
Marching Up and
Down the Code

Learning Python 3 on the Raspberry Pi

Dr. D.W. Joyce, M.S. Joyce

Pre-release 0.2.4.5b44ecd

DON’T PANIC!

Copyright © 2015 - 2016 by David & Matthew Joyce

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0):

You are free to:

• Share – Copy and redistribute the material in any medium or format.

• Adapt – Remix, transform, and build upon the material.

The licensor cannot revoke these freedoms as long as you follow the license terms:

• Attribution – You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

• NonCommercial – You may not use the material for commercial purposes.

• ShareAlike – If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

• No additional restrictions – You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

Read the full licence at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.

Get the latest version of this book at https://github.com/dwjoyce/pythonbook/releases/latest and the source
at https://github.com/dwjoyce/pythonbook.

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://github.com/dwjoyce/pythonbook/releases/latest
https://github.com/dwjoyce/pythonbook

CONTENTS

0 Starting with Python’s IDLE 1
0.0 Introduction . 1
0.1 What we will be learning . 2
0.2 How to get going . 3
0.3 Things to remember . 4

1 Python as a Calculator 6
1.0 First steps (or sums) . 6
1.1 Operator overload . 7
1.2 Exercises . 9
1.3 Things to remember . 9

2 Naming your data 10
2.0 Saving and recalling . 10
2.1 More and more . 11
2.2 Exercises . 12
2.3 Things to remember . 12

3 Functions and Maths 14
3.0 Basic functions . 14
3.1 More arguments . 15
3.2 How many arguments can one function have? 16
3.3 Functions functioning . 17
3.4 Exercises . 17
3.5 Things to remember . 17

4 Drawing Turtles 19
4.0 Importing . 19
4.1 Stick your head out of the shell . 20
4.2 Exercises . 22
4.3 Things to remember . 22

5 Getting help 23
5.0 Save Our Sanity . 23

i

5.1 Things to remember . 25

6 First program 26
6.0 Ed . 26
6.1 Our first program . 29
6.2 Running our program . 30
6.3 Comments . 32
6.4 Things to remember . 33

7 Print that out! 35
7.0 Printing numbers . 35
7.1 Printing messages . 36
7.2 Keeping things in line . 38
7.3 Exercises . 38
7.4 Things to remember . 39

8 Asking questions 40
8.0 String input . 40
8.1 Using numbers . 40
8.2 Exercises . 42
8.3 Things to remember . 43

9 Performing selection 44
9.0 Taking a different route . 44
9.1 Exercises . 47
9.2 Things to remember . 47

10 Decisions, decisions 49
10.0 Differing ways of comparing . 49
10.1 More than one possibility . 50
10.2 Many, many possibilities! . 51
10.3 A bit more practice . 52
10.4 Exercises . 52
10.5 Things to remember . 53

11 Combining decisions together 54
11.0 Juggling tests . 54
11.1 Exercises . 56
11.2 Things to remember . 56

12 Going loopy 57
12.0 Doing it the hard way . 57
12.1 Doing it the easy way . 58
12.2 Exercises . 59
12.3 Things to remember . 59

ii

13 Escaping the cycle 60
13.0 Breaking out . 60
13.1 Adding up . 61
13.2 Exercises . 62
13.3 Things to remember . 62

14 Going random 63
14.0 A bit of variation . 63
14.1 That’s random . 63
14.2 A guessing game . 65
14.3 Exercises . 66
14.4 Things to remember . 66

15 Grouping data together 67
15.0 Scattered data . 67
15.1 Boxing up . 67
15.2 Playing with lists . 68
15.3 Rock, Paper, Scissors . 71
15.4 Exercises . 73
15.5 Things to remember . 73

16 Slicing sequences 74
16.0 Dipping in . 74
16.1 Outside In . 76
16.2 Unidentified Food Object . 77
16.3 I’ll pass . 78
16.4 Python likes pizza . 79
16.5 Slicing and dicing . 80
16.6 Reverse gear . 81
16.7 Cut the string . 81
16.8 Exercises . 83
16.9 Things to remember . 83

17 Walking along data 85
17.0 Round and round . 85
17.1 Ranges . 86
17.2 Not just numbers . 88
17.3 Drawing . 89
17.4 Vertigo . 90
17.5 Loops inside loops . 91
17.6 Exercises . 93
17.7 Things to remember . 94

18 Naming code 95
18.0 Data and code . 95

iii

18.1 Functions . 96
18.2 Rolling our own . 97
18.3 Passing in data . 97
18.4 Keeping your data local . 99
18.5 Exercises . 100
18.6 Things to remember . 100

19 More on functions 101
19.0 Please talk to me . 101
19.1 Forming a chain . 102
19.2 Naming parameters . 103
19.3 A little more practice . 104
19.4 Exercises . 105
19.5 Things to remember . 106

20 Reading files 107
20.0 Opening the file . 107
20.1 Reading words of wisdom . 108
20.2 Line by line . 110
20.3 Put down the book . 111
20.4 Exercises . 112
20.5 Things to remember . 112

21 Writing files 113
21.0 Prepare your ink . 113
21.1 Learning to write . 113
21.2 Writing lists . 114
21.3 Exercises . 114
21.4 Things to remember . 115

22 Catching errors 116
22.0 It’s broke . 116
22.1 try not to crash . 118
22.2 Let’s be specific about the problem . 119
22.3 Exercises . 120
22.4 Things to remember . 120

A Glossary 122

B Python summary 129
B.0 Examples . 129
B.1 Operators . 133
B.2 Data types . 138
B.3 Different types of functions . 140
B.4 Program layout . 145

iv

C Program flow 147
C.0 Sequence . 147
C.1 Selection . 147
C.2 Iteration . 148

D Common mistakes 149
D.0 Forgetting to open / close quotation marks 149
D.1 Using quotation marks insides quotes . 149
D.2 Not using commas between items . 150
D.3 Spelling or capitalisation mistakes . 150
D.4 Using variables before defining them . 151
D.5 Using invalid variable names . 152
D.6 Setting variables . 152
D.7 Using modules before importing them . 152
D.8 Not converting to integers when performing arithmetic 153
D.9 Forgetting the colon : at the end of compound statements 153
D.10 Using the assignment operator instead of comparison operator 154
D.11 Not forming expressions properly . 154
D.12 Unnecessarily testing expressions against 0, True, False, None or "" 155
D.13 Getting the number of brackets wrong in an expression 156
D.14 Indexing past the end of lists . 156
D.15 Forgetting the brackets when calling a function 156
D.16 Using variable names reserved by Python . 157
D.17 Getting the indentation wrong . 157
D.18 Using an elif or else without an if . 158
D.19 Placing a condition after an else . 159
D.20 Getting stuck in a loop . 159

E Extra exercises 161
E.0 welcome.py . 161
E.1 oddoreven.py . 161
E.2 century.py . 162
E.3 circlearea.py . 162
E.4 drawline.py . 162
E.5 countingdown.py . 163
E.6 span.py . 164
E.7 squares.py . 164
E.8 headstails.py . 165
E.9 randompathtracer.py . 165
E.10 ascii.py . 166
E.11 vowel.py . 168
E.12 prayers.py . 169
E.13 palindrome.py . 169
E.14 histogram.py . 169
E.15 length.py . 170

v

E.16 turtleboxes.py . 170
E.17 longest.py . 171
E.18 reverse.py . 171
E.19 twist.py . 171
E.20 factorial.py . 172
E.21 quiz.py . 172
E.22 hangman.py . 173
E.23 checkerboard.py . 174
E.24 prime.py . 175
E.25 factors.py . 176
E.26 turtlehistogram.py . 176
E.27 kiosk.py . 176
E.28 order.py . 177
E.29 brackets.py . 177
E.30 calc.py . 178
E.31 compound.py . 178
E.32 temprange.py . 179
E.33 cipher.py . 180
E.34 turtlebattleship.py . 180

F The Zen of Python 183
F.0 Abstract . 183
F.1 The Zen of Python . 183
F.2 Easter Egg . 184

G Development 185
G.0 TODO . 185
G.1 Test Area . 185

vi

CHAPTER

ZERO

STARTING WITH PYTHON’S IDLE

Most of the good programmers do programming not
because they expect to get paid or get adulation by the

public, but because it is fun to program.

— Linus Torvalds

0.0 Introduction

Welcome to our guide on learning Python!

Programming is the art of logical thinking. It is the process of breaking down a problem or
task into simple steps so even a dumb computer can follow them. These steps are written
down according to a set notation, so that a computer can translate them into its own machine
code. Thankfully, people no longer have to program in machine code themselves, made up of
numbers, but in a higher form, constructed mainly from English words. Computer languages
are different from human languages in that they are formal and unambiguous. The formal
aspect means they are specified in advance with a set notation and the use of keywords. They
are unambiguous so that the program will always do the same thing every time, given the same
circumstances.

Knowing how to program a computer is a great skill to have, even if you are not a professional
programmer. You can program in almost any field of work - especially when you need to
transform data (the basis of information) from one form to another. It means you are not
simply using other people’s work, but you have the ability create for new programs by yourself.
If you can never program a computer, it is like living in a world that you can only read other
people’s writing, unable to write for yourself. Programming is very much a creative process -
you are instructing a computer to follow your what you are thinking, down to the letter!

Python is a fantastic first computer language to learn. It is easy to pick up, but at the same
time is very useful to computer professionals so is not just a beginner’s language. It is used by
large companies such as NASA, Disney, Google, YouTube, Microsoft, Yahoo and Dropbox. It
is also used by many educational institutions when learning programming, such as Cambridge
University. It also has the advantage of being free and open source software, so you can
download it at home free of charge. This also means you can study how it works.

It was created in the early 1990s by the Dutch programmer Guido van Rossum. It has been
updated many times since then, and in this book we will be using Python 3. The exact version

1

Marching Up and Down the Code

of Python 3 does not matter so much, as long as your version is Python 3.something. This is
for when you are trying to program at home.

Code written in Python is very readable. It lacks much of the cryptic notation that other
languages use to express themselves. It almost reads like pseudo-code - a description of how
a program should operate as written in lines of plain English.

Python is also very interactive. This means that you can experiment with the language,
getting to know it better, without a cumbersome process getting in the way. Although we will
write proper programs later (from chapter 6 - First Program), initially we will use Python’s
interactive interpreter to start off. It is called an interactive interpreter because you type
lines of code (known as statements) and get the answer straight away, i.e. interactively. It
is an interpreter because it translates the lines of Python into a form that the computer can
understand directly.

0.1 What we will be learning

We will be learning the basics of the Python language, just enough for us to write interesting
and challenging programs (and have a bit of fun).

We will cover data types, organising our data and code, opening and reading files on disk,
handling errors. We introduce the three ways code can flow - sequentially, selectively and
iteratively. We will not cover more advanced features in any detail such as object orientated
programming, dictionaries, list comprehensions, lambdas, generators, decorators, and the
like. We may use some of these features, but not code them ourselves. In fact, what we do
teach will not be covered in great depth, only enough for you to start programming yourself.
Not only do we not have time for this, but these topics are not entirely necessary to do the
programming we want to achieve.

This book unfolds in a way that should be familiar to school children. We first use Python
to perform calculations and call functions, just as you have learnt in your maths class. The
arithmetic is calculated in a way familiar to those using proper scientific calculators, not basic
ones. We use the language to store values in memory, again just like a calculator, but in more
flexible manner. Only then do we move onto writing complete programs and using concepts
that are less familiar to those following a high school curriculum. We use the Raspberry Pi as
our hardware platform, as reflected in the pictures, but any computer could be used instead,
particularly at home.

It is encouraged to use this book as a starting point, and then use other resources to continue
your practice in the art of programming. Remember, it is all about being creative and getting
computers to follow our instructions!

2 Chapter 0. Starting with Python’s IDLE

Marching Up and Down the Code

0.2 How to get going

We first use the interactive interpreter to start with Python. Even when introducing more
advanced language features, we will still use this shell to experiment before moving onto a
proper program. A proper program is one typed into its own file, and then the program is
started separately. This is similar to how we use other programs (e.g. LibreOffice or Firefox)
- we use the final result. This is known as running or executing the program. However, at this
stage, we only use the interactive interpreter.

Python’s interactive interpreter is known as IDLE . This name comes from the acronym IDE ,
which stands for Integrated Development Environment - a program that allows you to develop
or create other programs. It contains an editor, used to type your code, and a way of running
your programs. IDLE also contains the interactive interpreter that allows us to experiment line
by line.

To start IDLE, either click on the IDLE icon on the desktop or select the IDLE program from
the Applications menu in the bottom left:

IDLE will then start, and you will have a window on your screen which looks like this:

0.2. How to get going 3

Marching Up and Down the Code

You are now ready to go.

Later, in chapter 6 on your First Program, you will position this IDLE window slightly
differently in order for you to see both the program you are writing and the interactive
interpreter at the same time. Until then, this is all you need to know about starting Python’s
shell. Next chapter - typing in some code and seeing what happens!

0.3 Things to remember

1. Click on the IDLE desktop or panel icon to start Python’s interactive interpreter.

2. Type away in the interactive interpreter and see what results you get. Don’t be afraid to
experiment, you can’t break the computer that easily. Fortune rewards the brave!

4 Chapter 0. Starting with Python’s IDLE

Marching Up and Down the Code

3. To recall something already typed in, use the up arrow to move the cursor onto the
line you wish to use. Press the Return or Enter key - this brings it down onto your
current line. You can modify what has been copied down. To run the line again, press
the Return or Enter key a second time. This will save you lots of typing!

4. Read these Things to remember sections in each chapter very carefully and remember
what they say!

0.3. Things to remember 5

CHAPTER

ONE

PYTHON AS A CALCULATOR

There, it should work now.

— All programmers

1.0 First steps (or sums)

Let us start our journey by taking inspiration from something we all know well - your pocket
calculator.

To perform a sum on a calculator, such as 10 plus 20, you could simply hit the following
buttons:

10 + 20

and then hit the = (equals) button. The result, 30, will then appear on your screen. We could
do other operations as well, such as subtraction, division and multiplication, like so:

10 + 20− 4÷ 2× 3

and then finally hitting the equals button, you will get a result of 24 displayed on the
calculator’s screen. This is assuming you are using a proper calculator, not a simple one which
performs the calculation as it goes along, one step at a time! In other words, it performs the
division first, then the multiplication, and then subtracts this answer from the result of the
addition.

So given their name, we should be able to use computers to do some computing, that is,
working with numbers. Particularly, we should be able to use our new programming language,
Python, to do this for us.

Using the first example, the Python code is very simple.

Bring up your Python interactive interpreter, as described in chapter 0 (i.e. by clicking on the
IDLE icon on your desktop), and type the following:

>>> 10 + 20

30

6

Marching Up and Down the Code

and press the Return or Enter key on your keyboard. The >>> (chevrons) appear
automatically, so do not type these! The chevrons just mean that IDLE is ready for you to type
something new. You should see the number 30 displayed below the line you typed, as in the
example above.

How about the second example? Let us try this:
>>> 10 + 20 - 4 / 2 * 3

24.0

The answer is the same as with our calculator example above. However, what are these /

and * symbols? Well, the ÷ doesn’t actually appear on your computer keyboard, so we use
another symbol / (forward slash) instead. And the × is too much like the letter x , so we use
the asterisk * symbol instead. These signs or symbols in computer programming are called
operators, and we have leant four so far - + (addition), - (subtraction), * (multiplication)
and / (division). The value it is operating on or using is called an operand .

Type in it, press the Return or Enter key, and see what the result is. The result should read
24.0, the same as when we were using the calculator earlier. This is not a whole number, but a
fractional number - it has a decimal point included. In Python, we will deal with two types of
numbers - whole numbers (integers) and fractional numbers (floating point or real numbers).

Remember, like in mathematics, a computer language does not necessarily work out the sum
from left to right - it gives priority or precedence - to some operations over others. It actually
performs the division first (4 divided by 2, equalling 2), then the multiplication (2 times 3,
equalling 6), then the addition (10 plus 20 equalling 30) and finally the subtraction (30 minus
6 equalling 24). To see the full list of operator precedence - which operator is processed before
others - then refer to Appendix B.1 on Operators.

To enforce a different order, you can use brackets (and) - just like in maths. Put a pair of
brackets around each part of the sum you want done separately. So if you wanted to do the
addition and subtraction section first, then type the following:

>>> (10 + 20 - 4) / 2 * 3

39.0

In programming (and maths too), this way of expressing a value to form a result is called an
expression.

1.1 Operator overload

On your calculator there are more than 4 buttons to do things. There is one labelled 𝑥2.
And 𝑥3. Python has this built-in as well and it is the ** (power) operator. For example, the
number 9 to the power of 2 is as simple as:

>>> 9 ** 2

81

1.1. Operator overload 7

Marching Up and Down the Code

Which is 81. 2 to the power of 3 is:
>>> 2 ** 3

8

Which is 8. This works for any power. How about working out large numbers, such as 198? To
do this, type in the following:

>>> 19 ** 8

16983563041

Your answer should state 16983563041. Negative numbers work as well. Remember that 2-1 is
the same as 1÷ 2? Doing this in Python is similar:

>>> 2 ** -1

0.5

Your answer should read 0.5.

Note: Operators almost always have a value either side of them, such as 10 + 20 , or
2 ** 8 . The general exception when using the minus sign - or the plus sign + , in which
case it appears you are using two appears in a row, such as 30 + -10 , which would result in
a value of 20. Apart from negating a value, you should use these arithmetic operators with two
values (one to the left, one to the right), not just one.

We can now move onto something your calculator cannot do. Remember when you were in
primary school, and you learnt that 7 divided by 3 was 2 remainder 1 (or to put it another way,
7 ÷ 3 = 2 𝑟 1)? To get the quotient (in this case 2), use the // (floor or integer division)
operator:

>>> 7 // 3

2

Which should be 2. And for the remainder, use the % (modulus) operator:
>>> 7 % 3

1

Resulting in 1. Reading both answers together, we have got 2 remainder 1. To practice further:
>>> 10 // 6
1
>>> 10 % 6
4
>>> 29 // 8
3
>>> 29 % 8
5
>>> 24 % 2
0
>>> 25 % 2

1

8 Chapter 1. Python as a Calculator

Marching Up and Down the Code

The last two demonstrate that 24 is even (no remainder when divided by 2), and 25 is odd (a
remainder of 1)!

1.2 Exercises

1. Type the Python line to work out 3 plus 5 divided by 2.

2. Type the Python line to work out 4 times 2 minus 7.

3. Type the Python line to work out 7 to the power of 6.

4. Type the Python lines to work out the quotient and remainder of 11 divided by 4.

5. To convert from Celsius to Fahrenheit temperature, you multiply the Celsius by 9 divided
by 5, and add 32. If the Celsius is 40, what is the Fahrenheit reading?

1.3 Things to remember

1. Remember your arithmetic operators, using the values 2 and 5 as an example:

Name Operator Example Maths equivalent

Addition + 5 + 2 5 + 2

Subtraction - 5 - 2 5− 2

Division / 5 / 2 5÷ 2

Multiplication * 5 * 2 5× 2

Power ** 5 ** 2 52

Floor division
(integer division) // 5 // 2

⌊︀
5
2

⌋︀
Modulus (remainder) % 5 % 2 5 𝑚𝑜𝑑 2

See Appendix B.1 for a full list of operators, over and above arithmetic.

2. Use brackets to force Python to do a calculation in a particular order

3. Whole numbers are referred to as integers, fractional numbers are referred to as floats
(floating point).

4. In programming, values are known as expressions, potentially made up of other values,
operators and even other expressions that need to be evaluated to form a result. They
express a value.

1.2. Exercises 9

CHAPTER

TWO

NAMING YOUR DATA

A computer once beat me at chess, but it was no match
for me at kick boxing.

— Emo Philips

2.0 Saving and recalling

Remember in the previous chapter we looked at how your calculator works and started using
the Python programming language to copy and build on this.

One feature of a calculator is the Memory button, usually marked by the letter M . This
allows you to store a number, add onto or subtract from it, and recall it later for use in a new
calculation. It effectively makes the calculator remember a number for you, so that you do not
have to.

All programming languages, including Python, have a similar feature. Instead of having a
memory button, Python has variables. It is really just a way of putting a name against the data
(e.g. a number) you are working with, giving your program the ability to store data, change it
(i.e. vary its value), and recall it later.

For example, the initial sum we worked on in the previous chapter:
>>> 10 + 20

30

Python will evaluate this sum, give you the result, but it will not save it anywhere. It
effectively throws the answer away.

How can we save the result in memory?

Similar to a calculator, we can store it in a variable called M :
>>> M = 10 + 20

What this does is take the integer values 10 and 20, with the addition operator it adds them
together and then assigns them, using the assignment operator = (equals), to the variable
name M .

10

Marching Up and Down the Code

Note: In Python, variables names are like labels attached to boxes which contain data. If you
put a box of things away in the attic or in storage, the label will describe what is inside the
box, with the box containing the things themselves. In Python, the label is the variable name,
the box contains the data, e.g. an integer number.

We can then recall the value stored against this name later. For example:
>>> M + 5

35

You will see it gives an answer of 35. The variable name M refers to 30 (from the addition of
10 and 20 above), and then we are adding a further 5 to it, giving 35.

If we now try:
>>> M + 10

40

You will notice it results in 40. It does not take the previous result of 35 and add on 10, as we
did not store that back into M , but simply recalled the value of M and used it as before.

To change the value of M , we have to put it back on the left hand side of the assignment
operator:

>>> M = M + 10

This changes M once more, using it on the right (recalling M , being 30, and adding on 10),
and putting that back into the variable name M . We are effectively reusing the same name, or
giving it a new value.

To see what the new value of M is, just type M :
>>> M

40

This gives 40, as expected (30 plus 10, as above).

2.1 More and more

Your calculator will have just the one memory to store numbers, but in a Python program you
can have have any number of variables in your program. And they do not have to be called
M either! In fact, if you want to store your data separately, you need different names for each
value.

For example:
>>> M1 = 5
>>> M2 = 10

>>> M3 = 15

2.1. More and more 11

Marching Up and Down the Code

Try this, so one variable makes use of two others:
>>> a = 10
>>> b = 20
>>> c = a + b
>>> c

30

And this:
>>> first_num = 123
>>> second_num = 456
>>> third_num = first_num * second_num
>>> third_num

56088

And arithmetic operators can be used that we learnt in our previous chapter:
>>> A1 = 10 + 20
>>> B2 = A1 - 4
>>> C3 = B2 / 2 * 3
>>> C3 + A1

69.0

That last line displays the value of C3 , calculated from the value of B2 , and adds on the value
of A1 .

You can name your variables with any combination of letters (UPPER and lowercase) and
numbers along with the _ (underscore, not minus sign) character, as long as the name does
not start with a number. You can use the underscore to separate words in your variable names
to make them more readable (e.g. first_time_entry instead of firsttimeentry) - spaces
are not allowed inside names as this would appear as two names, not one!

2.2 Exercises

1. Define a variable called age and set it to your age (use an integer number).

2. Use your age variable to calculate how many days old you are (assume each year has
365 days).

3. Again, use your age variable to calculate in what year you will be 100 years old. You will
need to take the value of age from the present year, 2015, and then add on 100.

2.3 Things to remember

1. You define a variable by giving it a name, and using the assignment operator to give it a
value. The value can be evaluated (calculated) from other variables.

12 Chapter 2. Naming your data

Marching Up and Down the Code

2. Begin your variable names with a letter from the alphabet (upper or lowercase) or the _

(underscore) character. To use the underscore character, you need to press the Shift

key down whilst pressing the key to the right of the 0 (zero), the - key.

3. Use the _ (underscore) character to divide up words in your variable names to make
them more readable, e.g. first_num .

2.3. Things to remember 13

CHAPTER

THREE

FUNCTIONS AND MATHS

Ah. I’d like to have an argument, please.

— Michael Palin
The Argument Sketch - Monty Python’s Flying Circus

3.0 Basic functions

In Maths, you learn about functions. An example of a simple function is:

𝑓(𝑥) = 𝑥+ 1

This function takes in a number, 𝑥, and adds one to it. So if 𝑥 = 1, then 𝑓(𝑥) = 2. In
Python-speak, 𝑥 is an argument, and the result, 𝑓(𝑥) is the return value. Every function gives
back a value, its return value.

Python also has functions. You can make your own functions, but in this chapter, we will focus
on using functions that Python already has, called built-in functions. The first function we’ll
use is called abs , which stands for absolute value:

>>> abs

<built-in function abs>

What this function does is, given any number, positive or negative, it returns a positive number
with a magnitude equal to the number you give it. This means that if you give it 6 , it will
return 6 , but if you give it -9 , it will return 9 . The way you use this function is you write
the function name, abs , then a opening parenthesis, (, then the number you want, let’s say
-42 , and finally a closing parenthesis,) , to tell Python that we are finished:

>>> abs(-42)

42

It works just as you would expect. We can do this with other numbers, including numbers with
decimal places:

>>> abs(2)
2
>>> abs(-123.45)
123.45
>>> abs(0)

0

14

Marching Up and Down the Code

We can say that abs is a function that takes one argument, a number, and returns the
positive version of that number. In the above example, we can say that we called abs with
-123.45 as an argument.

3.1 More arguments

But not all functions take one argument. An example of a function that takes two arguments is
round . It takes a number to be rounded, usually a fractional number, and a whole number
of decimal places to round the first number to. So rounding 123.12 to 1 decimal place
should give 123.1 . How do we call a function with more than one argument? We separate
the arguments with commas. To call round as we described, we write round , then (, our first
argument, 123.12 , then a comma, , . We then write our second argument, 1 and a closing
parenthesis,) :

>>> round(123.12, 1)

123.1

round can round to any number of decimal places to round to:
>>> round(98765.4321, 3)
98765.432
>>> round(0.123456789, 7)
0.1234568
>>> round(0.123456789, 0)
0.0
>>> round(0.123456789, 20)

0.123456789

When the number of decimal places to round to is greater then the precision of the number to
round, round does nothing. round can also take a negative number of decimal places, like
scientific notation (or standard form):

>>> round(12345.6, -1)
12350.0
>>> round(12345.6, -3)

12000.0

If you call round with -2 , it makes the last two non-fractional digits zeros. Another
two-argument function is pow (power). pow(x, y) is equivalent to x ** y :

>>> pow(3, 4)
81
>>> pow(-2, 5)
-32
>>> pow(64, 0.5)

8.0

3.1. More arguments 15

Marching Up and Down the Code

3.2 How many arguments can one function have?

That depends! Some functions take any number of arguments. min is a function that takes
two or more arguments, and returns the smallest one:

>>> min(1, 8)
1
>>> min(4, 1, 9)
1
>>> min(-2, 5, -256, 7, 2, -5, -10, 100)
-256
>>> min(0.5, 0.125)

0.125

If you don’t give min enough arguments, Python gives an error:
>>> min()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: min expected 1 arguments, got 0

Other functions also give errors if you don’t give the right number of arguments:
>>> abs()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: abs() takes exactly one argument (0 given)
>>> abs(1, 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: abs() takes exactly one argument (2 given)
>>> round(5, 9, 1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: round() takes at most 2 arguments (3 given)

max is a similar function to min , except that it returns the largest argument:
>>> max(1, 8)
8
>>> max(4, 1, 9)
9
>>> max(-2, 5, -256, 7, 2, -5, -10, 100)
100
>>> max(0.5, 0.125)

0.5

16 Chapter 3. Functions and Maths

Marching Up and Down the Code

3.3 Functions functioning

You can use the return value of a function as an argument to another function, assign the
return value to a variable and use variables as arguments:

>>> max(-10, abs(-20))
20
>>> the_biggest_num = max(4, 9, 23, 56, 12, 5)
>>> the_biggest_num
56
>>> a = 3
>>> b = -4
>>> c = 5
>>> min(a, b, c)

-4

Functions are also variables, so you can assign functions to new variables:
>>> func = abs
>>> func(-8)
8
>>> func
<built-in function abs>
>>> abs

<built-in function abs>

3.4 Exercises

1. Use abs to find the absolute value of -35.5 .

2. Use round to round -22.8364926 to 4 decimal places.

3. Use both round and abs to find the absolute value of -7495.184758 to 2 decimal
places.

4. Use max and min to find the smallest and largest number from 7 , -8 , 4 , -12 and 1 .

3.5 Things to remember

1. Functions are called with arguments to give a return value.

2. To call a function func with no arguments do func() .

3. To call a function func with an argument arg do func(arg) .

3.3. Functions functioning 17

Marching Up and Down the Code

4. To call a function func with more than one argument, separate the arguments by
commas: func(arg1, arg2, arg3, etc) .

5. Functions return values that can be assigned to variables, e.g. num = abs(-10) ,
and variables and return values can be used as arguments, e.g. abs(num) and
abs(round(-10.75)) .

18 Chapter 3. Functions and Maths

CHAPTER

FOUR

DRAWING TURTLES

Theory is when you know something, but it doesn’t work.
Practice is when something works, but you don’t know

why. Programmers combine theory and practice: Nothing
works and they don’t know why.

— Anonymous

4.0 Importing

Let us move from using Python to do maths and switch to doodling instead!

What we will do is to use a Python program called turtle to move a shape around the
screen, leaving a trail behind in the process. Think of it like using a piece of graph paper, with
the origin in the centre, and the pen being moved by your instructions.

To use this separate turtle program, we have to use a new command called import . What
import does is to bring in, or include, a separate program - called a module in Python - into
your own program. We cannot ever hope to write every piece of code ourselves, so often we
depend on programs that others have been written and build on them.

It was Isaac Newton who said:

“If I have seen further, it is by standing on the shoulders of giants.”

In other words, he only made the advances in the fields of mathematics and physics he did by
building on the work of those who came before him.

Programming is similar. If we make use of the work of others, we can go far. We can build
more interesting programs much faster by using other people’s code which we can depend
upon. Modules that Python itself offers as standard, ready to be included into your program,
are often very well written and tested.

So, to include another program, we must use the import command, and give it the name
of the module to import. Although this program will have the .py filename extension (e.g.
turtle.py), we do not include that part when naming the module.

Therefore, to use the math (for mathematics) module, you would type:

>>> import math

19

Marching Up and Down the Code

and then you can use it thereafter, such as the square root function:
>>> math.sqrt(64)

8.0

which should give us the answer of 8 (8.0 to be exact), as you would expect. You cannot use
a module until you have performed the import, not before! Notice the . (period) character -
it separates the module name (math) from the function being used (sqrt). We must write
the name of the module first, followed by the . period, and then the function name that is to
be found inside the module. The period is used to say that this function is found inside this
module - we will see more of this later when talking about functions that belong to a particular
type.

Here is another example - using the value of 𝜋 as defined as a variable by the math module:
>>> math.pi

3.141592653589793

Using the name math.pi is not calling a function, it is referring to a floating point (i.e.
fractional) variable inside the math module, therefore we do not need to use parentheses.
Although we refer to math.pi as a variable, we do not expect it change in value. We call this
type of value a constant.

4.1 Stick your head out of the shell

So let us get back to our drawing. To import the turtle module, you just need to type the
import command followed by the name of the module, as follows:

>>> import turtle

Now we can begin to use it. The first time we use a function inside the turtle module, a
window (similar to a canvas or graph paper) will pop up so that we can draw in it. Let us do
this by drawing something, so type in the following:

>>> turtle.forward(100)

You should see a new window pop onto the screen. Move it to the right of your screen so it
does not obscure what you are typing, like so:

20 Chapter 4. Drawing Turtles

Marching Up and Down the Code

See how the small shape leaves a trail behind as it moves. Let us carry on:
>>> turtle.left(90)
>>> turtle.forward(100)
>>> turtle.left(90)
>>> turtle.forward(100)
>>> turtle.left(90)
>>> turtle.forward(100)

>>> turtle.left(90)

We have drawn a box! We have effectively done the same thing four times - moved forward
100 places (measured in pixels, which stands for picture elements), and then turned left 90
degrees each time.

If you make a mistake, you can go back a turn, or undo your previous move, by typing the
following:

>>> turtle.undo()

There are lots of other functions to call as well. Try the following:
>>> turtle.circle(75)
>>> turtle.right(30)
>>> turtle.forward(50) Cont...

4.1. Stick your head out of the shell 21

Marching Up and Down the Code

>>> turtle.begin_fill()
>>> turtle.circle(40)

>>> turtle.end_fill()

The begin_fill must be called before you start drawing your shape, and the end_fill

function is called when the shape is complete. The turtle program then knows what to fill in.

Here is a list of turtle functions you may find useful: forward , left , right , up , down ,
goto , begin_fill , end_fill and undo .

4.2 Exercises

1. Draw a hexagon - a six sided shape, where the angle of turn is 120 degrees (180 minus
60 degrees).

2. Draw a star that has been filled in. Hint: try turning 144 degrees and 72 degrees,
alternatively, each time you draw a spike.

3. Draw a house, complete with roof, windows and door. You will need to use turtle.up

and turtle.down to pick the pen up and put it down, respectfully, so that you do not
draw a line everywhere.

4.3 Things to remember

1. You can use another program by using the import command and the module’s name
(without the .py extension).

2. You cannot use variables or functions from a separate module until you have imported it.

3. Use the . character to dip inside a module, with the module name first, and the variable
or function from inside the module second.

22 Chapter 4. Drawing Turtles

CHAPTER

FIVE

GETTING HELP

Don’t worry if it doesn’t work right. If everything did,
you’d be out of a job.

— Mosher’s Law of Software Engineering

5.0 Save Our Sanity

Python is a very helpful programming language when we need to find out more information.
And it is all built-in so we do not even need to go elsewhere to find it.

On a general level, you can use the interactive interpreter to enter the help utility like so:
>>> help()

So if you remember what we taught in chapter 2 , this means that help is a function, and it is
being called by placing parentheses () (round brackets) after its name.

When we are in the help utility, the prompt changes from >>> to help> , to avoid confusing
the two. The first thing to learn is how to exit the help system:

help> quit

>>>

In actual fact, just pressing the Enter key without any text will do the same!

Now, if you re-enter the help utility, you can type any command or function to get further
information on that item. For example:

>>> help()

help> round

This will display some information on the round function. If the help utility does not recognise
what you have typed, it will say so.

You need not enter the help utility to get further information, though. You can do it from the
interactive prompt as well:

>>> help(round)

This will display the same information as before, but it takes less effort to get to it!

You can also get help on values or types of data:

23

Marching Up and Down the Code

>>> help(10)

>>> help(12.8)

These will display information on integers and floating point numbers, respectively. Do not
worry about what is displayed at this point - much of it will not make much sense yet!

Using the proper names of the types of data will display the same information:
>>> help(int)

>>> help(float)

To get a list of what is built into Python, you can call the directory function in this way:
>>> dir(__builtins__)
['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__', '__gt__', '__hash__', '__init__', '__iter__', '__le__',
'__len__', '__lt__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__setitem__',
'__sizeof__', '__str__', '__subclasshook__', 'clear', 'copy',
'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault',

'update', 'values']

This will list a number of error codes, followed by a number of built-in functions. These
functions can be used just by referring to their name, followed by parentheses to call them. For
example, one of the built-in functions is round , so we can simply call it as follows:

>>> round(10.75)

11

which returns a value of 11, as you would expect.

You can get more help on these functions by using the help function again. For example:
>>> help(round)

will give more information on the round function, such as what it accepts (a number, and
optionally the number of digits to round the number to), and what it returns back (another
number, the rounded result).

In the previous chapter, we introduced the notion of bringing in a separate program (often
called a module) into our own using the import command. But how do we know what
available modules there are to import? To find this out, we can type the following:

>>> help('modules')

This takes a few seconds for Python to work out, but it will list every available module that
can be imported by your program, including the math or turtle modules we used previously.

To see what is inside a module, once you have imported it, you can perform a dir on the
module name, for example:

24 Chapter 5. Getting help

Marching Up and Down the Code

>>> import turtle

>>> dir(turtle)

To delve deeper, we can find out more information on functions inside these other modules by
using the dot notation as introduced last time. So, for example, if we want to find out more
information on the square root function inside the math module, we could do the following:

>>> import math

>>> help(math.sqrt)

Note: You must import the module before you can get help on its contents. Otherwise
Python does not know what is inside it.

For further information and a guide on the language, please refer to The Python Tutorial at
Computing/Python 3.4.2 docs/tutorial/index.html, which includes many more examples
and covers more language features than we will be doing in this guide!

5.1 Things to remember

1. To get help, use the help() function in the interactive interpreter with the item on
which your require further information, and the dir() function to get a directory listing
on the __builtins__ (double underscore at each end) or a particular module.

5.1. Things to remember 25

CHAPTER

SIX

FIRST PROGRAM

Computers are good at following instructions, but not at
reading your mind.

— Donald Knuth

So far we have been using Python’s interactive interpreter, built into the IDLE program,
to experiment with Python in a way that is familiar to us - performing calculations, calling
functions, giving values in memory a name. We have started to step out of this familiar
territory by using other programs (known as modules), such as the turtle module, to extend
what Python can do by itself. Using the interactive interpreter allows us get to know the
language, but it limits us effectively to one statement of code - a line that when you press the
Return or Enter key, will be run straight away and gives you back an answer (if there is one).

We will now learn how to use IDLE in order to write a full program, one that can be run on
its own again and again. This means we can write the program once, and run it many times
without the need to re-write the program each time. We only need to change our program to
modify its behaviour, or correct errors, not having to it from scratch each time. It also means
we can write longer, more interesting programs!

6.0 Ed

To write a program, and modify it later, we use an editor . Thankfully, IDLE not only has the
interactive interpreter we have been using, but an editor built-in as well.

To start Python editor, first start IDLE itself (see chapter 0 for this if you have forgotten).
Then, using the mouse pointer, click on the File menu at the top of the interactive window,
and click again on the New File menu item, like so:

26

Marching Up and Down the Code

This will bring up a new window, the editor window. The shortcut for this is to hold down the
Ctrl key, towards the bottom left of your keyboard, and hit the N key (N for New). This
blank window is where we type in our new program:

6.0. Ed 27

Marching Up and Down the Code

28 Chapter 6. First program

Marching Up and Down the Code

Tip: The best arrangement is to have your interactive interpreter on the left and the editor
window on the right. You can do this on the Raspberry Pi by using the mouse, clicking on
the interactive interpreter title bar using the left mouse button (keeping it pressed down) and
try to pull the top of the interactive window past the left hand side of the screen - it should
then snap into a shape that takes up the left 50% of your screen - and let go of the mouse
button. Do a similar procedure with the editor window, but try to drag it past the right side of
the screen. You will then have the two windows you need to see, side by side:

The scene is set.

6.1 Our first program

Our first complete program will be the same as the code we typed in for chapter 4 on drawing
turtles. Therefore, in this new editor window, type in the following:

import turtle

turtle.forward(100)
turtle.left(90)
turtle.forward(100) Cont...

6.1. Our first program 29

Marching Up and Down the Code

turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)

turtle.begin_fill()
turtle.circle(40)

turtle.end_fill()

Type in everything, including the blank lines! You can use copy (Ctrl-C) and paste (Ctrl-V)
to repeat the lines in the middle to save time.

6.2 Running our program

Once you have typed it all in, we are ready to run our program. To run, press the F5 key (or
if you really want to do it the hard way, then click on the Run menu and select Run Module

menu item). This will bring up a dialog box like this one:

Simply agree to this by pressing the Return or Enter key on your keyboard. Again, if you like
doing things the hard way, then use your mouse to click on the OK button.

On this, the first time of writing your program, you will need to give it a name. If you have
already done this, then IDLE should proceed onto attempting to run your program. The
Save As dialog is shown, asking you where to save your program and what to call it:

Most importantly, change the location of where the program is being saved to either your USB

30 Chapter 6. First program

Marching Up and Down the Code

stick or the computer directory with your name. This is so your own programs are saved in the
same place, and you will be responsible for looking after it.

Tip: To save on your USB stick when the Save As dialog box appears, first click on the
directory USB_STICKS, and then click on the name of your USB stick, which is USB Disk by
default.

Once you are in the right place, give your program a name (such as shapes.py in this
instance) and click the Save button (or hold down the Alt key and hit the S key), like so:

Your program will now run! It should look roughly like this:

6.2. Running our program 31

Marching Up and Down the Code

However, the alternative is that it doesn’t work - there is a problem or error in your program.
To correct this, return to your edit window, and change it so that it reflects the above program
exactly. Python, and all computer languages, are very fussy - if there is an error, the computer
is not allowed to guess what you meant like a person could do!

6.3 Comments

That is not all - we can also insert comments to help other people understand what is going on
(including ourselves when we examine our own work in the future). Modify your program so it
looks like this - in other words, add the lines beginning with the # symbol:

import turtle

Draw a square - move forward and turn for each side
turtle.forward(100) Cont...

32 Chapter 6. First program

Marching Up and Down the Code

turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)

Draw a filled circle
turtle.begin_fill()
turtle.circle(40)

turtle.end_fill()

Here we have dedicated each line containing the # symbol as a comment, a piece of
annotation. It is simply a note to describe what is going on - but do not over do it. If the line
is obvious, then there is nothing to say. The best thing is to describe sections of code, or if the
code is hard to understand. It is best to describe the thinking behind why you wrote the code
in the way you did, rather than simply repeat what the code is saying already.

It is also possible to put comments at the end of lines, like so:
turtle.end_fill() # fill in the drawn shape

Effectively, Python ignores everything after the # symbol - up until the end of the line. The
next line starts afresh.

6.4 Things to remember

1. To start a new program, click on the File menu and click on New File . This opens up
a new window ready for your program to be typed in. The shortcut for this is to hold the
Ctrl key down and hit the N key.

2. The best arrangement is to move your interactive interpreter window to the window so it
takes up the left half of the screen, and the editor window to the right so it takes up the
right half of the screen. See the tip above to see how to do this.

3. Once the program has been typed in, or at least a little of it, then to run it you either
click on the Run menu and select the Run Module item, or press the F5 key as a
shortcut. You will be asked to save your program, so simply press the Return or Enter

key. If you are running your program for the first time, you will need to give a name.
Save all your programs into the directory with your name, or onto your USB stick. If you
are using a USB stick, it will appear in the USB_STICKS folder in your home directory
once you have plugged it in.

4. Name your Python programs with a .py postfix (e.g. shapes.py). Avoid including spaces
in your program name, and include only one period . character.

6.4. Things to remember 33

Marching Up and Down the Code

5. Comments, or annotations intended for other people to read, are denoted with hash #

symbol.

34 Chapter 6. First program

CHAPTER

SEVEN

PRINT THAT OUT!

What you see is all you get

— Brian W. Kernighan

7.0 Printing numbers

Now that we have started writing proper programs that can be saved and run over and over,
we will soon discover a little problem.

To see this, open up a new file (click on the File menu and select New File), and type in
the following into the new window that appears:

a = 10
b = 20
c = a + b

c

This is just the same code as we did in Chapter 2 when working with variables for the first
time. However, back then, we typed in each individual line in the interactive interpreter, and
it gave an answer every time if there was one.

What happens now, given that it is living in its own program? Try it and see - press the F5

key, click OK to save it and give it the name sum.py. Remember, the .py postfix stands for
Python. Moreover, save all your programs in the appropriate place (the directory with your
name, or onto your USB stick).

When the program runs in the run window (the same as the interactive interpreter), what does
it display onto the screen? Does it give 30 as expected? No, it does not!

The reason for this is that just typing a value (e.g. 10) or an expression to be evaluated (e.g.
10 + 20) or a variable name (c in the example above) will do nothing in a real program. The
interactive interpreter is just that - interactive. But in a real program, you have to tell Python
what to do with the item you are dealing with. Otherwise, the value will simply be discarded as
it is not being used for anything.

So what do we want to do with the variable c above? We want to display or print it out onto
the screen. In Python, the way to do this is to use the print function. You simply wrap your
value inside the parentheses in the print call, and it will then print it out as we originally
intended. Therefore, modify your program so it looks like this:

35

Marching Up and Down the Code

a = 10
b = 20
c = a + b

print(c)

Run your program again, using the F5 key (you may have to click the OK button, or just press
the Return or Enter key to confirm). This should now print out the number 30 in the run
window.

You can print out more than one item by using a comma , between the items to separate
them. Modify the last line in your program again:

a = 10
b = 20
c = a + b

print(a, b, c)

and run, again by using the F5 key and pressing the Return or Enter key to confirm. This
will print out 10, followed by 20 and finally 30, all on the same line.

You can even get the print function to perform the calculation for you when passing in the
values to print. All arguments like this are evaluated (processed or simplified) before the values
are presented to the function to use. Again, modify your program like so:

a = 10
b = 20
c = a + b

print(a, b, c, a + b + c)

This will print out the three numbers from before (10, 20 and 30), and then 60 (all the
variables added together), without the need of a fourth variable to hold this extra number.

7.1 Printing messages

Dealing with numbers all the time is very useful, but it is bit limiting. Computers do not just
compute numbers! They also deal with textual messages, not to mention pictures, music and
videos! Dealing with messages containing text is very easy, but subtly different.

To deal with text, we need to enclose the words with quotation marks, just like how a piece of
speech in a book is surrounded by quotation marks. In Python, it is very similar.

Open up a new file (click on the File menu and select New File), and type the following:
print("Hello World!")
print('How are you?')
print("I love Python")

print('This is fun!')

36 Chapter 7. Print that out!

Marching Up and Down the Code

Save this file as lines.py (press the F5 button, press the Return or Enter key to confirm
and save it in the usual place), and see the text being printed out onto the screen. Notice how
we use either double quotation marks " or single quotation marks ' - Python does not mind
which one you use, as long as you are consistent. This means that if you start with a double
quote, then you must close with a double quote.

These pieces of text in Python are called strings. Think of them as strings of characters, made
up of either letters from the alphabet, numerical digits or symbols. This includes almost any
key from your keyboard, and more besides. Similar to a string or chain of pearls, a string in
programming is a sequence of characters. To illustrate, whilst with an integer number (shown
below on the left) is stored as a whole number (with the 1s, 10s, 100s, etc., all in their correct
places), strings (shown on the right) are simply a sequence of characters, where digits are
treated the same as letters and symbols:

a b c d e f123
We now know three types of data - integers, floats and strings.

Modify your lines.py program to include strings and integers together, below the lines you
added previously:

print("1 plus 2 equals:", 1 + 2)
print("I am", 18, "years old")

print("That bag of apples cost", 75, "pence")

Again note how we separate a number of items being printed together - using a comma
between each.

We can even have a bit of fun, and join and replicate strings like so:
print('One piece of text' + 'joined to another')

print('How about this ' * 10)

Here we are using the addition operation + to join two items of text together, and then print
out the result. Notice, the result does not have a space between each item, as the other
examples previously do. This is called string concatenation. The multiplication operation *
is used to repeat the string however many times you specify - 10 times in this example. This is
called repetition.

Variables can also be assigned to strings. Add the following onto your program, lines.py:
name = 'Fred'
occupation = 'Farmer'
age = 25

print('Here are my details:', name, occupation, age)

Finally, you can use special characters in strings to denote certain things. Here I will introduce
just three of them, so add these lines to finish:

7.1. Printing messages 37

Marching Up and Down the Code

print('Here is a newline character\nThis is now on a separate line!')
print('This introduces a horizontal tab \t to space out my text')

print('I love St. Michael\'s - notice the quote inside the quote!')

The first one breaks the line with a newline character (\n), the second spaces out the text
using a tab, and the third is a way of using quotes inside quotes, otherwise Python will get
confused between an apostrophe (e.g. St. Michael’s School) and the closing quotation mark.

7.2 Keeping things in line

If you wish to call print a number of times, with each item being appended onto the end of
the line rather than starting a new line, then you need to use a special argument called end . If
you set end to a particular string value, it will use that instead of a new line. For example, add
these lines to the end of your lines.py program and run it once again:

print('This is the first line')
print('This will appear on another line')
print('But these two lines', end='')

print(' will appear on the same line!')

You could, of course, specify the end argument to be anything you want, but it is most
common to either not use it at all, or set it to an empty string (two single quotes, one after
the other). This kind of argument is called a keyword argument, which will be described further
in chapter 19 on functions.

Tip: When you are writing a program later on and cannot see why it is not working as
you would expect, try inserting some print statements in the code with the variables your
program is using. That way, you will see what is going on, whilst it is running. This should
then show you what needs changing to make it work better. This is called debugging your
program.

7.3 Exercises

1. Assign 5 variables to various numbers, and print them out, along with the sum.

2. Print out the year of your birth, your age, and your age in 10 years time.

3. Print out the same as number 2, but with strings of text indicating what number is what,
e.g. I was born in: 1999 my age: 16 in 10 years: 26

4. Print out your name a hundred times, with a tab (using the code \t) to introduce space
in-between each item.

38 Chapter 7. Print that out!

Marching Up and Down the Code

5. You can use strings to describe colors when drawing with turtle , for example,
'black' , 'white' , 'red' , 'green' , 'blue' , 'cyan' , 'magenta' , 'yellow' ,
etc. Two turtle functions in particular can be called; the first called pencolor

(note the American spelling of color), and the second called fillcolor . So for
example, you can call turtle.pencolor('red') before you start drawing, or
turtle.fillcolor('yellow') before drawing a shape. Write a program that draws
a number of circles with different pen and fill colors.

7.4 Things to remember

1. Use the print function to display or output any expression onto the screen.

2. Separate the items to print using a comma.

3. A piece of text can be used by enclosing it in quotation marks, whether using single (e.g.
'fred') or double quotes (e.g. "fred").

4. The only arithmetic operators that can be used with text are addition (i.e. joining strings
together, known as concatenation) and multiplication (repetition).

5. Use the \n for newline, \t for tab and \' or \" (quotation marks) inside strings.

6. Use the optional end argument when calling the print function to keep subsequent
calls to print on the same line, rather than starting a new line.

7. We have now covered three types of data: integers, floats and strings.

7.4. Things to remember 39

CHAPTER

EIGHT

ASKING QUESTIONS

Where is the any key?”

— Homer Simpson
In response to the message, "Press any key"

8.0 String input

It is now time to make our programs more interactive, allowing the user to get involved whilst
the program is running. Up until now, Python has carried out our instructions, one line at a
time, with the program doing exactly the same thing every time.

In this chapter, we will allow the user to affect what happens in the program with the
opportunity to enter data of their own. The way Python allows the user to enter data is by
using the input function. This reads in what the user is typing on the keyboard, and returns
the value to the program as a string so that it can be stored or used elsewhere.

Begin by creating a new program (File −→ New File), and type the following:
name = input('What is your name? ')

print('Hello there', name)

Press F5 to run your program, and give it the name hello.py. You will notice the program
pauses at the first line - it is waiting for your input. Use the keyboard to type in your name,
and press the Return or Enter key. You may have to click on the interactive window used to
run your program with your mouse to make it active. Whatever you typed in will be stored in
the variable name . This variable is then used in the second line to print out a message along
with the value referred to by the variable name .

Note that we are using a message (a string value) when calling the input function - this is
the message that is presented to the user when you are asking for input. This is not essential -
you could miss it out, but then the user may not know they are expected to type something. It
is best to present the message, so they know what to do next.

8.1 Using numbers

The type of data given to us by the input function (i.e. its return value) is always a string.

40

Marching Up and Down the Code

Remember, when you add two strings, you are really joining them together or concatenating
them (e.g. "12" + "34" would equal "1234"). When you multiply a string by a number, you
are repeating the contents of the string (e.g. "123" * 3 would equal "123123123").

Therefore, if you need to use the input as an actual number, you need to convert it from a
string type to an integer or float type. This means you can then use the result in a normal
calculation like any other number. It is effectively converts a sequence of digits into a proper
number where the right most digit is the 1s, the second column is the 10s, the third column is
the 100s, etc., with all the numbers combined together to form a complete number.

Note: Each character of a string is actually encoded according to a table of numbers (a
character set). One common character set is ASCII (American Standard Code for Information
Interchange), which includes all the Latin characters, digits and common symbols. Another
is Unicode, which includes characters from many other languages. These character sets
encode the letter ‘A’ as the number 65, the digit ‘0’ as 48, and the symbol ”!” as 33. This
demonstrates how text is stored inside computer systems.

To convert from a string to an integer, you use the int function. So for example,
int("123") would return the actual number 123 .

To convert from a string to a floating point number, you use the float function. So for
example, float("123") would return the actual number 123.0 .

To convert back from a number (whether integer or float) into a string, you use the str

function. So for example, str(123) would return "123" , and str(123.0) would return
"123.0" .

To appreciate what is involved in converting a string of digits into an integer using the int

function, look at the following diagram to see how Python multiplies the place values, and adds
them all together:

1 2 3 4
string

int() 1234

x 1 +
x 10 +

x 100 +
x 1000

integer

To practice, start a new program called sumup.py, and type in the following into your new
window:

8.1. Using numbers 41

Marching Up and Down the Code

first_num_str = input('First number: ')
second_num_str = input('Second number: ')

first_num = int(first_num_str)
second_num = int(second_num_str)

total = first_num + second_num

print('The sum of those two numbers is', total)

Press F5 to run it, confirm to save, and name your program sumup.py. Careful when entering
those numbers - they must be integers, otherwise converting from a string to an integer in the
program will not work!

To explain what is going on, we first input what the user has typed in, and save it in a variable
called first_num_str . We do the same again for second_num_str . We then convert this
input from a string value to an integer value so that we can perform a proper numerical
addition operation. We do this addition with the line where we assign a new variable called
total to first_num added onto second_num . We finish by printing out a message, printing
the value of total alongside.

Run your program again with different numbers to check it works. Now run it, and instead of
entering integer numbers (e.g. 10 , 20 , -50 , 123 , etc.), type in a fractional number (e.g.
10.75). This should result in an error, as the period . is not part of an integer number.
Python will not like this!

To correct this, let us finally modify your program to change the calls to the int function, so
that they call the float function instead, as follows:

first_num_str = input('First number: ')
second_num_str = input('Second number: ')

first_num = float(first_num_str)
second_num = float(second_num_str)

total = first_num + second_num

print('The sum of those two numbers is', total)

Now try entering fractional numbers, and it should handle them quite happily.

8.2 Exercises

1. Ask the user’s name. Print it out a 100 times.

2. Ask the user’s name and a number. Print out the name that number of times. You will
need to convert the number string to an integer using the int function before repeating

42 Chapter 8. Asking questions

Marching Up and Down the Code

the name string.

3. Ask for a day between 10 and 20. Print it out with the letters “th” appended onto the
day, as with a date. So if the user entered 10, print out 10th ; if the user entered 18,
print out 18th . There is no need to convert the number to an integer - use the addition
operator + to simply join the data input and the letters “th” together.

4. Expand on the sumup.py program we did in the chapter so that it also prints out the
second number subtracted from the first (i.e. the first minus the second), the first
divided by the second, and both numbers multiplied together.

8.3 Things to remember

1. Use the input function to read input from the keyboard. You can store this in a variable
by putting the variable name and the assignment operator to the left hand side of the
call to input. Moreover, you can optionally include a message (a string) to present to the
user when the program pauses for input.

2. To convert to an integer , use the int function.

3. To convert to a float, use the float function.

4. To convert to a string , use the str function.

8.3. Things to remember 43

CHAPTER

NINE

PERFORMING SELECTION

If Baggins loses, we eats it whole.

— Gollum / Sméagol

9.0 Taking a different route

With what we have learned up until now, we can do arithmetic, store values against variable
names, call functions, import other people’s modules, and even get input from the user.
We have also dealt in different types of data, whether numbers (integers or floating point)
or strings (sequences of letters, digits and symbols). Our programs have started running
(technically known as executing) from the top, and finished at the bottom, performing each
line (a code statement) at a time, without any deviation whatsoever.

If a program simply performs the same instructions, line by line, every single time, then
effectively they do the same thing every time they are run. This is not very interesting!
Programs become more useful when they can make decisions on what to do, depending on the
circumstances. Usually, this involves testing the value of a variable, and then performing some
instructions over others. In programming, this is known as selection - the program is selecting
some code statements for running, and not others - it is making a decision.

For example, if the program is working out the price of a cinema ticket, and VIP tickets cost
20% extra, the program needs to take a decision as to whether to add on this 20% or not. It
cannot add on 20% for all the tickets!

To achieve this in Python, we use the if statement. We start with the word if , and
then give it a test to evaluate. If the test evaluates to true (i.e. it is successful), then the
statements underneath are performed (executed). If the test evaluates to false (i.e. it was
unsuccessful), then the statements underneath are skipped.

Note: Statements that belong to an if statement must be pushed to the right in order to
show what code belongs to what line. In programming, this is called indentation. In Python,
we indent by four spaces. When the code block is finished, we unindent back to the column of
the initial line.

Indentation is like drawing up a shopping list, like so:

44

Marching Up and Down the Code

clothes:
shirt
socks
hat

food:
apples
milk
cheese
bread

others:
cup

clothes pegs

Each section is defined by a header, followed by the : colon symbol to indicate what follows
belongs to the header. The items beneath each header are indented, or pushed in to form a
group.

Let us start a new program called vip.py - click on the File −→ New File menu item,
and type in the following:

print('Welcome to our VIP program for calculating cinema ticket prices')
print('Ticket prices are £5.00 for ordinary tickets, £6.00 for VIPs')

vip = input('Do you want a VIP ticket, yes or no? ')

price = 5.0

So far, so good! Now we need to take a decision, so add the following to your program:

if vip == 'yes':

price = price * 1.2

You will notice we have used the if statement to perform a test. The test is whether the
variable vip , created when we saved the answer from asking the user the question over
VIP tickets, is the same as the string “yes”. To perform the test, we have introduced a new
operator, called the equals (comparison) operator. It is looks similar to the assignment
operator, which creates variable names, but the equals operator has two equals signs, not one.
It is testing whether what is on the left is equal to what is on the right. If the equals test
is successful, then the expression is True , and the code drops into the code below the if

statement, indicated by the code being indented to the right. If the test is unsuccessful, then
the expression is False , and the code is skipped over.

Also note the use of the colon : symbol. This is used at the end of every line that has other
lines that are attached to it. We will be seeing that on many more occasions in the future with
other statements we will be introducing. It effectively tells Python to run the following lines if
the test just evaluated was true. Please don’t miss these off!

We can now finish our program, so add the last line on the end so that your complete
programs looks like the following:

9.0. Taking a different route 45

Marching Up and Down the Code

print('Welcome to our VIP program for calculating cinema ticket prices')
print('Ticket prices are £5.00 for ordinary tickets, £6.00 for VIPs')

vip = input('Do you require a VIP ticket, yes or no? ')

price = 5.0

if vip == 'yes':
price = price * 1.2

print('Your total price is:', price)

See how the program carries on past the test, whether the if statement test was true or not -
you simply have to move back 4 spaces to the left. This means our code block attached to the
if statement is over, and we now carry on as usual.

Now save and run your program using the F5 key, pressing the Return or Enter key, and
using the program name of vip.py. Remember, to save your program in the usual location
(the directory with your name, or your USB stick).

You will have to run your program twice. Initially, input yes as the answer to the question,
and secondly, input no (or vice versa). You should get different results depending on what you
enter on the keyboard - either a price of £6 or £5. Be careful what you type - if you do not
type yes exactly, then the test will fail, and the indented statement will not be executed.

In a code block, you can have any number of statements, just like the program as a whole.
Add onto your code block, belonging to the if statement, so it looks like this:

if vip == 'yes':
price = price * 1.2

print('You have chosen a VIP seat - enjoy your film!')

Run your program again, and notice how either both of these statement will be performed, or
neither of them. They belong together in the same code block, and are attached to the if

statement above them. You can even have blocks inside blocks. Change your if statement
block to do the following:

if vip == 'yes':
price = price * 1.2
print('You have chosen a VIP seat - enjoy your film!')
weekend = input('Is your viewing at the weekend, yes or no? ')
if weekend == 'yes':

price = price * 1.5

print('Weekend viewing adds on another 50%, sorry!')

Watching films at the weekend is very expensive, 50% more expensive! You will notice, though,
that this is only added on for VIP seats, as the question and the test, along with the increase
in price, all live inside the test for VIP seats only. Regardless, this demonstrates that one block
of code (with a certain level of indentation) can reside inside another. There is no limit to

46 Chapter 9. Performing selection

Marching Up and Down the Code

how many blocks can be inside other blocks, although if we overdo this, it will make the code
harder to understand.

You can add another block of code that is selectively executed after the if statement above,
just by starting it in the same column as the first. Add these extra three lines onto your
program:

if vip == 'yes':
price = price * 1.2
print('You have chosen a VIP seat - enjoy your film!')
weekend = input('Is your viewing at the weekend, yes or no? ')
if weekend == 'yes':

price = price * 1.5
print('Weekend viewing adds on another 50%, sorry!')

popcorn = input('Would you like popcorn, yes or no? ')
if popcorn == 'yes':

price = price + 1.25

You finish with the print statement as usual. Now run your program again - there are now six
routes or paths through your vip.py program - firstly, whether the seat chosen is VIP or not,
and within this, whether it is weekend or not, and finally whether popcorn was purchased. See
if you can run the vip.py program, with all of these possibilities tried out.

9.1 Exercises

1. Modify your vip.py program so that the code to increase the price is done for both
ordinary and VIP seats (i.e. move this part of the code outside the VIP block, adjusting
the indentation accordingly).

2. Write a program called kiosk.py which prints out a menu of snacks to buy, e.g. Mars
bar for 50p, Kitkat for 40p, Galaxy for 55p, Haribo for 30p (even better: make up your
own items). Ask the user to type in a choice (it could even be “1”, “2”, “3”, etc.), and
print out the correct price for the item chosen.

3. Write a program called weather.py which asks whether it is sunny or rainy or cloudy. If
the user types in “sunny”, then tell the user to bring some sun cream. If the user typed in
“rainy”, then tell the user to bring his umbrella. If the user typed in “cloudy”, then tell the
user to bring his jumper. Otherwise, just ignore the response.

9.2 Things to remember

1. Use the if statement to perform selection. It is given an expression to evaluate, and if
true, it will then execute the statements below the if statement.

9.1. Exercises 47

Marching Up and Down the Code

2. Put a colon : at the end of the line containing the if .

3. Statements grouped together belonging to an if statement is called a block of code. It
should be indented by 4 spaces, thus showing Python what code belongs to which test.

4. To resume the program regardless of whether the test for the if statement was
successful or not, then you should unindent your code (push it back to the left by 4
spaces).

5. Use the equals operator == to test whether the left-hand side of the expression is equal
to the right-hand side. Do not use the assignment operator = for this!

48 Chapter 9. Performing selection

CHAPTER

TEN

DECISIONS, DECISIONS

To be, or not to be, that is the question.

— William Shakespeare

10.0 Differing ways of comparing

In the previous chapter, we introduced the if statement, which evaluates a test, and if true, it
runs the statements which have been indented to the right following the colon : symbol. We
call this group of statements indented to the right a block of code.

We also introduced our first comparison operator, the equals sign == . There are many more,
most of which you will recognise from maths. We list the possibilities at the end of this
chapter, but here are some highlights.

We will use the interactive interpreter to experiment for a while. Type the following for
practice:

>>> a = 10
>>> b = 20
>>> a == b
False
>>> a != b
True
>>> a < b
True
>>> a <= b
True
>>> a > b
False
>>> a >= b

False

Then try changing the values of a and b (make them the same, for instance), and repeat the
comparisons.

From the above snippet, the first two lines create our variables, a and b , using the assignment
operator (not the equals operator). The next six lines demonstrate the different comparison

49

Marching Up and Down the Code

operators, one by one. The only one that really requires explanation is the second one, the
not equal to operator != . In maths, you would use a different symbol, such as this one: ̸=.
Since this symbol is not readily available on a computer keyboard, we use the exclamation mark
in front of the equals sign to make the not equals operator != . The other symbols are also
separated, so in maths you could use the ≥ symbol, in programming, we expand it into >= ,
thus taking up two symbols to mean the same. Similarly with ≤ is turned into <= .

Note: We call these expressions, as they express a value once properly evaluated by the
computer. Normally, one value is on the left, and another on the right, with the operator in
the middle. Each of these operators can be used with other types of data than just integer
numbers - floats and strings could also be used, e.g. 2.5 > 1.2 and "fred" != "harry" .

You will also notice that the result of each expression is either True or False . This is our
fourth type of data, and they are called boolean values. They are the simplest type of data
imaginable - they are either True or False . They cannot be any other value. This is the
equivalent of on or off, 1 or 0, up or down. There is no in-between value, it is one or the other.
For example, above we tested whether 10 was equal to 20 (a == b) - this is either True or
it is False (obviously the latter). It cannot be something else, or both!

Booleans are very useful, and you can set variables to boolean values as well. We will see more
of this in chapter 13 on escaping out of a loop.

10.1 More than one possibility

Testing just with the if statement is very useful, but Python does offer more flexibility than
just this. For example, if we want to write a program that inputs two numbers, and prints out
the largest number, we could do the following. So open up a new file window, and type the
following:

num1_str = input('Enter your first number: ')
num2_str = input('Enter your second number: ')

num1 = int(num1_str)
num2 = int(num2_str)

if num1 > num2:
print('The largest number is:', num1)

if num2 > num1:

print('The largest number is:', num2)

Run it with the F5 key, and save it onto your USB stick with the name nums.py.

It should run fine, printing out the largest number of the two input by the user. Note how we
have to convert the inputs, entered as a sequence of digits, into integer numbers before we can

50 Chapter 10. Decisions, decisions

Marching Up and Down the Code

use them in the comparisons. Otherwise, the comparisons will not work correctly.

The problem is that we are doing the test twice, which is wasteful. It is more efficient to
do the test once, and do one block of code if the test was successful (i.e. it was true), and
a different block of code if unsuccessful (i.e. the result was false). This is where the else

statement comes into play. What is does it run a block of code if the if statement above it
failed in all its tests. To see this in action, change your last-but-one line to read as follows:

if num1 > num2:
print('The largest number is:', num1)

else:

print('The largest number is:', num2)

Don’t forget those colon : symbols at the end of the lines above each new code block!
Remember, a block of code can be as little as a single statement, or hundreds of lines long.
It depends on what you want to do.

Now run your program again - it should do exactly the same, but more efficiently (i.e. faster)
this time.

Again, the else presents a block of code to be run if all of the tests in the if statement
above it have failed. It is like a safety net at the bottom of the if statement which takes care
of everything if none of the tests are true. Read the word else like the word otherwise if that
helps - test this and do this if true, otherwise do this.

10.2 Many, many possibilities!

What if we had more than two possibilities - doing one thing for the main test, and another
thing for everything else? Python has you covered for this eventuality as well - a combination
of the if and the else put together to form the elif - short for else if.

The elif statement is placed after the if (so there must always be an if statement first),
and there can be as many elif statements as you need. Each one has an expression to
evaluate, and if true, then the elif code block is run.

For example, modify your if and else statement in your nums.py program above, so that it
now states the following:

if num1 > num2:
print('The largest number is:', num1)

elif num1 == num2:
print('The numbers are the same!')

else:

print('The largest number is:', num2)

We introduced the middle two lines, the elif followed by the call to the print function.
What this does is test the elif condition only if the test for the if fails. If the elif test
succeeds (it is true), then the line - or lines - under the elif statement are run.

10.2. Many, many possibilities! 51

Marching Up and Down the Code

10.3 A bit more practice

Combining what we have learnt in this chapter, let us write another program called noises.py.
Start it in the usual method of clicking on the File menu and selecting New File . Once the
new blank window has appeared, type in the following:

animal = input('What animal do you have there with you? ')
if animal == 'cow':

print('Moo!')
elif animal == 'sheep':

print('Baa!')
elif animal == 'pig':

print('Oink!')
elif animal == 'horse':

print('Neigh!')
elif animal == 'chicken':

print('Cluck!')
elif animal == 'duck':

print('Quack!')
elif animal == 'dog':

print('Woof')
elif animal == 'cat':

print('Meow!')
elif animal == 'dinosaur':

print('Roar!')
else:

print('Sorry, I don\'t recognise that animal!')

Obviously, we could go on and on! Save it using the F5 key, name it noises.py making sure
you save it in the usual location, and run it. You need to run it several times in order to test all
the possibilities (i.e. see all the different noise words being printed out).

As you can see, the if statement is tested first. If the test evaluates to true, then the first
optional block of code is run (printing out ‘Moo!’), and it will then jump to the end (past the
else). Otherwise, it will test each test in turn, only running the code blocks if the test is true.
Otherwise, it will eventually drop down to the else statement, and run the last block of code,
but only if all the other tests have failed.

10.4 Exercises

1. Modify your kiosk.py program you wrote for the previous chapter so that instead of
using lots of if statements, you use one if statement, followed by a number of elif

statement. The else statement should be used to print out a message telling the user
that he has not entered a valid choice.

52 Chapter 10. Decisions, decisions

Marching Up and Down the Code

2. Write a program called move.py, and ask the user the form of transport, either a plane,
car, bicycle or walking. Depending on what they have entered, print out ‘fast’, ‘quick’,
‘steady’ or ‘slow’.

3. Write a program that uses the turtle module called shapes.py. Ask the user what
shape to draw, e.g. circle, square or star. Depending on what the user has entered, draw
the appropriate shape. If the user didn’t type in anything sensible, then print out an error
message.

10.5 Things to remember

1. Remember your comparison operators, using the variable a (an integer) as an example:

Name Operator Example Maths equivalent

Equals == a == 10 𝑎 = 10

Not equal to != a != 10 𝑎 ̸= 10

Greater than > a > 10 𝑎 > 10

Greater than or
equal to >= a >= 10 𝑎 ≥ 10

Less than < a < 10 𝑎 < 10

Less than or equal to <= a <= 10 𝑎 ≤ 10

2. We now know four types of data - integers, floats, strings and booleans. Boolean values
are either True or False .

3. Each selection statement must contain an if statement, along with a test to evaluate
and at least one line of code to run, indented to the right. If the test is evaluated as
true, then even if there are elif or else statements below, the program will skip them.

4. You can optionally include one or more elif statements, each with their own tests to
evaluate and their own blocks of code. If more than one of these is evaluated as true,
then the first one is run, and the others are skipped.

5. Finally, you can also optionally include an else statement, without any test, but with
its own block of code to run. This block of code is only run if the if and elif tests all
fail (i.e. are all false).

10.5. Things to remember 53

CHAPTER

ELEVEN

COMBINING DECISIONS TOGETHER

The best thing about a boolean is even if you are wrong,
you are only off by a bit.

— Anonymous

11.0 Juggling tests

We have learned how to use the if statement to evaluate a test, and if true it then executes a
block of code you provide immediately underneath. It makes our programs cleverer so that they
can take different decisions depending on the circumstances.

This chapter introduces logical operators which make combining tests together easier.
Although this part of programming is not essential, it does make our programs shorter and
easier to write.

For example, take a program that wants to tell the user whether he can go the beach or not.
This decision depends on the weather (preferably warm), and whether it is during the holidays
or not.

With what we know now, we could code this as follows, so type this into a new file window:
weather = input('How is the weather, warm or cold? ')
holidays = input('Are we on holiday at the moment, yes or no? ')

if weather == 'warm':
if holidays == 'yes':

print('Yes! Let\'s go to the beach!')
else:

print('Sorry, let\'s try again later!')
else:

print('Sorry, let\'s try again later!')

Save this program and call it beach.py. Run it and test it out - it should all work fine,
regardless of the combination of values you type in.

However, this took a lot of typing to get working, and programmers like to avoid typing when
they can! One problem is that the ‘Sorry’ message is done twice, so we are duplicating a line
unnecessarily. We also have two else statements to go with the two if statements. It would

54

Marching Up and Down the Code

be much better if we could combine the two tests together on one line, with one if statement
and one else statement, with each call to the print function done once each as well.

So far, we have only learned how to attach one test to either an if statement or an elif

statement. With logical operators, we can combine a number of tests together to form a larger
single test. There are three logical operators:

• and which tests whether the left-hand side and the right-hand side are both true, giving
an overall result of true. For example: a > 10 and b > 10 tests whether a and b are
both greater than 10, and if so, the whole expression is true.

• or which tests whether either the left-hand side or the right-hand side are true, thus
giving a overall result of true. For example, a < 0 or a > 100 tests whether a is either
less than zero (i.e. negative) or greater than 100 (but obviously not both at the same
time), and if so the whole expression is true. Both sides can also be true, which is also
fine.

• not which takes a single boolean value and inverts its value, so True becomes False

and False becomes True . For example, not weather == 'warm' which tests whether
the variable weather is equal to the value 'warm' , and then flips the result.

Note: Just like with arithmetic operators, the and and the or logical operators need two
values (formally called operands), one to the left and another to the right. For example,
you could write (a > 10) and (b < 20) or (a == 10) or (b == 10) . And similar to
the negative operator - , the not operator only needs one, the value it is inverting, such as
not (a == 10) .

So, how do we apply this to our code in the beach.py program? To see this, you need to
change the big if statement from this:

if weather == 'warm':
if holidays == 'yes':

print('Yes! Let\'s go to the beach!')
else:

print('Sorry, let\'s try again later!')
else:

print('Sorry, let\'s try again later!')

to this:

if weather == 'warm' and holidays == 'yes':
print('Yes! Let\'s go to the beach!')

else:

print('Sorry, let\'s try again later!')

Save and run this version, and make sure it does the same thing.

Notice how we have taken the two separate if statements in the previous version of the
program, and combined them together - since one was inside the other - with the logical and

11.0. Juggling tests 55

Marching Up and Down the Code

operator. This will then only perform the first call to the print function if both the weather is
‘warm’ and and holidays is ‘yes’. Otherwise, we do what comes after the else statement.

The logical or operator is useful when a number of separate tests all do the same thing, so
their blocks of code are all the same.

For example, create a number program called numbers.py, and type in the following:
ticket1 = input('Enter ticket number 1: ')
ticket2 = input('Enter ticket number 2: ')
ticket3 = input('Enter ticket number 3: ')

prize = input('What is the prize number? ')

if ticket1 == prize or ticket2 == prize or ticket3 == prize:
print('We won the prize')

else:

print('Nevermind, maybe next time!')

Without the use of the or operator, we would have to have written 3 if statements, all doing
the same thing. The or operator has allowed us to combine these 3 tests into one, thus saving
on lots of typing and duplication in our code, which is never a good thing.

11.1 Exercises

1. Write a program called largest.py to input three numbers, convert the inputs from
strings to integers, and print out the largest. Use the if and elif statements and the
and operator to perform your tests.

2. Write another program called car.py to ask the user the attributes of a car, such as
color (e.g. 'red' , 'green' or 'blue'), type (e.g. 'van' , 'sports' , 'estate') and
price. The program should print out 'I want that car' if the color is 'red' , the type
is 'sports' and the price is less than 10,000.

11.2 Things to remember

1. There are three logical operators: and for testing whether the left and right-hand side
tests are both true; or for testing whether either the left or right-hand side tests are true
(or both); not for inverting a boolean value.

2. Put the and and or operators in-between boolean expressions. Put the not operator in
front of a boolean expression.

56 Chapter 11. Combining decisions together

CHAPTER

TWELVE

GOING LOOPY

Q. How did the programmer die in the shower?
A. He read the shampoo bottle instructions: Lather.
Rinse. Repeat.

— Anonymous

Computers are very good at doing a number of steps repetitively, relieving us of many mundane
tasks in our lives. In programming, this makes our programs much more flexible and involves a
lot less typing which is always a good thing!

Imagine drawing a hexagon (a 6 sided polygon) using turtle. There is the hard way, and the
easy way.

12.0 Doing it the hard way

With what we have learned up until now, we would do the following. So open a new file
window, and this in:

import turtle

turtle.forward(100)
turtle.left(60)
turtle.forward(100)
turtle.left(60)
turtle.forward(100)
turtle.left(60)
turtle.forward(100)
turtle.left(60)
turtle.forward(100)
turtle.left(60)
turtle.forward(100)

turtle.left(60)

Run it - calling the program hexagon.py - and check that it draws a hexagon in the turtle
window.

57

Marching Up and Down the Code

This program is 14 lines long (not including the blank lines), with 12 of those lines just to draw
the hexagon. Not a great return!

Clearly, this is too much typing for what it does. Imagine the typing involved in drawing
a 100 sided polygon! There are also cases where this kind of sequential programming (i.e.
programming that executes - or performs - each line, one after another) simply cannot do what
we want. If you do not know in advance how many times to do a particular task, then you
cannot do it sequentially. For example, if the program is adding up a series of numbers, one
after the other, and is relying on the user to press the = equals sign at the end (or perhaps
typing “stop” when using a program), then the program cannot calculate in advance how times
to repeat the code to input the next number. We have to find a different way.

12.1 Doing it the easy way

To overcome this hurdle, Python - and pretty much every other programming language - has
the ability to repeat a block of code a number of times. This is called looping or iteration.

Roughly speaking, looping is similar to the way we construct if statements. In an if

statement, we use the if keyword (a keyword is a word reserved by Python and given a
special meaning), following by a test which results in a boolean value - either True or False .
It will then conditionally execute a given code block, which follows the colon : symbol. If the
test fails (results in a value of False), then the code block is skipped. Either way, the program
continues on its way after the if , along with any elif and else statements are done.

A loop uses a different keyword, but still has a condition that is tested, and also a code block
that belongs to it. The main difference is that a loop will execute the code block not just
once, but potentially many times. To be precise, the code block can execute zero or more
times, depending on whether the test at the top of the loop is True in the first place! The
loop will repeat whilst the condition remains True , so clearly we need a way of changing the
condition as we go along or otherwise it will repeat forever. In the next chapter, we will do this
on purpose, but with a way of escaping!

Enough talking - let us go about changing our program above to get the computer to do more
of the work! Add the following lines onto your program (do not bother modifying your existing
code, as it will be a good point of comparison):

side = 0
while side < 6:

turtle.forward(100)
turtle.left(60)

side = side + 1

Run your program, again saving it in the usual location, and see what it does. It should now
draw the same hexagon twice!

The new thing to learn here is the use of the new keyword while . With this, the program
performs the indented block of code, following the : symbol, while the condition is true.

58 Chapter 12. Going loopy

Marching Up and Down the Code

Initially, the condition is True , as we have set an integer variable to zero, and zero is less than
6. Each time we draw a side of the hexagon, we add (increment) one onto the side variable.
So the variable side goes from 0 to 1 to 2, 3, 4, 5 and finally 6. We then test whether the
value 6 is less than 6, which it is not - it is equal to 6. Therefore, the condition is then False ,
and the loop stops.

You can see we have reduced 12 lines to draw a hexagon, down to 5. The great thing is that if
we change the condition from 6 to 100 (and changing the angle of turning left would be good
too, as well as the length of each side), then we would then draw a 100 sided shape without
any further changes. In the hard way above, this would involve another 188 lines of code!

12.2 Exercises

1. Write a program called hundred.py that prints out the numbers from 0 to 100, inclusive.

2. Modify your hundred.py program so that after counting up to a 100, it then counts
down from 100 to 0, printing as it goes.

3. Modify your hundred.py program so that the loops count up or down in steps of 5, not
1. Run it again to check that it works as expected.

4. Write a program using the turtle module that asks the user how many sides to draw,
converts it into an integer, and then uses turtle to draw a shape with that number of
sides. You will have to work out the angle by dividing 360 degrees by the number of sides
when turning the turtle to the left or right.

12.3 Things to remember

1. Use the while keyword to repeat a block of code.

2. The condition used after the while keyword is just like when using an if statement - a
boolean expression. It can use any of the comparison and logical operators.

3. The code block to be repeated can contain 1 or many lines of code. It all depends on
what you want to do. It can even contain other loops nested within the outer loop.

12.2. Exercises 59

CHAPTER

THIRTEEN

ESCAPING THE CYCLE

Have you heard about the new Cray super computer? It’s
so fast, it executes an infinite loop in 6 seconds.

— Anonymous

In the previous chapter we posed a problem that a sequential way of programming cannot
solve - needing to repeat a block or set of instructions a number of times that is unknown in
advance. In other words, you have to repeat a set of statements, but you only know when to
stop at the very end. It is not possible to code this in a top-down or sequential way. However,
we can achieve this by using loops in our programs.

13.0 Breaking out

Although we have introduced looping, we have only used it by counting from a starting number
to an end number, and then stopping. We really just want to repeat a block of code a certain
number of times. But what, like our problem above, you don’t know when to stop until the
end?

Remember that the test after the while keyword is just a boolean expression. If it evaluates
to a True value, then the loop should perform another cycle of its block of code. It will then
test the expression again to see if it has changed in the meantime. So if we don’t know when
to stop, a good start is to make the loop go round and round indefinitely. It is a called an
infinite loop, and - in theory at least - it goes round forever! And to make an infinite loop, we
simply make the boolean expression True by using the value True .

To see this in action, start a new file window and type in the following:

while True:

print('Help, I\'m stuck in a loop!')

Save it as adder.py, and see what happens. It should keep printing out the Help message. To
stop the program, you need to press the Ctrl and C (same shortcut as copy) keys together
- this breaks out of the loop. Alternatively, you can select the “Restart Shell” item from the
“Shell” menu at the top of the IDLE program.

Clearly, we need a better way of breaking out of the loop than relying on the user to do it for
us. This is where the break keyword comes in, combined with what we know already about

60

Marching Up and Down the Code

the while loop and the if statement to make a selection.

Therefore, modify your adder.py program like so:

while True:
name = input('What is your name, or type stop to quit: ')
if name == 'stop':

break

print('Hello there', name)

Save and run it again and see what happens. Notice how the while statement is the same,
but inside the loop it is very different. The first line of the loop code block simply asks for the
user’s name, using the input function, and stores it in a variable called name . Then we do
something new - we test whether the contents of the variable name is equal to the value ‘stop’
(which we have told the user to type in to quit the loop), and if so, we use the new keyword
break to break out of the loop. It simply jumps passed the end of the code block, attached to
the while loop, to carry on with the rest of the program (if there is any). If we didn’t break
out of the loop, then we print a message to the user, using the contents of the variable name

to do so.

We could also do this by using a boolean variable in a slightly different way:
keep_going = True
while keep_going:

name = input('What is your name, or type stop to quit: ')
if name == 'stop':

keep_going = False
else:

print('Hello there', name)

It is slightly longer, but is a useful technique to use in certain situations.

13.1 Adding up

Let us change our program a third time to finish with a program that will ask the user for one
number at a time, adding them onto the total as it goes along. The user can gain type ‘stop’
to break out of the loop, but this time, it will print out the total at the end.

Therefore, modify your while loop to reflect the following:
total = 0
while True:

num = input('Enter a number, or type stop to quit: ')
if num == 'stop':

break
total = total + int(num)

print('The grand total is:', total)

13.1. Adding up 61

Marching Up and Down the Code

Notice how creating the variable of total with a value of 0 is outside of the while loop
code block, as is the call to the print function at the end. This is determined by those
lines of code being vertically aligned with the while statement, and not with the code block
beneath the header of the loop. The four middle lines form the code block which is repeated,
potentially forever. What stops the loop is the user typing the word ‘stop’ into the variable
num . This then means the test belonging to the if statement is True, so the break is then
run. If the user does not type ‘stop’, then the number is converted into an integer using the
int function, and added onto the running total. The loop then repeats until the user does
type ‘stop’, and then print function finally does its bit.

Note: The break keyword will break out of your present loop. There is another keyword
called continue which will stop executing the code block and continue the loop from the
beginning again. This is a way of skipping any remaining lines in the loop and starting the next
loop early.

13.2 Exercises

1. Change your adder.py so that the user types ‘quit’ instead of ‘stop’ to break out of the
loop.

2. Write a program called words.py which inputs a word at a time, appends it onto a string
(e.g. sentence = sentence + word), and prints it out at the end.

3. Modify your polygon.py program from the previous chapter so that it keeps drawing
polygons, one on top of the other, until the user types ‘stop’. Each time it will ask the
user how many sides to draw, just as before.

13.3 Things to remember

1. Use the value of True as the expression - or test - for the while loop to make it go on
indefinitely, i.e. an infinite loop.

2. Use the keyword break to break out of the present loop. If one loop is nested inside
another and the break resides in the inner loop, it only breaks out of the inner loop, not
the outer one as well.

3. The while loop is best used for this kind of looping - when you do not know when to
stop until you have reached the end. In chapter 17 , we will introduce another kind of
loop which is better for looping a set number of times.

62 Chapter 13. Escaping the cycle

CHAPTER

FOURTEEN

GOING RANDOM

The generation of random numbers is too important to be
left to chance.

— Robert R. Coveyou

14.0 A bit of variation

To add variation to our programs, we can ask the user for some input, and then behave
differently depending on what the user has typed in. But what if we wanted to play a game,
with the game needing to change its behaviour from one run to the next? If a game we played
behaved exactly the same way every time, which computers tend to do, games soon become
rather predictable! A game of chess where the computer always started in the same way would
never sell very well!

Computer programs which need a bit of variation are programs like flight simulators (where
the weather differs from time to time), board games (so the moves vary from game to game),
racing games (where your competitors do different things from race to race), and so on. They
do this by using a piece of software to provide them with some random data, such as a simple
number which varies between a range of numbers. This simple piece of data is then used to
vary the decisions made within the program, thus making the program more interesting to use.
In a way, it becomes a little more like the real world.

14.1 That’s random

Python does this by using the random module. We will get to know this by first using the
interactive interpreter - bring this onto your screen, and you can then import the random

module in a similar fashion to importing the turtle module:

>>> import random

We can list what functions the random module offers by using the dir function:
>>> dir(random)

We can then experiment with some of its functions. Try calling the random module’s random

function (random module, random function), a few times:

63

Marching Up and Down the Code

>>> random.random()
>>> random.random()

>>> random.random()

Note: You can repeat a command in the interactive interpreter by using the up arrow key on
your keyboard, and pressing the Return or Enter key. This brings the statement down onto
your current line, allowing you change it. Execute that statement by pressing the Return or
Enter key again.

Run this line a few time with the note above. See how it always returns a number that is
between 0.0 and 1.0, but hardly ever the same exact number. See if you can get it to repeat
a number - it is not easy!

In fact, let’s use our new found knowledge on looping to see how this random number changes
every time you ask for it. So type the following into the interactive interpreter:

while True:

random.random()

Just like in the previous chapter on infinite loops, you will have to press the Ctrl and C

keys together on your keyboard to break out of the loop manually. It will probably go so fast,
that only by breaking out of the loop will you be able to look at the numbers properly. If this
doesn’t work, then make sure you have imported the random module first.

Let’s try another function - randrange - this time, instead of returning a number between
0.0 and 1.0 (which could be scaled up, if needs be), it will return an integer up to (but not
including) the number you give it. For example, try the following a few times:

>>> random.randrange(100)
>>> random.randrange(100)

>>> random.randrange(100)

And try different numbers too:
>>> random.randrange(10)
>>> random.randrange(50)

>>> random.randrange(25)

Try any end number you like, although the number must be above zero. You can also give it a
start number as a first parameter, so try these or other numbers as you wish:

>>> random.randrange(10, 20)
>>> random.randrange(50, 100)

>>> random.randrange(1000, 2000)

The number returned is always between the numbers you give, including the start number, but
excluding the end number.

64 Chapter 14. Going random

Marching Up and Down the Code

14.2 A guessing game

Now we can use this knowledge to construct a simple game, where the program comes up with
a random number, and the user has to guess it. We’ll give the user 6 tries until we give the
answer. So call your program guess.py, and type in the following for starters:

import random

number_to_guess = random.randrange(1, 101)

We have imported the random module, in order to use it within our guess.py program, and
asked for a random number between 1 and 101 (1 and 100, inclusive, not including 101) and
stored it against a variable name number_to_guess . Now we add the loop to give the user 6
tries at guessing, so add the following:

num_tries = 0
while num_tries < 6:

num_tries = num_tries + 1

We define a variable num_tries , and initially set it to zero. We then loop while this value
is less than six (so it should loop over the values 0, 1, 2, 3, 4 and 5 - six numbers in total),
adding 1 onto the num_tries variable each time.

Inside the loop, we can add these lines (only add the new lines!):
num_tries = 0
while num_tries < 6:

user_guess = int(input('Guess the number: '))
if user_guess == number_to_guess:

print('Well done - you guessed right!')
break

num_tries = num_tries + 1

We ask the user a question, input what they have typed, and convert it into an integer
storing it against a variable name called user_guess . If this variable is equal to the value the
computer stored initially, then we print a message and then break out of the loop. Otherwise
we carry on by adding one onto the num_tries variable, and go back up to the top of the
loop to repeat.

You can then finalise your program by giving the answer at the end, after the loop has finished.
So, in total, your program should look like this:

import random

number_to_guess = random.randrange(1, 101)

num_tries = 0
while num_tries < 6:

user_guess = int(input('Guess the number: ')) Cont...

14.2. A guessing game 65

Marching Up and Down the Code

if user_guess == number_to_guess:
print('Well done - you guessed right!')
break

num_tries = num_tries + 1

print('The answer was:', number_to_guess)

You could enclose the print at the end with a test to only display it if the num_tries is 6, as
if the user did guess the number they don’t really need to be told what it was.

14.3 Exercises

1. Modify your guess.py program so that after testing whether the user_guess variable is
equal to the computer’s number number_to_guess , the program will then test whether
the user’s number is less than the computer’s number and print an appropriate message
(e.g. ‘Too low!’), and also if the user’s number is larger than the computer’s number,
then print out another message (e.g. ‘Too high!’). This will give the user a hint as to
which direction to head in!

2. Write a program called poly.py to randomly choose how many sides a polygon should
have (e.g. between 3 and 12), and then draw the appropriate polygon. So if the
randrange function returns 3, then a triangle is drawn, or if it returns 8, an octagon
is drawn.

14.4 Things to remember

1. To add variation, or a bit of randomness, into your program, then import the random

module, and make use of what it offers.

2. Two functions we used in this chapter are the random function (note: it has the same
name as the module), which returns a floating point number between 0.0 and 1.0,
and randrange which returns an integer number between 0 (or the starting point you
provide) and up to (but not including) the end point.

66 Chapter 14. Going random

CHAPTER

FIFTEEN

GROUPING DATA TOGETHER

A computer is a stupid machine with the ability to do
incredibly smart things, while computer programmers are

smart people with the ability to do incredibly stupid things.
They are, in short, a perfect match.

— Bill Bryson

15.0 Scattered data

We have already covered variables, which simply attaches a name (like a label) to a piece of
data. This is very handy, and allows us to give data a memorable name we can refer to and
modify later. Technically, variable names (identifiers) are memory addresses that point to the
data we have stored - it is like a signpost pointing at the data.

However, it can become messy when there are many variables in our programs, especially if
they are closely related. For example, if we had a bunch of people’s names, we could define
each name individually. Use the interactive interpreter to type in the following:

>>> name1 = 'fred'
>>> name2 = 'bob'
>>> name3 = 'harry'

>>> name4 = 'tom'

All the variables here describe the same kind of data - a group of names, one after the other.
It would be good if we could simply group these items together under a single name. This is
usually very good practice in programming - those things (whether code or data) that belong
together should be kept together.

15.1 Boxing up

The way we do this in Python is by using lists. As its name suggests, a list is simply a
sequence of other pieces of data, whether integers, floats, strings or even other lists.

Remember, if we have more than one item to print out, we simply use a comma , in-between
each item. This is easy to forget! For example, if we wish to print out our names above, you
can type the following:

67

Marching Up and Down the Code

>>> print(name1, name2, name3, name4)

fred bob harry tom

We do the same in lists to separate each item. To define a list, to group a sequence of items
together, we simply use brackets - square ones. It is like a box grouping the values together.
So, for example, let’s group together the names we defined earlier:

>>> names = ['fred', 'bob', 'harry', 'tom']

Notice how we have done away with the individual variables, e.g. name1 , name2 , etc., and
now only have one name, names . This means all four values are referred to by the same
variable name - the entire list is given a single name. You can print out the entire list in one
go as well:

>>> print(names)

['fred', 'bob', 'harry', 'tom']

This list is a sequence containing four strings - the names 'fred' , 'bob' , 'harry' and
'tom' . As mentioned above, lists can contain almost anything, so let’s try a list containing
different data:

>>> my_ints = [1, 2, 3, 4, 5]
>>> my_floats = [2.5, 17.2, -1.7, 123.9]

>>> my_lists = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]

Notice how the contents of the list can be in any order you wish, although it can be sorted
later. The last one is slightly complicated - it is a list containing four sub-lists, each of which
contain three integers. A list of lists, or sometimes referred to as a matrix . The data can even
be mixed, although this does not always make sense. Try this:

>>> my_stuff = ['bacon', 123, 99.5, [1, 44.2, 'fred']]

Again, you can print these list out using the print function. Try it with each list in turn.

15.2 Playing with lists

We can do all sorts of things with lists in Python that can turn out to be very useful. To
get Python to sum up a group of numbers, we can just put them in a list and use the sum

function:
>>> numbers = [1, 5, 50, 23, 77]
>>> sum(numbers)

156

And other functions, min and max , will give the minimum and maximum value out of a list:
>>> numbers = [10, 123, 40, 89, 65]
>>> min(numbers)
10 Cont...

68 Chapter 15. Grouping data together

Marching Up and Down the Code

>>> max(numbers)

123

The len function gives us the number of items in the list:
>>> len(numbers)

5

You can even get Python to sort a list in any order you wish. Try this out:
>>> numbers = [15, 5, 35, 10, 25, 20, 30]
>>> print(sorted(numbers))
[5, 10, 15, 20, 25, 30, 35]
>>> print(sorted(numbers, reverse=True))

[35, 30, 25, 20, 15, 10, 5]

The first print statement prints out the numbers in ascending order. The second prints out the
numbers in descending (i.e. reverse) order. Notice how we call sorted function initially with
one argument (i.e. the list to sort), and secondly, we call the same function but with an extra
argument we refer to by name - reverse , which we set to True . We will cover this kind of
argument passing in chapter 19 when we are creating our own functions.

Note: We have described how to use functions built into Python itself by typing its name,
followed by parentheses with any parameters enclosed between the parentheses. For example,
print() , len('Yo man') , min(10, 20, 30) . We have also described how to use functions
that have been defined in other modules by typing the module name followed by a period .

For example, random.random() , math.sqrt(81) , turtle.circle(100, 180) . Below, for
the first time, we will also call functions that belong to a particular type. These operate on
the data referred to by the variable name or the value itself. It effectively wraps the value
and the functions that work on that value together, so the int type contains functions
that work on integers, the str type contains functions that work on strings, the list type
contains functions that work on lists, etc. For example, if using a string name we could type
name.upper() to change it to uppercase (i.e. capitals), name.find('fred') to find a string
within the name, name.split() to split the string into a list of words. If you intend to change
the value itself, the function will either return a new value or will change the value in-place,
depending on the data type. To find out what type functions (also known as class methods)
are available, you just type dir(str) or dir(list) depending on the data type you are
working with. See the chapter 5 for more on getting help, and Appendix B.3 for more on
functions.

Lists can also be modified after they have been defined by using the append and insert

functions on the list variable itself. The append function adds a new item onto the end of
the list; insert adds an item into the list (so you need to give a position as well); remove

removes the named item from the list (the first one if more than one exists). To see how this
works, try out the following:

>>> names = ['Bilbo', 'Frodo', 'Sam']
>>> print(names) Cont...

15.2. Playing with lists 69

Marching Up and Down the Code

['Bilbo', 'Frodo', 'Sam']
>>> names.append('Pippin')
>>> print(names)
['Bilbo', 'Frodo', 'Sam', 'Pippin']
>>> names.insert(0, 'Merry')
>>> print(names)
['Merry', 'Bilbo', 'Frodo', 'Sam', 'Pippin']
>>> names.remove('Bilbo')
>>> print(names)

['Merry', 'Frodo', 'Sam', 'Pippin']

As described by the note above, we are using type functions for the first time. These functions
are called by using the variable name (or even just the value itself), followed by a period .

character, and then the function name, similar to calling a function inside a module that has
been imported. This means that the code names.append('Pippin') is simply shorthand for
list.append(names, 'Pippin') , and the code names.insert(0, 'Merry') is shorthand
for list.insert(names, 0, 'Merry') , and finally the code names.remove('Bilbo') is
shorthand for list.remove(names, 'Bilbo') .

We can split a sentence into a list of words using the split function:
>>> sentence = 'Mary had a little lamb'
>>> sentence.split()

['Mary', 'had', 'a', 'little', 'lamb']

Here we are using a function belonging to the str (string) type, so the code
sentence.split() is shorthand for str.split(sentence) .

We can also find out whether a value is a member of a list (i.e. is contained within the list) by
using the in operator. Try this out:

>>> numbers = [1, 2, 3, 4, 5]
>>> 3 in numbers
True
>>> 10 in numbers
False
>>>
>>> sentence = 'jack and jill ran up the hill'.split()
>>> 'jack' in sentence
True
>>> 'jill' in sentence
True
>>> 'bob' in sentence
False
>>>
>>> breakfast = ['porrige', 'toast', 'coffee', 'juice', 'bacon', 'egg']
>>> 'waffle' in breakfast
False
>>> 'pancake' in breakfast Cont...

70 Chapter 15. Grouping data together

Marching Up and Down the Code

False
>>> 'egg' in breakfast

True

All of these things would have been much harder to do by ourselves - Python is great at
helping out in this way. There is so much to what Python offers, but here we have at least
given a brief overview.

We will learn how to dip into a list to fetch individual items (or a section of the list) in the
next chapter. We learn how to step over a list, one item at a time, in the chapter after next.
All this will make our programs easier to write.

15.3 Rock, Paper, Scissors

Let’s write a rock, paper, scissors game, where you play versus the computer. The computer
will use the random module we learnt in the previous chapter to choose one option out of
either rock, paper or scissors, and we will make our own choice. The program will compare the
choices, and declare a winner (or possibly, a draw).

Start by opening up a new file window, and type in the following:

import random

choices = ['rock', 'paper', 'scissors']

while True:
user_choice = input('Enter your choice, rock, paper'

' or scissors (or stop to quit): ')
if user_choice == 'stop':

break

This should be fairly familiar to you now. We are importing the random module, and we have
a loop which repeats until the user breaks out by entering the word ‘stop’. You can keep the
question inside the input function on the same line.

The new bit is the second line, where we define a list with the possible choices contained
(boxed up) in a list, which we call choices . It is a list of strings. We can then add onto our
program (watch the indentation, these lines are within the while loop):

computer_choice = random.choice(choices)

This is also new - we are using a different function from the random module called choice .
It takes a list, and returns back one item selected in a random fashion from that list. We now
have both choices needed in order to declare a winner - remember what the rules of the game
are:

• if they are the same, it is a draw

15.3. Rock, Paper, Scissors 71

Marching Up and Down the Code

• rock beats scissors

• scissors beats paper

• paper beats rock.

So we can now finish:

if user_choice == computer_choice:
print('Draw!')

elif ((user_choice == 'rock' and computer_choice == 'scissors') or
(user_choice == 'scissors' and computer_choice == 'paper') or
(user_choice == 'paper' and computer_choice == 'rock')):

print('You won!')
else:

print('Computer won!')

And that’s it! Now save and run your program calling it rockpaperscissors.py (or rps.py if
you like).

Notice how we can split a large test (the one attached to the elif testing whether the user
has won or not) over 3 lines to make it more readable by putting parentheses around the entire
expression. Otherwise Python will complain.

There is one problem with our program - if the user does not type in exactly either ‘rock or
‘paper’ or ‘scissors’, then the computer always wins. Look at the tests - it fails the first test
(the two choices cannot be equal), and it also fails the second test (as the user_choice is
none of the possible values provided). This is where we can use the in operator we described
above.

Therefore, modify the long if statement in your rps.py program so it includes the new lines
below:

if user_choice not in choices:
print('Not a valid choice, please try again.')

elif user_choice == computer_choice:
print('Draw!')

elif ((user_choice == 'rock' and computer_choice == 'scissors') or
(user_choice == 'scissors' and computer_choice == 'paper') or
(user_choice == 'paper' and computer_choice == 'rock')):

print('You won!')
else:

print('Computer won!')

Careful - you need to enter the first two new lines, and also change the existing if to an
elif - otherwise, there would be two independent if statements instead of a series of tests
following on from one another.

Now try our your program again. It should behave itself whatever the user types in.

72 Chapter 15. Grouping data together

Marching Up and Down the Code

15.4 Exercises

1. Modify your rps.py program so that it prints out what the choices were, particularly the
computer choice. It is nice for the user to know how they won or lost a game!

2. Write a program called sizes.py to use the turtle module to draw a shape
(e.g. a circle) with a fill color randomly selected. You could define your colors such
as colors = ['red', 'green', 'blue', 'magenta', 'cyan', 'yellow'] ,
and use the random.choice function to choose between them, passing the result
into turtle.fillcolor function. Don’t forget to call turtle.begin_fill and
turtle.end_fill before and after drawing your shape, respectively!

15.5 Things to remember

1. To group a number of items together we box them together using square brackets, with
an opening bracket [at the beginning, and a closing bracket] at the end. This creates
a list.

2. Separate each item within the list using a comma.

3. Use the len function to find out how long a sequence is.

4. Use the in operator to test whether a value is contained by the list.

5. Use the choice function from the random module to select one item, chosen in a
random fashion, from a list of possible items.

6. Every value or variable in Python belongs to a type (e.g. str, int, list), and every
type has a number of functions that operate on the data it contains. Use the
variable.function_name notation to invoke a type function, just like invoking a
function inside a module.

7. We now know five types of data - integers, floats, strings, booleans and lists. Lists can
contain any of the other types of data, including sub-lists!

15.4. Exercises 73

CHAPTER

SIXTEEN

SLICING SEQUENCES

A programmer is a device for turning caffeine into code.

— Many people

16.0 Dipping in

In the previous chapter we learnt how to group a sequence of items together under a single
name as a list. These are all sequences in Python:

>>> escape_tunnels = ['tom', 'dick', 'harry']
>>> numbers = [0, 1, 2, 3, 4, 5]
>>> matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> jumble = [10, 'fred', 17.25, True, ['username', 123456789]]

However, there is another type of sequence that we are already familiar with - strings. As we
know from chapter 7 on printing, strings are sequences of characters, whether letters, digits
or symbols, and can be treated as sequences in terms of slicing as we shall see later in this
chapter. The main difference is that you cannot modify the contents of a string, but you can
form new strings from old ones.

We have been able to refer to the group as a whole, but what if we need to select individual
items out of the group - how do we dip into the sequence and reference a single item? Firstly,
type this in so we start off with a simple string as our sequence to use:

>>> letters = 'abcdef'

We can refer to the whole sequence of letters, such as print(letters) , and even randomly
select an item as we did the previous chapter. But how would we get at just one of those
letters? Firstly, just like we illustrated in chapter 7 on printing, think of this string as a
sequence of boxes, each of which contains a single letter:

a b c d e f
To “dip in” and fetch a single letter, we need to index the item as an offset from the start of
the sequence. To picture this, think of a hotel, like so:

74

Marching Up and Down the Code

hote�

Ground floor

1st floor

3rd floor

2nd floor

In the UK at least, we do not number the floors from the 1st floor and count up - the floors
are numbered as how far up they are. Effectively, the floor number is an offset from the
ground, i.e. 1st floor up, 2nd floor up, etc. The ground floor is really floor 0.

In Python, sequences are very similar - the number of each item is how far from the beginning
it is - the offset from the first item:

a b c d e f
0 1 2 3 4 5

To use the offset of a particular item inside a sequence, you need to use square brackets
in the form [index] or [offset] , just like how have leant how to box up a list of items.
This is placed directly after the name of the sequence itself. We can now practice this in the
interactive interpreter:

>>> print(letters[0])
>>> print(letters[1])
>>> print(letters[2])
>>> print(letters[3])
>>> print(letters[4])

>>> print(letters[5])

This should print off each letter in turn. Remember, the offset refers to how many places from
the beginning, or the left, the item is to be found.

If we want to refer to an item not from the beginning, but instead from the end, we simply use
negative numbers:

a b c d e f
0 1 2 3 4 5

-1-2-3-4-5-6

16.0. Dipping in 75

Marching Up and Down the Code

Practice again in the interactive interpreter:
>>> print(letters[-1])
>>> print(letters[-2])
>>> print(letters[-3])
>>> print(letters[-4])
>>> print(letters[-5])

>>> print(letters[-6])

This should print off each letter in turn, this time from the end or the right of the sequence.
Notice when we used positive numbers, we start from 0 and ended up at an item offset by
5 (one less than the length of the sequence itself). When we use negative numbers, we start
from -1 (as 0 is the first item), and end up at -6. This may not sound like a big improvement,
but when your sequence is very long it is useful to state the offset from the right rather than
from the left.

All of this is relevant for any type of list, whether they contain characters, strings, numbers,
sub-lists or anything else. Let us use one from the previous chapter:

>>> names = ['fred', 'bob', 'harry', 'tom']
>>> print(names[0])
>>> print(names[3])
>>> print(names[-1])

>>> print(names[-4])

Be careful that you open and close the brackets correctly, if you are having problems!
Moreover, if you use an offset that is past the end of the sequence, Python will complain -
print(names[4]) in this example.

16.1 Outside In

What if the sequence contains more than one level, like a matrix we mentioned in the previous
chapter? For example, type the following to define a matrix of numbers:

>>> matrix = [[0,1,2], [3,4,5], [6,7,8]]

How do we get at the individual items inside on of the inner lists, such as the number 3? We
use the same notation, and go from the outside sequence inwards. In this example, to get at
the number 3, we first index the second item of the overall sequence, which gives us [3,4,5] .
With this item, we can then index the actual number we wish, which being the first item has
an index of 0. Although it is conceptually two steps, we can do it in one line by first indexing
the correct item in the overall list, and then indexing the individual item in this inner list:

>>> matrix[1][0]

3

So the indexing goes from outside in, left to right, with the name of the overall sequence (or
matrix) on the left-hand side.

76 Chapter 16. Slicing sequences

Marching Up and Down the Code

The same occurs if the list is even deeper, such as a list of lists, each containing a string:
>>> names = [['tom', 'jones'], ['john', 'smith'], ['zippy', 'james']]

If we wish to pull out the 'y' in 'zippy' then - from the outside in - we index 2 to get at
['zippy', 'james'] then index 0 to get at 'zippy' and finally 4 to index the 'y' :

>>> names[2][0][4]

>>> 'y'

16.2 Unidentified Food Object

The aliens have landed on Earth, and they have brought pizza! Thankfully, their numbering
system is the same as Python’s, so here is a summary of how they refer to each slice:

0

1

2

3

4

5

-6

-5

-4

-3

-2

-1

However, aliens are not satisfied with one slice, they are greedy. They are also lazy, and cannot
be bothered to say every single number. So they say a range. For example, if an alien wants
the red and yellow slice, he can say he wants all the slices between cuts 0 and 2. The serving
alien takes piece 0, and adds one, taking piece 1. If he adds 1 again, he gets 2, so he has got
all the pieces, and gives pieces 0 and 1 to the alien:

0

1

2

3

4

5

Aliens also do negative slices. An alien wants -4 to -1, which is the same as 2 to 5 so adding 1
gives the slices 2, 3 and 4.:

16.2. Unidentified Food Object 77

Marching Up and Down the Code

0 and -6

-5

-4

-3

-2

-1

The opposite does not work, as you cannot add ones to 5 to get 2. 1 to -1 is the same as 1 to
5, so the slices are 1, 2, 3, and 4:

0

1

2

3

4

-1

16.3 I’ll pass

What if an alien only likes red, green and blue? Well, he can ask for every second piece from
0 to 5. The serving alien takes 0, adds two, so takes 2, and adds 2 again and takes 4. Adding
two again will mean that he takes slice 6, but 6 is greater than 5, so he stops:

0

1

2

3

4

5

Every third slice from 1 to -1? That’s the same as every third slice from 1 to 5, which is 1 and
4:

0

1

2

3

4

5

78 Chapter 16. Slicing sequences

Marching Up and Down the Code

16.4 Python likes pizza

OK, now we know how to ask aliens for pizza, but how does Python do this? Let us represent
the pizza as a list of the colors, one for each slice:

>>> pizza = ['red', 'yellow', 'green', 'cyan', 'blue', 'magenta']

Our pizza has all the colors of the alien pizza, in clockwise direction. As with indexing our
letters string at the beginning of the chapter, we can pull out whole words from the list in a
similar way (remember, each item is a word, not an individual letter):

>>> pizza[1]
'yellow'
>>> pizza[4]
'blue'
>>> pizza[-1]
'magenta'
>>> pizza[-3]
'cyan'

Now we can accommodate our hungry aliens. If we want all the slices from 0 to 2 we first we
type the first index, the start, like before: pizza[0 . Then we type a colon, : , followed by our
second index, 2 which is the stop, followed by the closing bracket,] :

>>> pizza[0:2]

['red', 'yellow']

See how Python has given us a list of our slices! The other aliens would be happy:
>>> pizza[-4:-1]
['green', 'cyan', 'blue']
>>> pizza[1:-1]

['yellow', 'green', 'cyan', 'blue']

But what if our red-green-blue loving alien turned up? We first type the start and stop index:
pizza[0:5 . Then we type another colon, : , followed by the step we wish to take each time.
To ask for every second slice, the step will be 2 , followed by the closing bracket,] :

>>> pizza[0:5:2]

['red', 'green', 'blue']

To obtain a list from the color sequence with every third slice, use a step of 3 (this time
starting from index 1, all the way to the end indicated by a stop value of -1):

>>> pizza[1:-1:3]

['yellow', 'blue']

16.4. Python likes pizza 79

Marching Up and Down the Code

16.5 Slicing and dicing

When we use a single number to reference a single item it is called indexing ; when we use more
than one number to reference a range of items it is called slicing . The general form for slicing
is sequence[start:stop:step] .

Indexing and slicing can happen on sequences containing data of any type. Define this list of
the numbers from 0 to 20:

>>> nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

As before, we use an index of 0 to grab the first number in the list:
>>> nums[0]

0

And an index of -1 to obtain the last number:
>>> nums[-1]

19

We can grab the first 3 numbers by using a stop value in addition to the start:
>>> nums[0:3]

[0, 1, 2]

If we want to slice from the start you can miss the zero out:
>>> nums[:3]

[0, 1, 2]

Similarly, we can miss off the stop index if we want to slice to the end. For example, to get the
last 5 numbers type the following:

>>> nums[-5:]

[15, 16, 17, 18, 19]

To get all the even numbers, we can use the step value all by itself:
>>> nums[::2]

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

All the multiples of 3:
>>> nums[::3]

[0, 3, 6, 9, 12, 15, 18]

All the multiples of 3, offset by 1:
>>> nums[1::3]

[1, 4, 7, 10, 13, 16, 19]

80 Chapter 16. Slicing sequences

Marching Up and Down the Code

16.6 Reverse gear

If you wish to slice a sequence in reverse (backwards), then you simply need to use a negative
step. However, in this case, you must ensure the end index lower than the start index,
otherwise it will return an empty sequence. Type in these examples:

>>> letters = 'abcde'
>>> letters[4:0:-1]
'edcb'
>>> letters[4::-1]
'edcba'
>>> letters[::-1]
'edcba'

The first slice goes from the 4th element (the letter ‘e’) to the beginning (up to, but not
including, the letter ‘a’), with a step of -1 every time.

If we wish to include the beginning as well, we can miss out the number for the end position
- it will then stop when the sequence stops. This is the approach we take with the second
example. Since we wish to go from the end all the way back to the beginning, we don’t really
need the start position either - let Python fill in those numbers for us. To copy the whole
sequence, you would simply type letters[:] as it encompasses both the beginning and the
end, inclusive, so adding a step of -1 will slice from the end all the way back to the beginning,
including both ends as it does so.

Tip: If you simply want to reverse a sequence of items, then use the built-in function
reversed . For example, ''.join(reversed('abcde')) , will print out edcba - the call to
the join function is to join the list back together again, each separated by an empty string!

16.7 Cut the string

As strings are sequences as well as lists, this means we can slice them too. As before, if we
want the first letter of someone’s name, we can index it as follows:

>>> name = "Isaac Newton"
>>> name[0]

'I'

First three letters:
>>> name[:3]

'Isa'

First name:

16.6. Reverse gear 81

Marching Up and Down the Code

>>> name[:5]
'Isaac'
>>> name[:-7]

'Isaac'

Surname:
>>> name[6:]
'Newton'
>>> name[-6:]

'Newton'

Initials:
>>> name[::6]

'IN'

Note: The above three examples are better done by:
>>> name.split()
['Isaac', 'Newton']
>>> name.split()[0]
'Isaac'
>>> name.split()[1]
'Newton'
>>> name.split()[0][0]
'I'
>>> name.split()[1][0]
'N'
>>> name.split()[0][0] + name.split()[1][0]

'IN'

This will work regardless of the length of the first name and surname.

Given the alphabet:
>>> alphabet = "abcdefghijklmnopqrstuvwxyz"
>>> len(alphabet)

26

We can find various things:
>>> alphabet[:3]
'abc'
>>> alphabet[::2]
'acegikmoqsuwy'
>>> alphabet[1::2]
'bdfhjlnprtvxz'
>>> alphabet[-3:]
'xyz'
>>> alphabet[5:8] Cont...

82 Chapter 16. Slicing sequences

Marching Up and Down the Code

'fgh'

16.8 Exercises

1. Write a program called sentence.py that inputs a sentence, and then prints out every
other letter (i.e. prints even letters, but misses out odd ones), and also in reverse. Use
both a while loop and slicing to achieve this, so that each print occurs twice.

2. Write a program called daysofweek.py which defines a list containing the days of the
week (assume that Sunday is the first day). Ask the user for a number between 1 and 7,
and print out the appropriate day of the week. For example, if the user types in 1 , then
print out Sunday . If the user types in 7 , then print out Saturday . Note, you will have
to take 1 off what the user has typed in before you use it as an index into your days of
the week list.

3. Write a program called planets.py which defines a list with the 8 major planets of
our solar system: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune
(each one will be a string). Ask the user whether he wants either the rocky or gaseous
planets. For the former, print out the first four planets; for the later, print out the last
four planets - use slicing to do this.

4. Write a program called colors.py which defines the colors of the rainbow as red,
orange, yellow, green, blue, indigo and violet. Your program should print out the primary
colors of red, green and blue as a slice of your color list.

5. Write a program called seasons.py, which defines a list containing three sub-lists, for
example:
seasons = [['December', 'January', 'February'],

['March', 'April', 'May'],
['June', 'July', 'August'],

['September', 'October', 'November']]

Ask the user which season, for example, “winter”, “spring”, “summer” or “autumn”. If the
user has entered “spring”, then print out the first item in the seasons list, if “summer”,
then print out the second item, and so on. Bonus: use ', '.join(seasons[index])

to print out the month names nicely, with a comma between each and missing out the
brackets.

16.9 Things to remember

1. Lists and strings are sequences, and so can be indexed and sliced.

16.8. Exercises 83

Marching Up and Down the Code

2. The first item in a sequence has the index 0 , the second 1 , the third 2 , and so on.
Think of the index as the offset from the beginning.

3. Negative indices can be used, counting from the end of the sequence. The last item is
-1 , the second from last -2, and so on.

4. If a sequence has more than one level (i.e. is multi-dimensional like a matrix), then you
index from the outside in, with each index using the [] notation.

5. Slicing is done by sequence[start:stop:step] .

84 Chapter 16. Slicing sequences

CHAPTER

SEVENTEEN

WALKING ALONG DATA

The Road goes ever on and on...

— Bilbo Baggins

17.0 Round and round

Python actually has two ways of repeating a block of code, something we call looping. The
first method which we have already covered is by using the while keyword. The while

statement includes a test (a boolean expression) that can change over time, thus affecting how
many times the following block of code is run. Effectively the block of code is repeated while
the expression remains True . It stops repeating when the expression becomes False . You can
break out of the loop early by using the break statement.

For example, if we want to print out the numbers up to 10, then on the interactive interpreter
we could do the following:

>>> num = 0
>>> while num < 10:

print(num)
num = num + 1

0
1
2
3
4
5
6
7
8

9

The test is whether the variable num is less than 10. We initially set it to 0, and every time we
repeat the block of code, we add 1 onto it, and give it the same name. Eventually, it reaches
10, and the loop stops, as the variable num now equals 10 it is not less than 10, so the test
evaluates to False . Hopefully this is all very straightforward by now.

However, Python has an easier way of repeating a block of code a set number of times (10 in

85

Marching Up and Down the Code

this example). It is the for loop, and all it does is to step through a sequence such as a list or
a string. We have been working with such sequences in the previous two chapters.

So let’s introduce this step by step. First define a list and give it a name using the assignment
operator:

>>> numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The name of the list is numbers , and we have given it the same values as we printed out using
the while loop above.

Now we use our new keyword for . We combine it with the in operator we first saw in
chapter 15 on working out whether a value is a member of a list, but this time it is used to
step along each item in the list. To see it in action, type this in and make sure you get the
same result as when we used the while loop earlier:

>>> for num in numbers:

print(num)

And that is all we need to print out the numbers from the list we created. We could combine
those three lines into two like this, thus avoiding the need for defining the list variable:

>>> for num in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:

print(num)

To explain what is going on - the for keyword is telling Python that for each item in the list
(stored in the variable num), then execute this block of code. It is simply a way of stepping or
iterating over a list, one item at a time. The variable num is defined for you - you do not have
to set it up in advance, and it changes value as you walk along the list. It is referred to as the
loop variable, and acts like a baton in a relay race - it is passed from one list item to the next
in turn, like so:

0 1 2 3 4 5 6 7 8 9
numbers

num
To put it another way, you are asking for each item in the list, which Python passes to your
program in the variable name provided, and repeats the code until the list runs out.

17.1 Ranges

However, it is a bit of a chore to have to type out the contents of our number lists all the time.
Typing in ten numbers is one thing. What if we wanted to have a list with a 1,000 numbers?
Or a million? Not only would this be very time consuming (and also make our programs very

86 Chapter 17. Walking along data

Marching Up and Down the Code

long), it would also be rather error prone. Think about typing in a few thousand numbers, and
making mistake somewhere in the middle!

It is useful then that Python provides a function to give us a list of numbers in just the way we
want. It is called range , and as the name suggests, it simply provides a range of numbers as a
list of integers. Let’s do the above program again, this time using the range function:

>>> for num in range(10):

print(num)

Even shorter than before, now that we are using the range function to do the work for us.
Usually, it just takes one argument - the number of integers that you want. If you pass in 5 ,
you get back [0, 1, 2, 3, 4] , that is, 5 numbers starting from 0. If you pass in 1000 , you
get a list of a 1000 numbers, from 0 to 999.

Note: In programming generally, we like to start from 0 and not from 1, just like when
indexing lists, or using random.randrange . We count up to an end point, but since we usually
count from 0, we do not include the end point in our range.

If you don’t want to start from 0, then you need to pass in two numbers - a start point and
an end point. For example, if you want the numbers between 100 and 200, you simply ask for
range(100, 200) . For numbers between -100 and 50, you ask for range(-100, 50) .

The third thing you can do is to ask for a step in the numbers, so instead of each number
going up by 1, you can go up by a different amount. This is achieved by using a third
argument, the step . For example, type this in the interactive interpreter to print out all the
even numbers from 100 to 200:

>>> for num in range(100, 200, 2):

print(num)

By this stage, you should realise that the range function is very similar to how we slice up
sequences - specify an end point, and also optionally a start point along with a step to perform
for each number. Therefore, there are three ways of calling the range function, depending on
what kind of number range you want to produce:

range(end)
range(start, end)

range(start, end, step)

By using the step, you can also obtain a list that counts down rather than counting up. All
the number ranges we have done so far have counted up. To count down, you need to use a
negative step. However, you must also remember to make the end point lower than the start
point! Again, this is similar to slicing a sequence backwards. Try this to count down from 10 to
1 (down to, but not including 0), inclusive:

>>> for num in range(10, 0, -1):

print(num)

The variable used to step through the list (the loop variable) can be called anything you like.

17.1. Ranges 87

Marching Up and Down the Code

It is a little different to how we have defined variables up until now which is by using the
assignment operator:

>>> num = 10
>>> number = 20

>>> my_int = 123

As described above, the for loop defines its loop variable as part of the for statement, but
just like ordinary variables, we can call it what we want to:

>>> for item in range(10):
print(item)

>>> for counter in range(100):

print(counter)

And you don’t need to use it all, of course. It is used to just step through the list - what you
do with it is up to you:

>>> for num in range(10):
print('Going round and round 10 times!')
print('Weeeeee!')

>>> for line in range(1000):

print('I will not draw on the classroom wall again.')

17.2 Not just numbers

The list that the for loop uses to step over need not be a list of numbers. It can be a list
containing anything you like. Try this:

>>> names = ['Bilbo', 'Gandalf', 'Thorin', 'Golum']
>>> for name in names:

print('Enjoy your adventure', name)

>>> sentence = 'Mary had a litle lamb'
>>> for word in sentence.split():

print(word)

The variable to step along need not be a list - it can be any sequence at all, including strings:
>>> word = 'rotavator'
>>> for letter in word:

print(letter)

and items in reverse, using the reversed function we mentioned in the previous chapter on
slicing:

88 Chapter 17. Walking along data

Marching Up and Down the Code

>>> sentence = 'The attack starts at dawn'
>>> for letter in reversed(sentence):

print(letter, end='')

We introduced the end argument in chapter 7 on printing - it simply instructs the call to
not end the print with a new line, but with nothing (i.e. an empty string) instead. It allows
multiple calls to print to add onto the current line, instead of starting a new one.

Finally, you can combine two sequences together, and then step over the result at the same
time. To do this, use the built-in zip function which will turn the two individual sequences
into a single sequence, made up of items from the originals. To step over the combined
sequence, you need to use two for loop variables which will be set to the individual items
from the original sequences. Try this out with these strings below, and notice how it only
goes as far as the shortest of the two quotes, as the combined sequence effectively runs out
of letters:

>>> first_quote = 'Rosebud.'
>>> second_quote = 'My precious.'
>>> for ch1, ch2 in zip(first_quote, second_quote):

print(ch1, ch2)

R M
o y
s
e p
b r
u e
d c

. i

Again, as in chapter 15 on grouping, whatever you can place in a list variable, you can use the
for loop to step along it and execute the block of code that follows.

17.3 Drawing

Let’s put this knowledge to use to draw a shape using turtle. Open a new file window and type
in the following:

import turtle

Set color and start shape
turtle.fillcolor('red')
turtle.begin_fill()

Draw octagon
for side in range(8): Cont...

17.3. Drawing 89

Marching Up and Down the Code

turtle.forward(50)
turtle.left(45)

turtle.end_fill()

Save it as redoctagon.py, and run it. Not surprisingly, it should draw a red octagon.

A bit of explanation: we import the turtle module so that we can use it in our program;
we then set the fill color as red and start the fill operation; we then loop round 8 times using
the for keyword by going forward 50 pixels and turning left 45 degrees each time; we end by
ending our fill operation so that the shape is filled in.

This is now much easier than before, whether using a sequence of statements, or even when we
were using while loops.

17.4 Vertigo

Open up another new file window, and type in the following:

import turtle
import random

Define the colors we will use below
colors = ['red', 'green', 'blue', 'magenta', 'cyan', 'yellow']

Set the pen size, color and drawing speed
turtle.pensize(2)
turtle.speed('fastest')

Start with a length of 5, and increase as we draw
length = 5

Draw 400 lines, changing the color and length as we progress
for i in range(400):

new_color = random.choice(colors)
turtle.pencolor(new_color)
turtle.forward(length)
turtle.right(91)

length = length + 2

Run and save it as spirals.py, and see what happens. If there any problems, then check your
code carefully!

Some explanation: we import the modules we need, turtle for drawing, random to introduce
a bit of variation. We then define the colors (note, not the English spelling - Python requires
the American spelling) we are going to use. We then change the pen size and the drawing
speed (so it doesn’t take so long). We start with a line length of 5, which is increased for

90 Chapter 17. Walking along data

Marching Up and Down the Code

each line so the shape moves outwards. We then use a for loop to step along the range of
numbers, from 0 to 399 (400 times in total). Inside the block of code that we are repeating
(the loop), we change the pen color, move forward, change the angle (a little more than 90
degrees) and increase the length. We then repeat. The lines are drawn longer and longer, at an
increasingly skewed angle.

Try changing the numbers to see what happens to the final result.

17.5 Loops inside loops

As we noted in chapter 9 on selection, you can have blocks of code inside other blocks of code.
These blocks of code could be repeated, with other blocks also repeated - in other words, we
can have loops inside loops - one section of code repeated inside another.

Let us practice this concept by using the interactive interpreter:

>>> for outer_number in range(1, 10):
print('outer loop', outer_number)
for inner_number in range(1, 10):

print('inner', inner_number)
outer loop 1
inner 1
inner 2
inner 3
inner 4
inner 5
inner 6
inner 7
inner 8
inner 9
outer loop 2
inner 1
inner 2
inner 3
inner 4

inner 5

and so on. You will notice the outer loop starts, and before it repeats the inner loop takes
over. This then repeats until it runs out of items to step over (numbers in this example), and
then the outer loop resumes.

Now to do something longer and more colorful, start a new program and type in the following:

import turtle
import math

Define our colors to use lower down Cont...

17.5. Loops inside loops 91

Marching Up and Down the Code

colors = ['red', 'cyan', 'green', 'magenta', 'blue', 'yellow', 'white']

Set pen size and speed
turtle.pensize(5)
turtle.speed(0)

Set the size of each triangle
length = 400

Move a bit up and to the left so the shape is centred
turtle.up()
triangle_height = length / 2 * math.sqrt(3)
turtle.goto(-length/2, triangle_height)
turtle.down()

Use colors from the start, and move along each time
color_index = 0

while True:
Draw six triangles, centred on a point
for triangle in range(6):

Select a color from the color list
color = colors[color_index % len(colors)]
turtle.fillcolor(color)
turtle.begin_fill()

Draw each of the triangle's 3 sides
for side in range(3):

turtle.forward(length)
turtle.right(120)

turtle.end_fill()
turtle.forward(length)
turtle.right(60)

Increment our index, so the colors are rotated

color_index = color_index + 1

Run it, naming it triangles.py, and see what happens. Much of what we have typed in is
similar to the spirals.py program, but this time we have loops inside other loops. The first
loop simply repeats the main part of the program forever, an infinite loop. We know it is an
infinite loop as the condition is True , which never changes to False . Inside this loop, we
draw 6 triangles, centred on a point so they form a hexagon shape. We do this centring by
turning 60 degrees towards the end of this loop. Inside this loop drawing all the triangles is
another for loop which draws the 3 sides of each triangle, turning 120 degrees each time.

Your turtle window should show something like this being drawn:

92 Chapter 17. Walking along data

Marching Up and Down the Code

One extra note - we use an index to rotate our colors, so it steps along the colors in sequence.
We do this by incrementing (adding onto) the index after drawing every triangle. When
selecting a color, we use the modulus operator % (the remainder) so that it repeatedly go from
0 to 6, inclusive. In other words, once it reaches 6, it returns to 0 and climbs back up again.
Notice how we have one more color (7 in total) than we do triangles (6), so that every time we
repeat the while loop, the colors shift by one from one triangle to the next. This allows us to
see the outer loop working in action, moving the colors along as it runs.

17.6 Exercises

1. In the interactive interpreter, write a for loop that counts from 1000 to 2000 in steps of
50.

2. In the interactive interpreter, write a for loop that counts from 100 to 0 in steps of -5.

3. Write a program called sides.py which uses the turtle module to draw a polygon
having the number of sides the user has input. Use a for loop to draw the sides of
the polygon. This is similar to the exercise in chapter 12 , but this time the looping is
different.

4. Write a program called brekkie.py which creates an empty list called breakfast (using
the notation breakfast = [] to create an empty list). Ask the user what they had
for breakfast, one item at a time, and call append for each item to append it onto the
breakfast list. Use a while loop to accomplish this, allowing the user to type ‘stop’ to

17.6. Exercises 93

Marching Up and Down the Code

break out of the loop. Then use a for loop to print out each item in the breakfast list,
printing out how yummy each item is.

5. Write a program called bullseye.py which draws a series of red and white circles, ever
smaller, to form a bullseye shape. The program should draw 11 in total, starting with a
large red circle, and finishing with a small red circle, with alternate white and red circles
in the middle. Try and centre your shape in the middle of the turtle window.

17.7 Things to remember

1. Use the for loop to repeat a block of code a set number of times. Use the while loop
to repeat a block of code an unknown number of times (e.g. depending on whatever the
user types in). The for keyword can be read as for each item in the sequence, then do
this code block.

2. Use the range function to provide a sequence of numbers to step through. You can use
it with just one argument, the end point, or with two, the start and end point, or three
arguments, start, end and step.

3. You can use the break keyword inside a for loop as well as the while loop we learnt
in chapter 13 on escaping the cycle. This breaks out of the loop before the loop has
finished stepping along the sequence of data.

94 Chapter 17. Walking along data

CHAPTER

EIGHTEEN

NAMING CODE

There are 2 hard problems in computer science: cache
invalidation, naming things, and off-by-1 errors.

— Leon Bambrick

18.0 Data and code

Variables are a way of naming data. A piece of data, like the number 123 , can be given the
name number like this in Python (try it in the interactive interpreter):

>>> number = 123

In this case, the data is an integer, a whole number. We can name other types of data as well:
>>> cups_of_flour = 2.5
>>> name_of_recipe = 'wholemeal bread'
>>> pages_from_book = [19, 22, 23]

>>> is_recipe_tasty = True

This is very good for people reading the code, as it describes the meaning behind the data
much clearer when it is given a name like this. We can also use the same name, but modify
its value over the course of the execution of the program, thus allowing variables to really vary :

>>> people_going_to_mordor = ['Frodo', 'Sam']
>>> people_going_to_mordor.append('Merry')

>>> people_going_to_mordor.append('Pippin')

or more simply such as:
>>> number = 100

>>> number = number + 1

Programs are made up of data, which we have been discussing here, and code. We have the
ability to name our data, but it would be helpful if we also had the ability to name our code.
This would prevent repeating our code, using the name instead of the code itself, and also
allow our programs to become more organised.

95

Marching Up and Down the Code

18.1 Functions

We have already used named sections of code - they are called functions. Python programs are
generally organised into modules (the programs themselves) and functions (the named sections
of code contained within each module). A function is given a name, and we invoke it (call it)
by placing parentheses after its name. Try the following, again in the interactive interpreter:

>>> print()

>>> print('Hello, World!')
Hello, World!
>>> abs(-15)
15
>>> new_num = round(10.75)
>>> print(len('The quick brown fox jumps over the lazy dog'))

43

As we can see above, functions can take in values (which we have learned are called
arguments), or not. They can return values, or not. Even if they do return a value, it is up to
us whether we use it or not. It just depends on what they do, and what we want to use them
for.

In this chapter, we will begin learning how to define our own functions, and not just use the
functions already present in the language (built-in ones), or from other programs (imported
modules).

But before we do, why should we bother? Can’t we just use loops instead to avoid repeating
code?

Loops are very useful, but only when the code to be repeated is in the same place. Functions
are useful when they are being used from a number of places, especially if they are not in
related parts of your program. They are more flexible, and offer a way of being called from
anywhere - even outside your program, just like we do to other modules (e.g. turtle).
Moreover, giving pieces of your code a name makes it more understandable to those reading
it, or even to you when you come back to your program in the future.

Here is an example of a bit of code that needs sections to be separated into functions and
given a name. You don’t need to type this in, it is just provided for information:

print('Hello there')
print()
print('Hello there')
num = 10
print('Hello there')
num = num + 1

print('Hello there')

Lots of repetitive code that could be parcelled up, given a name and put in one place, but
called from where it is needed. Moreover, when code only needs to be written once, we tend

96 Chapter 18. Naming code

Marching Up and Down the Code

to make less mistakes than when we have to write it many times.

18.2 Rolling our own

When naming data we use the assignment operator, when naming code we use the def

keyword. This means we are defining a function - not calling it, but creating it. Just because
you define a function, doesn’t mean it gets called - it is simply there ready to be called upon
when needed.

Open up a new file window, and type in the following:
def say_hello():

print('Hello there')

Save your program as functions.py, and run it. It should do nothing - as described just
above, it is available to your program, but it is not being run yet. To do that, insert the
following line lower down your program:

say_hello()

Now save and run your program again - it should now print out something. In fact, it should
say hello! Just like calling other functions, if you miss off the parentheses, then the function
does not get called, it simply returns where it is located in memory - probably not what you
intended!

So to define a function, we use the def keyword. To call or invoke a function, we use the
name of the function followed by parentheses () .

18.3 Passing in data

However, a function that always does the same thing is very limited. It is more useful to have
the ability to pass information into the function, so the function can use this information on
the inside, as it were. For example, let’s take the example we did above, but vary it slightly. So
type this in beneath your definition of the say_hello function in your functions.py program
(i.e. not at the bottom, so as to keep your functions together, and your calls together):

def say_hello_times(times):

print('Hello there' * times)

Now insert this new line below your say_hello() call at the bottom of your program:
say_hello_times(5)

Run it and ensure it prints out the same message, but this time 5 times. That will be 6
times in total, with the initial call to the say_hello function as well. Try a couple more
combinations:

18.2. Rolling our own 97

Marching Up and Down the Code

say_hello_times(10)

say_hello_times(50)

It should print out the message the number of times you are requesting. If not, then something
is very wrong!

Now, of course, if you can pass in one item, you should be able to pass in more than one item.
So our next function (again, insert it between where the functions are defined and where they
are being called), will take a message and a number, so the caller can specify what he wants
printing:

def say_message_times(msg, times):

print(msg * times)

and insert these lines below the last call to say_hello_times :
say_message_times('Yo! ', 25)

say_message_times('I will stop talking in class ', 100)

Note: An argument is the value or variable being passed into a function. A parameter is
the variable as received inside a function. Or in other words, it has parameters, but takes
in arguments. Perhaps it is easier to remember it like this: for the sake of argument, if we
pass in 'Yo!' and 25 , the function uses them as parameters - arguments on the outside,
parameters on the inside. If you cannot remember the difference, don’t worry - just call them
all parameters!

These parameters can be anything you like, it just depends on what the function does, and
what type of information it needs. Let’s add onto our list of functions one that takes in two
numbers, and prints out the sum:

def add_two_nums(num1, num2):

print(num1 + num2)

and again, lower down, we can call this function:
add_two_nums(10, 20)
add_two_nums(-50, 25)

add_two_nums(100, 200)

If you call this function with three arguments (e.g. add_two_nums(10, 20 30)), then Python
will complain - three arguments into two parameters does not go!

These functions are very short, so may not appear very useful yet, but imagine writing a
function that is 10 or 20 lines long, and is used in a number of places in your program. Then
your program will be much shorter and be more readable as you have given part of your code a
name that describes what it does.

In the next chapter, we will discuss not only passing data into a function, but also getting data
back out again.

98 Chapter 18. Naming code

Marching Up and Down the Code

18.4 Keeping your data local

Usually, data used inside a function should be passed in, so if a function adds two numbers
together, both numbers should be passed in as parameters. It should never have to rely on
variables outside of its own definition - if it needs the data, pass it in. These variables are
called local variables, as they are defined locally, or within, the function itself.

However, sometimes this is impractical, so functions always have the ability to use variables
defined in the module itself. Variables that have been defined in the module (i.e. the program),
and not part of a function, are called global variables, as they are defined for use throughout
the program and not just a part of it. Type this into your functions.py program:

def add_by_5():

print(num + 5)

and at the end of your program, add this:
num = 10

add_by_5()

This should print out 15, with 5 being added onto 10. However, if you want to change the
variable num , or any global variable, then you will hit trouble. Change your function to read
like this:

def add_by_5():
num = num + 5

print(num)

This should print out an error, as Python assumes you are using a local variable called num

before defining it (in using it on the right-hand side of the assignment statement). If you really
want to change a global variable, then you must state this in advance by using the global

keyword alongside the variable name itself. Change the function in your program as follows:
def add_by_5():

global num
num = num + 5

print(num)

Run your program again, and it should now be happy, finding the global variable of num as you
intended.

The general rule, though, is to pass in all the data the function needs, unless the data never
changes such as a list of month names or the value of :math‘pi‘ from the math module, for
example.

18.4. Keeping your data local 99

Marching Up and Down the Code

18.5 Exercises

1. Write another function called calc which accepts two numbers and also a string value
which you can call operator . The operator parameter can be either “add”, “subtract”,
“multiply” or “divide”. Depending on this value, you should perform the appropriate
calculation, and print out the result, For example, if the values 4, 5, “add” are passed
in, then it should print out the result 9. If the values 100, 8, “divide” are passed in, then
it should print out 12.5. You can place this function inside the same functions.py

program.

2. Write a function called timestable which receives a number and prints out a times
table with the specified number of rows and columns. For example, if the number
5 is passed in, then the 5 times table is printed. If the number 12 is passed in, then
the 12 times table is printed. It is best to use two for loops - one for the rows, and
inside this, another for the numbers themselves, both counting along the same range of
numbers (multiplying them to produce the result to display). Again, put it in the same
functions.py program.

3. Start a new program called shapes.py. It should use the turtle module and repeatedly
ask the user what shape to draw - for example, box, circle, polygon, star. Depending on
what the user types in, the program should draw that shape. The code for drawing each
shape should reside in its own function, e.g. a function each for box , circle , polygon

and star . Each function will have to ask the information it needs itself, e.g. a box will
need its length and width, a circle will need its radius, etc.

18.6 Things to remember

1. To define a new function, use the def keyword, followed by the name of the function,
and then parentheses.

2. Inside the parentheses, place any parameters you are expecting. Separate each one using
a comma. This is the way of passing in data to affect how the function behaves - pass in
different data, it should do different things.

3. The function definition is completed with a colon : symbol, followed by the code that is
inside the function. This code, like any block of code, is indented to the right.

4. Defining a function does not mean it is used - it is simply available to be used, like
a tool in a toolbox. To call or invoke a function, you must use its name, followed by
parentheses, but without the def keyword.

100 Chapter 18. Naming code

CHAPTER

NINETEEN

MORE ON FUNCTIONS

Once more unto the breach, dear friends, once more!

— William Shakespeare
Henry V

In the previous chapter we learned how to define functions of our own, and how to pass in
data that the functions can then use. To follow on from this, we will now learn how to define
functions that not only allow data to be passed in, but also return data that can be used by
the calling code. We are already used to this in the way we use functions built into Python
itself. Try these in the interactive interpreter:

>>> round(1.75)
2
>>> abs(-10)
10
>>> max(10, 30, 20)
30
>>> min(50, 100, 25)
25
>>> sum(range(1000))

499500

Hopefully that is all very straightforward to you now. The last example gets a list of numbers
from the range function, and passes it into the sum function, which sums all the numbers
together, returning the total which is then shown in the interactive interpreter. It has
effectively added up the first 1000 numbers, from 0 to 999.

How do we do this in our own functions?

19.0 Please talk to me

Open up your functions.py program, and add the following function between your functions
and the code calling them:

def add_5(num):

return num + 5

101

Marching Up and Down the Code

We have used the new keyword return - this takes an expression, and returns it to the caller
of the function. This means it is used (or discarded if it is not needed), by whatever code that
has called the function in the first place.

Now add these lines onto the bottom of your program, so that the function defined above is
called:

print(add_5(10))

my_num = 20
print(add_5(my_num))

new_num = add_5(my_num)

print(new_num)

Now run the program, and see what it does. It should call our new function add_5 a number
of times. The first ones simply passed in the integer value 10. Inside the function, the
parameter num will refer to this value of 10. The value is incremented by 5, and the result
is returned or sent back to the code that called the function. In the first call of add_5 , this
happens to be a print function, which naturally prints out the result it has been given (the
number returned back from the function call).

The second use of the add_5 function is similar, but instead of passing in a value, it passes in
a variable which is referring to an integer value. It then proceeds as before.

The third use of the add_5 function is similar to the second use, but instead of printing the
value returned back from the function call straight away, it first assigns the returned value to a
new variable called new_num . This is then printed out on its own.

19.1 Forming a chain

With the use of the return keyword to send data back, you can effectively form a chain of
functions just like we have done with the built-in ones at the beginning of the chapter. Type
this into your functions.py program, under your other function definitions:

def sum_up(num1, num2):

return num1 + num2

Then below, with the other calling code, add the following lines:
print(sum_up(10, 20))

total = sum_up(100, -50)

print(total)

This is very similar to what we have done already. Now let’s chain our functions together:

102 Chapter 19. More on functions

Marching Up and Down the Code

print(sum_up(sum_up(1, 2), sum_up(3, 4)))

This could go on and on! You are effectively forming an expression in the shape of a tree - the
inner calls to sum_up are called first, the one on the left, and then the one on the right. With
these two values, 3 and 7, respectively, the outer sum_up is called, thus producing the final
printed result of 10. This expression is equivalent to (1 + 2) + (3 + 4) .

19.2 Naming parameters

So far we pass arguments into functions, used inside the function as parameters, to feed data
into the function. We generally do the following, which you should now type into your ever
increasing functions.py program:

def box_volume(length, height, width):
return length * height * width

print(box_volume(10, 20, 30))

You should place the calling of the function, the line containing the function name print ,
along with the other code towards the bottom of your program.

It is quite clear that the integer value 10 is passed into parameter length , 20 is passed into
the parameter height , and 30 is passed into the parameter width . In Python, these are
called positional arguments - the position of each argument determines which parameter it
is passed into. The first argument is passed into the first parameter, the second argument is
passed into the second parameter, and so on. If you get the order of your arguments wrong,
then then the wrong data will be fed into the wrong parameters. Bad things will happen.

An alternative is to explicitly state what parameters you want to use for each argument
(remember, arguments on the outside are being passed into parameters on the inside). Use
the same function definition, but call it in this way. You should place this line beneath the last
statement from above:

print(box_volume(length=10, height=20, width=30))

Run your program again, and make sure it now prints out the same volume twice. However,
the line calling the function box_volume makes more sense with the parameter names being
assigned to the argument values explicitly. Yes, it is more typing, but reads better.

This is called keyword arguments - you are referring to each parameter by name or keyword,
and supplying the data you want to be associated with each. This may not look very useful in
this example, but when function definition and function invocation (i.e. calling the function)
are in different modules, then it allows you to immediately see what value is being passed into
what parameter. The function call contains more information, and allows you to see what is
going on.

19.2. Naming parameters 103

Marching Up and Down the Code

19.3 A little more practice

We will write a little turtle based program to demonstrate some of the concepts we have been
learning here. Open up a new file, and type in the following:

import turtle
import random

def draw_circle(radius, red, green, blue):
turtle.pencolor(red, green, blue)
turtle.fillcolor(red, green, blue)
turtle.begin_fill()
turtle.circle(radius)
turtle.end_fill()

Set the speed and save width and height
turtle.speed('fastest')
win_width, win_height = turtle.window_width(), turtle.window_height()

while True:
Define the radius of the circle, between 20 and 200 pixels each
size = random.randrange(20, 200)

Move to a random position in the window
Remember to pick up the pen first
x = random.randrange(-win_width // 2, win_width // 2)
y = random.randrange(-win_height // 2, win_height // 2)
turtle.up()
turtle.goto(x, y)
turtle.down()

Draw circle
draw_circle(radius=size,

red=random.random(), green=random.random(),

blue=random.random())

Run your program, saving it as circles.py, and make sure it runs without errors. You should
be getting lots of randomly colored and sized circles on the screen, similar to the following:

104 Chapter 19. More on functions

Marching Up and Down the Code

A little explanation:

• We import the modules we need, turtle for drawing, random for producing a bit of
variation.

• We then define a function called draw_circle which take four arguments - the radius,
followed by red, green and blue to define the color.

• Inside the draw_circle function, we set the pen and fill color, tell turtle we are starting
the shape so it can be filled in later, and then draw a circle. We then end the shape, so
the circle is filled in.

• In the main part of the program, we set the speed to hurry things up, and then save the
window width and height so we can use them later.

• We then enter a loop which continues forever.

• Inside the loop, we first define the size of the circle by using the randrange function in
the random module. We ask for a radius somewhere between 20 and 200.

• We then pick up the pen, and move it to a random place in the drawing window, and
then put the pen down again.

• We then call our draw_circle function using the data we have at hand.

19.4 Exercises

1. Write a function called add_list in your functions.py program, which accepts a list
comprising of a list of integers. The function will step through the list, and return the

19.4. Exercises 105

Marching Up and Down the Code

sum. The sum should then be printed out.

2. Write a function called product in your functions.py program, which accepts two
numbers. The function returns the product of these numbers (i.e. the numbers multiplied
together). Then call this function, product , along with the function sum_up we
wrote earlier, to form a tree-like expression. Print out the result. For example, use your
functions to imitate this arithmetic expression: (4 * 5) + (6 * 7) .

3. Write a function called prime in your functions.py program, which accepts a single
number and returns True (a boolean value) if it is a prime number or False if not.
Remember, 0 and 1 are not prime, 2 is prime, and for the other numbers, a prime
number is one that is only divisible by itself and 1.

19.5 Things to remember

1. Functions can both receive and return data. Data is received via the use of parameters.
Data is returned via the use of the return keyword. You combine the return keyword
with an optional expression to form the return statement.

2. Even functions without the return statement return a value - the value None . It is like
a non or null value, similar to zero but not actually an integer number.

3. When a program comes across the return keyword, control returns immediately to the
calling code. This is the case even if there is more code after the return statement - this
code is effectively out of reach by the program. This is why it is called unreachable code.

4. There are two ways of passing in arguments with functions. Firstly, by position
(positional arguments), so the order of arguments is matched up with the order of
parameters. Secondly, by keyword (keyword arguments), so you can specify the name
of the parameter, followed by the equals sign, and then the expression (e.g. a value or
variable name) that parameter should set to.

106 Chapter 19. More on functions

CHAPTER

TWENTY

READING FILES

Everyone knows that debugging is twice as hard as writing
a program in the first place. So if you’re as clever as you

can be when you write it, how will you ever debug it?

— Brian W. Kernighan

20.0 Opening the file

We have used Python to store values in memory by using variables. Type the following in the
interactive interpreter:

>>> message = 'The attack starts at dawn'
>>> troops = 85

>>> print('Your message:', message, 'and your troops:', troops)

However, storing values in memory by using variables is only transitory - just like some maths
calculator. If you store a number in memory using the MS (memory store) button, turn your
calculator off and on again, and try and recall the number you stored by using MR , it will be
gone. Variables in computer memory are similar - when your program stops (or the computer
is switched off), the memory is gone. To demonstrate this, having typed in the code above,
select the Restart Shell menu item from the Shell menu. Then redo the print command
(you can use the up arrow and press the Return or Enter key twice), and see what happens
- Python will complain it cannot find the variables stating you have not defined them. In other
words, they have gone from memory!

So how do we retain information from one run of our program to the next? How do we, as a
computer scientist would say, make our data persistent - i.e. recall the data when the program
is run again? Think of a game with a highest scores table - we need a way to store these
numbers (and names) so that they can be read and changed every time the game is run. To
do this, we need to place our data in a file that is stored on disk - whether a hard drive or flash
storage such as a USB stick. This data, when the electricity is turned off, retains its state - the
data does not drain away with the current! To work with files, we need to learn how to read
from them (in this chapter) and write to them (in the next).

The first step in reading a file is opening it. Think if a file like a folder or a book - before you
can start reading its contents, you need to open its cover to reveal the pages within. Firstly,

107

Marching Up and Down the Code

we need to create our book, so click on File −→ New File , and copy in the following text
(remember to use Ctrl-C keys to copy and Ctrl-V to paste):

Three Rings for the Elven-kings under the sky,
Seven for the Dwarf-lords in their halls of stone,
Nine for Mortal Men doomed to die,
One for the Dark Lord on his dark throne,
In the Land of Mordor where the Shadows lie,
One ring to rule them all, one ring to find them,
One ring to bring them all and in the darkness bind them
In the Land of Mordor where the Shadows lie.

- The Lord of the Rings, Epigraph

Save it as mission.txt, making sure you save it in your home directory (/home/pi directory),
not on your USB stick. That way we can experiment with it in the interactive interpreter. We
now have a file to open and read.

In Python, we use the open function to open files, so type the following:
>>> f = open('mission.txt')
>>> f

<_io.TextIOWrapper name='mission.txt' mode='r' encoding='UTF-8'>

This shows that the file has been opened. The mode is 'r' , which means the it is open for
reading. The other mode, 'w' , is for writing and it is covered in the next chapter. Note you
have to enclose the name of the file - the filename - in quotation marks as it is a string. If this
does not work, make sure the mission.txt file is in the correct location as indicated above
and named correctly.

We have called the variable that refers to our open file f , but it could be called anything just
like other variables, such as my_file , saurons_dark_secret , input_file , my_todo_list ,
or the like.

Note: If you get the filename wrong (or the file is located in a different directory), you will
get an error like this:

>>> open('missing.txt')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

FileNotFoundError: [Errno 2] No such file or directory: 'missing.txt'

20.1 Reading words of wisdom

Once we have an open file, in this case f , we can read its contents. The open file has a
function, read , to give the contents of the file as a string:

108 Chapter 20. Reading files

Marching Up and Down the Code

>>> print(f.read())
Three Rings for the Elven-kings under the sky,
Seven for the Dwarf-lords in their halls of stone,
Nine for Mortal Men doomed to die,
One for the Dark Lord on his dark throne,
In the Land of Mordor where the Shadows lie,
One ring to rule them all, one ring to find them,
One ring to bring them all and in the darkness bind them
In the Land of Mordor where the Shadows lie.

- The Lord of the Rings, Epigraph

This allows us to call all the functions that belong to the string type. To convert the file into a
list of words, type the following:

>>> f = open('mission.txt')
>>> f.read().split()
['Three', 'Rings', 'for', 'the', 'Elven-kings', 'under', 'the', 'sky,',
'Seven', 'for', 'the', 'Dwarf-lords', 'in', 'their', 'halls', 'of',
'stone,', 'Nine', 'for', 'Mortal', 'Men', 'doomed', 'to', 'die,',
'One', 'for', 'the', 'Dark', 'Lord', 'on', 'his', 'dark', 'throne,',
'In', 'the', 'Land', 'of', 'Mordor', 'where', 'the', 'Shadows', 'lie,',
'One', 'ring', 'to', 'rule', 'them', 'all,', 'one', 'ring', 'to',
'find', 'them,', 'One', 'ring', 'to', 'bring', 'them', 'all', 'and',
'in', 'the', 'darkness', 'bind', 'them', 'In', 'the', 'Land', 'of',
'Mordor', 'where', 'the', 'Shadows', 'lie.', '-', 'The', 'Lord', 'of',

'the', 'Rings,', 'Epigraph']

And to count the number of words in the file we can do:
>>> words = open('mission.txt').read().split()
>>> len(words)

81

However, if you play with files, you will some interesting behaviour, such as:
>>> f = open('mission.txt')
>>> f.read()
'Three Rings for the Elven-kings under the sky,\nSeven for the
Dwarf-lords in their halls of stone,\nNine for Mortal Men doomed
to die,\nOne for the Dark Lord on his dark throne,\nIn the Land
of Mordor where the Shadows lie,\nOne ring to rule them all, one
ring to find them,\nOne ring to bring them all and in the
darkness bind them\nIn the Land of Mordor where the Shadows lie.
\n\n - The Lord of the Rings, Epigraph \n'
>>> f.read()

''

These special escape sequences (such as \n for newline and \t for tab) were covered briefly in

20.1. Reading words of wisdom 109

Marching Up and Down the Code

chapter 7 on printing. This is the text file as it really is, not formatted nicely for reading.

If you read a file completely, the open file points to the end of the file. This is like having a
book open at the end of the last page. If you want to re-read the file, you can re-open the file
(similar to closing a book and reopening it at the beginning again), or use the function seek

to move back to the start (similar to flicking through the pages back to the beginning, but
much quicker):

>>> f.seek(0)
0
>>> f.read()
'Three Rings for the Elven-kings under the sky,\nSeven for the
Dwarf-lords in their halls of stone,\nNine for Mortal Men doomed
to die,\nOne for the Dark Lord on his dark throne,\nIn the Land
of Mordor where the Shadows lie,\nOne ring to rule them all, one
ring to find them,\nOne ring to bring them all and in the
darkness bind them\nIn the Land of Mordor where the Shadows lie.

\n\n - The Lord of the Rings, Epigraph \n'

20.2 Line by line

To get the entire file as a string, we use read . If we want it line by line, however, we can use
a for loop, and iterate over the file:

>>> f = open('mission.txt')
>>> for line in f:

print(line)

Three Rings for the Elven-kings under the sky,

Seven for the Dwarf-lords in their halls of stone,

Nine for Mortal Men doomed to die,

One for the Dark Lord on his dark throne,

In the Land of Mordor where the Shadows lie,

One ring to rule them all, one ring to find them,

One ring to bring them all and in the darkness bind them

In the Land of Mordor where the Shadows lie.

Cont...

110 Chapter 20. Reading files

Marching Up and Down the Code

- The Lord of the Rings, Epigraph

For most purposes, this is the best way to read a file and fits in well with what we have learnt
elsewhere in the book. Notice how the print inserts an extra blank line in-between each line
from the file - since the line from the file contains a newline character already, this is added
onto the newline that the print function adds itself.

This also works for the list function:
>>> f = open('mission.txt')
>>> list(f)
['Three Rings for the Elven-kings under the sky,\n',
'Seven for the Dwarf-lords in their halls of stone,\n',
'Nine for Mortal Men doomed to die,\n',
'One for the Dark Lord on his dark throne,\n',
'In the Land of Mordor where the Shadows lie,\n',
'One ring to rule them all, one ring to find them,\n',
'One ring to bring them all and in the darkness bind them\n',
'In the Land of Mordor where the Shadows lie.\n',

'\n', ' - The Lord of the Rings, Epigraph \n']

To read directly as a list, we can use readlines :
>>> f = open('mission.txt')
>>> f.readlines()
['Three Rings for the Elven-kings under the sky,\n',
'Seven for the Dwarf-lords in their halls of stone,\n',
'Nine for Mortal Men doomed to die,\n',
'One for the Dark Lord on his dark throne,\n',
'In the Land of Mordor where the Shadows lie,\n',
'One ring to rule them all, one ring to find them,\n',
'One ring to bring them all and in the darkness bind them\n',
'In the Land of Mordor where the Shadows lie.\n',

'\n', ' - The Lord of the Rings, Epigraph \n']

Notice that in both cases, the newline characters ('\n') are still in the string.

20.3 Put down the book

When we have finished with a file, we should always call close on the file variable:
>>> f.close()

This just like closing the covers of a book, or the flap of a real folder from a filing cabinet. It is
polite way to finish working on a file - in the next chapter, this becomes more essential.

20.3. Put down the book 111

Marching Up and Down the Code

20.4 Exercises

For these exercises, you will need to copy the text file mission.txt from the home directory
on the Raspberry Pi (/home/pi/mission.txt) to the same location as your programs - either
on your USB stick (e.g. /home/pi/USB_STICKS/USB Disk) or in your named directory (e.g.
/home/pi/fredbloggs).

1. Open and print out the contents of the mission.txt file, converting each line to
uppercase (tip: use the upper function on the line string to achieve this).

2. Open and print out the length of each line in the mission.txt file.

3. Open and step through each line of the mission.txt file. Once done, print out the
average word length - you will need to keep a running total of all the word lengths, plus
how many words there were in order to print out the average.

20.5 Things to remember

1. Use the built-in open function to open files.

2. Use read function on the file variable to get the contents of the file.

3. Use a for loop to iterate over the file, getting each line in turn. This is the best way to
step over the contents of a file, one line at a time.

4. Use the readlines function on the file variable to get a list of lines.

5. When you read a file, you need to move back to the start by re-opening the file, or
using seek .

112 Chapter 20. Reading files

CHAPTER

TWENTY ONE

WRITING FILES

Complexity has nothing to do with intelligence, simplicity
does.

— Larry Bossidy

21.0 Prepare your ink

The opposite to reading a file is writing to it. Whilst in the previous chapter on reading we
used IDLE’s editor to create a file in order to read from it, this chapter we will do the writing
from within the program itself.

To write to a file, we first have to open it in writing mode. To do this, we pass a mode of 'w'

into the open function:
>>> f = open('todo.txt', 'w')

This will open the file, creating it if it does not exist, and assigns the data containing the open
file to the variable f . The file is then emptied or truncated, “cleaning the slate” for any data
you will write. In the previous chapter, we could have passed in 'r' for reading, but this is not
necessary as it is the default (normal) behaviour when opening a file.

21.1 Learning to write

To write a string to the file, we use the write function:
>>> f.write('Do homework\n')

Subsequent calls to write will append data on the end, instead of overwriting:
>>> f.write('Make death star fully armed and operational\n')

The file will now look like:
Do homework

Make death star fully armed and operational

113

Marching Up and Down the Code

Note: If you forget the newlines '\n' , then the file will look like this:
Do homeworkMake death star fully armed and operational

After writing, always remember to close the file, or the data may not be written fully. This is
why we always have to ‘Safely Remove’ our USB sticks before we physically remove them from
the Raspberry Pi computer - data may still be in the process of being written to one or more
files.

21.2 Writing lists

To write a list of lines, like that produced by readlines , we use writelines :
>>> f = open('todo.txt', 'w')
>>> f.writelines(['Do homework\n',

'Make death star fully armed and operational\n'])

>>> f.close()

21.3 Exercises

1. Write a program called notes.py which repeatedly asks the user for a sentence, stores
it in a variable (a string), and writes it out to file each time (a file called notes.txt for
instance). The loop should stop (break out) when the user types ‘stop’. Use a while

loop to keep on asking the user for input, and the file write function to write the
sentence to the file. At the end of the program, the file should contain each sentence,
one after the other, each taking up a line by itself.

2. Modify the program in exercise 1 so that each line is prefixed by the line number, so the
first sentence is output with "1. " added onto the beginning, with the second having
"2. " added on at the beginning, and so on.

3. Write a program called cipher.py so that it reads in a sentence, but instead of writing
the sentence to a file, it writes the ordinal value of each character instead. To find
out the ordinal value of a character, use the built-in ord function, passing in a single
character at a time. You only need to read in one sentence, but you will need to step
over the sentence using a for loop. To check your result, an input of "abcdef" should
be stored in the file as "97 98 99 100 101 102" (i.e. the numbers from 97 for ‘a’, to
102 for ‘f’), and an input of "ABCDEF" should be stored as “65 66 67 68 69 70” (i.e.
the numbers from 65 to 70). Separate each number by a space as demonstrated above.
Remember, the str function can take an integer and return a string in order for you to
output it to file using the write function.

114 Chapter 21. Writing files

Marching Up and Down the Code

21.4 Things to remember

1. Use the built-in open function with the 'w' mode to open files for writing.

2. Use the write function on the file variable to write a string to a file.

3. Use the writelines function on the file variable to write a list of lines to a file.

4. Don’t forget to call the close function on the file when you have finished.

21.4. Things to remember 115

CHAPTER

TWENTY TWO

CATCHING ERRORS

At the source of every error which is blamed on the
computer you will find at least two human errors, including

the error of blaming it on the computer.

— Unknown

22.0 It’s broke

Computer users generally get annoyed when the programs they are using break easily. These
programs are fragile, or brittle, and basically fall over or “crash” when something out of the
ordinary happens. However, mistakes are made, unexpected things occur, programs are even
used for purposes they were not intended. These things happen in real life, and computer
programs should be resilient enough to keep on going, and not stop dead in their tracks. If the
user has typed in the 13th month by accident, the program should tell the user so rather than
falling apart. If the user has asked for a file to be opened that no longer exists, the program
should inform the user instead of disappearing down a hole. If the user has asked for a number
to be divided by zero, then the program should report the error rather than losing all the user’s
data up to that point. Unhappy users will stop using your program and switch to another that
is not so delicate.

So the idea is for your program not to fail, but to handle errors gracefully and inform the user
politely what has happened. This is a much more pleasant experience for the user of your
program.

In Python, we encounter many errors, also known in Python as exceptions. We have arithmetic
errors, where we cannot divide a number by zero:

>>> 200 / 0
Traceback (most recent call last):
File "<stdin>‘"‘, line 1, in <module>

ZeroDivisionError: division by zero

Syntax errors, where the program is breaking the rules of the language:

>>> if broken = True:
File "<stdin>", line 1
if broken = True:

^ Cont...

116

Marching Up and Down the Code

SyntaxError: invalid syntax

Errors with functions, such as passing in two arguments where only one is expected:
>>> input('I\'m', 'not working')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: input expected at most 1 arguments, got 2

And all sorts of other errors:
>>> 1 + 'two'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'
>>> error += 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'error' is not defined
>>> lst = ['more', 'bad', 'bugs']
>>> lst[5]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

Some common Python exceptions:

Name Common reason

ZeroDivisionError You divided something by zero

FileNotFoundError You tried to open a non-existent file

ImportError
You tried to import a module that does not
exist

NameError You have forgotten to define a variable

SyntaxError Your syntax is wrong

TypeError You tried to add a string and an integer

ValueError
You tried to convert a non-number string
into an integer

Exceptions are helpful - they give the program information on what has happened so that
it can do something about it. They tell us that something is broken, which we should fix.
However, it is also nice to be able say “if there is an error, do this”. In Python, this is called
a try - except block.

22.0. It’s broke 117

Marching Up and Down the Code

22.1 try not to crash

Say we have some code that could produce an error:
your_age = int(input('Your age: '))

If the user types an integer number, it works fine. But if the user types something else - even a
floating point number - we get an exception:

>>> your_age = int(input('Your age: '))
Your age: blah blah
Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>
your_age = int(input('Your age: '))

ValueError: invalid literal for int() with base 10: 'blah blah'

We could test the string to see if it is a number (str.isdigit), but instead we will try
to handle the problem when it is occurs. This means that our code will be shorter and
neater - otherwise every time you use a value that is unknown, it will need to be checked
to see whether its contents are correct. This approach often results in a program where the
error checking code takes up more space than the code that actually does the work! It also
allows another part of your program to handle the errors instead of having to deal with them
immediately - for example, a worker may not know what to do when a problem occurs, but his
boss will! This last point is more obvious in larger programs rather than the small ones we will
be writing here.

To handle an error when it occurs, we type try: , followed by our code, which should be
indented, just like an if statement. Then we type except: , followed by the code we want
run when there is an error:

try:
your_age = int(input('Your age: '))

except:

print('Err... No.')

Think of this as if the code will try to run a block of code - the call to int and input in this
example - except if an error occurs then jump straight into this extra block of code. The extra
block of code can be run at any time when an error occurs. This means if the initial block may
or may not finish.

If the user types in a number as expected, all is well:
>>> try:

your_age = int(input('Your age: '))
except:

print('Err... No.')

Your age: 99
>>> your_age Cont...

118 Chapter 22. Catching errors

Marching Up and Down the Code

99

If the user types in something that is not expected, a message will be displayed instead:
>>> try:

your_age = int(input('Your age: '))
except:

print('Err... No.')

Your age: blah blah blah

Err... No.

This works with any code:
>>> try:

a = 2 / 0
except:

print('Maths says no!')

Maths says no!

22.2 Let’s be specific about the problem

Using the try - except block as above works fine, but what if we only want to catch one type
of exception? For instance, the following code contains an invalid variable, but we will never
know, because the except is catching every exception, including the exception due to the
invalid variable:

>>> i_do_exist = '123'
>>> try:

a = int(i_do_not_exist)
except:

print('That was not a number!')

That was not a number!

The exception that we want to catch is a ValueError :
>>> int('abc')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: 'abc'

So, instead of typing except: , we can type except ValueError: . This will catch errors due
to converting non-numbers, but not other errors:

>>> i_do_exist = '123'
>>> try: Cont...

22.2. Let’s be specific about the problem 119

Marching Up and Down the Code

a = int(i_do_not_exist)
except ValueError:

print('That was not a number!')

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

NameError: name 'i_do_not_exist' is not defined

In general, you should name the type of exception you wish to handle. If you do not name
the exception in order to catch all possible errors, then you may miss problems you should be
handling differently. It is simply a case of best practice.

To find a full list of error types, you can type the directory function dir in the interactive
interpreter:

>>> dir(__builtins__)

The errors that you can use to filter your errors are listed at the start - generally they
have the word error at the end: ArithmeticError , AssertionError , AttributeError ,
BaseException , all the to ZeroDivisionError at the end.

22.3 Exercises

1. Add try - except blocks to your programs from chapter 8 , printing out "That was not a
number" when the user types in a non-number.

2. Write a program that takes two numbers, and divides one by the other. Print out a
message when it tries to divide by zero using a try - except (the exception type is
ZeroDivisionError).

3. Write a program called openfile.py which asks the user for a filename, opens the file
and prints out its contents, just like in chapter 20 on reading files. However, this time,
if the file does not exist you should print out a suitable message such as "Sorry, that file
does not exist". The error you need to trap is called FileNotFoundError .

22.4 Things to remember

1. Use try - except blocks to catch exceptions. Exceptions are errors or problems raised
for the program to handle in a proper manner.

2. The code inside a try - except block is indented, like an if block.

3. It is best to name an exception type, to avoid surprises. You can find out what the
exception type is by using the interactive interpreter to provoke the same error.

120 Chapter 22. Catching errors

Marching Up and Down the Code

4. Syntax errors are when the program breaks the rules of the language. Runtime errors or
logical errors are problems in the operation of the program itself.

22.4. Things to remember 121

APPENDIX

A

GLOSSARY

Elementary, my dear Watson

— Sherlock Homes

.py

The file extension that all python files should use.

argument

A value, or reference to a value, passed into a function.

ASCII

The American Standard Code for Information Interchange, a 7-bit character set and
character encoding. Based on the Roman alphabet as used in modern English, the code
is employed almost universally on computing machinery.

assignment

The process of defining a variable with a set value, e.g. my_name = 'Fred' .

boolean

A data type that can only have the values True and False .

boolean operator

logical operator

An operator, such as and that always results in a boolean result, or boolean-convertible
result. For example, a == 10 or a < 0 or a > 100 .

built-in function

A function that comes with Python, so you do not need to implement it yourself, such as
round , print and input .

call

Execute or run a function with the necessary arguments.

code block

A block is a piece of Python code that is executed as a unit.

122

Marching Up and Down the Code

comment

A piece of text acting as annotation or a description of the code. It is intended to be
read by other people, and is ignored by Python from the # character to the end of the
line.

comparison operator

An operator that takes two values and compares them, evaluating to a boolean value.
Python comparison operators include == , != , < , > , <= and >= . Refer to appendix C
on Operators for more information.

constant

A variable which should not change. Constants are often used to make code more
readable, by giving names to otherwise obscure values.

debugging

The process of finding and fixing bugs or defects that prevent the correct operation of a
computer program or a system.

decrement

Decrease the value of a variable. For example: num = num - 1 , or num -= 1 for short.

dir

A built-in function that provides a directory listing of what is contained inside an object
such as a module.

editor

A program for creating and making changes to files, especially text files.

equality operator

The == operator, that compares two objects and evaluates to True when they are the
same. The opposite of the inequality operator .

evaluation

The process of computing a result from an expression.

exception

An interruption in normal processing, especially as caused by an error.

expression

A combination of actual values, variables, operators, calls to functions and even
sub-expressions, to form a value that is computed or evaluated into its simplest form.
For example, the expression 10 + 4 * 3 / 2 is evaluated to form the value 16.0 .

file

123

Marching Up and Down the Code

A resource for storing information, based on some kind of duration storage. It is usually
persistent, so retains its state when the computer is turned off.

float

A floating point number is a number that has a fractional part, such as 1.78 , even if the
fractional part is zero (e.g. 10.0).

function

A section of code given a name that implements a task and returns a value, even if that
value is empty.

function definition

A statement which creates a function, such as:
def add(a, b):

return a + b

global variable

A variable that has been defined for use throughout a module, not just one function. A
global variable can be used inside functions, but if it is to be modified, then it needs to
be declared as global in advance.

IDLE

IDLE is the Python IDE.

immutable

A data type is immutable if its value cannot change. This means if we change the
value of a variable, e.g. num = num + 1 then the variable is moved to a new location
containing the new data value. It is similar to creating a new box for the new data value,
and moving the label of the variable to the new box. int , float and str are examples
of mutable types, so if we change their value, we need to assign them to a variable name
to save the new value, e.g. number = number + 10 .

import

Including or making available one module inside another module.

increment

Increase the value of a variable, usually by 1 . For example: num = num + 1 , or
num += 1 for short.

indentation

Beginning a line with one or more spaces. Used to distinguish code blocks.

index

Accessing a single item of a sequence, where 0 is the first item.

124 Appendix A. Glossary

Marching Up and Down the Code

inequality operator

The != operator, that compares two objects and evaluates to True when they are not
the same. The opposite of the equality operator .

infinite loop

A loop which continues indefinitely.

input

Data that is entered by a source outside of the program, such as the user. In Python,
this is most often the input function or a file.

integer

A whole number such as 18 . These numbers never have a fractional part.

integer division

floor division

An division where the result is rounded down to the nearest whole number (it evaluates
to an integer).

integrated development environment

An integrated development environment (IDE) is a program that allows you to write, run
and debug your code. Some IDE programs provide extra tools to allow you to write the
code faster such as code highlighting and automatic code completion.

interactive interpreter

A programming environment that takes user input (e.g. a single line of code or a
compound statement such as a loop), translating the code (i.e. interpreting it) into a
form that the computer can execute directly, returning the result to the user.

iteration

looping

The process where a set of instructions or data are repeated.

keyword

A word with a special meaning. Python has many reserved keywords that it uses for its
own purposes, such as if , while , for , def , etc., which you cannot use for any other
purpose. To see Python’s full list of keywords, then import the keyword module and
type keyword.kwlist in the interactive interpreter.

keyword argument

An argument identified by a name e.g. f(x=12, y=24) .

list

125

Marching Up and Down the Code

A sequence of items, boxed together using the [] notation. The items can be of any
type, such as integers, strings or even other lists.

local variable

A variable that has been defined within a function for use inside the function alone.

logical error

Where a program behaves in an unexpected or illogical way producing an undesired
result, such as an adding program subtracting or a sorting program jumbling up the data.

matrix

A two-dimensional list or list of lists, such as:
matrix = [[1, 2, 3],

[4, 5, 6],

[7, 8, 9]]

Elements can be accessed by indexing twice:
>>> matrix[2][2]

9

module

A module is a file containing Python definitions and statements, e.g. a program that can
be used by others.

modulus

The remainder when the first number is divided by the second.

mutable

A data type is mutable if its value can change after having been defined without having
to move it in memory. The data is said to change in-place, so that the data in memory
is altered rather than the variable name having to move to another memory location. A
list is an example of a mutable type, so that we can write my_list.append('fred') .

operand

A value that is processed or used by an operator. For example, in the expression
10 + 20 , the + is an operator, whilst the values 10 and 20 are operands.

operator

A symbol that represents an action, such as addition, assignment or equality. In this
book, we have learnt arithmetic, comparison and logical operators.

parameter

Data as received in by a function, given a name in-between the function definition’s
parentheses, which is local to the function itself.

126 Appendix A. Glossary

Marching Up and Down the Code

persistent

Data that is saved onto secondary memory, such as an SD card, so that it can be used
after the program is restarted.

pixel

A picture element is a single point of color. Many pixels are used to make up an image.

positional argument

An argument identified by its position in the list of arguments.

pseudo-code

A description of how your program works in simple English, without any unnecessary
details of how it will be written.

random

Unpredictable in value.

return value

The data passed back from a called function.

run

execute

To perform the actions represented by the code.

runtime error

An error that occurs during the execution of the program, such as a program crashing
with unexpected data (e.g. converting non-numerical value into an integer).

selection

The process of executing one piece (block) of code over another selectively.

sequence

An ordered list of objects. Usually a list or string .

slice

A portion or section of a sequence.

statement

A line of code or a code block that performs an action. A compound statement is a
statement that performs a block of code selectively or iteratively (e.g. belonging to an
if or while statement).

string

A sequence of characters such as letters, digits or symbols stored in encoded form.

127

Marching Up and Down the Code

string concatenation

The operation of joining multiple strings into one string . For example:
>>> "string" + " " + "concatenation"

'string concatenation'

string repetition

The operation of repeating a string multiple times to form a new string . For example:
>>> "repetition " * 5

'repetition repetition repetition repetition repetition '

syntax error

Where the code is breaking the rules of the language, such as misspelling the word
while , or missing the colon : off the end of a if statement.

type

class

A data type defines the range of values and operations that can be performed on a piece
of data. For example, integers are whole numbers, whether negative or positive, that
can have mathematical operations performed on them, such as addition, subtraction,
multiplication and division. Strings have a different set of operations available, such as
capitalisation and splitting into words or sentences, although addition (joining together)
and multiplication (repetition) are also available. Lists include operations that change,
find and sort the values they contain. Other types of data described in this book are
floating point numbers, booleans and files.

Unicode

A series of character encoding standards intended to support the characters used by a
large number of the world’s languages.

variable

A named memory location in which a program can store intermediate results and from
which it can read and modify them.

Some definitions taken from https://en.wiktionary.org and https://www.python.org/.

128 Appendix A. Glossary

https://en.wiktionary.org
https://www.python.org/

APPENDIX

B

PYTHON SUMMARY

I understand everything! Except that wig.

— Jack Sparrow
Pirates of the Caribbean: On Stranger Tides

This chapter summarises what we have learnt about the Python programming language. It is
only a subset of the total language, but it is enough for you to do your coursework well.

B.0 Examples

This section lists a number of examples using various parts of the Python languages to achieve
a variety of tasks. Refer to this when you need an example of how to do something, from
printing out messages or numbers, making decisions, performing loops or catching errors.

Note that comments start with the # character.

The print function to print to the screen:
print("Hello, World!")
print('I will meet you at Fred\'s house') # quote in quote
print('My name is', 'David', 'and my age is', 21)
print('I love Python ' * 1000)

print('two strings' + 'joined together')

Arithmetic:
add, multiply, divide, subtract, power,
remainder (modulo) - but not in that order!
print(3 + 4 * 10 / 2 - 5 ** 2 % 5)

print(3 + 4 * 5) # will print 23

print((3 + 4) * 5) # will print 35, brackets go first!

Using variables to store values in memory:
a = 10
b = a + 20
my_name = 'Fred' Cont...

129

Marching Up and Down the Code

my_age = 101

print('hello there', my_name, 'you are', my_age, 'old')

Getting help in IDLE :
dir(__builtins__) # list all the builtin functions
help(range) # display help on the range function
help('modules') # list all the supplied modules
dir(str) # or dir(int), dir(float), dir(list)

help(str.isdigit) # or help(str), help(float), help(list)

Calling functions (pieces of code that you can use easily):
Putting () after function names means you are calling (invoking) it
print(abs(-123)) # prints 123 (makes number positive)
print(len('Hello there')) # length of a sequence
print(ord('a')) # print out ordinal number of a character
print(bin(183)) # prints binary 10110111
print(hex(183)) # prints hexadecimal B7

print(int('10110111', 2)) # prints decimal 183

Reading input from the user (using a function):
name = input('What is your name? ')

print('Hello there', name)

Converting from one type to another:
age_str = input('What is your age? ')
age = int(age_str) # converts from a str to int
print('In 10 years time you will be', age + 10)
num_int = 10
num_float = float(num_int)
num_float2 = num_int * 10.0 # performs float calculation
day = 18

print('The date today is the', str(day) + 'th') # join strings together

Using code from other programs (modules):

import turtle
turtle.circle(100)
dir(turtle) # provide a directory listing of module

help(turtle.fillcolor) # help on a particular item

Taking decisions using if statement (operators you can use are: == , > , < , <= , >= , != , in ,
and , or , not):

a = 10
b = 20
if a > b:

print('a is larger than b') Cont...

130 Appendix B. Python summary

Marching Up and Down the Code

elif b > a: # means "else if"
print('b is larger than a')

else: # catch all when other tests are False
print('a and b are the same')

if a in range(10, 20): # check if in range of numbers

print('a is between 10 and 20!')

Looping (repeating the same code whilst a test is True):
a = 10
b = 20
while a < b: # print out numbers between a and b

print(a)
a = a + 1 # or a += 1

while True: # loop forever
input_str = input('what is your name or quit? ')
if input_str == 'quit':

break # escape from loop

print('Hello there', input_str)

To generate random numbers, we use the random module:

import random
print(random.randrange(1, 100)) # random number between 1 - 100

print(random.random()) # random number between 0.0 - 1.0

Sequences:

import random

Make a list of items using the square brackets []:
month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

print(random.choice(month_names)) # print random month

print(month_names[0]) # prints Jan, indices start from 0
print(month_names[5]) # prints Jun
print(month_names[-1]) # prints Dec
print(month_names[-2]) # prints Nov
print(month_names[2:5]) # prints Mar, Apr, May

friends = ['Tom', 'Dick', 'Harry']
friends.append('Fred') # append a new item onto list

print(len(friends)) # will now print out 4

for loops make stepping through sequences (or looping) very easy:

B.0. Examples 131

Marching Up and Down the Code

for letter in 'hello there':
print(letter)

for num in range(100): # range creates a list of numbers
print(num)

for name in ['tom', 'dick', 'harry']:
print('Hello there', name)

breakfast = ['bacon', 'egg', 'tomato', 'mushroom', 'bread']
for item in breakfast:

print('Yum, I\'m having', item, 'for breakfast.')

Defining functions allows us to organise our code better:
def say_hello():

print('hello')

def say_hello_times(times):
print('hello' * times)

def square_number(number):
return number * number

def lowest_highest(numbers): # accepts a list of numbers
lowest = min(numbers)
highest = max(numbers)
return lowest, highest # returns two values

say_hello()
say_hello_times(10)
print(square_number(5)) # prints 25

low, high = lowest_highest([5, 10, 35, 15, 50, 20])

Reading from a file on disk:
my_file = open('textfile.txt')
for line in my_file: # step through file line by line

print(line)

my_file.close()

Writing to a file on disk:
Open output file, and then write lines to file and close
output_file = open('test.txt', 'w') # 'w' for writing

Cont...

132 Appendix B. Python summary

Marching Up and Down the Code

output_file.write('first line\n') # note newline symbol

lines = ['second line\n', 'third line\n']
output_file.writelines(lines)

output_file.close()

Catching exceptions:
try:

number_str = raw_input('Give me a number: ')
number = int(number_str) # Try converting it to an int
print('Another 10 added on is:', number + 10)

except:
If not an integer, an error will be thrown
print('That was not a number!!')

Now carry on as normal...

B.1 Operators

The most commonly used operators in Python.

B.1.0 Arithmetic operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

** Power

// Floor division (Whole number division)

% Modulus (remainder)

Examples:
>>> 10 + 20 * 2
50
>>> 100 / 4 - 3
22.0 Cont...

B.1. Operators 133

Marching Up and Down the Code

>>> 10 / 4
2.5
>>> 10 // 4
2
>>> 9 % 4
1
>>> 2 ** 8 + 1

257

B.1.1 Assignment operators

Operator Description

= Assign expression to variable

+= Add expression to variable

-= Subtract expression from variable

*= Multiple expression to variable

/= Divide expression into variable

**= Performs power to variable

//= Floor division into variable

%= Modulus into variable

Examples:
>>> a = 10
>>> a += 1 # a is 11
>>> a -= 3 # a is 8
>>> a *= 2 # a is 16
>>> a /= 4 # a is 4.0
>>> a **= 3 # a is 64.0
>>> a //= 2 # a is 32.0

>>> a %= 25 # a is 7.0

134 Appendix B. Python summary

Marching Up and Down the Code

B.1.2 Comparison operators

Operator Description

== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Examples:
>>> a, b, c = 10, 15, 5
>>> a == b
False
>>> a != b
True
>>> a < b
True
>>> a >= c

True

B.1.3 Bitwise operators

Operator Description

<< Shift bits to the left

>> Shift bits to the right

&
Bitwise and (set to 1 when both are 1) the
bits together

|
Bitwise or (set to 1 when either are 1) the
bits together

~
Return compliment - all the 1’s and 0’s are
flipped

^
Bitwise exclusive or the bits together, unless
both are 1 when the result is 0

B.1. Operators 135

Marching Up and Down the Code

Examples:
>>> 8 << 1
16
>>> 16 >> 2
4
>>> 127 & 15
15
>>> 10 | 5
15
>>> 10 ^ 15

5

B.1.4 Logical operators

Operator Description

and
If both operands are true, then condition is
true

or
If either of the operands is true, then the
condition is true

not Reverses the condition

Examples:
>>> a, b, c = 10, 15, 5
>>> a > b and a > c
False
>>> a > b or a > c
True
>>> not a == b

True

B.1.5 Membership operators

Operator Description

in
Condition is true if the value or variable is
contained in a sequence

Examples:

>>> 'a' in 'abc'
True Cont...

136 Appendix B. Python summary

Marching Up and Down the Code

>>> 'ab' in 'abc'
True
>>> 'abcd' in 'abc'
False
>>> num = 10
>>> num in [5, 10, 15, 20]
True
>>> num in [0, 20, 40, 60]

False

B.1.6 Operator precedence

The following table summarises the operator precedences in Python, from lowest precedence
(least binding) to highest precedence (most binding). Operators in the same box have the same
precedence - so they are evaluated from left to right. If in doubt, use parentheses () to force
a particular order!

Operator Description

or Boolean OR

and Boolean AND

not Boolean NOT

in, not in, is, is not, <, <=, >, >=, !=, == Comparisons, including membership tests
and identity tests

| Bitwise OR

^ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, - Addition and subtraction

*, /, //, % Multiplication, division, remainder

+x, -x, ~x Positive, negative, bitwise NOT

** Exponentiation

x[index], x[index:index],
x(arguments...), x.attribute Subscription, slicing, call, attribute reference

(expressions...), [expressions...],
{key: value...}, {expressions...}

Binding or tuple display, list display,
dictionary display, set display

B.1. Operators 137

Marching Up and Down the Code

B.2 Data types

Python allows more one type of data. Whilst calculators generally deal with only numbers,
computers can store all sorts of data that can be interpreted in different ways. In addition to
numbers (integers, floating point), programs can also process strings of characters, lists of
values, files to store data on a more permanent basis. A bit of interpretation is required (the
type itself) as all this data is invariably stored in binary.

Essentially, a data type determines the size of the data being stored, a set of permitted values,
and the operations that can be performed on the data. Obviously, we can divide an integer by
2, but it would make no sense to divide a telephone number or someone’s address by 2 - that
operation is not permitted by strings.

The following table summarises the types of data we have introduced in this book, along with
examples of their values and operations you can perform on them:

• integers (int) - integers are whole numbers, such as -1, 0, 1, 2, 3, 4, and so on. You
convert to an integer data type using the int function. However, when doing so,
make sure the argument passed in is an actual number, or else an error will be raised.
If a floating point number is passed in, then the fractional part is dropped. If a string
is passed in, ensure that the string contains a single whole number, without even a
fractional part.

The operations that can be performed on an integer mainly include the arithmetic
operators, such as + , - , * , / (which results in a floating point answer), // (which
results in an integer answer), ** and % .

For example:
>>> 10 * 4 + 21 // 2 # results in 50
>>> 10 * 4 + 21 / 2 # results in 50.5
>>> 2 ** 8 # results in 256
>>> 10 % 6 # results in 6 (remainder of 10 divided by 6)
>>> int("123") # results in number 123
>>> int(123.5) # also results in number 123

>>> int(input('num?')) # convert from number

• floats (float) - floating point numbers are fractional numbers that contains a whole
number and a fractional part, such as -10.5, 0.0, 1.75, 15.0. You convert to a float data
type using the float function. Make sure the argument passed in is an actual number,
whether just a whole number or one already containing a fraction.

The operators that can be performed on a floating point number are the same as
integers.

For example:
>>> 10.0 * 4 + 21 // 2 # results in 50.5
>>> 10.0 * 4 + 21 / 2 # also results in 50.5 Cont...

138 Appendix B. Python summary

Marching Up and Down the Code

>>> 2.0 ** 8 # results in 256.0
>>> 10.0 % 6 # results in 4.0
>>> float("123") # results in number 123.0
>>> float(123.5) # results in number 123.5

>>> float(input('num?')) # convert from input to number

• strings (str) - strings are a sequence of alphanumeric characters, such as those found
on your keyboard. You can convert to a string data type using the str function. You
can pass almost anything into this function in order to get its string representation.

Although you can join and repeat strings by using the + and * operators, respectively,
you can also use methods belonging to the string type or class to perform operations
contained by the string value or object.

For example:
>>> name = 'General Ike'
>>> capitalised = name.upper()
>>> new_name = name.replace('General', 'President')
>>> repeated = 'Fred' * 100
>>> joined_up = 'Fred' + 'Bloggs' + str(10)

>>> num_to_str = str(123.456)

• booleans - booleans are either True or False , and are produced when you compare
values or combine comparisons. You can convert to a boolean data type using the bool

function.

For example:
>>> 10 < 20 # results in True
>>> run = True # sets run to True
>>> run and 10 < 20 # results in True

>>> not run # results in False

• lists - sequences of items of any type. A list is simply a sequence of items, such as a
range of numbers, a list of names or months. You can convert to a list data type using
the list function.

For example:
>>> list('abcdefg')
>>> tunnels = 'tom dick harry'.split()
>>> spring = ['Mar', 'Apr', 'May']
>>> sorted(spring)
>>> list(reversed(spring))
>>> spring.append('gorilla')

>>> spring[0]

• files - a value or object pointing to an open file. You specify its name when opening the
file, including its path if necessary, and optionally the mode in which you wish to open it

B.2. Data types 139

Marching Up and Down the Code

- 'r' for reading, 'w' for writing.

For example:
>>> my_file = open('shopping-list.txt')
>>> my_file.read()
>>> my_file.readlines()
>>> my_file.close()

>>> new_file = open('todo.txt', 'w')
>>> new_file.write('Finish computing coursework\n')
>>> new_file.writelines(['one\n', 'two\n', 'three\n'])

>>> new_file.close()

B.3 Different types of functions

In this section we will briefly describe the four general types of functions in Python:

B.3.0 Built-in functions

You can see the list of built-in functions by typing dir(__builtins__) in the interactive
interpreter. Here is a list of the most useful ones, particularly the ones we have covered in this
book with a brief note and example on each:

Name Description Example

all

Returns True if all values
in supplied sequence
(iterable) are also True

all(my_list)

any

Returns True if any values
in supplied sequence
(iterable) are True

any(my_list)

abs

Returns the absolute
(positive) value of an
integer or float

abs(-10)

bin

Returns the binary
number equivalent of
the supplied integer as
a string

bin(123)

Continued on next page

140 Appendix B. Python summary

Marching Up and Down the Code

bool
Converts the supplied
value into a boolean value bool(1)

chr

Returns the character
equivalent of the supplied
ordinal (integer) number

chr(65)

dir

Returns a (directory)
listing of the imported
module

dir(math)

divmod

Divide one number by
another, and returns the
quotient and remainder in
a sequence

divmod(10, 8)

enumerate

Supply a sequence, return
a sequence of items paired
with their index from 0

enumerate('abc')

exit
Exit your program early
(same as quit) exit()

float

Converts the supplied
value into a floating point
(fractional) number

float('1.5')

hex

Converts the supplied
value into a hexadecimal
value as a string

hex(127)

help
Provides help on the
supplied item help(input)

id

Returns the memory
address of the supplied
name

id(my_num)

input

Waits on the user to type
something, and return
sequence of characters as
a string

input('name? ')

Continued on next page

B.3. Different types of functions 141

Marching Up and Down the Code

int
Convert the supplied value
into an integer number int('100')

len

Returns the length of the
supplied sequence (e.g.
string or list)

len('fred')

list
Converts the supplied
value into a list list('xyz')

max

Returns the maximum
value from the supplied
sequence

max(1, 2, 3)

min

Returns the minimum
value from the supplied
sequence

min(5, 1, 3)

oct

Converts the supplied
value into an octal value
as a string

oct(25)

ord

Returns the supplied
character into an ordinal
(integer) value

ord('a')

open

Open the supplied
filename and return the
opened file

open('scores.txt)

pow

Calculate the power of
one number to another
and return the result

pow(2, 8)

print

Print out or display the
supplied string or list of
items

print('Hello')

range

Provide a range of
integers, with a set start,
stop and step

range(10, 20, 2)

reversed
Reverse the order of a
supplied sequence reversed('abcde')

Continued on next page

142 Appendix B. Python summary

Marching Up and Down the Code

round

Round the supplied
floating point number to
the specified precision

round(4.75)

sorted
Return the supplied
sequence in order sorted('azgdbdc')

str
Convert the supplied value
into a string str(100)

sum

Sum or add up the
supplied sequence of
numbers returning the
result

sum([1, 3, 5, 7])

type

Return the type of the
supplied item, e.g. int,
float, str, bool

type('bob')

zip

Zips up or combines
two or more supplied
sequences

zip('abc', 'def')

The full list will include other built-in items as well (e.g. exception types). These can be called
by any Python program without having to import anything else – they are built-in to the
language itself.

B.3.1 Local functions

You can define your own functions in your Python module by using the def keyword. These
can then be called from within your own program by simply using the name of the function
itself, similar to a built-in function. For example, here is a function that accepts a number and
returns its square:

def square_number(number):

return number * number

Which can then be called as follows:
square_number(5) # returns 25

B.3. Different types of functions 143

Marching Up and Down the Code

B.3.2 Imported functions

You can use functions in other modules by importing them first. For example, to use functions
inside the math module, you can do the following:

import math

math.sqrt(100)

You need to write module name followed by a period . before the name of the function when
calling it. You can print out a directory listing of what a module contains by performing a ’dir’
on its name, for example:

>>> dir(math)

B.3.3 Functions belonging to a type ("class methods")

A particular set of values is called a type (integers, floating point numbers, strings, files) or a
class. These types wrap up the data they contain, and also offer functions that operate on that
data. This allows the data and related code to live in one place. For example, once you have
defined a string, you can calls its type or class methods (functions) to perform a number of
operations on that string value:

>>> message = 'the quick brown fox jumps over the lazy dog'
>>> message.upper() # returns the uppercase version
>>> message.split() # returns a list of words
>>> message.replace('fox', 'coyote') # replaces one word with another
>>> message.count('o') # returns how often one string is in another

>>> message.startswith('the') # does string start with this?

And so on. You need to write the variable name (which refers to a piece of data, or object,
belonging to a particular type), followed by a period . before the name of the function when
calling it. You can list the functions that a type contains by performing a dir on its name, for
example:

>>> dir(int)
>>> dir(float)

>>> dir(str)

This will show that some types have functions that are not relevant to other types. For
example, floats have a function called is_integer which returns True if it is a whole
number, False if not. Strings have functions such as lower , split , title , upper , which
are relevant to strings of characters, but not numbers and files. These methods are bound up
with the data they work on, so only relevant functions are offered with the type of data the
variable refers to.

Keep in mind that if you call a function to change its value, some functions will change
the data referred to by the variable name, and others will return a new value. This means
that some types can change their values (e.g. lists, where you can append , insert or

144 Appendix B. Python summary

Marching Up and Down the Code

remove values), and others cannot so give you a new value (e.g. integers, floats and strings).
Therefore, all the calls on the message variable above, being a string, would return a new
value if you tried to change it (e.g. changing the string to uppercase or replacing values). You
could then assign this new value to a variable name using the assignment = operator.

Here are a few more examples to show this difference between types that allow the value to
change (mutable) and types that do not (immutable):

>>> hobbits = ['Bilbo', 'Frodo', 'Sam']
>>> hobbits.append('Pippin') # changes value
>>> hobbits.remove('Bilbo') # changes value

>>> num = 10
>>> num = num + 1 # new value
>>> num = num * 10 # new value

>>> name = 'The 11th Doctor'
>>> big_name = name.upper() # new value

>>> new_name = name.replace('11th', '12th') # new value

Functions that change the existing value, rather than returning a new one, are known as
in-place operations - they change the data where it lives or is placed in memory, rather than
creating a new value with different contents. It is a subtle but vital point!

B.4 Program layout

When a program gets past a few lines, including its own function definitions and the like, you
need to structure your program in an orderly fashion to avoid it becoming messy. The general
structure of a Python program should follow this pattern:

firstly import any modules you need, e.g.
import math

define constant variables (variables whose values don't change), e.g.
MULTIPLIER = 2

function definitions, e.g.
def get_integer():

number = input('Give me a number: ')
return int(number)

def double_up(num):
return num * MULTIPLIER

main code, e.g.: Cont...

B.4. Program layout 145

Marching Up and Down the Code

number = get_integer()

print('Number doubled is:', double_up(number))
print('and its factorial is:', math.factorial(number))

print('Bye for now.')

146 Appendix B. Python summary

APPENDIX

C

PROGRAM FLOW

The river of human nonsense flows on forever.

— G.K. Chesterton

C.0 Sequence

name = input('What is your name? ')

print('Hello there', name)

print('Here is a sum', 10 + 20)

C.1 Selection

num = int(input('Number please: '))

if num < 0:

print('Negative!')

else:

print('Positive')

print('Off we go again...')

147

Marching Up and Down the Code

C.2 Iteration

num = 0

while num < 10:

print(num)

num = num + 1

print('Off we go again... ')

148 Appendix C. Program flow

APPENDIX

D

COMMON MISTAKES

To err is human, but to really foul things up you need a
computer.

— Paul R. Ehrlich

D.0 Forgetting to open / close quotation marks

Do not forget to close your quoted strings with a quotation mark at both the beginning and
end. Moreover, you must be consistent, so if you start with a single or double quotation mark,
then you must finish with the same type of quotation mark.

Bad Good

print("Hello, World!) print("Hello, World!")

print(Hello!') print('Hello!')

print('Your name is, name) print('Your name is', name)

print('Name', name, 'age, age) print('Name', name, 'age', age)

D.1 Using quotation marks insides quotes

If you include a quotation mark inside a string, then you must use the escape sequence \' or
\" , otherwise Python will assume you have closed off the string, thus leaving the remaining
text outside the quotation marks.

149

Marching Up and Down the Code

Bad Good

print('St. Michael's School') print('St. Michael\'s School')

print("His name was "fred"") print("His name was \"fred\"")

D.2 Not using commas between items

You must use a , comma between each item, whether you are printing, defining a list or
defining more than one variable from a sequence of values.

Bad Good

print('Hello your name is' name) print('Hello your name is', name)

print(10 20 30 40) print(10, 20, 30, 40)

months = ['jan' 'feb' 'mar'] months = ['jan', 'feb', 'mar']

num1 num2 = 10 20 num1, num2 = 10, 20

num1 num2 = num2 num1 num1, num2 = num2, num1

D.3 Spelling or capitalisation mistakes

You must be consistent in using the names that have been defined, including the way the
names are spelt and capitalised.

150 Appendix D. Common mistakes

Marching Up and Down the Code

Bad Good

pront(10 + 20)

Print(10 + 20)

print(10 + 20)

print(10 + 20)

number = 10

print(numbre)

number = 10

print(number)

turtle.pencolour("red")

turtle.beginfill()

turtle.pencolor("red")

turtle.begin_fill()

s = 'good morning'

print(s.titel())

s = 'good morning'

print(s.title())

D.4 Using variables before defining them

Before making use of a variable, you must define it to some value. Use the value None if you
do no know what this value is going to be in advance (or '' for an empty string, or [] for an
empty list).

Bad Good

num1 = 10

print(num1, num2)

num1, num2 = 10, 20

print(num1, num2)

while count < 10:

print(count)

count = count + 1

count = 0

while count < 10:

print(count)

count = count + 1

D.4. Using variables before defining them 151

Marching Up and Down the Code

D.5 Using invalid variable names

Variable names must begin with either an upper or lowercase letter, or an underscore _

character. Do not include symbols in your names.

Bad Good

100_num = 100 num_100 = 100

a$ = 10 a = 10

first number = 123 first_number = 123

D.6 Setting variables

Variables are defined by placing the variable name on the left, with an assignment operator in
the middle, followed by the expression to store on the right. If you are defining two variables
at the same time (in the second example below), then you must use the assignment operator
between each of them so that they are assigned to the same value.

Bad Good

101 = number number = 101

num1, num2 = 5 num1 = num2 = 5

D.7 Using modules before importing them

Before you can use anything defined inside another module, you must import it first. This
includes even listing its contents by using the dir function.

Bad Good

num = random.randint(1, 100)
import random

num = random.randint(1, 100)

152 Appendix D. Common mistakes

Marching Up and Down the Code

Another common mistake is to save your program with the same name as a module you are
importing, so it will import your own program instead. For example, if you are using the
random module, then do not call your program random.py , or if you are using the turtle

module then do not call your program turtle.py .

D.8 Not converting to integers when performing
arithmetic

Strings must be converted into numbers, whether integers or floats, before they are used in
arithmetic calculations. Use the int , float and str functions to convert between these
types of data.

Bad Good

age = input('Age? ')

print(age + 10)

age = input('Age? ')

print(int(age) + 10)

D.9 Forgetting the colon : at the end of compound
statements

Any compound statement, whether an if , while , for , def or try , must have a colon :

symbol at the end of the line to indicate that the code block that follows belongs to it. For
example, if an if statement is used, then the code block is only executed if the condition
following the if keyword evaluates to True .

D.8. Not converting to integers when performing arithmetic 153

Marching Up and Down the Code

Bad Good

if num > 10

print(num)

if num > 10:

print(num)

for num in range(10)

print(num)

for num in range(10):

print(num)

while num < 10

print(num)

num = num + 1

while num < 10:

print(num)

num = num + 1

def say_hello()

print("Hello!")

def say_hello():

print("Hello!")

D.10 Using the assignment operator instead of
comparison operator

When comparing values, you must use one of the comparison operators. The assignment
operator = is used to define variables. The equals operator == is used to compare an
expression on the left with an expression on the right, resulting in a boolean True or False

result.

Bad Good

if num = 10:

print(num)

if num == 10:

print(num)

D.11 Not forming expressions properly

The expressions below on the left (taking the first example) were intended to compare the
variable ch against either 'A' or 'B' , and execute the subsequent code block if this is the

154 Appendix D. Common mistakes

Marching Up and Down the Code

case. Unfortunately, it only compares ch against 'A' , and then checks whether the letter 'B'

is not empty (which it isn’t). It is equivalent to (ch == 'A') or ('B') , with each side of the
expression being evaluated separately, and then combined together with the or operator. This
means that the code block will always execute, as this expression is always True . To compare
a variable against two separate values, you need to do both comparisons individually, such as
on the right of the table.

Bad Good

if ch == 'A' or 'B': if ch == 'A' or ch == 'B':

if a and b > 10: if (a > 10) and (b > 10):

D.12 Unnecessarily testing expressions against 0, True,
False, None or ""

The examples below on the left will work perfectly well, but contain code that is unnecessary.
If you wish to compare whether a value is non-zero, is not empty, or is True , you simply need
to test the variable name alone. You would not type in the expression a > 0 == True , but
a > 0 instead. Therefore, do not type in an expression such as a == True , but simply test
against a instead.

Bad Good

if a != 0 and b != 0: if a and b:

if a == 0 and str == '': if not a and not s:

if a == True: if a:

if a == False: if not a:

D.12. Unnecessarily testing expressions against 0, True, False, None or "" 155

Marching Up and Down the Code

D.13 Getting the number of brackets wrong in an
expression

Always ensure that the same number of left brackets [or (matches the number of right
brackets] or) , respectively.

Bad Good

print(2 + (4 * (8 / (10 / 5)) print(2 + (4 * (8 / (10 / 5))))

print(((10 + 20) ** 2) print(((10 + 20) ** 2))

print((10 + 20) / 8 / 4)) print((10 + 20) / (8 / 4))

nums = [10, 20, [40, 50] nums = [10, 20, [40, 50]]

D.14 Indexing past the end of lists

Do not index past the end of a sequence, which ranges from 0 up until the length of the list
but one (i.e. 0 to 2, inclusive, in the example below).

Bad Good

names = ['fred', 'bob', 'tom']

print(names[3])

names = ['fred', 'bob', 'tom']

if 3 < len(names):

print(names[3])

D.15 Forgetting the brackets when calling a function

Always include parentheses when invoking (calling) a function. Simply typing the name of the
function will provide you with its memory location - it will not actually run it!

156 Appendix D. Common mistakes

Marching Up and Down the Code

Bad Good

int int()

turtle.begin_fill turtle.begin_fill()

print(math.sqrt 144) print(math.sqrt(144))

print(int '1010101', 2) print(int('10101010', 2))

D.16 Using variable names reserved by Python

Do not use reserved keywords as names in your code. To see Python’s full list of keywords,
then import the keyword module and type keyword.kwlist in the interactive interpreter.

Bad Good

for = 10 for_num = 10

if = 100 if_num = 100

while = 'fred' while_str = 'fred'

D.17 Getting the indentation wrong

Python uses indentation (the practice of "pushing in" your code from the left-hand side) to
define blocks of code. Ensure that each block of code is exactly indented in the same manner
(i.e. they start in the same column as other lines at the same level or indentation). It is
recommended practice to use an indentation of 4 spaces for each code block.

D.16. Using variable names reserved by Python 157

Marching Up and Down the Code

Bad Good

print('Hello there')

print('How are you?')

print('Hello there')

print('How are you?')

for num in range(10):

print(num)

for num in range(10):

print(num)

if a == 10:

print('a is 10')

print('where is b?')

if a == 10:

print('a is 10')

print('where is b?')

if a == 10:

print('a is 10')

print('where is b?')

else:

print('and what might c be?')

if a == 10:

print('a is 10')

print('where is b?')

else:

print('and what might c be?')

D.18 Using an elif or else without an if

A selection statement must always include an if statement, with the elif and else

statements being optional (i.e. you do not have to include them).

158 Appendix D. Common mistakes

Marching Up and Down the Code

Bad Good

a = 10

elif a > 10:

print('larger than ten')

else:

print('something else')

a = 10

if a == 10:

print('a is ten')

elif a > 10:

print('larger than ten')

else:

print('something else')

D.19 Placing a condition after an else

The else line within an if statement can be read as otherwise do this - or if all of the tests
above are False then do this instead. It is not meant to include a test of its own.

Bad Good

a, b = 10, 20

if a > b:

print('a is larger')

elif a < b:

print('b is larger')

else a == b:

print('a and b are the same')

a, b = 10, 20

if a > b:

print('a is larger')

elif a < b:

print('b is larger')

else:

print('a and b are the same')

D.20 Getting stuck in a loop

Your loops should always include a way out, whether via the condition at the top eventually
changing from True to False , or having a break statement which is performed selectively.

D.19. Placing a condition after an else 159

Marching Up and Down the Code

Bad Good

num = 0

while num < 10:

print(num)

num = 0

while num < 10:

print(num)

num = num + 1

while True:

name = input('Name? ')

print(name)

while True:

name = input('Name? ')

if name == 'quit':

break

print(name)

160 Appendix D. Common mistakes

APPENDIX

E

EXTRA EXERCISES

Now is the winter of our discontent

— William Shakespeare
Richard III

These exercises are designed to allow you to practice your programming skills learned during
class. Please complete each each task and save in a folder called practice on your USB stick
to show the teacher when finished. However, you need not complete the tasks in the order
written - if you get stuck with one, move onto another and return to the first task later.

This work must be done on your own without help or assistance from others in the class.
However, you may consult your previous work, or the books and examples provided by the
teacher, as you wish.

E.0 welcome.py

Write a program that asks for the user’s name and a number, and then prints out their name
that number of times.

For example:
What is your name? Snoopy
How many times should I print your name: 5

Snoopy Snoopy Snoopy Snoopy Snoopy

E.1 oddoreven.py

Write a program that inputs a number, and then tells the user whether the number is odd or
even.

For example:
Please input a number: 17
The number 17 is odd.

Cont...

161

Marching Up and Down the Code

Please input a number: 42

The number 42 is even.

E.2 century.py

Write a program to input the user’s name and age, and then print out a greeting including the
user’s name, and the year in which the user will be 100 years old. Your program can assume
the current year is 2015.

For example:
What is your name: Fred
How old are you? 99
Hello Fred you will be 100 in 2016

What is your name: Bob
How old are you? 20

Hello Bob you will be 100 in 2095

E.3 circlearea.py

Write a program that asks for the diameter of a circle, and prints out its area. The area can be
calculated as follows:

𝑎𝑟𝑒𝑎 = 𝜋 * 𝑟2

Hint: For 𝜋, import the module math and use math.pi .

For example:
Please enter the diameter of the circle: 12

The area is: 113.10

E.4 drawline.py

Write a program to draw a line on the screen given two x and y coordinates, using the turtle

module.

Hint: The turtle window has its 0,0 point at the centre, with increasing x and y in the right
and up direction, respectively. In other words, x starts at 0 in the centre and goes negative
towards the left, and positive towards the right. y starts at 0 in the centre and goes negative
towards the bottom and positive towards the top. This is somewhat like graph paper.

162 Appendix E. Extra exercises

Marching Up and Down the Code

This is the turtle coordinate system illustrated (reference: http://101computing.net):

You will need to create the turtle window using the Turtle function, to pick your pen up
using the up function, and move using the goto function.

For example (drawn with a thicker pen using the pensize function on a 500x500 window):
From where should the line start? -100 -200

And to where should the line end? 275 175

E.5 countingdown.py

Write a program to input a number from the user and then print all the numbers from this
down to zero. Make sure the number is positive!

For example:

E.5. countingdown.py 163

http://101computing.net

Marching Up and Down the Code

Please input a number: 10
10
9
8
7
6
5
4
3
2
1

0

E.6 span.py

Write a program to ask for two numbers, and print the numbers that span from the first up to
the second. Care should be taken in the case that the second number is lower than the first
number - you should always count up.

For example:
Please input your first number: 10
Please input your second number: 20
The span of numbers are:
10
11
12
13
14
15
16
17
18

19

E.7 squares.py

Write a program to ask for two numbers, and print out the square of the numbers that span
from the first number up to the second. Care should be taken in the case that the second
number is lower than the first number - you should always count up.

For example:

164 Appendix E. Extra exercises

Marching Up and Down the Code

Please input your first number: 10
Please input your second number: 20
The square numbers between those numbers are:
100
121
144
169
196
225
256
289
324

361

E.8 headstails.py

Write a program to ask the user how many times the program should flip a coin, and count
how many times the coin landed on heads and tails.

Hint: Use random.choice function with a parameter of ["heads", "tails"] to choose
between the two options.

For example:
How many times should I flip the coin? 1000

The number of heads totalled 459 and the number of tails totalled 541

E.9 randompathtracer.py

Write a program, using turtle, that asks the user for a number of steps. The program should
then loop, and at each step, randomly turn the turtle left by 90 degrees, right by 90 degrees or
not turn at all. It should then go forward by 10 pixels.

For example:

E.8. headstails.py 165

Marching Up and Down the Code

How many steps should I draw? 500

E.10 ascii.py

Write a program to print out a section of the ASCII table. It should print out the decimal,
binary, hexadecimal and character representation for the values from 32 to 127, inclusive. Use
the built-in bin function to get the binary value, hex for the hexadecimal value and chr to
get the character representation.

For example:
32 0b100000 0x20
33 0b100001 0x21 !
34 0b100010 0x22 "
35 0b100011 0x23 #
36 0b100100 0x24 $
37 0b100101 0x25 %
38 0b100110 0x26 &
39 0b100111 0x27 '
40 0b101000 0x28 (
41 0b101001 0x29)
42 0b101010 0x2a *
43 0b101011 0x2b +
44 0b101100 0x2c ,
45 0b101101 0x2d -
46 0b101110 0x2e .
47 0b101111 0x2f /
48 0b110000 0x30 0
49 0b110001 0x31 1
50 0b110010 0x32 2
51 0b110011 0x33 3 Cont...

166 Appendix E. Extra exercises

Marching Up and Down the Code

52 0b110100 0x34 4
53 0b110101 0x35 5
54 0b110110 0x36 6
55 0b110111 0x37 7
56 0b111000 0x38 8
57 0b111001 0x39 9
58 0b111010 0x3a :
59 0b111011 0x3b ;
60 0b111100 0x3c <
61 0b111101 0x3d =
62 0b111110 0x3e >
63 0b111111 0x3f ?
64 0b1000000 0x40 @
65 0b1000001 0x41 A
66 0b1000010 0x42 B
67 0b1000011 0x43 C
68 0b1000100 0x44 D
69 0b1000101 0x45 E
70 0b1000110 0x46 F
71 0b1000111 0x47 G
72 0b1001000 0x48 H
73 0b1001001 0x49 I
74 0b1001010 0x4a J
75 0b1001011 0x4b K
76 0b1001100 0x4c L
77 0b1001101 0x4d M
78 0b1001110 0x4e N
79 0b1001111 0x4f O
80 0b1010000 0x50 P
81 0b1010001 0x51 Q
82 0b1010010 0x52 R
83 0b1010011 0x53 S
84 0b1010100 0x54 T
85 0b1010101 0x55 U
86 0b1010110 0x56 V
87 0b1010111 0x57 W
88 0b1011000 0x58 X
89 0b1011001 0x59 Y
90 0b1011010 0x5a Z
91 0b1011011 0x5b [
92 0b1011100 0x5c \
93 0b1011101 0x5d]
94 0b1011110 0x5e ^
95 0b1011111 0x5f _

96 0b1100000 0x60 ‘
97 0b1100001 0x61 a
98 0b1100010 0x62 b Cont...

E.10. ascii.py 167

Marching Up and Down the Code

99 0b1100011 0x63 c
100 0b1100100 0x64 d
101 0b1100101 0x65 e
102 0b1100110 0x66 f
103 0b1100111 0x67 g
104 0b1101000 0x68 h
105 0b1101001 0x69 i
106 0b1101010 0x6a j
107 0b1101011 0x6b k
108 0b1101100 0x6c l
109 0b1101101 0x6d m
110 0b1101110 0x6e n
111 0b1101111 0x6f o
112 0b1110000 0x70 p
113 0b1110001 0x71 q
114 0b1110010 0x72 r
115 0b1110011 0x73 s
116 0b1110100 0x74 t
117 0b1110101 0x75 u
118 0b1110110 0x76 v
119 0b1110111 0x77 w
120 0b1111000 0x78 x
121 0b1111001 0x79 y
122 0b1111010 0x7a z
123 0b1111011 0x7b {
124 0b1111100 0x7c |
125 0b1111101 0x7d }
126 0b1111110 0x7e ~

127 0b1111111 0x7f

E.11 vowel.py

Write a program to input a character, and tell the user whether it is a vowel or not (i.e. one of
these characters - a, e, i, o or u). Make sure only a single character has been input.

For example:
Please type one character from the alphabet: a
The letter a is a vowel!

Please type one character from the alphabet: z
The letter z is not a vowel!

Please type one character from the alphabet: E

The letter E is a vowel!

168 Appendix E. Extra exercises

Marching Up and Down the Code

E.12 prayers.py

Write a program to offer an index of prayers, ask for a choice of one of them - or none at all -
and print out that prayer in full. Your choice of prayers is up to you.

For example:
The choice of prayers is as follows:

1) Apostles Creed, 2) Our Father, 3) Hail Mary, 4) Glory Be,
5) Hail Holy Queen, 6) Exit

What is your choice? 3
Hail Mary, full of grace, the Lord is with thee; blessed art thou
amongst women, and blessed is the fruit of thy womb, Jesus. Holy Mary,

Mother of God, pray for us sinners, now and at the hour of death. Amen

E.13 palindrome.py

Write a program that will input a word, and then inform the user whether the word is a
palindrome or not (i.e. words that when reversed, are the same). So the words "nun", "radar"
and "kayak" are palindromes.

For example:
Input a word: bob
The word bob is a palindrome!

Input a word: fred

The word fred is not a palindrome

E.14 histogram.py

Write a program that will accept a list of numbers and then draw a histogram using the star *
character.

For example:
Input the numbers for the histogram: 1, 3, 5, 4

Here is the histogram for the numbers 1, 3, 5, 4:

*

***** Cont...

E.12. prayers.py 169

Marching Up and Down the Code

E.15 length.py

Write a program to input a list, and print out how long that list is. Use sentence.split to
split the sentence returned by input into a list of items. For example:

Please input your sentence: a b c 1 2 3
The number of items in your sentence is: 6

Please input your sentence: monday tuesday wednesday

The number of items in your sentence is: 3

E.16 turtleboxes.py

Write a program to draw 100 rectangles of a random length and width, and a random color
and at random positions in the turtle window.

Hint: You will need to use the turtle module, and functions from the turtle module such
as goto , up , down , forward , right (or left), begin_fill , end_fill and fillcolor .
Use the help system to find out how to call these functions.

For example:

170 Appendix E. Extra exercises

Marching Up and Down the Code

E.17 longest.py

Write a program to input a sentence and then print out which word is the longest.

For example:
Please input your sentence: The quick fox jumped over the lazy dog

The longest word in that sentence is: jumped

E.18 reverse.py

Write a program to input a sentence and then print it out in reverse.

For example:
Please input your sentence: mary had a little lamb

The reverse of your sentence is: bmal elttil a dah yram

E.19 twist.py

Write a program that draws a number of squares, using the turtle module, each one larger
than the last and with the drawing turtle turning after each square. Each square should also be
a different color - use the random.choice function to select from a variety of colors.

The first square should have sides of 25 pixels in length, with each succeeding square being 10
pixels longer on each side. The turtle should turn 10 degrees to the right after every square.

For example:

E.17. longest.py 171

Marching Up and Down the Code

E.20 factorial.py

Write a program to input a number, and then print out the factorial of that number. The
factorial is all the numbers up to and including the actual number multiplied together.

For example:
Please input your number: 6
The factorial of 6 is 720

Please input your number: 10

The factorial of 10 is 3628800

E.21 quiz.py

Write a program to ask the user a number of questions, with multiple choice answers, and then
print out their score at the end. You should ask 5 questions in total. You are free to make up
your own questions.

For example:
Welcome to the QUIZ program!

Question 1: Who won the football world cup in 1970?
a) England b) Brazil c) West Germany d) Italy
Your answer: b
Correct!

Question 2: Who won the Formula 1 world championship in 2008?
a) Michael Schumacher b) Fernando Alonso c) Lewis Hamilton d) Niki Lauda
Your answer: c
Correct!

Question 3: Who has won the most Wimbledon tennis titles?
a) Roger Federer b) Boris Becker c) Andre Agassi d) Pete Sampras
Your answer: d
Incorrect, it is a!

Question 4: Who has won the most Rugby World Cups?
a) South Africa b) Australia c) New Zealand d) all three
Your answer: b
Incorrect, it is d!

Question 5: Who has won the most Olympic medals?
a) Michael Phelps b) Carl Lewis c) Usain Bolt d) Steve Redgrave
Your answer: a Cont...

172 Appendix E. Extra exercises

Marching Up and Down the Code

Correct!

Well done - you got 3 out of 5!

E.22 hangman.py

Write a program to implement a simple hangman game. Give the user 11 tries, and you can
draw the hangman as you go along as follows (piece by piece):

|/ |
| O
| /|\
| / \

However, this part of drawing the hangman is optional as it makes the program more
complicated.

Hint: You will need three strings, one for the word to guess (which selects one from the word
list below randomly using the random.choice function), one containing the letters guessed so
far, and one for the letters not in the word being guesses. You can add onto a string by doing
the following:

string_name = string_name + character_entered

You may use the following as your word list, or create your own:
WORD_LIST = ['adult', 'aeroplane', 'air', 'aircraft', 'airforce',

'airport', 'album', 'alphabet', 'apple', 'arm', 'army',
'baby', 'backpack', 'balloon', 'banana', 'bank',
'barbecue', 'bathroom', 'bathtub', 'bed', 'bed', 'bee',
'bible', 'bible', 'bird', 'bomb', 'book', 'boss', 'bottle',
'bowl', 'box', 'boy', 'brain', 'bridge', 'butterfly',
'button', 'cappuccino', 'car', 'carpet', 'carrot', 'cave',
'chair', 'chess', 'chief', 'child', 'chisel', 'chocolates',
'church', 'church', 'circle', 'circus', 'circus', 'clock',
'clown', 'coffee', 'comet', 'compass', 'computer',
'crystal', 'cup', 'cycle', 'database', 'desk', 'diamond',
'dress', 'drill', 'drink', 'drum', 'dung', 'ears', 'earth',
'egg', 'electricity', 'elephant', 'eraser', 'explosive',
'eyes', 'family', 'fan', 'feather', 'festival', 'film',
'finger', 'fire', 'floodlight', 'flower', 'foot', 'fork',
'freeway', 'fruit', 'fungus', 'game', 'garden', 'gas',
'gate', 'gemstone', 'girl', 'gloves', 'god', 'grapes',
'guitar', 'hammer', 'hat', 'hieroglyph', 'highway', Cont...

E.22. hangman.py 173

Marching Up and Down the Code

'horoscope', 'horse', 'hose', 'ice', 'insect', 'jet',
'junk', 'kaleidoscope', 'kitchen', 'knife', 'leather',
'leg', 'library', 'liquid', 'magnet', 'man', 'map', 'maze',
'meat', 'meteor', 'microscope', 'milk', 'milkshake',
'mist', 'money', 'monster', 'mosquito', 'mouth', 'nail',
'navy', 'necklace', 'needle', 'onion', 'paintbrush',
'parts', 'parachute', 'passport', 'pebble', 'pendulum',
'pepper', 'perfume', 'pillow', 'plane', 'planet', 'pocket',
'potato', 'printer', 'prison', 'pyramid', 'radar',
'rainbow', 'record', 'restaurant', 'rifle', 'ring',
'robot', 'rock', 'rocket', 'roof', 'room', 'rope',
'saddle', 'salt', 'sandpaper', 'sandwich', 'satellite',
'school', 'ship', 'shoes', 'shop', 'shower', 'signature',
'skeleton', 'slave', 'snail', 'software', 'solid', 'space',
'spectrum', 'sphere', 'spice', 'spiral', 'spoon', 'sport',
'square', 'staircase', 'star', 'stomach', 'sun',
'sunglasses', 'surveyor', 'swimming', 'sword', 'table',
'tapestry', 'teeth', 'telescope', 'television', 'tennis',
'thermometer', 'tiger', 'toilet', 'tongue', 'torch',
'torpedo', 'train', 'treadmill', 'triangle', 'tunnel',
'typewriter', 'umbrella', 'vacuum', 'vampire', 'videotape',
'vulture', 'water', 'weapon', 'web', 'wheelchair',

'window', 'woman', 'worm']

E.23 checkerboard.py

Write a program to input a number, and then draw - using the turtle module - a
checkerboard with that number of squares across.

Hint: Use the turtle module, and to see what turtle offers you, type dir(turtle) in the
interactive interpreter to see the available functions. You can use the turtle.setup function
set arrange a square window for drawing.

For example:
Please input the number of squares across: 4

174 Appendix E. Extra exercises

Marching Up and Down the Code

Please input the number of squares across: 20

E.24 prime.py

Write a program to input a number, and then tell the user whether the number is prime or not.

Note: A prime number is a number only divisible by 1 and itself - assume 1 is not prime, and
2 is prime.

For example:
Please input your number: 50
The number 50 is not prime.

Cont...

E.24. prime.py 175

Marching Up and Down the Code

Please input your number: 29

The number 29 is prime.

E.25 factors.py

Write a program to input a number, and then print outs the factors of that number.

For example:
Please input your number: 20

The factors of 20 are: 1, 2, 4, 5, 10, 20

E.26 turtlehistogram.py

Write a program to allow the user to input a list of numbers, separated by spaces. Then, using
turtle, draw a vertical histogram, with alternating colors, representing those numbers.

For example:
Enter the numbers for the histogram: 1 1 2 5 10 20 35 25 12 4 2 1 1

E.27 kiosk.py

Write a program that lists a set of products and their prices and allows the user to pick a
number. The program should then print out the price of the item chosen.

For example:

176 Appendix E. Extra exercises

Marching Up and Down the Code

1 Coke 50p
2 Fanta 45p
3 Pepsi 55p
4 Sprite 40p
5 Dr Pepper 60p
Your choice: 3

That's 55 pence please!

Hint: You can store your items in a list of items, with the name in the first field and the price
in the second field of each item:

[["1 Coke", 50], ["2 Fanta", 40], ["3 Pepsi", 55],

["4 Sprite", 40], ["Dr Pepper", 60]]

E.28 order.py

Expand on the previous program to allow the user to enter a number of choices, the money
they are entering, and finally the change they should get.

For example:
1 Coke 50p
2 Fanta 45p
3 Pepsi 55p
4 Sprite 40p
5 Dr Pepper 60p
Your choice: 2 3
Your total is 100 pence
Please enter your money: 500

Your change is 400 pence

Again, use the numbers.split command to split the original string input into a list of entries.
The list you used in the previous practice can be used again for this program.

E.29 brackets.py

Write a program that reads in a sentence, and prints out whether the number of brackets
match or not. You will need to account for brackets out of order as well, for example ")(" ,
instead of "()" .

For example:
Please input your sentence to perform a bracket match: (5 + 10) / (8 / 2
That sentence does not have matching brackets!

Cont...

E.28. order.py 177

Marching Up and Down the Code

Please input your sentence: 5 + 2) / (5
That sentence does not have matching brackets!

Please input your sentence: (1 + 2) * (3 + 4)
That sentence does have matching brackets!

Please input your sentence: ((10 * 2) + ((8 / 4) - 1))

That sentence does have matching brackets!

E.30 calc.py

Write a program to give the user sums to perform until he types the word "quit". Randomly
chose two numbers between 1 and 10, and one operator of either addition, subtraction, division
or multiplication. Use random.randrange function to choose the number, and also to select
between your operator (1 for addition, 2 for subtraction, and so on).

For example:
What is 10 + 5? 15
Correct, it is 15!

What is 8 * 2? 15
Wrong, it is 16!

What is 8 - 4? 4
Correct, it is 4!

What is 10 / 2? quit

Goodbye!

E.31 compound.py

Write a program to ask the user the amount of money to invest, the interest rate per year and
the number of years, and then print out total per year and the total interest earned over the
investment period.

For example:
Please input the amount: 1000
And what is the loan period in years: 10
And finally, what is the interest rate per year in percent: 5

Total now: £1050.00 after 1 years
Total now: £1102.50 after 2 years Cont...

178 Appendix E. Extra exercises

Marching Up and Down the Code

Total now: £1157.62 after 3 years
Total now: £1215.51 after 4 years
Total now: £1276.28 after 5 years
Total now: £1340.10 after 6 years
Total now: £1407.10 after 7 years
Total now: £1477.46 after 8 years
Total now: £1551.33 after 9 years
Total now: £1628.89 after 10 years

Interest earned: £628.89 over 10 years

E.32 temprange.py

Write a program to ask for the start temperature, the end temperature, the type (whether
Celsius or Fahrenheit), and then print out the conversion from one to the other at every degree
from the start to the end.

Remember to convert from Celsius to Fahrenheit, you need to use this formula:
fahrenheit = (9 / 5.0) * celsius + 32

and to go from Fahrenheit to Celsius you use this formula:
celsius = (5.0 / 9) * (fahrenheit - 32)

For example:
What is the start temperature: 20
And what is the end temperature: 50
and finally, what is your reading in, celsius or fahrenheit? celsius

Celsius 20 in Fahrenheit is 68
Celsius 21 in Fahrenheit is 69
Celsius 22 in Fahrenheit is 71
Celsius 23 in Fahrenheit is 73
Celsius 24 in Fahrenheit is 75
Celsius 25 in Fahrenheit is 77
Celsius 26 in Fahrenheit is 78
Celsius 27 in Fahrenheit is 80
Celsius 28 in Fahrenheit is 82
Celsius 29 in Fahrenheit is 84
Celsius 30 in Fahrenheit is 86
Celsius 31 in Fahrenheit is 87
Celsius 32 in Fahrenheit is 89
Celsius 33 in Fahrenheit is 91
Celsius 34 in Fahrenheit is 93
Celsius 35 in Fahrenheit is 95
Celsius 36 in Fahrenheit is 96 Cont...

E.32. temprange.py 179

Marching Up and Down the Code

Celsius 37 in Fahrenheit is 98
Celsius 38 in Fahrenheit is 100
Celsius 39 in Fahrenheit is 102
Celsius 40 in Fahrenheit is 104
Celsius 41 in Fahrenheit is 105
Celsius 42 in Fahrenheit is 107
Celsius 43 in Fahrenheit is 109
Celsius 44 in Fahrenheit is 111
Celsius 45 in Fahrenheit is 113
Celsius 46 in Fahrenheit is 114
Celsius 47 in Fahrenheit is 116
Celsius 48 in Fahrenheit is 118
Celsius 49 in Fahrenheit is 120

Celsius 50 in Fahrenheit is 122

E.33 cipher.py

Write a program to read in a sentence, and then print it out with each letter shifted back by
three (a Caesar cipher). So, "a" will become "x", "b" will become "y", "c" will become "z",
"d" becomes "a", and so on until "z" becomes "w". You can ignore all letters apart from
lowercase ones ("a" to "z") and print them out unchanged (e.g. spaces).

Having printed out the encoded message, the program should then decode it so that each letter
is shifted forwards by three, and then print out the result. Obviously, the decoded message
should be the same as the one originally input by the user in the first place.

Hint: Use the ord function to get the numerical representation of a letter, and chr to
convert them back to their character representation. Use string.ascii_lowercase as a
shortcut for the lowercase alphabet, although you will have to import the string module first.

For example:
Please input your sentence to encode: mary had a little lamb
The encoded sentence is: jxov exa x ifqqib ixjy

The decoded sentence is: mary had a little lamb

E.34 turtlebattleship.py

Write a program that, until the user hits the ship, does:

Draws a checkerboard board using turtle. The unbombarded squares should be left white,
misses colored blue (or some other symbol) and hit squares colored red (or some other

180 Appendix E. Extra exercises

Marching Up and Down the Code

symbol). The user should then be asked for an x, y coordinate for his shot.

At the end, the board should be drawn one last time, then the program should wait for the user
to quit.

For example:

What is your move in the form 'x y'? 3 4

What is your move in the form 'x y'? 1 1

E.34. turtlebattleship.py 181

Marching Up and Down the Code

You sunk me, press enter to quit...

182 Appendix E. Extra exercises

APPENDIX

F

THE ZEN OF PYTHON

Nuff said!

— Stan Lee

F.0 Abstract

Long time Pythoneer Tim Peters succinctly channels the BDFL’s guiding principles for
Python’s design into 20 aphorisms, only 19 of which have been written down.

F.1 The Zen of Python

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one — and preferably only one — obvious way to do it.

Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.

183

Marching Up and Down the Code

Although never is often better than right now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea — let’s do more of those!

F.2 Easter Egg

Type into the Python interpreter:

import this

184 Appendix F. The Zen of Python

APPENDIX

G

DEVELOPMENT

G.0 TODO

G.1 Test Area Programming today is a race between software engineers
striving to build bigger and better idiot-proof programs,

and the Universe trying to produce bigger and better
idiots. So far, the Universe is winning.

— Rick Cook

Inline code: [str(i) + "#" for i in range(0, len(dir(__builtins__))) if i < 24.6]

Attention: attention

Caution: caution

Danger: danger

Error: error

Hint: hint

Important: important

Note: note

Tip: tip

185

Marching Up and Down the Code

Warning: warning

More code:
print('one')
print('two')

x = 3
to_b = True

if x == 1:
print('one')

cond1 = x and x or x and not x
cond2 = to_b or not to_b
if cond1 and cond2:

do something or just

pass

this will break

this_will_not_break = 1

this will also break!

Longness:
xxx = 11

Random stuff about argument or arguments or see /usr/lib/python2.{x}/site-packages ...

Inline test:

• ! "#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ

• [\]^_‘abcdefghijklmnopqrstuvwxyz{|}~

• x or |

1. one

2. two

3. three

4. four

5. five

186 Appendix G. Development

	Starting with Python's IDLE
	Introduction
	What we will be learning
	How to get going
	Things to remember

	Python as a Calculator
	First steps (or sums)
	Operator overload
	Exercises
	Things to remember

	Naming your data
	Saving and recalling
	More and more
	Exercises
	Things to remember

	Functions and Maths
	Basic functions
	More arguments
	How many arguments can one function have?
	Functions functioning
	Exercises
	Things to remember

	Drawing Turtles
	Importing
	Stick your head out of the shell
	Exercises
	Things to remember

	Getting help
	Save Our Sanity
	Things to remember

	First program
	Ed
	Our first program
	Running our program
	Comments
	Things to remember

	Print that out!
	Printing numbers
	Printing messages
	Keeping things in line
	Exercises
	Things to remember

	Asking questions
	String input
	Using numbers
	Exercises
	Things to remember

	Performing selection
	Taking a different route
	Exercises
	Things to remember

	Decisions, decisions
	Differing ways of comparing
	More than one possibility
	Many, many possibilities!
	A bit more practice
	Exercises
	Things to remember

	Combining decisions together
	Juggling tests
	Exercises
	Things to remember

	Going loopy
	Doing it the hard way
	Doing it the easy way
	Exercises
	Things to remember

	Escaping the cycle
	Breaking out
	Adding up
	Exercises
	Things to remember

	Going random
	A bit of variation
	That's random
	A guessing game
	Exercises
	Things to remember

	Grouping data together
	Scattered data
	Boxing up
	Playing with lists
	Rock, Paper, Scissors
	Exercises
	Things to remember

	Slicing sequences
	Dipping in
	Outside In
	Unidentified Food Object
	I'll pass
	Python likes pizza
	Slicing and dicing
	Reverse gear
	Cut the string
	Exercises
	Things to remember

	Walking along data
	Round and round
	Ranges
	Not just numbers
	Drawing
	Vertigo
	Loops inside loops
	Exercises
	Things to remember

	Naming code
	Data and code
	Functions
	Rolling our own
	Passing in data
	Keeping your data local
	Exercises
	Things to remember

	More on functions
	Please talk to me
	Forming a chain
	Naming parameters
	A little more practice
	Exercises
	Things to remember

	Reading files
	Opening the file
	Reading words of wisdom
	Line by line
	Put down the book
	Exercises
	Things to remember

	Writing files
	Prepare your ink
	Learning to write
	Writing lists
	Exercises
	Things to remember

	Catching errors
	It's broke
	try not to crash
	Let's be specific about the problem
	Exercises
	Things to remember

	Glossary
	Python summary
	Examples
	Operators
	Data types
	Different types of functions
	Program layout

	Program flow
	Sequence
	Selection
	Iteration

	Common mistakes
	Forgetting to open / close quotation marks
	Using quotation marks insides quotes
	Not using commas between items
	Spelling or capitalisation mistakes
	Using variables before defining them
	Using invalid variable names
	Setting variables
	Using modules before importing them
	Not converting to integers when performing arithmetic
	Forgetting the colon : at the end of compound statements
	Using the assignment operator instead of comparison operator
	Not forming expressions properly
	Unnecessarily testing expressions against 0, True, False, None or ""
	Getting the number of brackets wrong in an expression
	Indexing past the end of lists
	Forgetting the brackets when calling a function
	Using variable names reserved by Python
	Getting the indentation wrong
	Using an elif or else without an if
	Placing a condition after an else
	Getting stuck in a loop

	Extra exercises
	OuterLinkColorwelcome.py
	OuterLinkColoroddoreven.py
	OuterLinkColorcentury.py
	OuterLinkColorcirclearea.py
	OuterLinkColordrawline.py
	OuterLinkColorcountingdown.py
	OuterLinkColorspan.py
	OuterLinkColorsquares.py
	OuterLinkColorheadstails.py
	OuterLinkColorrandompathtracer.py
	OuterLinkColorascii.py
	OuterLinkColorvowel.py
	OuterLinkColorprayers.py
	OuterLinkColorpalindrome.py
	OuterLinkColorhistogram.py
	OuterLinkColorlength.py
	OuterLinkColorturtleboxes.py
	OuterLinkColorlongest.py
	OuterLinkColorreverse.py
	OuterLinkColortwist.py
	OuterLinkColorfactorial.py
	OuterLinkColorquiz.py
	OuterLinkColorhangman.py
	OuterLinkColorcheckerboard.py
	OuterLinkColorprime.py
	OuterLinkColorfactors.py
	OuterLinkColorturtlehistogram.py
	OuterLinkColorkiosk.py
	OuterLinkColororder.py
	OuterLinkColorbrackets.py
	OuterLinkColorcalc.py
	OuterLinkColorcompound.py
	OuterLinkColortemprange.py
	OuterLinkColorcipher.py
	OuterLinkColorturtlebattleship.py

	The Zen of Python
	Abstract
	The Zen of Python
	Easter Egg

	Development
	TODO
	Test Area

