3, verbose=2, n_jobs = -1)

#n_iter = 29

rf_tas = rf_random0.fit(X_train_tas, y_train_tas)
rf_pr = rf_random1.fit(X_train_pr, y_train_pr)
rf_pr90 = rf_random2.fit(X_train_pr90, y_train_pr90)
rf_dtr = rf_random3.fit(X_train_dtr, y_train_dtr)

[]: if(RSCV==True):
print(rf_tas.best_params_)
print(rf_pr.best_params_)
print(rf_pr90.best_params_)
print(rf_dtr.best_params_)

{'n_estimators': 200, 'min_samples_split': 25, 'min_samples_leaf': 4,
'max_features': None, 'max_depth': 50, 'bootstrap': True}

[]: ## Test on SSP245

test_Y = xr.open_dataset(data_path + 'test/outputs_ssp245.nc').compute()
test_X = xr.open_dataset(data_path + 'test/inputs_ssp245.nc').compute()

tas_truth = test_Y["tas"].mean('member')
pr_truth = test_Y["pr"].mean('member') * 86400
pr90_truth = test_Y["pr90"].mean('member') * 86400
dtr_truth = test_Y["diurnal_temperature_range"].mean('member')

test_inputs = pd.DataFrame({
"CO2": normalize_co2(test_X["CO2"].data),
"CH4": normalize_ch4(test_X["CH4"].data)

}, index=test_X["CO2"].coords['time'].data)

Combine with aerosol EOFs
test_inputs=pd.concat([test_inputs,

bc_solver.projectField(test_X["BC"], neofs=5,␣
↪eofscaling=1).to_dataframe().unstack('mode').rename(columns={i:f"BC_{i}" for␣
↪i in range(5)}),

so2_solver.projectField(test_X["SO2"], neofs=5,␣
↪eofscaling=1).to_dataframe().unstack('mode').rename(columns={i:f"_{i}" for i␣
↪in range(5)}),

], axis=1)

[]: test_inputs

7

[]: CO2 CH4 (pseudo_pcs, BC_0) (pseudo_pcs, BC_1) \
2015 0.161692 0.467171 2.706810 -1.375172
2016 0.165480 0.467151 2.648897 -1.303500
2017 0.169305 0.467130 2.590985 -1.231828
2018 0.173166 0.467110 2.533072 -1.160157
2019 0.177064 0.467090 2.475159 -1.088485
… … … … …
2096 0.469755 0.352172 0.434483 -0.189906
2097 0.471474 0.351729 0.422541 -0.181722
2098 0.473128 0.351287 0.410599 -0.173539
2099 0.474718 0.350845 0.398656 -0.165355
2100 0.476242 0.350403 0.386714 -0.157171

(pseudo_pcs, BC_2) (pseudo_pcs, BC_3) (pseudo_pcs, BC_4) \
2015 -0.819380 -0.256301 -1.716714
2016 -0.707064 -0.314685 -1.616016
2017 -0.594749 -0.373069 -1.515319
2018 -0.482433 -0.431453 -1.414621
2019 -0.370117 -0.489837 -1.313923
… … … …
2096 -0.115759 -0.230166 0.147331
2097 -0.101978 -0.213992 0.169751
2098 -0.088197 -0.197818 0.192172
2099 -0.074416 -0.181644 0.214592
2100 -0.060636 -0.165471 0.237013

(pseudo_pcs, _0) (pseudo_pcs, _1) (pseudo_pcs, _2) (pseudo_pcs, _3) \
2015 0.903505 2.331736 -0.104266 -1.138111
2016 0.857117 2.261433 0.078151 -1.083139
2017 0.810728 2.191129 0.260569 -1.028166
2018 0.764340 2.120826 0.442987 -0.973193
2019 0.717951 2.050522 0.625405 -0.918221
… … … … …
2096 0.178097 0.697813 1.189839 -0.064685
2097 0.177501 0.687329 1.167448 -0.080802
2098 0.176905 0.676844 1.145056 -0.096920
2099 0.176309 0.666359 1.122665 -0.113037
2100 0.175713 0.655874 1.100274 -0.129154

(pseudo_pcs, _4)
2015 1.045259
2016 0.977491
2017 0.909724
2018 0.841956
2019 0.774188
… …
2096 0.033707

8

2097 0.006906
2098 -0.019895
2099 -0.046696
2100 -0.073497

[86 rows x 12 columns]

[]: rf_tas

[]: RandomizedSearchCV(cv=3, estimator=RandomForestRegressor(random_state=0),
n_iter=9, n_jobs=-1,
param_distributions={'bootstrap': [True, False],

'max_depth': [5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, None],

'max_features': ['log2', 'sqrt', None],
'min_samples_leaf': [4, 8, 12],
'min_samples_split': [5, 10, 15, 25],
'n_estimators': [100, 150, 200, 250,

300]},
verbose=2)

[]: m_out_t = rf_tas.predict(test_inputs.values)
m_out_p = rf_pr.predict(test_inputs.values)
m_out_p90 = rf_pr90.predict(test_inputs.values)
m_out_d = rf_dtr.predict(test_inputs.values)

m_out_tas = m_out_t.reshape(86, 96, 144)
m_out_pr = m_out_p.reshape(86, 96, 144)
m_out_pr90 = m_out_p90.reshape(86, 96, 144)
m_out_dtr = m_out_d.reshape(86, 96, 144)

[]: plt.plot(m_out_t.mean(axis=-1))

[]: [<matplotlib.lines.Line2D at 0x155331b48be0>]

9

[]: xr_output=xr.Dataset(coords={'time': test_X.time.values, 'lat': test_X.latitude.
↪values, 'lon': test_X.longitude.values})

xr_output["tas"]=(['time', 'lat', 'lon'], m_out_tas)
xr_output["diurnal_temperature_range"]=(['time', 'lat', 'lon'], m_out_dtr)
xr_output["pr"]=(['time', 'lat', 'lon'], m_out_pr)
xr_output["pr90"]=(['time', 'lat', 'lon'], m_out_pr90)

[]: norm_diff = colors.TwoSlopeNorm(vmin=-2, vcenter=0, vmax=2)
cmap = 'coolwarm'
for i in [0, 35, 85]:

fig = plt.figure(figsize=(16, 3))
ax = fig.add_subplot(131, projection=cartopy.crs.

↪Robinson(central_longitude=180))
x = tas_truth.isel(time=i)
x_max = np.max(x)
norm = colors.TwoSlopeNorm(vmin=-np.abs(x_max), vcenter=0, vmax=np.

↪abs(x_max))
ax.contourf(tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.

↪PlateCarree(),
norm=norm, cmap=cmap)

ax.add_feature(cartopy.feature.COASTLINE)
fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),

10

ax=ax, orientation='vertical', extend='both', shrink=.8)

ax = fig.add_subplot(132, projection=cartopy.crs.
↪Robinson(central_longitude=180))

x = xr_output['tas'].isel(time=i)
ax.contourf(tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.

↪PlateCarree(),
norm=norm, cmap=cmap)

ax.add_feature(cartopy.feature.COASTLINE)
plt.suptitle(str(2015+i))
fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),

ax=ax, orientation='vertical', extend='both', shrink=.8)
ax = fig.add_subplot(133, projection=cartopy.crs.

↪Robinson(central_longitude=180))
x = tas_truth.isel(time=i)-xr_output['tas'].isel(time=i)
x_max = np.max(x)
norm = colors.TwoSlopeNorm(vmin=-np.abs(x_max), vcenter=0, vmax=np.

↪abs(x_max))
ax.contourf(tas_truth.lon, tas_truth.lat, x, transform=cartopy.crs.

↪PlateCarree(),
norm=norm, cmap=cmap)

fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),
ax=ax, orientation='vertical', extend='both', shrink=.8)

ax.add_feature(cartopy.feature.COASTLINE)
plt.show()

11

[]: variable = 'tas'
start = 2080
weights = np.cos(np.deg2rad(Y['tas'].lat)).expand_dims(lon=144).

↪assign_coords(lon=Y.lon)
nrmse = rmse(tas_truth.sel(time=slice(start, None)).mean('time'),

xr_output[variable].sel(time=slice(start, None)).mean('time'),␣
↪weights=weights).data/ np.abs(

global_mean(tas_truth.sel(time=slice(start, None)).
↪mean('time')).data)

print(nrmse)
r2e = rmse(global_mean(tas_truth.sel(time=slice(start, None))),

global_mean(xr_output[variable].sel(time=slice(start, None)))).data/␣
↪np.abs(

global_mean(tas_truth.sel(time=slice(start, None)).mean('time')).
↪data)

print(r2e)
print(nrmse+5*r2e)

0.08411859630678128
0.162332797972665
0.8957825861701063

[]: global_mean(tas_truth.sel(time=slice(start, None))).plot(label='target')
global_mean(xr_output[variable].sel(time=slice(start, None))).plot()
plt.legend()

[]: <matplotlib.legend.Legend at 0x15532a191c40>

12

[]: print(f"RMSE: {get_rmse(tas_truth[35:], m_out_tas[35:]).mean()}")
print("\n")

RMSE: 0.5244521282584569

[]:

13

