
Posts About Archive Resume

PHOENIX 1.3 AND GRAPHQL WITH ABSINTHE
APR 18, 2017

Phoenix and GraphQL via Absinthe is an extremely liberating experience when developing APIs. Phoenix 1.3 has introduced a new

(optional) �le structure and new concepts that aren't present in Phoenix <= 1.2. Absinthe works great with these changes, but it

currently takes some guesswork to do that. I will go through the process to do that in this article.

Problems with Phoenix 1.3 and Absinthe

Phoenix 1.3 Changes

Phoenix 1.3 has added some new concepts and removed some concepts. If you already are aware of these changes, feel free to skip to

the next section. The overall changes have been overviewed by Chris McCord over the span of a few conference talks that you can see

below:

Lonestar ElixirConf 2017- KEYNOTE: Phoenix 1.3 by Chris McCord

Lonestar ElxirConf 2017 Keynote

ElixirConf 2016 - Keynote by Chris McCord

ElixirConf 2016 Keynote (Bad audio—sorry!)

https://seanclayton.me/
https://seanclayton.me/about
https://seanclayton.me/archive
https://seanclayton.me/resume
https://seanclayton.me/post/phoenix-1-3-and-graphql-with-absinthe/
https://www.phoenixframework.org/
https://graphql.org/
http://absinthe-graphql.org/
https://github.com/phoenixframework/phoenix/blob/24c0d68ec14bd6c186e92b8191ae9fb9c6ef5a11/CHANGELOG.md#130-rc1-2017-03-14
https://www.youtube.com/watch?v=tMO28ar0lW8
https://www.youtube.com/watch?v=qPiZTxUAaVM

ElixirConf 2016 Keynote (Bad audio—sorry!)

Absinthe

Absinthe is an Elixir GraphQL implementation speci�cally-made for Phoenix. Unfortunately, Phoenix 1.3 (as of this writing) is only in the

Release Candidate stage, and the documentation/tutorials you'll �nd for Absinthe will mostly only cover Phoenix 1.2 and don't cover the

1.3 changes. For the record: Absinthe works perfectly �ne with Phoenix 1.3, you just have to do some digging around and guessing to �t

it in with 1.3 contexts and directory structure. Most tutorials still reference models and such that no longer exist in new 1.3 projects, and

that's what we're going to cover today.

Our Project

The project we'll be making is solely a GraphQL API that fetches blog posts and user accounts. Users own blog posts and blog posts

are owned by users. It is a very simple API since it is only meant to cover the basics to get you started using Absinthe with Phoenix 1.3

projects. If you wish to go deeper, nearly all Absinthe tutorials you �nd can carry over using the information laid out from here.

This project will not go in-depth on GraphQL, Phoenix or Absinthe. I'm going to assume you know how to set up Absinthe in a Phoenix

1.2 application. It will show you how to make Absinthe work with 1.3 and how it differs with 1.2. There are plenty of smarter people than

I who can tell you all about these projects. �

Pre-Requisites

Phoenix 1.3 installed. Instructions for that can be found here:

https://gist.github.com/chrismccord/71ab10d433c98b714b75c886eff17357

PostgreSQL installed. Instructions here: https://wiki.postgresql.org/wiki/Detailedinstallationguides

Generating a New Phoenix 1.3 Project

Phoenix 1.3 comes with a brand new suite of mix tasks. All of the mix phoenix tasks are deprecated and most likely will be removed

in Phoenix 2.0 (that's pure speculation, though). These are scoped to mix phx. To create a new Phoenix 1.3 project, just run mix

phx.new [APP_NAME] like you used to run mix phoenix.new [APP_NAME]. For the purposes of this project, I'm running it with the

--no-html and --no-brunch �ags. Here's what I'm running:

mix phx.new blog_app --no-html --no-brunch

So follow the Phoenix instructions and grab your deps, compile, set up ecto, etc. If we look at blog_app/lib after all that is done, it

should look something like this:

lib
└── blog_app
 ├── application.ex
 ├── repo.ex
 └── web
 ├── channels
 │ └── user_socket.ex
 ├── controllers
 ├── endpoint.ex
 ├── gettext.ex
 ├── router.ex
 ├── views
 │ ├── error_helpers.ex
 │ └── error_view.ex
 └── web.ex

You'll notice the web folder is now inside lib instead of being a sibling of it!

Creating users and posts

So we're going to have two different contexts: An Accounts context and a Blog context. The Accounts context will take care of our

https://gist.github.com/chrismccord/71ab10d433c98b714b75c886eff17357
https://wiki.postgresql.org/wiki/Detailed_installation_guides

So we're going to have two different contexts: An Accounts context and a Blog context. The Accounts context will take care of our

users, while the Blog context will cover our posts.

Let's generate these with the new mix phx.gen generators!

For our User, we'll have a name that is of type string, as well as an email with the same type.

mix phx.gen.json Accounts User users name:string email:string

For our Post, we'll have a title of type string, a body of type text, as well as a reference to the accounts_users table that was

created in the previous step.

Make sure you follow the steps about adding resources/etc that Phoenix generates. They should read somewhat like this:

Add the resource to your api scope in lib/blog_app/web/router.ex:

 resources "/users", UserController, except: [:new, :edit]

Remember to update your repository by running migrations:

 $ mix ecto.migrate

Add the resource to your api scope in lib/blog_app/web/router.ex:

 resources "/posts", PostController, except: [:new, :edit]

Remember to update your repository by running migrations:

 $ mix ecto.migrate

Our directory structure should now look something like this:

lib
└── blog_app
 ├── application.ex
 ├── repo.ex
 ├───accounts
 │ ├── accounts.ex # Context
 │ └── user.ex # Schema
 ├── blog
 │ ├── blog.ex # Context
 │ └── post.ex # Schema
 └── web
 ├───channels
 │ └── user_socket.ex
 ├───controllers
 │ ├── fallback_controller.ex
 │ ├── post_controller.ex
 │ └── user_controller.ex
 ├── endpoint.ex
 ├── gettext.ex
 ├── router.ex
 ├───views

mix phx.gen.json Blog Post posts title:string body:text accounts_users_id:references:accounts_users

 ├───views
 │ ├── changeset_view.ex
 │ ├── error_helpers.ex
 │ ├── error_view.ex

 │ ├── post_view.ex
 │ └── user_view.ex
 └───web.ex

Modi�cations

Just like in 1.2, you have to modi�y your schemas in 1.3.

Here's the diff of my user.ex in accounts:

schema "accounts_users" do
 field :email, :string
 field :name, :string
+ has_many :blog_posts, BlogApp.Blog.Post, foreign_key: :accounts_users_id

 timestamps()
end

And with post.ex in blog:

schema "blog_posts" do
 field :body, :string
 field :title, :string
+ belongs_to :accounts_users, BlogApp.Accounts.User, foreign_key: :accounts_users_id

 timestamps()
end

Adding Absinthe

Now to add Absinthe to our project. First, let's add some deps to our mix.exs �le.

defp deps do
- [{:phoenix, "~> 1.3.0-rc"},
- {:phoenix_pubsub, "~> 1.0"},
- {:phoenix_ecto, "~> 3.2"},
- {:postgrex, ">= 0.0.0"},
- {:gettext, "~> 0.11"},
- {:cowboy, "~> 1.0"}]
+ [
+ {:phoenix, "~> 1.3.0-rc"},
+ {:phoenix_pubsub, "~> 1.0"},
+ {:phoenix_ecto, "~> 3.2"},
+ {:postgrex, ">= 0.0.0"},
+ {:gettext, "~> 0.11"},
+ {:cowboy, "~> 1.0"},
+ {:absinthe, "~> 1.3.0-rc.0"},
+ {:absinthe_plug, "~> 1.3.0-rc.0"},
+ {:absinthe_ecto, git: "https://github.com/absinthe-graphql/absinthe_ecto.git"},
+ {:faker, "~> 0.7"},
+]
end

For the most part, all of that is self-explanatory. You should be able to use version 1.2 of absinthe and absinthe_plug, but I'm sticking

with the new just because. I added faker in there for seeding the db with some data. More on that later.

Adding GraphQL Endpoints

Adding GraphQL Endpoints

I added my GraphQL endpoints like this in lib/[APP]/web/router.ex just like a Phoenix 1.2 application.

 ...
 resources "/posts", PostController, except: [:new, :edit]
 end
+
+ forward "/graph", Absinthe.Plug,
+ schema: BlogApp.Schema
+
+ forward "/graphiql", Absinthe.Plug.GraphiQL,
+ schema: BlogApp.Schema
end

De�ning Schema Types

Your types should go in the schema folder in web. just like it did before in 1.2. Remember that the web folder is now in lib. This isn't

required, obviously, because it's Elixir and the module-resolution system is robust, but this is to follow convention for Absinthe

applications.

Mine will look like this:

defmodule BlogApp.Schema.Types do
 use Absinthe.Schema.Notation
 use Absinthe.Ecto, repo: BlogApp.Repo

 object :accounts_user do
 field :id, :id
 field :name, :string
 field :email, :string
 #
 # Take note on the names here:
 # list_of(:blog_post) -> :blog_post maps to the Absinthe object down below
 # while assoc(:blog_posts) maps to the table!
 # The table names are named that because of Phoenix contexts that we made earlier!
 #
 field :posts, list_of(:blog_post), resolve: assoc(:blog_posts)
 end

 object :blog_post do
 field :id, :id
 field :title, :string
 field :body, :string
 #
 # You can see the same pattern here:
 # field :user, :accounts_user -> :accounts_user = the object above
 # assoc(:accounts_users) -> :accounts_users = the accounts_users table
 #
 field :user, :accounts_user, resolve: assoc(:accounts_users)
 end
end

De�ning Schemas

Again, as convention goes, the schema should go in lib/[APP]/web/schema.ex. Here's mine:

defmodule BlogApp.Schema do
 use Absinthe.Schema
 import_types BlogApp.Schema.Types

 query do
 field :blog_posts, list_of(:blog_post) do
 resolve &BlogApp.Blog.PostResolver.all/2
 end

 field :accounts_users, list_of(:accounts_user) do
 resolve &BlogApp.Accounts.UserResolver.all/2
 end

 end
end

Creating Resolvers

Resolvers are a little different than in 1.2, only because of the new folder structure in 1.3. I think it's best to keep the resolvers as

siblings to your schemas in lib/[APP]/[CONTEXT]/. For example, my PostResolver will go in

lib/blog_app/blog/post_resolver.ex, a sibling to post.ex.

Here's my resolver:

defmodule BlogApp.Blog.PostResolver do
 alias BlogApp.{Blog.Post, Repo}

 def all(_args, _info) do
 {:ok, Repo.all(Post)}
 end
end

Nothing special, looks just like a regular ol' resolver in 1.2.

My UserResolver is the same: a sibling to user.ex in my accounts context. It lives at

lib/blog_app/accounts/user_resolver.ex for me.

Here's that resolver:

defmodule BlogApp.Accounts.UserResolver do
 alias BlogApp.{Accounts.User, Repo}

 def all(_args, _info) do
 {:ok, Repo.all(User)}
 end
end

Seeding Data

I seeded my db with this seed �le. It generates 10 users, then generates 40 posts and assigns them to a random user:

alias BlogApp.Repo
alias BlogApp.Accounts.User
alias BlogApp.Blog.Post

Create 10 seed users

for _ <- 1..10 do
 Repo.insert!(%User{
 name: Faker.Name.name,
 email: Faker.Internet.safe_email
 })
end

Create 40 seed posts

for _ <- 1..40 do
 Repo.insert!(%Post{
 title: Faker.Lorem.sentence,
 body: Faker.Lorem.sentences(%Range{first: 1, last: 3}) |> Enum.join("\n\n"),
 accounts_users_id: Enum.random(1..10) # Pick random user for post to belong to
 })

 })
end

Wrap-Up

If everything went well we should be able to run mix phx.server, hit localhost:4000/graphiql and start running some sweet

sweet GraphQL queries!

Remember that Phoenix 1.3 namespaces a lot of things with the new "context" concept. Tables, modules, etc all take in after it and we

have to keep that in mind when reading educational material referencing 1.2. Phoenix 1.3 also removes all mentions of the word

"model" so we have to map that to 1.3 schemas.

If you'd like to take at the complete repo, take a look-see here: https://github.com/sean-clayton/blog_app

Posts About Archive Resume Colophon

sean-clayton @seanybingbong seanclayton /u/droctagonapus

https://github.com/sean-clayton/blog_app
https://seanclayton.me/
https://seanclayton.me/about
https://seanclayton.me/archive
https://seanclayton.me/resume
https://seanclayton.me/colophon
https://github.com/sean-clayton
https://twitter.com/seanybingbong
https://gitlab.com/seanclayton
https://reddit.com/u/droctagonapus

