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ViDX: Visual Diagnostics of Assembly Line Performance
in Smart Factories

Panpan Xu, Honghui Mei, Liu Ren, and Wei Chen

Fig. 1. A screenshot of the ViDX system for historical analysis and real-time tracking of assembly line performance. The historical data
analysis panel consists of an extended Marey’s graph (A) for troubleshooting inefficiencies and faults on the assembly lines. It is linked
with a calendar based visualization (B) and a timeline (C) for multi-scale temporal exploration. Supplementary views include small multi-
ples of histograms (D) showing the distribution of the cycle times on each station and a map (E) showing the assembly line schema. The
real-time monitoring panel consists of a radial graph (F) and an explorable 3D station model visualization (G). (H) shows the fault codes.

Abstract— Visual analytics plays a key role in the era of connected industry (or industry 4.0, industrial internet) as modern machines
and assembly lines generate large amounts of data and effective visual exploration techniques are needed for troubleshooting, process
optimization, and decision making. However, developing effective visual analytics solutions for this application domain is a challenging
task due to the sheer volume and the complexity of the data collected in the manufacturing processes. We report the design and
implementation of a comprehensive visual analytics system, ViDX. It supports both real-time tracking of assembly line performance and
historical data exploration to identify inefficiencies, locate anomalies, and form hypotheses about their causes and effects. The system
is designed based on a set of requirements gathered through discussions with the managers and operators from manufacturing sites. It
features interlinked views displaying data at different levels of detail. In particular, we apply and extend the Marey’s graph by introducing
a time-aware outlier-preserving visual aggregation technique to support effective troubleshooting in manufacturing processes. We
also introduce two novel interaction techniques, namely the quantiles brush and samples brush, for the users to interactively steer the
outlier detection algorithms. We evaluate the system with example use cases and an in-depth user interview, both conducted together
with the managers and operators from manufacturing plants. The result demonstrates its effectiveness and reports a successful pilot
application of visual analytics for manufacturing in smart factories.

Index Terms—Temporal Data, Marey’s Graph, Visual Analytics, Manufacturing, Smart Factory, Connected Industry, Industry 4.0
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Connected industry (or industry 4.0, industrial internet) is an
increasingly important topic of worldwide significance [3, 10, 11, 17].
It facilitates the vision and execution of “Smart Factories”. The smart
factories, in comparison to traditional manufacturing environments,
are equipped with machines that are highly digitalized and connected.
Every status and condition change, or occurrence of abnormal events
can be continuously recorded and stored. The investigation of such
data has the potential to bring important insights to the managers
and operators to perform troubleshooting and further optimize the
processes to reduce operation cost and increase profit. Recently, a
number of successful use cases have already been reported, ranging
from pharmaceutical to mining industries [4], where statistical
methods have been applied to track the production process and analyze
factors related to the yield. However, to the best of our knowledge
few examples have been reported that apply visual analytics to the
investigation of manufacturing data, despite that it has been identified
as an important component in connected industry, where it can play
an crucial role in making sense of the increasingly complex and large
data collected [27]. We believe that it would be very valuable for both
the industry stakeholders and the visualization research community
to explore the possibility of applying visual analytics in this domain.

We work closely with managers and operators in manufacturing
sites producing automotive parts to develop a visual analytics system
that can support real-time tracking of assembly line performance and
historical data analysis.

Assembly lines on the shop floor consist of sequences of work
stations. Each station corresponds to a stage of production where
specific procedures are carried out on the products. The products
(automotive parts) are moved through the stations, tested, and shipped
out to car manufacturers. During the operation of the assembly
line, data is recorded about when the product is moved from one
machine to the next and about any fault that occurred during the
process. This type of setting is becoming increasingly common in
modern assembly lines where almost every operation is trackable.
The collected manufacturing process data is valuable for monitoring
real-time assembly line performance to facilitate rapid response of
operators and managers. Furthermore, by analyzing historical records,
they can gain insight about when, where, and how the production
efficiency decreases, and identify if there is any systematic problem
with the assembly lines and the manufacturing environment.

We summarize the main contributions of this work as follows:
• We formulate the design requirements for interactive visual di-

agnostics of assembly line performance, together with the target
users, i.e., operators and managers from manufacturing sites.

• We design and implement a prototype system based on the re-
quirements. We perform case studies and conduct user interviews
to assess its effectiveness and usability.

• We apply and extend Marey’s graph by introducing a novel time-
aware outlier-preserving visual aggregation technique, to facilitate
the identification of anomalies and support troubleshooting in a
large number of manufacturing process data.

• We propose two novel interaction techniques for user steerable
outlier detection and aggregation of manufacturing processes
data in the extended Marey’s graph. One method is based on
brushing quantiles and the other is built on a label propagation
algorithm. We believe the methods are also generally applicable
to the analysis of multivariate data in other domains.

The paper is organized as follows. First, related work is discussed in
Section 2. The background and the design requirements are introduced
in Section 3. The extended Marey’s graph is described in Section 4
and the system is presented in Section 5. In Section 6 we describe the
implementation. In Section 7 we apply our approach to real-world data.
We present discussion in Section 8 and conclude in Section 9.

2 RELATED WORK

2.1 Manufacturing Data Visualization
Today’s manufacturing industry has started using big data analytics
to support its research and operational activities [4]. With the launch of
connected industry and industry 4.0 programs in the private and public

domains [3, 10, 11, 17], it could only be anticipated that the amount
and the complexity of data collected in the manufacturing industry will
continue to grow in the future. Visual analytics, an important technique
for gaining insight from large and complex data, can therefore play
a crucial role in this application domain [19, 27].

So far only a few visual analytics solutions target the data analysis
tasks in manufacturing scenarios. Matković et al. [21] visualize sensor
measurements for process monitoring. Jo et al. [16] extend the basic
Gantt chart for the exploration of large schedules. They introduce novel
interactions and algorithms to improve its scalability, explorability, and
reschedulability. Wörner and Ertl [33] propose a novel visual analytic
system for simulated manufacturing processes.

These studies visualize the data related to the planning and
simulation stages in manufacturing. In this work, we describe the
design of a visual analytic system for manufacturing process data
collected during the operation of the assembly lines in modern factories.
Therefore the analytic tasks are fundamentally different from those
used for planning and simulation purposes as described above.

2.2 Temporal Data Visualization
Temporal data visualization has been extensively studied in the past
years. Temporal dimension can be found in many applications [28].
There are several surveys reporting the state of the art of temporal data
visualization techniques. Aigner et al. [1,2] categorize the visualization
techniques based on the nature of the temporal dimension, i.e., whether
it is cyclic, linear, or branching, and whether there are discrete time
points or time intervals. Bach et al. [5] review a range of techniques
and categorize them through a new perspective by describing each
technique as series of operations performed on a conceptual space-time
cube. The operations include extraction, flattening, filling, geometry
transformation, and content transformation.

Among the vast amount of temporal data visualization techniques,
those visualizing event sequences are the most relevant to our work. In
particular, the event sequence visualization techniques can be grouped
into two categories: the first category visualizes sequences with variant
orderings and occurrences of events, and the second category visualizes
sequences containing a set of prescheduled events. The first category of
techniques includes LifeLines [26,30], Sankey diagrams [12,22,25,32]
and Matrix based visualizations [35] for analyzing patient medical
records and website visiting patterns. Recently, a few interactive
visualization systems have also been proposed for selecting a subset
of the event sequences for focused analysis [13, 18, 34]. The second
category includes Marey’s travel graph [29]. It was first introduced
in the 1880s for visualizing train schedules. Since then it has been
used extensively to analyze public transportation schedules [8, 15, 20].
Inspired by the design, Palomo et al. [24] propose a visual analytic sys-
tem for exploring transportation schedules. They apply kernel density
estimation on the graph to improve the scalability of the visualization.

In this paper, we enhance Marey’s graph with a time-aware
outlier-preserving visual aggregation technique to support effective
identification of anomalies and inefficiencies in the manufacturing
processes. Novel interaction techniques are also introduced, with
which the users can interactively identify the anomalies by specifying
sample normal records or brushing quantiles.

3 DATA ABSTRACTION AND REQUIREMENT ANALYSIS

3.1 Data Abstraction
A typical assembly line in a manufacturing environment consists
of a set of work stations. The parts are moved from one station to
the next to be processed and assembled to form the final product.
In recent years, there has been a widespread move towards using
general-purpose computing devices to control and monitor industrial
processes. Programmable logic controllers (PLCs), for example, are
widely deployed to control the machineries on the assembly lines for
manufacturing automation [14]. The PLCs on the assembly lines will
send the status information of the parts to central databases when the
parts arrive at the stations.

Assembly lines can be considered as directed acyclic graphs (DAGs).
The nodes in the DAGs are the work stations, which we denote as

S = {si|i ∈ [1,n]}. The edge (si,s j) ∈ S×S in the graph indicates that
the operation on s j takes place immediately after si. Fig. 2 shows the
schematic diagram of an assembly line as a DAG. In this assembly line
the parts choose either station s3 or s′3 after finishing on s2 and undergo
the same procedure in parallel. On station s6 two parts from different
sub-processes are brought together and assembled into a single
product. On some occasions the part (or product) undergoes additional
procedures on s4.5 before it is moved onto the next. All of these
processes can be described by modeling the assembly lines as DAGs.
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Fig. 2. The schematic view of an assembly line as a directed acyclic graph
(DAG). The parts are moved among the stations following predefined
paths. On stations s1 and s7 two different types of parts enter different
sub-processes. On stations s6 the two types of parts are assembled.
Station s3 and s′3 perform the same procedures in parallel on the incoming
parts. Sometimes the part undergoes additional procedures on station
s4.5.

The PLCs record when each part p is moved onto a station si and
starts being processed on it. We denote the time as t(p,si). As a part
is being moved along a path P = (s j, ...,sk) on the assembly line, a
sequence of timestamps is created. Based on this, we can calculate the
time it takes for the part to finish its procedures on one station and be
moved onto the next as dt(p,si) = t(p,s j)− t(p,si). This is referred
as the cycle time of the part on station si. Besides the timestamps, the
PLCs also record fault codes if any error has occurred when a part is
being processed on a station. The timestamps and fault codes together
are referred to as the trace or process data of the corresponding part.
The process data of all the parts composing a product can be combined.
Processes with comparatively longer cycle times on some stations or
with faults are referred to as outliers or abnormal processes.

To summarize, the invariants in the data collected from the
manufacturing processes are the predefined sequences of work stations
and procedures described by the DAGs, and the variants are the
timestamps when the parts (or products) reach a station and the
occurrences of faults. The target users have informed us that these are
the most important variables amongst many measurements they have
recorded. One underlying reason is that the assembly lines employ
pipelining to concurrently process multiple parts on different stations.
Due to the inherent sequential dependency in a pipelined process, the
delay on even a single station may stall and affect the throughput of
an entire assembly line. It would affect the ability of the manufacturing
plant to meet targets of production and eventually the profit. Therefore
it is very desirable for the operators and the managers to be able to
access real-time line performance and be notified of any potential
problems. Moreover, the data provides an extremely accurate and
complete description of the assembly line operations. By analyzing the
data, the users can identify the abnormal processes, understand when,
where, and why the efficiency decreases, perform troubleshooting, and
discover opportunities to reduce losses and increase profit.

Therefore, our focus is to design an informative and intuitive
visualization interface for both real-time monitoring of assembly line
performance and historical data analysis.

3.2 Design Process and Requirement Analysis
Based on discussions with the managers and operators, we have formu-
lated a set of requirements to guide the design of the system.

Overall the project took about six months. In the beginning the
collaborators gave us the access rights to their production databases.

They pointed us to the data that they were most interested in, i.e., the
cycle times and the faults in the manufacturing processes. They also
presented us some initial visual design ideas (e.g., the radial display
in Fig. 5(a)). During the following six months we had frequent (approx.
biweekly) video conferences and in-person meetings as well as email
discussions, mostly about the semantics of the data attributes when
we started building the system, and more about the feedback on the
prototypes at later stages. The meetings usually involved a person at
a managerial position responsible for the “Big Data in Industry 4.0”
program in the plant and technical staffs responsible for the design
and maintenance of the databases. The design requirements were
formulated iteratively throughout the six months.

The following design requirements are identified for historical data
analysis:

R1 Facilitate the detection of abnormal processes. The visual encod-
ing should highlight the abnormal processes and show when and on
which stations the delay or faults has occurred. Detecting outliers
is the first step to in-depth analysis.

R2 Facilitate the detection of inefficiencies and support trou-
bleshooting. The system should allow users to identify time
periods with low production efficiency, and to form hypothesis
about their causes.

R3 Engage users to detect outlier processes interactively. Many
automatic outlier detection algorithms can be applied to support
efficient identification of abnormal processes [9]. Although it is
possible to directly apply those algorithms and encode the end
results in the visualization, we believe that it would be extremely
beneficial to engage the users with domain knowledge and experi-
ences operating the assembly lines in this process. To this end, we
should provide interactive outlier detection functionalities that are
easy to use and do not require understanding of technical details.

R4 Support predictive analysis by associating the anomalies with
the surrounding context of assembly line operation. The
occurrences of the delay and faults may have certain causes and
effects. One may observe frequent sequential occurrences of a
particular fault and pauses on the assembly line. This indicates
potential causal relations between the faults and the pauses.
Observations like this can help build a plausible predictive model.
The operators and managers can take preventive measures to
reduce losses based on the predictions.

For tracking real-time assembly line performance, we identify the
following design requirements:

R5 Highlight anomalies in real-time data. Similar to historical data
analysis, anomalies such as delay and faults should be highlighted
such that the operators and managers can respond immediately
to prevent losses.

R6 Associate data with the physical context; visually indicate prob-
lematic components in 3D models. Besides showing the abstract
status information, it is also important for the users to be able to
quickly locate the stations in physical environments. Furthermore,
since the fault codes are related to specific components in the
stations, we can highlight those components in 3D models to
support troubleshooting.

Besides that, the following requirements are also equally important:

R7 Support smooth and interactive exploration of large amounts
of process data. In the manufacturing industry, it is typical that
thousands of products are made every day and millions of products
are made every year on a single assembly line. To support
interactive exploratory analysis of the large data set, the system
should be visually and algorithmically scalable.

R8 Use familiar visual metaphors and respect users’ mental models
about assembly line operation. Since few of our target users
have experience with advanced visual analytics applications, it
is extremely important to keep the visual designs intuitive and easy
to understand. Therefore, we have to make careful design choices
considering these aspects.
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Connected industry (or industry 4.0, industrial internet) is an
increasingly important topic of worldwide significance [3, 10, 11, 17].
It facilitates the vision and execution of “Smart Factories”. The smart
factories, in comparison to traditional manufacturing environments,
are equipped with machines that are highly digitalized and connected.
Every status and condition change, or occurrence of abnormal events
can be continuously recorded and stored. The investigation of such
data has the potential to bring important insights to the managers
and operators to perform troubleshooting and further optimize the
processes to reduce operation cost and increase profit. Recently, a
number of successful use cases have already been reported, ranging
from pharmaceutical to mining industries [4], where statistical
methods have been applied to track the production process and analyze
factors related to the yield. However, to the best of our knowledge
few examples have been reported that apply visual analytics to the
investigation of manufacturing data, despite that it has been identified
as an important component in connected industry, where it can play
an crucial role in making sense of the increasingly complex and large
data collected [27]. We believe that it would be very valuable for both
the industry stakeholders and the visualization research community
to explore the possibility of applying visual analytics in this domain.

We work closely with managers and operators in manufacturing
sites producing automotive parts to develop a visual analytics system
that can support real-time tracking of assembly line performance and
historical data analysis.

Assembly lines on the shop floor consist of sequences of work
stations. Each station corresponds to a stage of production where
specific procedures are carried out on the products. The products
(automotive parts) are moved through the stations, tested, and shipped
out to car manufacturers. During the operation of the assembly
line, data is recorded about when the product is moved from one
machine to the next and about any fault that occurred during the
process. This type of setting is becoming increasingly common in
modern assembly lines where almost every operation is trackable.
The collected manufacturing process data is valuable for monitoring
real-time assembly line performance to facilitate rapid response of
operators and managers. Furthermore, by analyzing historical records,
they can gain insight about when, where, and how the production
efficiency decreases, and identify if there is any systematic problem
with the assembly lines and the manufacturing environment.

We summarize the main contributions of this work as follows:
• We formulate the design requirements for interactive visual di-

agnostics of assembly line performance, together with the target
users, i.e., operators and managers from manufacturing sites.

• We design and implement a prototype system based on the re-
quirements. We perform case studies and conduct user interviews
to assess its effectiveness and usability.

• We apply and extend Marey’s graph by introducing a novel time-
aware outlier-preserving visual aggregation technique, to facilitate
the identification of anomalies and support troubleshooting in a
large number of manufacturing process data.

• We propose two novel interaction techniques for user steerable
outlier detection and aggregation of manufacturing processes
data in the extended Marey’s graph. One method is based on
brushing quantiles and the other is built on a label propagation
algorithm. We believe the methods are also generally applicable
to the analysis of multivariate data in other domains.

The paper is organized as follows. First, related work is discussed in
Section 2. The background and the design requirements are introduced
in Section 3. The extended Marey’s graph is described in Section 4
and the system is presented in Section 5. In Section 6 we describe the
implementation. In Section 7 we apply our approach to real-world data.
We present discussion in Section 8 and conclude in Section 9.

2 RELATED WORK

2.1 Manufacturing Data Visualization
Today’s manufacturing industry has started using big data analytics
to support its research and operational activities [4]. With the launch of
connected industry and industry 4.0 programs in the private and public

domains [3, 10, 11, 17], it could only be anticipated that the amount
and the complexity of data collected in the manufacturing industry will
continue to grow in the future. Visual analytics, an important technique
for gaining insight from large and complex data, can therefore play
a crucial role in this application domain [19, 27].

So far only a few visual analytics solutions target the data analysis
tasks in manufacturing scenarios. Matković et al. [21] visualize sensor
measurements for process monitoring. Jo et al. [16] extend the basic
Gantt chart for the exploration of large schedules. They introduce novel
interactions and algorithms to improve its scalability, explorability, and
reschedulability. Wörner and Ertl [33] propose a novel visual analytic
system for simulated manufacturing processes.

These studies visualize the data related to the planning and
simulation stages in manufacturing. In this work, we describe the
design of a visual analytic system for manufacturing process data
collected during the operation of the assembly lines in modern factories.
Therefore the analytic tasks are fundamentally different from those
used for planning and simulation purposes as described above.

2.2 Temporal Data Visualization
Temporal data visualization has been extensively studied in the past
years. Temporal dimension can be found in many applications [28].
There are several surveys reporting the state of the art of temporal data
visualization techniques. Aigner et al. [1,2] categorize the visualization
techniques based on the nature of the temporal dimension, i.e., whether
it is cyclic, linear, or branching, and whether there are discrete time
points or time intervals. Bach et al. [5] review a range of techniques
and categorize them through a new perspective by describing each
technique as series of operations performed on a conceptual space-time
cube. The operations include extraction, flattening, filling, geometry
transformation, and content transformation.

Among the vast amount of temporal data visualization techniques,
those visualizing event sequences are the most relevant to our work. In
particular, the event sequence visualization techniques can be grouped
into two categories: the first category visualizes sequences with variant
orderings and occurrences of events, and the second category visualizes
sequences containing a set of prescheduled events. The first category of
techniques includes LifeLines [26,30], Sankey diagrams [12,22,25,32]
and Matrix based visualizations [35] for analyzing patient medical
records and website visiting patterns. Recently, a few interactive
visualization systems have also been proposed for selecting a subset
of the event sequences for focused analysis [13, 18, 34]. The second
category includes Marey’s travel graph [29]. It was first introduced
in the 1880s for visualizing train schedules. Since then it has been
used extensively to analyze public transportation schedules [8, 15, 20].
Inspired by the design, Palomo et al. [24] propose a visual analytic sys-
tem for exploring transportation schedules. They apply kernel density
estimation on the graph to improve the scalability of the visualization.

In this paper, we enhance Marey’s graph with a time-aware
outlier-preserving visual aggregation technique to support effective
identification of anomalies and inefficiencies in the manufacturing
processes. Novel interaction techniques are also introduced, with
which the users can interactively identify the anomalies by specifying
sample normal records or brushing quantiles.

3 DATA ABSTRACTION AND REQUIREMENT ANALYSIS

3.1 Data Abstraction
A typical assembly line in a manufacturing environment consists
of a set of work stations. The parts are moved from one station to
the next to be processed and assembled to form the final product.
In recent years, there has been a widespread move towards using
general-purpose computing devices to control and monitor industrial
processes. Programmable logic controllers (PLCs), for example, are
widely deployed to control the machineries on the assembly lines for
manufacturing automation [14]. The PLCs on the assembly lines will
send the status information of the parts to central databases when the
parts arrive at the stations.

Assembly lines can be considered as directed acyclic graphs (DAGs).
The nodes in the DAGs are the work stations, which we denote as

S = {si|i ∈ [1,n]}. The edge (si,s j) ∈ S×S in the graph indicates that
the operation on s j takes place immediately after si. Fig. 2 shows the
schematic diagram of an assembly line as a DAG. In this assembly line
the parts choose either station s3 or s′3 after finishing on s2 and undergo
the same procedure in parallel. On station s6 two parts from different
sub-processes are brought together and assembled into a single
product. On some occasions the part (or product) undergoes additional
procedures on s4.5 before it is moved onto the next. All of these
processes can be described by modeling the assembly lines as DAGs.
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Fig. 2. The schematic view of an assembly line as a directed acyclic graph
(DAG). The parts are moved among the stations following predefined
paths. On stations s1 and s7 two different types of parts enter different
sub-processes. On stations s6 the two types of parts are assembled.
Station s3 and s′3 perform the same procedures in parallel on the incoming
parts. Sometimes the part undergoes additional procedures on station
s4.5.

The PLCs record when each part p is moved onto a station si and
starts being processed on it. We denote the time as t(p,si). As a part
is being moved along a path P = (s j, ...,sk) on the assembly line, a
sequence of timestamps is created. Based on this, we can calculate the
time it takes for the part to finish its procedures on one station and be
moved onto the next as dt(p,si) = t(p,s j)− t(p,si). This is referred
as the cycle time of the part on station si. Besides the timestamps, the
PLCs also record fault codes if any error has occurred when a part is
being processed on a station. The timestamps and fault codes together
are referred to as the trace or process data of the corresponding part.
The process data of all the parts composing a product can be combined.
Processes with comparatively longer cycle times on some stations or
with faults are referred to as outliers or abnormal processes.

To summarize, the invariants in the data collected from the
manufacturing processes are the predefined sequences of work stations
and procedures described by the DAGs, and the variants are the
timestamps when the parts (or products) reach a station and the
occurrences of faults. The target users have informed us that these are
the most important variables amongst many measurements they have
recorded. One underlying reason is that the assembly lines employ
pipelining to concurrently process multiple parts on different stations.
Due to the inherent sequential dependency in a pipelined process, the
delay on even a single station may stall and affect the throughput of
an entire assembly line. It would affect the ability of the manufacturing
plant to meet targets of production and eventually the profit. Therefore
it is very desirable for the operators and the managers to be able to
access real-time line performance and be notified of any potential
problems. Moreover, the data provides an extremely accurate and
complete description of the assembly line operations. By analyzing the
data, the users can identify the abnormal processes, understand when,
where, and why the efficiency decreases, perform troubleshooting, and
discover opportunities to reduce losses and increase profit.

Therefore, our focus is to design an informative and intuitive
visualization interface for both real-time monitoring of assembly line
performance and historical data analysis.

3.2 Design Process and Requirement Analysis
Based on discussions with the managers and operators, we have formu-
lated a set of requirements to guide the design of the system.

Overall the project took about six months. In the beginning the
collaborators gave us the access rights to their production databases.

They pointed us to the data that they were most interested in, i.e., the
cycle times and the faults in the manufacturing processes. They also
presented us some initial visual design ideas (e.g., the radial display
in Fig. 5(a)). During the following six months we had frequent (approx.
biweekly) video conferences and in-person meetings as well as email
discussions, mostly about the semantics of the data attributes when
we started building the system, and more about the feedback on the
prototypes at later stages. The meetings usually involved a person at
a managerial position responsible for the “Big Data in Industry 4.0”
program in the plant and technical staffs responsible for the design
and maintenance of the databases. The design requirements were
formulated iteratively throughout the six months.

The following design requirements are identified for historical data
analysis:

R1 Facilitate the detection of abnormal processes. The visual encod-
ing should highlight the abnormal processes and show when and on
which stations the delay or faults has occurred. Detecting outliers
is the first step to in-depth analysis.

R2 Facilitate the detection of inefficiencies and support trou-
bleshooting. The system should allow users to identify time
periods with low production efficiency, and to form hypothesis
about their causes.

R3 Engage users to detect outlier processes interactively. Many
automatic outlier detection algorithms can be applied to support
efficient identification of abnormal processes [9]. Although it is
possible to directly apply those algorithms and encode the end
results in the visualization, we believe that it would be extremely
beneficial to engage the users with domain knowledge and experi-
ences operating the assembly lines in this process. To this end, we
should provide interactive outlier detection functionalities that are
easy to use and do not require understanding of technical details.

R4 Support predictive analysis by associating the anomalies with
the surrounding context of assembly line operation. The
occurrences of the delay and faults may have certain causes and
effects. One may observe frequent sequential occurrences of a
particular fault and pauses on the assembly line. This indicates
potential causal relations between the faults and the pauses.
Observations like this can help build a plausible predictive model.
The operators and managers can take preventive measures to
reduce losses based on the predictions.

For tracking real-time assembly line performance, we identify the
following design requirements:

R5 Highlight anomalies in real-time data. Similar to historical data
analysis, anomalies such as delay and faults should be highlighted
such that the operators and managers can respond immediately
to prevent losses.

R6 Associate data with the physical context; visually indicate prob-
lematic components in 3D models. Besides showing the abstract
status information, it is also important for the users to be able to
quickly locate the stations in physical environments. Furthermore,
since the fault codes are related to specific components in the
stations, we can highlight those components in 3D models to
support troubleshooting.

Besides that, the following requirements are also equally important:

R7 Support smooth and interactive exploration of large amounts
of process data. In the manufacturing industry, it is typical that
thousands of products are made every day and millions of products
are made every year on a single assembly line. To support
interactive exploratory analysis of the large data set, the system
should be visually and algorithmically scalable.

R8 Use familiar visual metaphors and respect users’ mental models
about assembly line operation. Since few of our target users
have experience with advanced visual analytics applications, it
is extremely important to keep the visual designs intuitive and easy
to understand. Therefore, we have to make careful design choices
considering these aspects.
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Fig. 3. Marey’s graph [29] and the relevant visual patterns when applied to the manufacturing process data. It uses the path (s1,s2,s3(s′3),s5,s6,s9,s10)
in the DAG in Fig. 2 for illustration. (a) the original Marey’s graph shows the bus/train schedules; (b) Marey’s graph showing when a product starts
being processed on each work station on an assembly line, the visual pattern shows that no abnormal delay has occurred and the assembly line
works smoothly; (c) the assembly line is completely stopped during a time interval, which can be caused by faults or prescheduled maintenance; (d)
the assembly line is partially stopped to handle unprocessed products.

4 EXTENDED MAREY’S GRAPH

In this section, we present the main visual component in the system, the
extended Marey’s graph, for historical data analysis. Because a direct
application of the Marey’s graph would result in visual clutter and
affect the visibility of the outliers, we introduce a time-aware outlier-
preserving visual aggregation technique to enhance it. To support this
technique, we include computational outlier detection methods in the
system and design interactions for the users to steer those algorithms.

4.1 Visual Encoding
Marey’s graph [29] is a traditional method for depicting bus or train
schedules. It employs a parallel layout of time axes. Each time axis
corresponds to a train or bus stop. Polylines connecting the time points
on the axes show when the buses or trains are expected to arrive at a
stop (Fig. 3 (a)) based on the schedules.

This visual encoding can be directly applied to manufacturing
processes data if we consider each work station on the assembly line
as a bus or train stop, and the time when the parts are moved onto each
work station as the time in bus or train schedules. The polylines would
trace the complete history of a product on the assembly line. The angle
of the line segments between the axes would indicate its cycle time
on each station.

Similar as in parallel coordinate plots (PCPs), we have to decide on
a linear ordering of the axes (stations) before drawing the polylines in
Marey’s graph. The ordering we use is a topological sort of the stations
in the DAG. Manual adjustments are made to reduce the total lengths
of the polylines. As illustrated in Fig. 1 (A), subprocesses ([070, 080,
... , 170] and [010, ... , 170]) and parallel processes ([105, 115, 120]
and [105, 110, 120]) are overlaid on the same graph. This is helpful for
tracing the complete history of a product with multiple parts. However
it might introduce undesirable line overlap and intersections. To solve
this problem, we include filtering interactions for the users to focus
on particular paths on the DAG.

Marey’s graph allows us to use the familiar metaphor of trans-
portation schedules to explain the visual encoding (R8). It shows
multivariate information and supports the detection of when and on
which station the delay occurs (R1). More importantly, a set of recur-
ring visual patterns emerge from the visualization. Based on the visual
patterns the operators can form hypothesis about the causes of the
inefficiency (R2). Here we summarize the visual patterns for the users
to quickly read high-level semantic information from the visualization.

It should be noted that although both Marey’s graph and PCPs
have parallel layout of axes and use polylines as the primary visual
primitives to display data, they are fundamentally different on which
visual patterns bear what kind of semantic meanings.

In Marey’s graph, the users can identify out-of-order processes,
visually indicated by line segments crossing each other between the
time axes and abnormal delays, indicated by line segments that stretch

much longer than the others between two time axes.
Visual patterns can also be formed collectively by a number of visual

elements. There are listed as below. Fig. 3 illustrates the different
types of visual patterns. It uses the path (s1,s2,s3(s′3),s5,s6,s9,s10)
in the DAG in Fig. 2 for illustration.
- Streak of efficient processes. In Fig. 3 (b), the line segments between

the axes run parallel to each other and have equal-sized displacement.
This visual pattern indicates a rhythmic and smooth processing of
the products on the assembly line where no delay or interruption of
operations occur.

- Halt of the entire assembly line. In Fig. 3 (c), all the processes have
experienced delay around a time point as indicated by the lengths
and the slopes of the line segments. What actually happens is that
the entire assembly line halts, and no part is being moved from one
station to another. This can be caused by scheduled maintenance,
breaks, or other unexpected factors.

- Partial halt of the assembly line to wait for continuing tasks. In
Fig. 3 (d), station s1 and s2 stopped processing, waiting for s3 to
finish handling the parts whose processing have been delayed. This
type of event is also a source of inefficiency.
Occurrences of faults are displayed as color coded circles on the

time axes of the corresponding stations. The overlay of information
allows the operators and managers to quickly locate faults (R1) and
identify the effect of the fault on the operation of the assembly line
(R4). Besides that, we redundantly code the cycle times in Marey’s
graph with a green-yellow-red color scale.

4.1.1 Alternative Visual Designs
We have considered several alternative visual encodings before finally
deciding on using the Marey’s graph. Gantt chart, which is often used
for visualizing schedules including bus and train schedules, is one
possible way to display the manufacturing process data. However, it is
difficult to compare the cycle times of different processes, as they start
at different times on the Gantt chart. Although interactively aligning the
processes at their starting times on each station may help [16, 30], only
the cycle times on one station can be compared at a time. Moreover, the
temporal context is lost. In Marey’s graph, the lengths and angles of the
line segments are strong visual cues for the comparison of cycle times
even without aligning the starting time. The design invokes the Gestalt
rule of similarity: line segments with similar slopes are perceived
as a group by the reader [31] and the outliers will stand out (R1).
Sankey diagram [32] and MatrixWave [35] are other possible ways
to visualize event sequence data, although they emphasize the variation
on the relative ordering of the events (which is fixed in manufacturing
schedules) rather than the timings and the cycle times [16].

4.1.2 Time-Aware Outlier-Preserving Visual Aggregation
While a direct application of Marey’s graph could reveal many inter-
esting visual patterns, it suffers from severe visual clutter with the

overplotting of lines even with a moderate amount of data. The outliers
can be obscured in the display. Kernel density estimation (KDE) [24]
is one possible approach to address the overplotting issue. Instead of
drawing individual lines, this method estimates the density of the lines
and draws a heat map of it. However, it can blur out the anomalies (or
outliers), as they usually reside in low density regions of the display. We
introduce a method that can reduce visual clutter and in the mean while
highlight the outliers, inspired by an approach originally proposed by
Novotný and Hauser [23] for reducing the visual clutter in PCPs.

Fig. 4 illustrates the method. First, the processes are classified as
normal ones and outliers. Then the normal processes are aggregated
based on their temporal proximity, and each aggregated group is
displayed as a thick band instead of individual polylines. The outliers
are displayed as individual polylines and overlaid on top of the
aggregated normal processes.

The aggregation of the normal processes is implemented with a
greedy algorithm. It scans the processes sorted by their starting time on
the assembly line. For each process scanned, it will decide whether it
should merge the process to the current group or create a new one. If the
process scanned is temporally close to those in the current group (the dif-
ference of their starting times at the first station is smaller than a thresh-
old), it will be merged into the group, otherwise a new one is created.
The threshold for merging the processes is determined based on the av-
erage time it takes for a new product to enter the assembly line. The ag-
gregated processes are rendered as thick bands composed of trapezoids
connecting adjacent time axes. The vertices of the trapezoids are placed
at the minimum and maximum timestamps of the aggregated processes.

In this way, we are able to visualize a larger number of processes
and still highlight the anomalies. The aggregated processes show the
surrounding context for these abnormal processes for troubleshooting
(R4). The visual patterns we described in the last section are still
visible as the related abnormal processes are displayed individually
and not hidden from the viewers.
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Fig. 4. Time-aware outlier-preserving visual aggregation: the outliers
with faults or abnormal delays are identified; the normal processes in
close temporal proximity to each other are aggregated and they are
represented as thick bands instead of individual polylines.

However, one problem remains: which processes should be regarded
as outliers and which should be considered as normal?

4.1.3 Interactive Identification of Outliers

We introduce two interactive techniques for identifying abnormal
processes. We engage user input in ways that allow them to flexibly
incorporate their experiences operating the assembly lines (R3). Both
methods detect outlier processes based on their cycle times on the
work stations.

Quantiles Brush Quantiles are descriptive statistics of a variable
which splits a set of observations into equally sized bins. The p-
quantile of a variable given a set of n samples is a value q(p), for which
there are at least np samples smaller than or equal to it and at least
n(1− p) samples larger than or equal to it. It is a generalization of the
quartiles (q(1/4),q(1/2),q(3/4)) that appear in a box plot. Frequently,
quantiles (mostly quartiles) are integrated in visualizations (e.g., box
plots) to give a succinct summary of the distribution of a single variable.

We introduce a brushing technique for the users to specify outliers
among the processes based on quantiles. The user can select a pair
of values (p0, p1) (p0 < p1) from the range [0,1]. The corresponding
quantiles (q(p0),q(p1)) for the cycle times on each station will then
be calculated. Processes with cycle times lying outside the range
[q(p0),q(p1)] on any stations are identified as outliers. The users can
also fine tune the range for individual stations.

Fig. 1 (D) shows the quantile range selector implemented in the
prototype, together with small multiples of histograms showing the
distribution of the cycle times on each station. Outlier processes are
displayed as individual polylines in the aggregated graph. The graph
interactively updates to show a new set of outliers detected as the
user selects different quantiles. The quantile-based brushing widget
provides a simple interface for specifying statistically meaningful
parameters as the lower and upper bounds of normal cycle times.

Samples Brush We also introduce a sample based approach to
engage user input for the identification of abnormal processes. In
this approach, the users label a set of normal processes. Based on the
information the system can detect the outliers in the remaining data.
We integrate the label propagation algorithm [36] for this purpose. This
method can infer the class of a large number of data points even with
a few labeled ones, with the prior assumption that data belonging to
the same class (normal processes in this case) form densely populated
regions in the high dimensional space. We find it suitable for this usage
scenario, since it requires a minimum amount of user input.

Label propagation is a graph-based semi-supervised learning
algorithm. It works by first constructing a neighborhood graph (e.g.,
k-nearest neighbor graph) containing both the labeled and unlabeled
data points. Then it iteratively propagates the labels along the graph
edges, starting from the points with known labels. The iteration stops
when the labels of the data points no longer change. The algorithm
can be expressed formally as:

Propagate labels:Lt
X = ALt−1

X (1)
Normalize rows in LX (2)

Reset originally labeled data in LX (3)

Where A is the adjacency matrix of the neighborhood graph and
LX codes the labels of the data points (please refer to [36] for more
details). The matrix multiplication can be parallelized on modern
GPUs for interactive performance [6] on large data sets.

We apply the method to identify abnormal processes based on the
samples specified by the users (Fig. 9( A© and B©)). First, we construct
a k-nn graph of all the processes based on their cycle times on the
stations using an Euclidean distance metric. Additionally, we set a
threshold on the maximum neighborhood distances in the k-nn graph
to stop labels from propagating to very dissimilar processes. Second,
the system propagates the normal label through the k-nn graph and
gradually covers the dense regions in the data set containing the sample
normal processes. The remaining unlabeled processes are outliers,
which will be displayed in the extended Marey’s graph as individual
polylines (Fig. 9 D©). The normal processes are aggregated (Fig. 9 C©).

The quantiles brush and the samples brush both engage users in
the computational extensive process of outlier detection (R3). The
system will give immediate visual feedback about the results after the
users change their inputs.

5 THE VIDX SYSTEM

5.1 Historical Data Analysis
To support the exploration and analysis of historical data, we have
designed a multi-scale hierarchical display, following the visual data
analysis mantra “overview first, zoom and filter, then details-on-
demand” [28]. The display consists of a calendar based visualization,
a timeline, and the extended Marey’s graph, showing data at different
temporal scales with different levels of detail to support the exploration
of year long data (R7). Fig. 1 shows an overview of the system.

Calendar View The calendar view shows the summary statistics
such as the number of products and the number of faults occurred on
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Fig. 3. Marey’s graph [29] and the relevant visual patterns when applied to the manufacturing process data. It uses the path (s1,s2,s3(s′3),s5,s6,s9,s10)
in the DAG in Fig. 2 for illustration. (a) the original Marey’s graph shows the bus/train schedules; (b) Marey’s graph showing when a product starts
being processed on each work station on an assembly line, the visual pattern shows that no abnormal delay has occurred and the assembly line
works smoothly; (c) the assembly line is completely stopped during a time interval, which can be caused by faults or prescheduled maintenance; (d)
the assembly line is partially stopped to handle unprocessed products.

4 EXTENDED MAREY’S GRAPH

In this section, we present the main visual component in the system, the
extended Marey’s graph, for historical data analysis. Because a direct
application of the Marey’s graph would result in visual clutter and
affect the visibility of the outliers, we introduce a time-aware outlier-
preserving visual aggregation technique to enhance it. To support this
technique, we include computational outlier detection methods in the
system and design interactions for the users to steer those algorithms.

4.1 Visual Encoding
Marey’s graph [29] is a traditional method for depicting bus or train
schedules. It employs a parallel layout of time axes. Each time axis
corresponds to a train or bus stop. Polylines connecting the time points
on the axes show when the buses or trains are expected to arrive at a
stop (Fig. 3 (a)) based on the schedules.

This visual encoding can be directly applied to manufacturing
processes data if we consider each work station on the assembly line
as a bus or train stop, and the time when the parts are moved onto each
work station as the time in bus or train schedules. The polylines would
trace the complete history of a product on the assembly line. The angle
of the line segments between the axes would indicate its cycle time
on each station.

Similar as in parallel coordinate plots (PCPs), we have to decide on
a linear ordering of the axes (stations) before drawing the polylines in
Marey’s graph. The ordering we use is a topological sort of the stations
in the DAG. Manual adjustments are made to reduce the total lengths
of the polylines. As illustrated in Fig. 1 (A), subprocesses ([070, 080,
... , 170] and [010, ... , 170]) and parallel processes ([105, 115, 120]
and [105, 110, 120]) are overlaid on the same graph. This is helpful for
tracing the complete history of a product with multiple parts. However
it might introduce undesirable line overlap and intersections. To solve
this problem, we include filtering interactions for the users to focus
on particular paths on the DAG.

Marey’s graph allows us to use the familiar metaphor of trans-
portation schedules to explain the visual encoding (R8). It shows
multivariate information and supports the detection of when and on
which station the delay occurs (R1). More importantly, a set of recur-
ring visual patterns emerge from the visualization. Based on the visual
patterns the operators can form hypothesis about the causes of the
inefficiency (R2). Here we summarize the visual patterns for the users
to quickly read high-level semantic information from the visualization.

It should be noted that although both Marey’s graph and PCPs
have parallel layout of axes and use polylines as the primary visual
primitives to display data, they are fundamentally different on which
visual patterns bear what kind of semantic meanings.

In Marey’s graph, the users can identify out-of-order processes,
visually indicated by line segments crossing each other between the
time axes and abnormal delays, indicated by line segments that stretch

much longer than the others between two time axes.
Visual patterns can also be formed collectively by a number of visual

elements. There are listed as below. Fig. 3 illustrates the different
types of visual patterns. It uses the path (s1,s2,s3(s′3),s5,s6,s9,s10)
in the DAG in Fig. 2 for illustration.
- Streak of efficient processes. In Fig. 3 (b), the line segments between

the axes run parallel to each other and have equal-sized displacement.
This visual pattern indicates a rhythmic and smooth processing of
the products on the assembly line where no delay or interruption of
operations occur.

- Halt of the entire assembly line. In Fig. 3 (c), all the processes have
experienced delay around a time point as indicated by the lengths
and the slopes of the line segments. What actually happens is that
the entire assembly line halts, and no part is being moved from one
station to another. This can be caused by scheduled maintenance,
breaks, or other unexpected factors.

- Partial halt of the assembly line to wait for continuing tasks. In
Fig. 3 (d), station s1 and s2 stopped processing, waiting for s3 to
finish handling the parts whose processing have been delayed. This
type of event is also a source of inefficiency.
Occurrences of faults are displayed as color coded circles on the

time axes of the corresponding stations. The overlay of information
allows the operators and managers to quickly locate faults (R1) and
identify the effect of the fault on the operation of the assembly line
(R4). Besides that, we redundantly code the cycle times in Marey’s
graph with a green-yellow-red color scale.

4.1.1 Alternative Visual Designs
We have considered several alternative visual encodings before finally
deciding on using the Marey’s graph. Gantt chart, which is often used
for visualizing schedules including bus and train schedules, is one
possible way to display the manufacturing process data. However, it is
difficult to compare the cycle times of different processes, as they start
at different times on the Gantt chart. Although interactively aligning the
processes at their starting times on each station may help [16, 30], only
the cycle times on one station can be compared at a time. Moreover, the
temporal context is lost. In Marey’s graph, the lengths and angles of the
line segments are strong visual cues for the comparison of cycle times
even without aligning the starting time. The design invokes the Gestalt
rule of similarity: line segments with similar slopes are perceived
as a group by the reader [31] and the outliers will stand out (R1).
Sankey diagram [32] and MatrixWave [35] are other possible ways
to visualize event sequence data, although they emphasize the variation
on the relative ordering of the events (which is fixed in manufacturing
schedules) rather than the timings and the cycle times [16].

4.1.2 Time-Aware Outlier-Preserving Visual Aggregation
While a direct application of Marey’s graph could reveal many inter-
esting visual patterns, it suffers from severe visual clutter with the

overplotting of lines even with a moderate amount of data. The outliers
can be obscured in the display. Kernel density estimation (KDE) [24]
is one possible approach to address the overplotting issue. Instead of
drawing individual lines, this method estimates the density of the lines
and draws a heat map of it. However, it can blur out the anomalies (or
outliers), as they usually reside in low density regions of the display. We
introduce a method that can reduce visual clutter and in the mean while
highlight the outliers, inspired by an approach originally proposed by
Novotný and Hauser [23] for reducing the visual clutter in PCPs.

Fig. 4 illustrates the method. First, the processes are classified as
normal ones and outliers. Then the normal processes are aggregated
based on their temporal proximity, and each aggregated group is
displayed as a thick band instead of individual polylines. The outliers
are displayed as individual polylines and overlaid on top of the
aggregated normal processes.

The aggregation of the normal processes is implemented with a
greedy algorithm. It scans the processes sorted by their starting time on
the assembly line. For each process scanned, it will decide whether it
should merge the process to the current group or create a new one. If the
process scanned is temporally close to those in the current group (the dif-
ference of their starting times at the first station is smaller than a thresh-
old), it will be merged into the group, otherwise a new one is created.
The threshold for merging the processes is determined based on the av-
erage time it takes for a new product to enter the assembly line. The ag-
gregated processes are rendered as thick bands composed of trapezoids
connecting adjacent time axes. The vertices of the trapezoids are placed
at the minimum and maximum timestamps of the aggregated processes.

In this way, we are able to visualize a larger number of processes
and still highlight the anomalies. The aggregated processes show the
surrounding context for these abnormal processes for troubleshooting
(R4). The visual patterns we described in the last section are still
visible as the related abnormal processes are displayed individually
and not hidden from the viewers.
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Fig. 4. Time-aware outlier-preserving visual aggregation: the outliers
with faults or abnormal delays are identified; the normal processes in
close temporal proximity to each other are aggregated and they are
represented as thick bands instead of individual polylines.

However, one problem remains: which processes should be regarded
as outliers and which should be considered as normal?

4.1.3 Interactive Identification of Outliers

We introduce two interactive techniques for identifying abnormal
processes. We engage user input in ways that allow them to flexibly
incorporate their experiences operating the assembly lines (R3). Both
methods detect outlier processes based on their cycle times on the
work stations.

Quantiles Brush Quantiles are descriptive statistics of a variable
which splits a set of observations into equally sized bins. The p-
quantile of a variable given a set of n samples is a value q(p), for which
there are at least np samples smaller than or equal to it and at least
n(1− p) samples larger than or equal to it. It is a generalization of the
quartiles (q(1/4),q(1/2),q(3/4)) that appear in a box plot. Frequently,
quantiles (mostly quartiles) are integrated in visualizations (e.g., box
plots) to give a succinct summary of the distribution of a single variable.

We introduce a brushing technique for the users to specify outliers
among the processes based on quantiles. The user can select a pair
of values (p0, p1) (p0 < p1) from the range [0,1]. The corresponding
quantiles (q(p0),q(p1)) for the cycle times on each station will then
be calculated. Processes with cycle times lying outside the range
[q(p0),q(p1)] on any stations are identified as outliers. The users can
also fine tune the range for individual stations.

Fig. 1 (D) shows the quantile range selector implemented in the
prototype, together with small multiples of histograms showing the
distribution of the cycle times on each station. Outlier processes are
displayed as individual polylines in the aggregated graph. The graph
interactively updates to show a new set of outliers detected as the
user selects different quantiles. The quantile-based brushing widget
provides a simple interface for specifying statistically meaningful
parameters as the lower and upper bounds of normal cycle times.

Samples Brush We also introduce a sample based approach to
engage user input for the identification of abnormal processes. In
this approach, the users label a set of normal processes. Based on the
information the system can detect the outliers in the remaining data.
We integrate the label propagation algorithm [36] for this purpose. This
method can infer the class of a large number of data points even with
a few labeled ones, with the prior assumption that data belonging to
the same class (normal processes in this case) form densely populated
regions in the high dimensional space. We find it suitable for this usage
scenario, since it requires a minimum amount of user input.

Label propagation is a graph-based semi-supervised learning
algorithm. It works by first constructing a neighborhood graph (e.g.,
k-nearest neighbor graph) containing both the labeled and unlabeled
data points. Then it iteratively propagates the labels along the graph
edges, starting from the points with known labels. The iteration stops
when the labels of the data points no longer change. The algorithm
can be expressed formally as:

Propagate labels:Lt
X = ALt−1

X (1)
Normalize rows in LX (2)

Reset originally labeled data in LX (3)

Where A is the adjacency matrix of the neighborhood graph and
LX codes the labels of the data points (please refer to [36] for more
details). The matrix multiplication can be parallelized on modern
GPUs for interactive performance [6] on large data sets.

We apply the method to identify abnormal processes based on the
samples specified by the users (Fig. 9( A© and B©)). First, we construct
a k-nn graph of all the processes based on their cycle times on the
stations using an Euclidean distance metric. Additionally, we set a
threshold on the maximum neighborhood distances in the k-nn graph
to stop labels from propagating to very dissimilar processes. Second,
the system propagates the normal label through the k-nn graph and
gradually covers the dense regions in the data set containing the sample
normal processes. The remaining unlabeled processes are outliers,
which will be displayed in the extended Marey’s graph as individual
polylines (Fig. 9 D©). The normal processes are aggregated (Fig. 9 C©).

The quantiles brush and the samples brush both engage users in
the computational extensive process of outlier detection (R3). The
system will give immediate visual feedback about the results after the
users change their inputs.

5 THE VIDX SYSTEM

5.1 Historical Data Analysis
To support the exploration and analysis of historical data, we have
designed a multi-scale hierarchical display, following the visual data
analysis mantra “overview first, zoom and filter, then details-on-
demand” [28]. The display consists of a calendar based visualization,
a timeline, and the extended Marey’s graph, showing data at different
temporal scales with different levels of detail to support the exploration
of year long data (R7). Fig. 1 shows an overview of the system.

Calendar View The calendar view shows the summary statistics
such as the number of products and the number of faults occurred on
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each day over a year (Fig. 1 (B)). We choose the calendar based display
as it aligns the weekdays and weekends for better cross comparison.
The user can select a continuous set of days on the calendar. The
timeline (Fig. 1 (C)) will then update its range to the selected days
and display the number of products in a finer resolution. By brushing
the corresponding range on the timeline, the user can investigate the
process data in more detail with the extended Marey’s graph.

Other Contextual Views A schematic diagram (Fig. 1(E)) shows
the assembly line structure. The user can select stations on the diagram
to focus on a particular route related to a subprocess or one of the
parallel processes. A legend (Fig. 1(H)) shows the color codes of the
faults along with their total number of occurrences.

5.2 Real-Time Monitoring
For real-time monitoring, we combine a 2D radial display and a 3D
visualization of the station models (Fig. 1 (F)(G)).

Radial Graph The radial graph shows the statuses of all the cur-
rently ongoing processes on the assembly line. It is the redesign of
a visualization proposed by our target users for monitoring real-time
assembly line status. Any delay or faults currently occurring on the
assembly line can be observed from the graph (R5). Fig. 5 (a) is the orig-
inal design. It has three layers of concentric rotating circles. The inner
circle completes one cycle when a product finishes its procedures on one
station. The circle in the middle completes one cycle when the product
finishes its procedures on the entire assembly line. The outer circle com-
pletes one cycle for an eight hour work shift. A slower rotation speed of
the inner circle means longer cycle time on a station. However, in gen-
eral it is not considered effective using the movement speed to encode
data. Furthermore, multiple circles would be needed to display all the
products currently on the assembly line, which will be hard to keep track
of simultaneously. Hence we propose a redesign of the visualization.
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work station work stations
assembly line

work shift

B

A C

s1

s2
s3 s4

s
5

s6s9

s10

s1

Fig. 5. (a) The original radial design proposed by the target users with
three concentric rotating circles. (b) The redesign we proposed: A©
each concentric circle represents a product, the highlighted product is
currently being processed on station s2. Light blue color represents
ongoing processes on a station; B© length of a bar represents how long
it takes for a part to finish its process on a station; C© fault occurs.

Fig. 5 (b) shows the new radial visualization we propose. Each of the
concentric circles corresponds to a part that is currently being processed
on the assembly line. The circles are divided into sectors. Each sector
corresponds to a station. The stations are linearly arranged around the
circle based on their order within the assembly line. The lengths of
the dark blue arcs on the circles reflect the time it takes for the part
to finish on the corresponding stations. The light blue arc indicates
that the product is currently on the station, and its length reflect how
long the product has been on the station. The length increases as time
goes by. The faults are color coded and the color mapping is consistent
with the extended Marey’s graph. The visualization is updated through
animated transition, showing real-time information.

The redesign applies a more principled usage of visual variables
to display the key attributes, while still reflecting the mental model
of the users (R8). Therefore it is easier for the users to understand.

3D Station Visualization We further show the physical models of
the stations in the assembly line in an explorable 3D visualization (R6).

The exteriors of the stations are displayed transparently and compo-
nents associated with the occurrences of the faults are highlighted. The
operators can quickly locate the problematic areas by viewing the 3D
visualization (R1). Fig. 1 (G) shows the 3D view of a station. The 2D
radial display serves as a mini-map which supports the exploration
of the 3D scene. The user can select any station for a close-up view by
clicking on the corresponding sector on the radial display. The camera
will move smoothly to the station at the focus, showing more details
of it. The 3D view helps the users associate the process data with the
physical context where the actual operations are carried out.

5.3 User Interaction
The prototype features a rich set of user interactions beside those
already mentioned in the paper.

Detail-on-demand The calendar view, the timeline, and the ex-
tended Marey’s graph form a hierarchical structure for the exploration
of temporal data at different levels of detail (R7). Users can also zoom
in and out on the time axes of the extended Marey’s graph by scrolling
the mouse wheel. When zoomed in, the graph shows higher temporal
resolution and enables more precise reading of the timestamps. When
zoomed out, the graph shows the process data within a longer time
span for overview. When the mouse hovers over the visualizations,
detailed information will be displayed in tooltips: in the extended
Marey’s graph it will display the ids of the products and the fault codes;
in the calendar view it will display the statistics of the day in focus.

Brushing and comparative analysis of cycle times Users can
select a set of records from the extended Marey’s graph by drawing
a line on the visualization. All the traces intersecting with it will be
selected. The cycle times of the selected records can be compared
to the baseline distributions by overlaying histograms in the small
multiples. The baseline distributions are computed from the entire
dataset. A significant deviation from the baseline on any of the stations
would indicate potential problems worth looking into. Users can also
use this method to verify the results of the outlier detection algorithms.

6 SYSTEM ARCHITECTURE & IMPLEMENTATION

Fig. 7 illustrates the architecture of the system. We use a relational
database to store the manufacturing process data and index the data by
timestamps to support the efficient retrieval of data within a specified
time interval. The data analysis module performs three tasks: 1) com-
pute summary statistics used in the visualizations in advance and cache
the results for faster response time; 2) detect outlier processes; 3) aggre-
gate the normal processes based on temporal proximity. The user can
interact with the historical data visualizations to specify quantile ranges
or label normal processes and guide the outlier detection algorithms.
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Fig. 7. System architecture.

We implement a web application so the target users can access the
visualizations more easily on different types of devices and platforms
without any native software package installation. The front-end
visualization is implemented with a combination of HTML5, CSS,
JavaScript, the JavaScript Data-Driven Documents (D3) library [7],
the Three.js1 WebGL library for 3D model rendering and faster

1http://threejs.org/

Fig. 6. Detect inefficiencies and perform troubleshooting with the extended Marey’s graph: (a) After a scheduled break A©, the assembly line stopped
and restarted for a few times before operating smoothly B©; (b) The processing of several products were postponed on station 150 C© and when
those products continued, the other products had to wait on the assembly line D©. In both figures, the outliers are detected and the records are
aggregated with quantiles brush set to the range [0, 0.97].

2D rendering, and several JavaScript framework & utility libraries
including Underscore.js2, Backbone.js3 and JQuery4.

The back-end of the prototypes runs on a Python web server built
with Flask5 and Sqlite. We use the label propagation algorithm
implemented in scikit-learn6 for interactive outlier detection. Statistics
such as the daily number of productions and faults and the quantiles of
the cycle time at each station are precomputed and cached in advance
for interactive performance. Our prototype works at an interactive rate
for real world manufacturing data with millions of products per year
when running locally on a mainstream desktop machine.

7 SYSTEM EVALUATION

We performed two assessments on the system. First, we conducted
case studies that illustrated the effectiveness of the system for visual
diagnostics of assembly line performance. Then, we conducted a pilot
study and had in-depth interviews with managers and operators from
manufacturing sites. The data used in the case studies and the user
interviews were provided by our target users.

7.1 Case Studies
7.1.1 Detect Inefficiencies with Extended Marey’s Graph
Several patterns were identified by the users when they used the ex-
tended Marey’s graph to explore the manufacturing process data.

Fig. 6 (a) shows that between 21:00 and 22:00, the entire assembly
line stopped for approximately one hour. This one hour was the sched-
uled time for break as commented by the users. After the scheduled
time for break, the production line didn’t come up to speed immediately
and experienced several glitches. It stopped completely and restarted
for a few times before operating smoothly at 00:00. This pattern oc-
curred frequently in the assembly line as observed by the users.

Fig. 6 (b) shows that around 00:00, the processing of many products
were postponed on station 150. When they continued to be processed
on station 150, the other products already on the line had to wait and
could no longer proceed down the assembly line. It thus appeared that
part of the assembly line was stopped for five to ten minutes between

2http://underscorejs.org/
3http://backbonejs.org/
4http://jquery.com/
5http://flask.pocoo.org/
6http://scikit-learn.org/

00:00 and 01:00. From both (a) and (b), and the data from other
time intervals, the users observed that station 150 had triggered many
inefficiencies in the manufacturing process. It would be beneficial
for the operators and managers to investigate further about the root
causes, come up with solutions to reduce the delays on station 150,
and improve the overall throughput of the assembly line.

To highlight the abnormal records for troubleshooting, in both Fig. 6
(a) and (b) a quantile range [0,0.97] was selected. The quantile range
defined the normal cycle times on each station. Processes with longer
than normal cycle time on any of the stations were classified as outliers
and displayed as individual polylines. The others were aggregated and
displayed as thick bands.

Overall, we find that the visualization has great potential to uncover
the inefficiencies in the manufacturing process and can point to insights
about when and where the efficiency can be improved.

7.1.2 Access the Effect of Faults

Fig. 8. Occurrences of faults and their effects on the operation of the
assembly line. The affected products are no longer processed and the
entire assembly line stopped for around ten minutes after frequent faults.

Since the occurrences of faults are plotted on the time axes in the
extended Marey’s graph, it is relatively easy for users to associate
them with the manufacturing records in close temporal proximity and
assess the causes and effects of those faults. As illustrated in Fig. 8, the
users observed that when faults like “weld position 6 velocity upper
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each day over a year (Fig. 1 (B)). We choose the calendar based display
as it aligns the weekdays and weekends for better cross comparison.
The user can select a continuous set of days on the calendar. The
timeline (Fig. 1 (C)) will then update its range to the selected days
and display the number of products in a finer resolution. By brushing
the corresponding range on the timeline, the user can investigate the
process data in more detail with the extended Marey’s graph.

Other Contextual Views A schematic diagram (Fig. 1(E)) shows
the assembly line structure. The user can select stations on the diagram
to focus on a particular route related to a subprocess or one of the
parallel processes. A legend (Fig. 1(H)) shows the color codes of the
faults along with their total number of occurrences.

5.2 Real-Time Monitoring
For real-time monitoring, we combine a 2D radial display and a 3D
visualization of the station models (Fig. 1 (F)(G)).

Radial Graph The radial graph shows the statuses of all the cur-
rently ongoing processes on the assembly line. It is the redesign of
a visualization proposed by our target users for monitoring real-time
assembly line status. Any delay or faults currently occurring on the
assembly line can be observed from the graph (R5). Fig. 5 (a) is the orig-
inal design. It has three layers of concentric rotating circles. The inner
circle completes one cycle when a product finishes its procedures on one
station. The circle in the middle completes one cycle when the product
finishes its procedures on the entire assembly line. The outer circle com-
pletes one cycle for an eight hour work shift. A slower rotation speed of
the inner circle means longer cycle time on a station. However, in gen-
eral it is not considered effective using the movement speed to encode
data. Furthermore, multiple circles would be needed to display all the
products currently on the assembly line, which will be hard to keep track
of simultaneously. Hence we propose a redesign of the visualization.
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Fig. 5. (a) The original radial design proposed by the target users with
three concentric rotating circles. (b) The redesign we proposed: A©
each concentric circle represents a product, the highlighted product is
currently being processed on station s2. Light blue color represents
ongoing processes on a station; B© length of a bar represents how long
it takes for a part to finish its process on a station; C© fault occurs.

Fig. 5 (b) shows the new radial visualization we propose. Each of the
concentric circles corresponds to a part that is currently being processed
on the assembly line. The circles are divided into sectors. Each sector
corresponds to a station. The stations are linearly arranged around the
circle based on their order within the assembly line. The lengths of
the dark blue arcs on the circles reflect the time it takes for the part
to finish on the corresponding stations. The light blue arc indicates
that the product is currently on the station, and its length reflect how
long the product has been on the station. The length increases as time
goes by. The faults are color coded and the color mapping is consistent
with the extended Marey’s graph. The visualization is updated through
animated transition, showing real-time information.

The redesign applies a more principled usage of visual variables
to display the key attributes, while still reflecting the mental model
of the users (R8). Therefore it is easier for the users to understand.

3D Station Visualization We further show the physical models of
the stations in the assembly line in an explorable 3D visualization (R6).

The exteriors of the stations are displayed transparently and compo-
nents associated with the occurrences of the faults are highlighted. The
operators can quickly locate the problematic areas by viewing the 3D
visualization (R1). Fig. 1 (G) shows the 3D view of a station. The 2D
radial display serves as a mini-map which supports the exploration
of the 3D scene. The user can select any station for a close-up view by
clicking on the corresponding sector on the radial display. The camera
will move smoothly to the station at the focus, showing more details
of it. The 3D view helps the users associate the process data with the
physical context where the actual operations are carried out.

5.3 User Interaction
The prototype features a rich set of user interactions beside those
already mentioned in the paper.

Detail-on-demand The calendar view, the timeline, and the ex-
tended Marey’s graph form a hierarchical structure for the exploration
of temporal data at different levels of detail (R7). Users can also zoom
in and out on the time axes of the extended Marey’s graph by scrolling
the mouse wheel. When zoomed in, the graph shows higher temporal
resolution and enables more precise reading of the timestamps. When
zoomed out, the graph shows the process data within a longer time
span for overview. When the mouse hovers over the visualizations,
detailed information will be displayed in tooltips: in the extended
Marey’s graph it will display the ids of the products and the fault codes;
in the calendar view it will display the statistics of the day in focus.

Brushing and comparative analysis of cycle times Users can
select a set of records from the extended Marey’s graph by drawing
a line on the visualization. All the traces intersecting with it will be
selected. The cycle times of the selected records can be compared
to the baseline distributions by overlaying histograms in the small
multiples. The baseline distributions are computed from the entire
dataset. A significant deviation from the baseline on any of the stations
would indicate potential problems worth looking into. Users can also
use this method to verify the results of the outlier detection algorithms.

6 SYSTEM ARCHITECTURE & IMPLEMENTATION

Fig. 7 illustrates the architecture of the system. We use a relational
database to store the manufacturing process data and index the data by
timestamps to support the efficient retrieval of data within a specified
time interval. The data analysis module performs three tasks: 1) com-
pute summary statistics used in the visualizations in advance and cache
the results for faster response time; 2) detect outlier processes; 3) aggre-
gate the normal processes based on temporal proximity. The user can
interact with the historical data visualizations to specify quantile ranges
or label normal processes and guide the outlier detection algorithms.
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We implement a web application so the target users can access the
visualizations more easily on different types of devices and platforms
without any native software package installation. The front-end
visualization is implemented with a combination of HTML5, CSS,
JavaScript, the JavaScript Data-Driven Documents (D3) library [7],
the Three.js1 WebGL library for 3D model rendering and faster

1http://threejs.org/

Fig. 6. Detect inefficiencies and perform troubleshooting with the extended Marey’s graph: (a) After a scheduled break A©, the assembly line stopped
and restarted for a few times before operating smoothly B©; (b) The processing of several products were postponed on station 150 C© and when
those products continued, the other products had to wait on the assembly line D©. In both figures, the outliers are detected and the records are
aggregated with quantiles brush set to the range [0, 0.97].

2D rendering, and several JavaScript framework & utility libraries
including Underscore.js2, Backbone.js3 and JQuery4.

The back-end of the prototypes runs on a Python web server built
with Flask5 and Sqlite. We use the label propagation algorithm
implemented in scikit-learn6 for interactive outlier detection. Statistics
such as the daily number of productions and faults and the quantiles of
the cycle time at each station are precomputed and cached in advance
for interactive performance. Our prototype works at an interactive rate
for real world manufacturing data with millions of products per year
when running locally on a mainstream desktop machine.

7 SYSTEM EVALUATION

We performed two assessments on the system. First, we conducted
case studies that illustrated the effectiveness of the system for visual
diagnostics of assembly line performance. Then, we conducted a pilot
study and had in-depth interviews with managers and operators from
manufacturing sites. The data used in the case studies and the user
interviews were provided by our target users.

7.1 Case Studies
7.1.1 Detect Inefficiencies with Extended Marey’s Graph
Several patterns were identified by the users when they used the ex-
tended Marey’s graph to explore the manufacturing process data.

Fig. 6 (a) shows that between 21:00 and 22:00, the entire assembly
line stopped for approximately one hour. This one hour was the sched-
uled time for break as commented by the users. After the scheduled
time for break, the production line didn’t come up to speed immediately
and experienced several glitches. It stopped completely and restarted
for a few times before operating smoothly at 00:00. This pattern oc-
curred frequently in the assembly line as observed by the users.

Fig. 6 (b) shows that around 00:00, the processing of many products
were postponed on station 150. When they continued to be processed
on station 150, the other products already on the line had to wait and
could no longer proceed down the assembly line. It thus appeared that
part of the assembly line was stopped for five to ten minutes between

2http://underscorejs.org/
3http://backbonejs.org/
4http://jquery.com/
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00:00 and 01:00. From both (a) and (b), and the data from other
time intervals, the users observed that station 150 had triggered many
inefficiencies in the manufacturing process. It would be beneficial
for the operators and managers to investigate further about the root
causes, come up with solutions to reduce the delays on station 150,
and improve the overall throughput of the assembly line.

To highlight the abnormal records for troubleshooting, in both Fig. 6
(a) and (b) a quantile range [0,0.97] was selected. The quantile range
defined the normal cycle times on each station. Processes with longer
than normal cycle time on any of the stations were classified as outliers
and displayed as individual polylines. The others were aggregated and
displayed as thick bands.

Overall, we find that the visualization has great potential to uncover
the inefficiencies in the manufacturing process and can point to insights
about when and where the efficiency can be improved.

7.1.2 Access the Effect of Faults

Fig. 8. Occurrences of faults and their effects on the operation of the
assembly line. The affected products are no longer processed and the
entire assembly line stopped for around ten minutes after frequent faults.

Since the occurrences of faults are plotted on the time axes in the
extended Marey’s graph, it is relatively easy for users to associate
them with the manufacturing records in close temporal proximity and
assess the causes and effects of those faults. As illustrated in Fig. 8, the
users observed that when faults like “weld position 6 velocity upper
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limit exceeded” occurred on station 050, the affected products were
no longer processed on the assembly line. After frequent occurrences
of this fault, the entire assembly line would stop for approximately
ten minutes before continuing the operations.

The frequent sequential occurrences of the two events, i.e., the fault
and the pause of the entire assembly line, pointed to potential causal
relations. Such observation provides insights for building predictive
models. Users could now anticipate what would frequently follow after
the occurrence of a particular fault.

7.1.3 Interactively Identify Outliers with Samples Brush
Fig. 9 shows how users interactively identified the outliers by
specifying a set of sample normal processes. The user brushed a set
of processes on the unaggregated graph and labeled those as normal
processes (Fig. 9 (a)). The system inferred the normal processes,
aggregated them, and displayed the outliers as individual polylines
(Fig. 9 (b)). It could be more clearly observed that the occurrence of
a fault (colored red, code unknown) had stopped a product from further
proceeding down on the assembly line.

7.1.4 Explore Historical Data in Different Temporal Scales
The calendar based visualization shows that in the second half of the
year (Fig. 1 (B)) there were more work shifts scheduled on weekends.
The user selected a few days and more information about the rate
of production was displayed at a finer temporal resolution (Fig. 1
(C)). During certain hours the throughput of the assembly line was
lower compared to the others. Any anomaly like this could be further
investigated in the extended Marey’s graph (Fig. 6).

Fig. 9. Identify outliers by specifying sample normal processes: A© brush
a set of records; B© label them as normal; C© a group of normal processes
detected by the label propagation algorithm; D© outlier processes.

7.1.5 Track Real-Time Performance with the Radial Graph
When the radial graph was demonstrated to the users, they immediately
identified that sometimes two or more products stayed at the same
station (Fig. 10) on the assembly line. They commented that the extra
products were not moved to the next station in a timely manner, which
would affect the performance of the assembly line.

7.2 User Interview
We interviewed the target users to validate the design decisions and
assess the effectiveness of the system.

Before presenting the prototype to a large group of users, we
conducted a pilot study with our target users from manufacturing plants.
Two users from two different plants were invited to the pilot study. We

closely collaborated with one plant and used the real manufacturing
process data collected there to develop the prototype. The other plant
had similar data and we were planning to adapt the current prototype
for it. The purpose of the study was to identify potential usability
issues such that we could refine the system accordingly. Besides that,
we also planned to collect some initial feedback on the system features.
During the pilot study, the two participants explored the system on
their own after we introduced the visual designs and the interactions
to them. We encouraged them to think aloud during the process.

Fig. 10. Radial graph shows A© multiple products stayed at the same
station and were not moved in a timely manner to the next station on the
assembly line, and B© a fault occurred on station 050.

The two participants were impressed by the designs. They
commented that the radial graph and the extended Marey’s graph
were intuitive representations of the manufacturing process data. They
remarked that it was very beneficial to be able to explore year long
data by simply brushing on the calendar and the timeline. One person
also commented that the schematic diagram (Fig. 1 (E)) showed
clearly the structure of the assembly line. They regarded the visual
analytics functionalities in the system as similar to data mining to
some extent (they were also collaborating with data mining experts).
Besides that, they also expressed interest in deploying the system in
real manufacturing environments during the pilot study.

We also identified several usability issues through the pilot study.
For example, initially all the views in the real-time tracking panel
and the historical analysis panel were displayed on a single screen.
The screen space assigned to the radial graph was not sufficient to
emphasize real-time information. We therefore added options such that
the user can choose to maximize the radial graph or keep its normal
size. Eventually we made the decision to make two separate full screen
panels. The users can switch from one to another.

After the pilot study, we interviewed a larger group of users with
11 operators and managers from manufacturing sites to have detailed
assessment of the individual components in the system. The users
were familiar with basic visualization techniques such as bar charts.
We installed the application locally on one of the machines in a plant
and introduced the prototype. Then the users tried out the system
themselves. After that we conducted a semi-structured interview
guided by a set of questions (Table 1). During the interview, we took
notes of the users’ comments. Some of the users also sent us their
feedback via email later. Overall the feedback is encouraging, although
we also noticed some limitations of the current system. For example,
it was not easy for the users to understand the quantile brush, and
the 3D station visualization needed further improvement. The users’
comments were summarized as follows.

The users agreed that the extended Marey’s graph was easy to read

Table 1. Questions for user interviews.
# Aim Question

Q1 Visual Design Is it easy/hard to learn to read the Marey’s Graph? Why?
Q2 Visual Design Is it easy/hard to learn to read the Radial Graph? Why?
Q3 Interaction Design Is it easy/hard to learn to detect abnormal processes by selecting percentiles? Why?
Q4 Interaction Design Is it easy/hard to learn to detect abnormal processes by labeling sample normal processes? Why?
Q5 General Which part of the visual interface do you think can be further improved? How?
Q6 General Do you think the system is informative in presenting the data?

and was informative in presenting the process data. One person also
commented: “Marey’s graph would be good to be able to further
manipulate other process data for the specific parts, or to link to
additional process [measurement] information.”. Between the two
interactive outlier detection methods, the samples brush was slightly
better accepted by the users, probably because it had a more intuitive
interpretation compared to the quantiles brush. Many users commented
that the 3D station visualization could be further improved. One user
suggested that a top down overview of the entire assembly line could
be a valuable additional feature.

For the overall system, they commented that “it’s very effective in the
system’s ability to show real-time data [in the radial graph] and high-
light abnormalities”, “it will be useful to see it in action in the active
environment” and “it’s very intuitive to navigate between items in differ-
ent time frames [using the multi-scale temporal exploration feature]”.
They also saw a lot of potential in the current prototype. One person
commented: “This is a good interface for gaining an intuitive picture
of how the line is running. These same methods could be applied to pro-
cess parameters during the manufacture of parts giving engineers the
intuitive picture of process stability”. Although we were unable to con-
duct a controlled user study due to the lack of comparable systems, we
planned to perform long term studies and record the users’ experience
using the system. The deployment of the system was being planned.

8 DISCUSSION

Lessons Learned When reflecting on the design choices, we think
that the familiarity of the visual metaphor and intuitiveness of the visual
encoding play crucial roles for the users to quickly familiarize them-
selves with the visualizations. Moreover, advanced analytic methods in
a visualization system should be explained in an intuitive manner to the
users. For example, the label propagation algorithm can be explained as
polylines with similar shapes to the specified examples are considered
as normal records. Besides that, in the system, we decide to include
both the extended Marey’s graph and the radial graph to encode similar
information (i.e., cycle times and faults) for different purposes: one
for analyzing a large amount of historical data and one for monitoring
real-time conditions. Such scenario arises in many application domains
with streaming data. In these scenarios, the visualizations need to be
tailored for different uses even for data with same attributes.

As we later reflect upon the design process, we consider that a crucial
step is identifying the variants and the invariants in the data (Section
3). Usually the domain experts are familiar with the invariants (i.e. the
production process as described by the DAG) and it is not necessarily
helpful developing visualizations for such information. To distinguish
between the variants and invariants, it is helpful to have a quick
analysis of the data attributes or consult with the domain experts first.

General Applicability Although many visualization and interactive
techniques presented in the system are tailored to the specific
application domain, we believe that some components can be easily
adapted for other use cases. For example, it is not difficult to image
that the two interactive outlier detection techniques can be applied
to boarder application domains with high dimensional data. More
importantly, the manufacturing process data as described in Section 3
is being collected in many assembly lines. The prototype system can
thus be applied to visualize and analyze data from many manufacturing
plants, not limited to the ones we are currently working with.

Limitations There are several limitations of the current system. First,
although both outlier detection algorithms including brushing quantiles
and label propagation can return the results in real-time for small

amount of data, they can not be easily scaled to year long data with
millions of records. It is necessary to improve their efficiency, as the site
managers would like to immediately know how many abnormal records
there are on each day in the calendar visualization when they update the
quantile ranges or specify sample normal records. Second, the extended
Marey’ graph can not effectively depict the data over relatively longer
time span in a display with limited width. The traces will become
vertical lines. In the future, we would improve the visual encoding to
show the delays and faults in long term data. Third, the current system
is fine-tuned to fit a screen with 1920 × 1080 resolution. More adaptive
layout should be incorporated in the system such that the users can
access it from different devices. Besides that, in the current prototype
the subprocesses and parallel processes are overlaid on the same graph.
This can introduce undesirable visual clutter. The problem is alleviated
to a certain extent by introducing user interactions for selecting the
routes on the assembly line. If the complexity of the manufacturing
processes increase further, the current prototype needs to incorporate
more advanced filtering and aggregation functions for scalability.

Future Work There are several directions for future work. First, as
the deployment of the system in real production lines is being planned,
it becomes possible to study the long-term usage of the system. Meth-
ods such as automated logging of user activities and observational study
can be applied to gather usage data about how visualization is used in
real working environments. Second, we plan to improve the scalability
of the system as discussed in the limitations. Third, the occurrence
of individual outlier records are atomic events, based on which we can
define composite events. For example, the occurrence of a fault and
the delays following it together can be considered as a composite event.
We plan to further our investigation to develop techniques facilitating
the identification of such events to support predictive analysis.

9 CONCLUSION

In this paper, we present a novel visual analytics solution targeted at
the application domain of big data analytics in manufacturing industry.
We propose a comprehensive system for the real-time tracking and
historical analysis of assembly line performance. It consists of multiple
linked views showing data at different levels of detail. In particular, we
present the application of the Marey’s graph and extend it to improve
its visual scalability. Moreover, we propose two novel interactive
techniques for user steerable outlier detection, which can be potentially
applied to more general usage scenarios. The initial feedback from
the target users is encouraging and the deployment of the system in
manufacturing sites is in plan. The system is designed and developed
for a pilot use case to demonstrate the importance of visual analytics
in the application domain of connected industry (industry 4.0). To
the best of our knowledge, there is no prior research addressing this
application domain. We believe that the successful showcase and
deployment of the system will be a promising starting point and will
open the door to many challenging research problems.
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limit exceeded” occurred on station 050, the affected products were
no longer processed on the assembly line. After frequent occurrences
of this fault, the entire assembly line would stop for approximately
ten minutes before continuing the operations.

The frequent sequential occurrences of the two events, i.e., the fault
and the pause of the entire assembly line, pointed to potential causal
relations. Such observation provides insights for building predictive
models. Users could now anticipate what would frequently follow after
the occurrence of a particular fault.

7.1.3 Interactively Identify Outliers with Samples Brush
Fig. 9 shows how users interactively identified the outliers by
specifying a set of sample normal processes. The user brushed a set
of processes on the unaggregated graph and labeled those as normal
processes (Fig. 9 (a)). The system inferred the normal processes,
aggregated them, and displayed the outliers as individual polylines
(Fig. 9 (b)). It could be more clearly observed that the occurrence of
a fault (colored red, code unknown) had stopped a product from further
proceeding down on the assembly line.

7.1.4 Explore Historical Data in Different Temporal Scales
The calendar based visualization shows that in the second half of the
year (Fig. 1 (B)) there were more work shifts scheduled on weekends.
The user selected a few days and more information about the rate
of production was displayed at a finer temporal resolution (Fig. 1
(C)). During certain hours the throughput of the assembly line was
lower compared to the others. Any anomaly like this could be further
investigated in the extended Marey’s graph (Fig. 6).

Fig. 9. Identify outliers by specifying sample normal processes: A© brush
a set of records; B© label them as normal; C© a group of normal processes
detected by the label propagation algorithm; D© outlier processes.

7.1.5 Track Real-Time Performance with the Radial Graph
When the radial graph was demonstrated to the users, they immediately
identified that sometimes two or more products stayed at the same
station (Fig. 10) on the assembly line. They commented that the extra
products were not moved to the next station in a timely manner, which
would affect the performance of the assembly line.

7.2 User Interview
We interviewed the target users to validate the design decisions and
assess the effectiveness of the system.

Before presenting the prototype to a large group of users, we
conducted a pilot study with our target users from manufacturing plants.
Two users from two different plants were invited to the pilot study. We

closely collaborated with one plant and used the real manufacturing
process data collected there to develop the prototype. The other plant
had similar data and we were planning to adapt the current prototype
for it. The purpose of the study was to identify potential usability
issues such that we could refine the system accordingly. Besides that,
we also planned to collect some initial feedback on the system features.
During the pilot study, the two participants explored the system on
their own after we introduced the visual designs and the interactions
to them. We encouraged them to think aloud during the process.

Fig. 10. Radial graph shows A© multiple products stayed at the same
station and were not moved in a timely manner to the next station on the
assembly line, and B© a fault occurred on station 050.

The two participants were impressed by the designs. They
commented that the radial graph and the extended Marey’s graph
were intuitive representations of the manufacturing process data. They
remarked that it was very beneficial to be able to explore year long
data by simply brushing on the calendar and the timeline. One person
also commented that the schematic diagram (Fig. 1 (E)) showed
clearly the structure of the assembly line. They regarded the visual
analytics functionalities in the system as similar to data mining to
some extent (they were also collaborating with data mining experts).
Besides that, they also expressed interest in deploying the system in
real manufacturing environments during the pilot study.

We also identified several usability issues through the pilot study.
For example, initially all the views in the real-time tracking panel
and the historical analysis panel were displayed on a single screen.
The screen space assigned to the radial graph was not sufficient to
emphasize real-time information. We therefore added options such that
the user can choose to maximize the radial graph or keep its normal
size. Eventually we made the decision to make two separate full screen
panels. The users can switch from one to another.

After the pilot study, we interviewed a larger group of users with
11 operators and managers from manufacturing sites to have detailed
assessment of the individual components in the system. The users
were familiar with basic visualization techniques such as bar charts.
We installed the application locally on one of the machines in a plant
and introduced the prototype. Then the users tried out the system
themselves. After that we conducted a semi-structured interview
guided by a set of questions (Table 1). During the interview, we took
notes of the users’ comments. Some of the users also sent us their
feedback via email later. Overall the feedback is encouraging, although
we also noticed some limitations of the current system. For example,
it was not easy for the users to understand the quantile brush, and
the 3D station visualization needed further improvement. The users’
comments were summarized as follows.

The users agreed that the extended Marey’s graph was easy to read

Table 1. Questions for user interviews.
# Aim Question

Q1 Visual Design Is it easy/hard to learn to read the Marey’s Graph? Why?
Q2 Visual Design Is it easy/hard to learn to read the Radial Graph? Why?
Q3 Interaction Design Is it easy/hard to learn to detect abnormal processes by selecting percentiles? Why?
Q4 Interaction Design Is it easy/hard to learn to detect abnormal processes by labeling sample normal processes? Why?
Q5 General Which part of the visual interface do you think can be further improved? How?
Q6 General Do you think the system is informative in presenting the data?

and was informative in presenting the process data. One person also
commented: “Marey’s graph would be good to be able to further
manipulate other process data for the specific parts, or to link to
additional process [measurement] information.”. Between the two
interactive outlier detection methods, the samples brush was slightly
better accepted by the users, probably because it had a more intuitive
interpretation compared to the quantiles brush. Many users commented
that the 3D station visualization could be further improved. One user
suggested that a top down overview of the entire assembly line could
be a valuable additional feature.

For the overall system, they commented that “it’s very effective in the
system’s ability to show real-time data [in the radial graph] and high-
light abnormalities”, “it will be useful to see it in action in the active
environment” and “it’s very intuitive to navigate between items in differ-
ent time frames [using the multi-scale temporal exploration feature]”.
They also saw a lot of potential in the current prototype. One person
commented: “This is a good interface for gaining an intuitive picture
of how the line is running. These same methods could be applied to pro-
cess parameters during the manufacture of parts giving engineers the
intuitive picture of process stability”. Although we were unable to con-
duct a controlled user study due to the lack of comparable systems, we
planned to perform long term studies and record the users’ experience
using the system. The deployment of the system was being planned.

8 DISCUSSION

Lessons Learned When reflecting on the design choices, we think
that the familiarity of the visual metaphor and intuitiveness of the visual
encoding play crucial roles for the users to quickly familiarize them-
selves with the visualizations. Moreover, advanced analytic methods in
a visualization system should be explained in an intuitive manner to the
users. For example, the label propagation algorithm can be explained as
polylines with similar shapes to the specified examples are considered
as normal records. Besides that, in the system, we decide to include
both the extended Marey’s graph and the radial graph to encode similar
information (i.e., cycle times and faults) for different purposes: one
for analyzing a large amount of historical data and one for monitoring
real-time conditions. Such scenario arises in many application domains
with streaming data. In these scenarios, the visualizations need to be
tailored for different uses even for data with same attributes.

As we later reflect upon the design process, we consider that a crucial
step is identifying the variants and the invariants in the data (Section
3). Usually the domain experts are familiar with the invariants (i.e. the
production process as described by the DAG) and it is not necessarily
helpful developing visualizations for such information. To distinguish
between the variants and invariants, it is helpful to have a quick
analysis of the data attributes or consult with the domain experts first.

General Applicability Although many visualization and interactive
techniques presented in the system are tailored to the specific
application domain, we believe that some components can be easily
adapted for other use cases. For example, it is not difficult to image
that the two interactive outlier detection techniques can be applied
to boarder application domains with high dimensional data. More
importantly, the manufacturing process data as described in Section 3
is being collected in many assembly lines. The prototype system can
thus be applied to visualize and analyze data from many manufacturing
plants, not limited to the ones we are currently working with.

Limitations There are several limitations of the current system. First,
although both outlier detection algorithms including brushing quantiles
and label propagation can return the results in real-time for small

amount of data, they can not be easily scaled to year long data with
millions of records. It is necessary to improve their efficiency, as the site
managers would like to immediately know how many abnormal records
there are on each day in the calendar visualization when they update the
quantile ranges or specify sample normal records. Second, the extended
Marey’ graph can not effectively depict the data over relatively longer
time span in a display with limited width. The traces will become
vertical lines. In the future, we would improve the visual encoding to
show the delays and faults in long term data. Third, the current system
is fine-tuned to fit a screen with 1920 × 1080 resolution. More adaptive
layout should be incorporated in the system such that the users can
access it from different devices. Besides that, in the current prototype
the subprocesses and parallel processes are overlaid on the same graph.
This can introduce undesirable visual clutter. The problem is alleviated
to a certain extent by introducing user interactions for selecting the
routes on the assembly line. If the complexity of the manufacturing
processes increase further, the current prototype needs to incorporate
more advanced filtering and aggregation functions for scalability.

Future Work There are several directions for future work. First, as
the deployment of the system in real production lines is being planned,
it becomes possible to study the long-term usage of the system. Meth-
ods such as automated logging of user activities and observational study
can be applied to gather usage data about how visualization is used in
real working environments. Second, we plan to improve the scalability
of the system as discussed in the limitations. Third, the occurrence
of individual outlier records are atomic events, based on which we can
define composite events. For example, the occurrence of a fault and
the delays following it together can be considered as a composite event.
We plan to further our investigation to develop techniques facilitating
the identification of such events to support predictive analysis.

9 CONCLUSION

In this paper, we present a novel visual analytics solution targeted at
the application domain of big data analytics in manufacturing industry.
We propose a comprehensive system for the real-time tracking and
historical analysis of assembly line performance. It consists of multiple
linked views showing data at different levels of detail. In particular, we
present the application of the Marey’s graph and extend it to improve
its visual scalability. Moreover, we propose two novel interactive
techniques for user steerable outlier detection, which can be potentially
applied to more general usage scenarios. The initial feedback from
the target users is encouraging and the deployment of the system in
manufacturing sites is in plan. The system is designed and developed
for a pilot use case to demonstrate the importance of visual analytics
in the application domain of connected industry (industry 4.0). To
the best of our knowledge, there is no prior research addressing this
application domain. We believe that the successful showcase and
deployment of the system will be a promising starting point and will
open the door to many challenging research problems.
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