
The Real Best Practices to
Save/Restore Activity's and
Fragment's state. (StatedFragment is
now deprecated)
Months ago I published an article related to Fragment State saving &
restoring, Probably be the best way (?) to save/restore Android Fragment’s
state so far. A lot of valuable feedback are received from Android developers
all over the world. Thanks a ton to you all =)

Anyway StatedFragment causes a pattern breaking since it was designed to do
the different way as Android is designed with an assumption that it might be
easier for Android developer to understand Fragment's state saving/restoring
if it acts just like Activity does (View's state and Instance state are handled
at the same time). So I did an experiment by developed StatedFragment and
see how is it going. Is it easier to understand? Is its pattern is more
developer-friendly?

Right now, after 2 months of experiment, I think I got a result already.
Although StatedFragment is a little bit easier to understand but it also comes
with a pretty big problem. It breaks a pattern design of Android's View
architecture. So I think it may causes a long time problem which is totally not
good. Actually I also feel weird with my codes myself already...

With this reason, I decide to mark StatedFragment as deprecated
from now on. And as an apology for the mistake, I wrote this blog to show
the real best practices visually how to save and restore Fragment's state in
the way Android is designed. =)

Understand what happens while Activity's State is being
Saved/Restored

https://inthecheesefactory.com/blog/best-approach-to-keep-android-fragment-state/en

When Activity's onSaveInstanceState is called. Activity will automatically
collect View's State from every single View in the View hierachy. Please note
that only View that is implemented View State Saving/Restoring internally
that could be collected the data from. Once onRestoreInstanceState is called.
Activity will send those collected data back to the View in the View hierachy
that provides the same android:id as it is collected from one by one.

Let's see it in visualization.

This is the reason why text typed inside EditText still persisted even
though Activity is already destroyed and we didn't do anything special. There
is no magic. Those View State are automatically collected and restored back.

And this is also the reason why those View without android:id defined isn't
able to restore its View's state.

Although those View's state are automatically saved but the Activity's
member variables are not. They will be destroyed along with Activity. You
have to manually save and restore
them through onSaveInstanceState and onRestoreInstanceState method.

public class MainActivity extends AppCompatActivity {

 private int someVarA;
 private String someVarB;

 ...

 @Override
 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putInt("someVarA", someVarA);
 outState.putString("someVarB", someVarB);
 }

 @Override
 protected void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);
 someVarA = savedInstanceState.getInt("someVarA");
 someVarB = savedInstanceState.getString("someVarB");
 }

}

That's all what you have to do to restore Activity's Instance state and View
state.

Understand what happens while Fragment's State
is being Saved/Restored

In case that Fragment is destroyed by the system. Everything will just happen
exactly the same as Activity.

It means that every single member variables are also destroyed. You have to
manually save and restore those variables

through onSaveInstanceState and onActivityCreated method respectively.
Please note that there is no onRestoreInstanceState method inside Fragment.

public class MainFragment extends Fragment {

 private int someVarA;
 private String someVarB;

 ...

 @Override
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putInt("someVarA", someVarA);
 outState.putString("someVarB", someVarB);
 }

 @Override
 public void onActivityCreated(@Nullable Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 someVarA = savedInstanceState.getInt("someVarA");
 someVarB = savedInstanceState.getString("someVarB");
 }

}

For Fragment, there is some special case that is different from Activity and I
think that you need to know about it. Once Fragment is returned from
backstack, its View would be destroyed and recreated.

In this case, Fragment is not destroyed. Only View inside

Fragment does. As a result, there is no any Instance State saving happens.
But what happens to those View that is newly created by Fragment's lifecycle
showed above?

Not a problem. Android is designed this way. View State Saving/Restoring
are internally called inside Fragment in this case. As a result, every single
View that is implemented a View State Saving/Restoring internally, for
example EditText or TextView with android:freezeText="true", will be
automatically saved and restored the state. Causes it to display just perfectly
the same as previous.

Please note that only View is destroyed (and recreated) in this case. Fragment
is still there, just like those member variables inside. So you don't have to do
anything with them. No any additional code is required.

public class MainFragment extends Fragment {

 private int someVarA;
 private String someVarB;

 ...

}

You might already notice that if every single View used in this Fragment are
internally implemented a View Saving/Restoring. You have no need to do
anything in this case since View's state will be automatically restored and
member variables inside Fragment also still persist.

So the first condition of Fragment's State Saving/Restoring Best Practices is
...

Every single View used in your application must be
internally implemented State Saving/Restoring

Android provides a mechanic to View to save and restore View State
internally through
onSaveInstanceState and onRestoreInstanceState method. It is developer's
task to implement it.

public class CustomView extends View {

 ...

 @Override
 public Parcelable onSaveInstanceState() {
 Bundle bundle = new Bundle();

 return bundle;
 }

 @Override
 public void onRestoreInstanceState(Parcelable state) {
 super.onRestoreInstanceState(state);

 }

 ...

}

Basically every single standard View such as EditText, TextView, Checkbox
and etc. are all already internally implemented those things. Anyway you may
need to enable it for some View for example you have to set
android:freezeText to true for TextView to use the feature.

But if we talk about 3rd Party Custom View distributed all over the internet. I
must say that many of them aren't implemented this part of code yet which
may cause a big problem in real use.

If you decide to use any of 3rd Party Custom View, you have to be sure that it
is already implemented View State Saving/Restoring internally or you have to
create a subclass derived from that Custom View and implement
onSaveInstanceState/onRestoreInstanceState yourself.

public class SomeBetterSmartButton extends SomeSmartButton {

 ...

 @Override
 public Parcelable onSaveInstanceState() {
 Bundle bundle = new Bundle();

 return bundle;
 }

 @Override
 public void onRestoreInstanceState(Parcelable state) {
 super.onRestoreInstanceState(state);

 }

 ...

}

And if you create your own Custom View or Custom Viewgroup, don't forget
to implement those two methods as well. It is really important that every
single type of View used in the application is implemented this part.

And also don't forget to assign android:id attribute to every single View
placed in the layout that you need to enable View State Saving and Restoring
or it will not be able to restore the state at all.

 <EditText
 android:id="@+id/editText1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

 <EditText
 android:id="@+id/editText2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

 <CheckBox
 android:id="@+id/cbAgree"
 android:text="I agree"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

We are now halfway there!

Clearly seperate Fragment State from View State

To make your code be clean and scalable, you have to seperate Fragment
State and View State from each other. If any property is belonged to View, do
the state saving/restoring inside View. If any property is belonged to

Fragment, do it inside Fragment. Here is an example:

Let me repeat again. Don't save View's State inside Fragment's
onSaveInstanceState and vice versa.

That's all. It is the Best Practices on how to Save/Restore
Activity's, Fragment's and View's State. Hope you find this piece of
information useful =)

Goodbye StatedFragment, say Hi to
NestedActivityResultFragment

Please do the way described above to Save/Restore Activity's, Fragment's and
View's State. And let me mark StatedFragment as deprecated now.

However StatedFragment's functionality to retrieve onActivityResult in

public class MainFragment extends Fragment {

 ...

 private String dataGotFromServer;

 @Override
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putString("dataGotFromServer", dataGotFromServer);
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 dataGotFromServer = savedInstanceState.getString("dataGotFromServer"
 }

 ...

}

Nested Fragment is still good to go. To prevent any confusion in the future, I
decide to seperate that functionality to a new class
NestedActivityResultFragment available from v0.10.0 onwards.

More information about it is now
available at https://github.com/nuuneoi/StatedFragment. Please feel free to
check it anytime !

Hope that the visualization in this blog helps you understand about the way
to restore Activity's, Fragment's and View's State clearly. So sorry for the
confusion in the previous article. ^^"

Author: nuuneoi (Android GDE, CTO & CEO at The Cheese Factory)

A full-stack developer with more than 6 years experience on Android Application
Development and more than 12 years in Mobile Application Development
industry. Also has skill in Infrastucture, Service Side, Design, UI&UX, Hardware,
Optimization, Cooking, Photographing, Blogging, Training, Public Speaking and
do love to share things to people in the world!

https://github.com/nuuneoi/StatedFragment

