Skip to content
Go to file


Failed to load latest commit information.
Latest commit message
Commit time

mt32-pi CI

  • A work-in-progress baremetal MIDI synthesizer for the Raspberry Pi 3 or above, based on Munt, FluidSynth and Circle.
  • Turn your Raspberry Pi into a dedicated emulation of the famous multi-timbre sound module used by countless classic MS-DOS, PC-98 and Sharp X68000 games!
  • ๐Ÿ†• Add your favorite SoundFonts to expand your synthesizer with General MIDI, Roland GS, or even Yamaha XG support for endless MIDI possibilities.
  • ๐Ÿ†• Includes General MIDI and Roland GS support out of the box thanks to GeneralUser GS by S. Christian Collins.
  • No operating system, no complex Linux audio configuration; just super-low latency audio.
  • Easy to configure and ready to play from cold-boot in a matter of seconds.
  • The perfect companion for your vintage PC or MiSTer FPGA setup.

โœ”๏ธ Project status

  • Tested on Raspberry Pi 4 Model B and Raspberry Pi 3 Model A+, B, and B+.
    • Pi 2 works, but only with concessions on playback quality.
    • Pi 0 and 1 are unfortunately too slow, even with an overclock.
  • PWM headphone jack audio.
    • Quality is known to be poor (aliasing/distortion on quieter sounds).
    • It is not currently known whether this can be improved or not.
  • IยฒS Hi-Fi DAC support.
    • This is the recommended audio output method for the best quality audio.
  • MIDI input via USB or GPIO MIDI interfaces.
  • Configuration file for selecting hardware options and fine tuning.
  • LCD status screen support (for MT-32 SysEx messages and status information).
  • Simple physical control surface using buttons and rotary encoder.
  • MiSTer FPGA integration via user port.
  • Network MIDI and auto-update is planned.

โœจ Quick-start guide

  1. Download the latest release from the Releases section.
  2. Extract contents to a blank FAT32-formatted SD card.
    • If you are updating an old version, you can just replace the kernel*.img files. The other boot files will not change often; but keep an eye on the changelog just in case.
  3. For MT-32 support, add your MT-32 or CM-32L ROM images to the roms directory - you have to provide these for copyright reasons.
    • You will need at least one control ROM and one PCM ROM.
    • For information on using multiple ROM sets and switching between them, see the MT-32 synthesis wiki page.
    • The file names or extensions don't matter; mt32-pi will scan and detect their types automatically.
  4. Optionally add your favorite SoundFonts to the soundfonts directory.
    • For information on using multiple SoundFonts and switching between them, see the SoundFont synthesis wiki page.
    • Again, file names/extensions don't matter.
  5. Connect a USB MIDI interface or GPIO MIDI circuit to the Pi, and connect some speakers to the headphone jack.
  6. Connect your vintage PC's MIDI OUT to the Pi's MIDI IN and (optionally) vice versa.

๐Ÿ“š Documentation

More detailed documentation for mt32-pi can now be found over at the mt32-pi wiki. Please read the wiki pages to learn about all of mt32-pi's features and supported hardware, and consider helping us improve it!

โ“ Help

If you need some help with mt32-pi and the wiki doesn't answer your questions, head over to the discussions area and feel free to start a topic.

โš  Note: Please don't use the Issues area to ask for help - Issues are intended for reproducible bug reports and feature requests. Thankyou!

๐Ÿ™Œ Acknowledgments

  • Many thanks go out to @rc55 and @nswaldman for their encouragement and testing! โค๏ธ
  • A huge thankyou to everyone who has donated via Ko-Fi, PayPal, or Amazon - your support means a lot! โค๏ธ
  • The Munt team for their incredible work reverse-engineering the Roland MT-32 and producing an excellent emulation and well-structured project.
  • The FluidSynth team for their excellent and easily-portable SoundFont synthesizer project.
  • S. Christian Collins for the excellent GeneralUser GS SoundFont and for kindly giving permission to include it in the project.
  • The Circle and circle-stdlib projects for providing the best C++ baremetal framework for the Raspberry Pi.
  • The inih project for a nice, lightweight config file parser.