

Table	of	Contents

Foreword

Introduction

1.	Ecto	is	not	your	ORM

2.	Schemaless	queries

3.	Schemaless	changesets

4.	Dynamic	queries

5.	Multi	tenancy	with	query	prefixes

6.	Aggregates	and	subqueries

7.	Improved	associations	and	factories

8.	Many	to	many	and	casting

9.	Many	to	many	and	upserts

10.	Composable	transactions	with	Ecto.Multi

11.	Concurrent	tests	with	the	SQL	Sandbox

2

Foreword

In	January	2017,	we	will	celebrate	5	years	since	we	decided	to	invest	in	Elixir.	Back	in	2012,
José	Valim,	our	co-founder	and	partner,	presented	us	the	idea	of	a	programming	language
that	would	be	expressive,	embrace	productivity	in	its	tooling,	and	leverage	the	Erlang	VM	to
not	only	tackle	the	problems	in	writing	concurrent	software	but	also	to	build	fault-tolerant	and
distributed	systems.

Elixir	continued,	in	some	sense,	to	be	a	risky	project	for	months.	We	were	certainly	excited
about	spreading	functional,	concurrent	and	distributed	programming	concepts	to	more	and
more	developers,	hoping	it	would	lead	to	a	positive	impact	on	the	software	development
industry,	but	developing	a	language	is	a	long-term	effort	that	may	never	become	concrete.

During	the	summer	of	2013,	other	companies	and	developers	started	to	show	interest	on
Elixir.	We	heard	about	companies	using	it	in	production,	more	developers	began	to
contribute	and	create	their	own	projects,	different	publishers	were	writing	books	on	the
language,	and	so	on.	Such	events	gave	us	the	confidence	to	invest	more	in	Elixir	and	bring
the	language	to	version	1.0.

Once	Elixir	1.0	was	launched	in	September	2014,	we	turned	our	focus	to	the	web	platform.
We	tidied	up	Plug,	the	building	block	for	writing	web	applications	in	Elixir.	We	also	focused
intensively	on	Ecto,	bringing	it	to	version	1.0	together	with	the	Ecto	team,	and	then	worked
alongside	Chris	McCord	and	team	to	get	the	first	major	Phoenix	release	out.	During	this	time
we	also	started	other	community	centric	initiatives,	such	as	Elixir	Radar,	and	began	our	first
commercial	Elixir	projects.

Today,	both	the	community	and	our	open	source	projects	are	showing	steady	and	healthy
growth.	Elixir	is	a	stable	language	with	continuous	improvements	landed	in	minor	versions.
Plug	continues	to	be	a	solid	foundation	for	frameworks	such	as	Phoenix.	Ecto,	however,
required	more	than	a	small	nudge	in	the	right	direction.	We	realized	that	we	needed	to	let	go
of	old,	harmful	habits	and	make	Ecto	less	of	an	abstraction	layer	and	more	of	a	tool	you
control	and	apply	to	different	problems.

Foreword

3

http://plataformatec.com.br/elixir-radar/?utm_source=ebook-ecto-2-beta-1&utm_medium=referral&utm_campaign=ebook-ecto-2&utm_content=foreword

This	book	is	the	final	effort	behind	Ecto	2.0.	It	showcases	the	new	direction	we	have	planned
for	Ecto,	the	structural	improvements	made	by	the	Ecto	team	and	many	of	its	new	features.
We	hope	you	will	enjoy	it.	After	all,	it	is	time	to	let	go	of	past	habits.

Have	fun,

-	The	Plataformatec	team

Foreword

4

Foreword

5

CONTACT	US

http://plataformatec.com.br/contact?utm_source=ebook-ecto-2&utm_medium=referral&utm_campaign=ebook-ecto-2&utm_content=foreword

Introduction

Ecto	2.0	is	a	substantial	departure	from	earlier	versions.	Instead	of	thinking	about	models,
Ecto	2.0	aims	to	provide	developers	a	wide	range	of	data-centric	tools.	Therefore,	in	order	to
use	Ecto	2.0	effectively,	we	must	learn	how	to	wield	those	tools	properly.	That's	the	goal	of
this	book.

This	book,	however,	is	not	an	introduction	to	Ecto.	If	you	have	never	used	Ecto	before,	we
recommend	you	to	get	started	with	Ecto's	documentation	and	learn	more	about	repositories,
queries,	schemas	and	changesets.	We	assume	the	reader	is	familiar	with	these	building
blocks	and	how	they	relate	to	each	other.

The	first	chapters	of	the	book	will	cover	the	biggest	conceptual	changes	in	Ecto	2.0.	We	will
talk	about	relational	mappers	in	"Ecto	is	not	your	ORM"	and	then	explore	Schemaless
Queries	and	the	relationship	between	Schemas	and	Changesets.

After	we	will	take	a	deeper	look	into	queries,	discussing	how	to	target	different	databases	via
query	prefixes,	as	well	as	the	new	aggregate	and	subquery	features.	Then	we	will	go	back	to
schemas	and	discuss	the	schema-related	enhancements	that	are	now	part	of	Ecto,	such	as
	many_to_many		associations.

Finally,	we	will	explore	brand	new	topics,	like	the	new	Ecto	SQL	Sandbox,	that	allows
developers	to	run	tests	against	the	database	concurrently,	as	well	as		Ecto.Multi	,	which
makes	working	with	transactions	simpler	than	ever.

This	book	was	also	updated	to	describe	features	that	were	introduced	in	Ecto	2.1	throughout
the	chapters,	such	as	the	dynamic	macro,	upsert	support	and	improved	subqueries.

Introduction

6

http://hexdocs.pm/ecto/

Acknowledgments
We	want	to	thank	the	Ecto	team	for	their	fantastic	work	behind	Ecto:	Eric	Meadows-Jönsson,
James	Fish,	José	Valim	and	Michał	Muskała.	We	also	thank	everyone	who	has	contributed
to	Ecto,	be	it	with	code,	documentation,	by	writing	articles,	giving	presentations,	organizing
workshops,	etc.

Finally	we	appreciate	everyone	who	has	reviewed	our	beta	editions	and	sent	us	feedback:
Adam	Rutkowski,	Alkis	Tsamis,	Christian	von	Roques,	Curtis	Ekstrom,	Eric	Meadows-
Jönsson,	Jeremy	Miranda,	John	Joseph	Sweeney,	Kevin	Baird,	Kevin	Rankin,	Michael
Madrid,	Michał	Muskała,	Po	Chen,	Raphael	Vidal,	Steve	Pallen,	Tobias	Pfeiffer,	Victoria
Wagman	and	Wojtek	Mach.

Introduction

7

Ecto	is	not	your	ORM

Depending	on	your	perspective,	this	is	a	rather	bold	or	obvious	statement	to	start	this	book.
After	all,	Elixir	is	not	an	object-oriented	language,	so	Ecto	can't	be	an	Object-relational
Mapper.	However,	this	statement	is	slightly	more	nuanced	than	it	looks	and	there	are
important	lessons	to	be	learned	here.

O	is	for	Objects
At	its	core,	objects	couple	state	and	behaviour	together.	In	the	same		user		object,	you	can
have	data,	like	the		user.name	,	as	well	as	behaviour,	like	confirming	a	particular	user
account	via		user.confirm()	.	While	some	languages	enforce	different	syntaxes	between
accessing	data	(user.name		without	parentheses)	and	behaviour	(user.confirm()		with
parentheses),	other	languages	follow	the	Uniform	Access	Principle	in	which	an	object	should
not	make	a	distinction	between	the	two	syntaxes.	Eiffel	and	Ruby	are	languages	that	follow
such	principle.

Elixir	fails	the	"coupling	of	state	and	behaviour"	test.	In	Elixir,	we	work	with	different	data
structures	such	as	tuples,	lists,	maps	and	others.	Behaviour	cannot	be	attached	to	data
structures.	Behaviour	is	always	added	to	modules	via	functions.

When	there	is	a	need	to	work	with	structured	data,	Elixir	provides	structs.	Structs	define	a
set	of	fields.	A	struct	will	be	referenced	by	the	name	of	the	module	where	it	is	defined:

defmodule	User	do

		defstruct	[:name,	:email]

end

user	=	%User{name:	"John	Doe",	email:	"john@example.com"}

1.	Ecto	is	not	your	ORM

8

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Uniform_access_principle

Once	a	user	struct	is	created,	we	can	access	its	email	via		user.email	.	However,	structs	are
only	data.	It	is	impossible	to	invoke		user.confirm()		on	a	particular	struct	in	a	way	it	will
execute	code	related	to	e-mail	confirmation.

Although	we	cannot	attach	behaviour	to	structs,	it	is	possible	to	add	functions	to	the	same
module	that	defines	the	struct:

defmodule	User	do

		defstruct	[:name,	:email]

		def	confirm(user)	do

				#	Confirm	the	user	email

		end

end

Even	with	the	definition	above,	it	is	impossible	in	Elixir	to	confirm	a	given	user	by	calling
	user.confirm()	.	Instead,	the		User		prefix	is	required	and	the		user		struct	must	be	explicitly
given	as	argument,	as	in		User.confirm(user)	.	At	the	end	of	the	day,	there	is	no	structural
coupling	between	the		user		struct	and	the	functions	in	the		User		module.	Hence	Elixir	does
not	have	methods,	it	has	functions.

Without	having	objects,	Ecto	certainly	can't	be	an	ORM.	However,	if	we	let	go	of	the	letter
"O"	for	a	second,	can	Ecto	still	be	a	relational	mapper?

Relational	mappers
An	Object-Relational	Mapper	is	a	technique	for	converting	data	between	incompatible	type
systems,	commonly	databases,	to	objects,	and	back.

Similarly,	Ecto	provides	schemas	that	maps	any	data	source	into	an	Elixir	struct.	When
applied	to	your	database,	Ecto	schemas	are	relational	mappers.	Therefore,	while	Ecto	is	not
a	relational	mapper,	it	contains	a	relational	mapper	as	part	of	the	many	different	tools	it
offers.

For	example,	the	schema	below	ties	the	fields		name	,		email	,		inserted_at		and
	updated_at		to	fields	similarly	named	in	the		users		table:

1.	Ecto	is	not	your	ORM

9

http://hexdocs.pm/ecto/Ecto.Schema.html

defmodule	MyApp.User	do

		use	Ecto.Schema

		schema	"users"	do

				field	:name

				field	:email

				timestamps()

		end

end

The	appeal	behind	schemas	is	that	you	define	the	shape	of	the	data	once	and	you	can	use
this	shape	to	retrieve	data	from	the	database	as	well	as	coordinate	changes	happening	on
the	data:

MyApp.User

|>	MyApp.Repo.get!(13)

|>	Ecto.Changeset.cast([name:	"new	name"],	[:name,	:email])

|>	MyApp.Repo.update!

By	relying	on	the	schema	information,	Ecto	knows	how	to	read	and	write	data	without	extra
input	from	the	developer.	In	small	applications,	this	coupling	between	the	data	and	its
representation	is	desired.	However,	when	used	wrongly,	it	leads	to	complex	codebases	and
sub	par	solutions.

It	is	important	to	understand	the	relationship	between	Ecto	and	relational	mappers	because
saying	"Ecto	is	not	your	ORM"	does	not	automatically	save	Ecto	schemas	from	some	of	the
downsides	many	developers	associate	ORMs	with.

Here	are	some	examples	of	issues	often	associated	with	ORMs	that	Ecto	developers	may
run	into	when	using	schemas:

Projects	using	Ecto	may	end-up	with	"God	Schemas",	commonly	referred	as	"God
Models",	"Fat	Models"	or	"Canonical	Models"	in	some	languages	and	frameworks.	Such
schemas	could	contain	hundreds	of	fields,	often	reflecting	bad	decisions	done	at	the
data	layer.	Instead	of	providing	one	single	schema	with	fields	that	span	multiple
concerns,	it	is	better	to	break	the	schema	across	multiple	contexts.	For	example,
instead	of	a	single		MyApp.User		schema	with	dozens	of	fields,	consider	breaking	it	into
	MyApp.Accounts.User	,		MyApp.Purchases.User		and	so	on.	Each	struct	with	fields
exclusive	to	its	enclosing	context

Developers	may	excessively	rely	on	schemas	when	sometimes	the	best	way	to	retrieve
data	from	the	database	is	into	regular	data	structures	(like	maps	and	tuples)	and	not
pre-defined	shapes	of	data	like	structs.	For	example,	when	doing	searches,	generating

1.	Ecto	is	not	your	ORM

10

reports	and	others,	there	is	no	reason	to	rely	or	return	schemas	from	such	queries,	as	it
often	relies	on	data	coming	from	multiple	tables	with	different	requirements

Developers	may	try	to	use	the	same	schema	for	operations	that	may	be	quite	different
structurally.	Many	applications	would	bolt	features	such	as	registration,	account	login,
into	a	single	User	schema,	while	handling	each	operation	individually,	possibly	using
different	schemas,	would	lead	to	simpler	and	clearer	solutions

In	the	next	two	chapters,	we	want	to	break	those	"bad	practices"	apart	by	exploring	how	to
use	Ecto	with	no	or	multiple	schemas	per	context.	By	learning	how	to	insert,	delete,
manipulate	and	validate	data	with	and	without	schemas,	we	hope	developers	will	feel
comfortable	with	building	complex	applications	without	relying	on	one-size-fits-all	schemas.

1.	Ecto	is	not	your	ORM

11

Schemaless	queries

Most	queries	in	Ecto	are	written	using	schemas.	For	example,	to	retrieve	all	posts	in	a
database,	one	may	write:

MyApp.Repo.all(Post)

In	the	construct	above,	Ecto	knows	all	fields	and	their	types	in	the	schema,	rewriting	the
query	above	to:

MyApp.Repo.all(from	p	in	Post,	select:	%Post{title:	p.title,	body:	p.body,	...})

Interestingly,	back	in	Ecto's	early	days,	there	was	no	such	thing	as	schemas.	Queries	could
only	be	written	directly	against	a	database	table	by	passing	the	table	name	as	a	string:

MyApp.Repo.all(from	p	in	"posts",	select:	{p.title,	p.body})

When	writing	schemaless	queries,	the	select	expression	must	be	explicitly	written	with	all	the
desired	fields.

While	the	above	syntax	made	it	into	Ecto	1.0,	by	the	time	Ecto	1.0	was	launched,	most	of
the	development	focus	in	Ecto	had	changed	towards	schemas.	This	means	while	developers
were	able	to	read	data	without	schemas,	they	were	often	too	verbose.	Not	only	that,	if	you
wanted	to	insert	entries	to	your	database	without	schemas,	you	were	out	of	luck.

Ecto	2.0	levels	up	the	game	by	adding	many	improvements	to	schemaless	queries,	not	only
by	improving	the	syntax	for	reading	and	updating	data,	but	also	by	allowing	all	database
operations	to	be	expressed	without	a	schema.

2.	Schemaless	queries

12

insert_all
One	of	the	functions	added	to	Ecto	2.0	is		Ecto.Repo.insert_all/3	.	With		insert_all	,
developers	can	insert	multiple	entries	at	once	into	a	repository:

MyApp.Repo.insert_all(Post,	[[title:	"hello",	body:	"world"],

																													[title:	"another",	body:	"post"]])

Although		insert_all		is	just	a	regular	Elixir	function,	it	plays	an	important	role	in	Ecto	2.0	as
it	allows	developers	to	read,	create,	update	and	delete	entries	without	a	schema.
	insert_all		was	the	last	piece	of	the	puzzle.	Let's	see	some	examples.

If	you	are	writing	a	reporting	view,	it	may	be	counter-productive	to	think	how	your	existing
application	schemas	relate	to	the	report	being	generated.	It	is	often	simpler	to	write	a	query
that	returns	only	the	data	you	need,	without	trying	to	fit	the	data	into	existing	schemas:

import	Ecto.Query

def	running_activities(start_at,	end_at)

		MyApp.Repo.all(

				from	u	in	"users",

						join:	a	in	"activities",

						on:	a.user_id	==	u.id,

						where:	a.start_at	>	type(^start_at,	:naive_datetime)	and

													a.end_at	<	type(^end_at,	:naive_datetime),

						group_by:	a.user_id,

						select:	%{user_id:	a.user_id,	interval:	a.end_at	-	a.start_at,	count:	count(u.id

)}

)

end

The	function	above	does	not	rely	on	schemas.	It	returns	only	the	data	that	matters	for
building	the	report.	Notice	how	we	use	the		type/2		function	to	specify	what	is	the	expected
type	of	the	argument	we	are	interpolating,	benefiting	from	the	same	type	casting	guarantees
a	schema	would	give.

Inserts,	updates	and	deletes	can	also	be	done	without	schemas	via		insert_all	,
	update_all		and		delete_all		respectively:

2.	Schemaless	queries

13

https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert_all/3

#	Insert	data	into	posts	and	return	its	ID

[%{id:	id}]	=

		MyApp.Repo.insert_all	"posts",	[[title:	"hello"]],	returning:	[:id]

#	Use	the	ID	to	trigger	updates

post	=	from	p	in	"posts",	where:	[id:	^id]

{1,	_}	=	MyApp.Repo.update_all	post,	set:	[title:	"new	title"]

#	As	well	as	for	deletes

{1,	_}	=	MyApp.Repo.delete_all	post

It	is	not	hard	to	see	how	these	operations	directly	map	to	their	SQL	variants,	keeping	the
database	at	your	fingertips	without	the	need	to	intermediate	all	operations	through	schemas.

Simpler	queries
Besides	supporting	schemaless	inserts,	updates	and	deletes	queries,	with	varying	degrees
of	complexity,	Ecto	2.0	also	makes	regular	schemaless	queries	more	expressive.

One	example	is	the	ability	to	select	all	desired	fields	without	duplication.	In	early	versions,
you	would	have	to	write	verbose	select	expressions	such	as:

from	p	in	"posts",	select:	%{title:	p.title,	body:	p.body}

With	Ecto	2.0	you	can	simply	pass	the	desired	list	of	fields	directly:

from	"posts",	select:	[:title,	:body]

The	two	queries	above	are	equivalent.	When	a	list	of	fields	is	given,	Ecto	will	automatically
convert	the	list	of	fields	to	a	map	or	a	struct.

Support	for	passing	a	list	of	fields	or	keyword	lists	has	been	added	to	almost	all	query
constructs	in	Ecto	2.0.	For	example,	we	can	use	an	update	query	to	change	the	title	of	a
given	post	without	a	schema:

def	update_title(post,	new_title)	do

		query	=	from	"posts",	where:	[id:	^post.id],	update:	[set:	[title:	^new_title]]

		MyApp.Repo.update_all(query)

end

The		update		construct	supports	four	commands:

	:set		-	sets	the	given	column	to	the	given	values

2.	Schemaless	queries

14

https://hexdocs.pm/ecto/Ecto.Query.html#update/3

	:inc		-	increments	the	given	column	by	the	given	value
	:push		-	pushes	(appends)	the	given	value	to	the	end	of	an	array	column
	:pull		-	pulls	(removes)	the	given	value	from	an	array	column

For	example,	we	can	increment	a	column	atomically	by	using	the		:inc		command,	with	or
without	schemas:

def	increment_page_views(post)	do

		query	=	from	"posts",	where:	[id:	^post.id],	update:	[inc:	[page_views:	1]]

		MyApp.Repo.update_all(query)

end

By	allowing	regular	data	structures	to	be	given	to	most	query	operations,	Ecto	2.0	makes
queries	with	and	without	schemas	more	accessible.	Not	only	that,	it	also	enables	developers
to	write	dynamic	queries,	where	fields,	filters,	ordering	cannot	be	specified	upfront.	We	will
explore	such	with	more	details	in	upcoming	chapters.	For	now,	let's	continue	exploring
schemas	in	the	context	of	changesets.

2.	Schemaless	queries

15

Schemas	and	changesets

In	the	last	chapter	we	learned	how	to	perform	all	database	operations,	from	insertion	to
deletion,	without	using	a	schema.	While	we	have	been	exploring	the	ability	to	write
constructs	without	schemas,	we	haven't	discussed	what	schemas	actually	are.	In	this
chapter,	we	will	rectify	that.

In	this	chapter	we	will	take	a	look	at	the	role	schemas	play	when	validating	and	casting	data
through	changesets.	As	we	will	see,	sometimes	the	best	solution	is	not	to	completely	avoid
schemas,	but	break	a	large	schema	into	smaller	ones.	Maybe	one	for	reading	data,	another
for	writing.	Maybe	one	for	your	database,	another	for	your	forms.

Schemas	are	mappers
The	Ecto	documentation	says:

An	Ecto	schema	is	used	to	map	any	data	source	into	an	Elixir	struct.

We	put	emphasis	on	any	because	it	is	a	common	misconception	to	think	Ecto	schemas	map
only	to	your	database	tables.

For	instance,	when	you	write	a	web	application	using	Phoenix	and	you	use	Ecto	to	receive
external	changes	and	apply	such	changes	to	your	database,	we	have	this	mapping:

Database	<->	Ecto	schema	<->	Forms	/	API

Although	there	is	a	single	Ecto	schema	mapping	to	both	your	database	and	your	API,	in
many	situations	it	is	better	to	break	this	mapping	in	two.	Let's	see	some	practical	examples.

3.	Schemaless	changesets

16

https://hexdocs.pm/ecto/Ecto.Schema.html

Imagine	you	are	working	with	a	client	that	wants	the	"Sign	Up"	form	to	contain	the	fields
"First	name",	"Last	name"	along	side	"E-mail"	and	other	information.	You	know	there	are	a
couple	problems	with	this	approach.

First	of	all,	not	everyone	has	a	first	and	last	name.	Although	your	client	is	decided	on
presenting	both	fields,	they	are	a	UI	concern,	and	you	don't	want	the	UI	to	dictate	the	shape
of	your	data.	Furthermore,	you	know	it	would	be	useful	to	break	the	"Sign	Up"	information
across	two	tables,	the	"accounts"	and	"profiles"	tables.

Given	the	requirements	above,	how	would	we	implement	the	Sign	Up	feature	in	the
backend?

One	approach	would	be	to	have	two	schemas,	Account	and	Profile,	with	virtual	fields	such
as		first_name		and		last_name	,	and	use	associations	along	side	nested	forms	to	tie	the
schemas	to	your	UI.	One	of	such	schemas	would	be:

defmodule	Profile	do

		use	Ecto.Schema

		schema	"profiles"	do

				field	:name

				field	:first_name,	:string,	virtual:	true

				field	:last_name,	:string,	virtual:	true

				...

		end

end

It	is	not	hard	to	see	how	we	are	polluting	our	Profile	schema	with	UI	requirements	by	adding
fields	such		first_name		and		last_name	.	If	the	Profile	schema	is	used	for	both	reading	and
writing	data,	it	may	end-up	in	an	awkward	place	where	it	is	not	useful	for	any,	as	it	contains
fields	that	map	just	to	one	or	the	other	operation.

One	alternative	solution	is	to	break	the	"Database	<->	Ecto	schema	<->	Forms	/	API"
mapping	in	two	parts.	The	first	will	cast	and	validate	the	external	data	with	its	own	structure
which	you	then	transform	and	write	to	the	database.	For	such,	let's	define	a	schema	named
	Registration		that	will	take	care	of	casting	and	validating	the	form	data	exclusively,	mapping
directly	to	the	UI	fields:

3.	Schemaless	changesets

17

http://blog.plataformatec.com.br/2015/08/working-with-ecto-associations-and-embeds/

defmodule	Registration	do

		use	Ecto.Schema

		embedded_schema	do

				field	:first_name

				field	:last_name

				field	:email

		end

end

We	used		embedded_schema		because	it	is	not	our	intent	to	persist	it	anywhere.	With	the
schema	in	hand,	we	can	use	Ecto	changesets	and	validations	to	process	the	data:

fields	=	[:first_name,	:last_name,	:email]

changeset	=

		%Registration{}

		|>	Ecto.Changeset.cast(params["sign_up"],	fields)

		|>	validate_required(...)

		|>	validate_length(...)

Now	that	the	registration	changes	are	mapped	and	validated,	we	can	check	if	the	resulting
changeset	is	valid	and	act	accordingly:

if	changeset.valid?	do

		#	Get	the	modified	registration	struct	out	of	the	changeset

		registration	=	Ecto.Changeset.apply_changes(changeset)

		MyApp.Repo.transaction	fn	->

				MyApp.Repo.insert_all	"accounts",	[Registration.to_account(registration)]

				MyApp.Repo.insert_all	"profiles",	[Registration.to_profile(registration)]

		end

		{:ok,	registration}

else

		#	Annotate	the	action	we	tried	to	perform	so	the	UI	shows	errors

		changeset	=	%{changeset	|	action:	:registration}

		{:error,	changeset}

end

The		to_account/1		and		to_profile/1		functions	in		Registration		would	receive	the
registration	struct	and	split	the	attributes	apart	accordingly:

3.	Schemaless	changesets

18

def	to_account(registration)	do

		Map.take(registration,	[:email])

end

def	to_profile(%{first_name:	first,	last_name:	last})	do

		%{name:	"#{first}	#{last}"}

end

In	the	example	above,	by	breaking	apart	the	mapping	between	the	database	and	Elixir	and
between	Elixir	and	the	UI,	our	code	becomes	clearer	and	our	data	structures	simpler.

Note	we	have	used		MyApp.Repo.insert_all/2		to	add	data	to	both	"accounts"	and	"profiles"
tables	directly.	We	have	chosen	to	bypass	schemas	altogether.	However,	there	is	nothing
stopping	you	from	also	defining	both		Account		and		Profile		schemas	and	changing
	to_account/1		and		to_profile/1		to	respectively	return		%Account{}		and		%Profile{}	
structs.	Once	structs	are	returned,	they	could	be	inserted	through	the	usual
	MyApp.Repo.insert/2		operation.	Doing	so	can	be	especially	useful	if	there	are	uniqueness	or
other	constraints	that	you	want	to	check	during	insertion.

Schemaless	changesets
Although	we	chose	to	define	a		Registration		schema	to	use	in	the	changeset,	Ecto	2.0	also
allows	developers	to	use	changesets	without	schemas.	We	can	dynamically	define	the	data
and	their	types.	Let's	rewrite	the	registration	changeset	above	to	bypass	schemas:

data		=	%{}

types	=	%{first_name:	:string,	last_name:	:string,	email:	:string}

changeset	=

		{data,	types}	#	The	data+types	tuple	is	equivalent	to	%Registration{}

		|>	Ecto.Changeset.cast(params["sign_up"],	Map.keys(types))

		|>	validate_required(...)

		|>	validate_length(...)

You	can	use	this	technique	to	validate	API	endpoints,	search	forms,	and	other	sources	of
data.	The	choice	of	using	schemas	depends	mostly	if	you	want	to	use	the	same	mapping	in
different	places	or	if	you	desire	the	compile-time	guarantees	Elixir	structs	gives	you.
Otherwise,	you	can	bypass	schemas	altogether,	be	it	when	using	changesets	or	interacting
with	the	repository.

However,	the	most	important	lesson	in	this	chapter	is	not	when	to	use	or	not	to	use
schemas,	but	rather	understand	when	a	big	problem	can	be	broken	into	smaller	problems
that	can	be	solved	independently	leading	to	an	overall	cleaner	solution.	The	choice	of	using

3.	Schemaless	changesets

19

schemas	or	not	above	didn't	affect	the	solution	as	much	as	the	choice	of	breaking	the
registration	problem	apart.

3.	Schemaless	changesets

20

Dynamic	queries

Ecto	was	designed	from	the	ground	up	to	have	an	expressive	query	API	that	leverages	Elixir
syntax	to	write	queries	that	are	pre-compiled	for	performance	and	safety.	When	building
queries,	we	may	use	the	keywords	syntax

import	Ecto.Query

from	p	in	Post,

		where:	p.author	==	"José"	and	p.category	==	"Elixir",

		where:	p.published_at	>	^minimum_date,

		order_by:	[desc:	p.published_at]

or	the	pipe-based	one

import	Ecto.Query

Post

|>	where([p],	p.author	==	"José"	and	p.category	==	"Elixir")

|>	where([p],	p.published_at	>	^minimum_date)

|>	order_by([p],	desc:	p.published_at)

While	many	developers	prefer	the	pipe-based	syntax,	having	to	repeat	the	binding		p		made
it	quite	verbose	compared	to	the	keyword	one.	Furthermore,	the	compile-time	aspect	of	Ecto
queries	was	at	odds	with	building	queries	dynamically.

Imagine	for	example	a	web	application	that	provides	search	functionality	on	top	of	existing
posts.	The	user	should	be	able	to	specify	multiple	criteria,	such	as	the	author	name,	the	post
category,	publishing	interval,	etc.

In	Ecto	1.0,	the	only	way	to	write	such	functionality	would	be	via		Enum.reduce/3	:

4.	Dynamic	queries

21

def	filter(params)	do

		Enum.reduce(params,	Post,	&filter/2)

end

defp	filter({"author",	author},	query)	do

		where(query,	[p],	p.author	==	^author)

end

defp	filter({"category",	category},	query)	do

		where(query,	[p],	p.category	==	^category)

end

defp	filter({"published_at",	minimum_date},	query)	do

		where(query,	[p],	p.published_at	>	^minimum_date)

end

defp	filter({"order_by",	"published_at_asc"},	query)	do

		order_by(query,	[p],	asc:	p.published_at)

end

defp	filter({"order_by",	"published_at_desc"},	query)	do

		order_by(query,	[p],	desc:	p.published_at)

end

defp	filter(_ignore_unknown,	query)	do

		query

end

While	the	code	above	works	fine,	it	couples	the	processing	of	the	parameters	with	the	query
generation.	It	is	a	verbose	implementation	that	is	also	hard	to	test	since	the	result	of	filtering
and	handling	of	parameters	are	stored	directly	in	the	query	struct.

A	better	approach	would	be	to	process	the	parameters	into	regular	data	structures	and	then
build	the	query	as	late	as	possible.	That's	exactly	what	Ecto	2.0	allows	us	to	do.

Focusing	on	data	structures
Ecto	2.0	provides	a	simpler	API	for	both	keyword	and	pipe	based	queries	by	making	data
structures	first-class.	Let's	rewrite	the	original	queries	to	use	data	structures	when	possible:

from	p	in	Post,

		where:	[author:	"José",	category:	"Elixir"],

		where:	p.published_at	>	^minimum_date,

		order_by:	[desc:	:published_at]

and

4.	Dynamic	queries

22

Post

|>	where(author:	"José",	category:	"Elixir")

|>	where([p],	p.published_at	>	^minimum_date)

|>	order_by(desc:	:published_at)

Notice	how	we	were	able	to	ditch	the		p		selector	in	most	expressions.	In	Ecto	2.0,	all
constructs,	from		select		and		order_by		to		where		and		group_by	,	accept	data	structures	as
input.	The	data	structure	can	be	specified	at	compile-time,	as	above,	and	also	dynamically	at
runtime,	shown	below:

where	=	[author:	"José",	category:	"Elixir"]

order_by	=	[desc:	:published_at]

Post

|>	where(^where)

|>	where([p],	p.published_at	>	^minimum_date)

|>	order_by(^order_by)

The	advantage	of	interpolating	data	structures	is	that	we	can	decouple	the	processing	of
parameters	from	the	query	generation.	Note	however	not	all	expressions	can	be	converted
to	data	structures.	Since		where		converts	a	key-value	to	a		key	==	value		comparison,	order-
based	comparisons	such	as		p.published_at	>	^minimum_date		still	need	to	be	written	as	part
of	the	query	as	before.

Luckily,	Ecto	2.1	solves	this	issue.

The	dynamic	macro
For	cases	where	we	cannot	rely	on	data	structures	but	still	desire	to	build	queries
dynamically,	Ecto	2.1	includes	the		Ecto.Query.dynamic/2		macro.

In	order	to	understand	how	the		dynamic		macro	works	let's	rewrite	the		filter/1		function
from	the	beginning	of	this	chapter	using	both	data	structures	and	the		dynamic		macro.	The
example	below	requires	Ecto	2.1:

4.	Dynamic	queries

23

def	filter(params)	do

		Post

		|>	order_by(^filter_order_by(params["order_by"]))

		|>	where(^filter_where(params))

		|>	where(^filter_published_at(params["published_at"]))

end

def	filter_order_by("published_at_desc"),	do:	[desc:	:published_at]

def	filter_order_by("published_at"),						do:	[asc:		:published_at]

def	filter_order_by(_),																			do:	[]

def	filter_where(params)	do

		for	key	<-	[:author,	:category],

						value	=	params[Atom.to_string(key)],

						do:	{key,	value}

end

def	filter_published_at(date)	when	is_binary(date),

		do:	dynamic([p],	p.published_at	>	^date)

def	filter_published_at(_date),

		do:	true

The		dynamic		macro	allows	us	to	build	dynamic	expressions	that	are	later	interpolated	into
the	query.		dynamic		expressions	can	also	be	interpolated	into	dynamic	expressions,	allowing
developers	to	build	complex	expressions	dynamically	without	hassle.

Because	we	were	able	to	break	our	problem	into	smaller	functions	that	receive	regular	data
structures,	we	can	use	all	the	tools	available	in	Elixir	to	work	with	data.	For	handling	the
	order_by		parameter,	it	may	be	best	to	simply	pattern	match	on	the		order_by		parameter.
For	building	the		where		clause,	we	can	traverse	the	list	of	known	keys	and	convert	them	to
the	format	expected	by	Ecto.	For	complex	conditions,	we	use	the		dynamic		macro.

Testing	also	becomes	simpler	as	we	can	test	each	function	in	isolation,	even	when	using
dynamic	queries:

test	"filter	published	at	based	on	the	given	date"	do

		assert	inspect(filter_published_at("2010-04-17"))	==

									"dynamic([p],	p.published_at	>	^\"2010-04-17\")"

		assert	inspect(filter_published_at(nil))	==

									"true"

end

While	at	the	end	of	the	day	some	developers	may	feel	more	comfortable	with	using	the
	Enum.reduce/3		approach,	Ecto	2.0	and	later	gives	us	the	option	to	choose	which	approach
works	best.

Thanks	to	Michał	Muskała	for	suggestions	and	feedback	on	this	chapter.

4.	Dynamic	queries

24

4.	Dynamic	queries

25

Multi	tenancy	with	query	prefixes

Ecto	2.0	introduces	the	ability	to	run	queries	in	different	prefixes	using	a	single	pool	of
database	connections.	For	databases	engines	such	as	Postgres,	Ecto's	prefix	maps	to
Postgres'	DDL	schemas.	For	MySQL,	each	prefix	is	a	different	database	on	its	own.

Query	prefixes	may	be	useful	in	different	scenarios.	For	example,	multi	tenant	apps	running
on	Postgres	would	define	multiple	prefixes,	usually	one	per	client,	under	a	single	database.
The	idea	is	that	prefixes	will	provide	data	isolation	between	the	different	users	of	the
application,	guaranteeing	either	globally	or	at	the	data	level	that	queries	and	commands	act
on	a	specific	prefix.

Prefixes	may	also	be	useful	on	high-traffic	applications	where	data	is	partitioned	upfront.	For
example,	a	gaming	platform	may	break	game	data	into	isolated	partitions,	each	named	after
a	different	prefix.	A	partition	for	a	given	player	is	either	chosen	at	random	or	calculated
based	on	the	player	information.

While	query	prefixes	were	designed	with	the	two	scenarios	above	in	mind,	they	may	also	be
used	in	other	circumstances,	which	we	will	explore	throughout	this	chapter.	All	the	examples
below	assume	you	are	using	Postgres.	Other	databases	engines	may	require	slightly
different	solutions.

Global	prefixes
As	a	starting	point,	let's	start	with	a	simple	scenario:	your	application	must	connect	to	a
particular	prefix	when	running	in	production.	This	may	be	due	to	infrastructure	conditions,
database	administration	rules	or	others.

Let's	define	a	repository	and	a	schema	to	get	started:

5.	Multi	tenancy	with	query	prefixes

26

https://www.postgresql.org/docs/current/static/ddl-schemas.html

#	lib/repo.ex

defmodule	MyApp.Repo	do

		use	Ecto.Repo,	otp_app:	:my_app

end

#	lib/sample.ex

defmodule	MyApp.Sample	do

		use	Ecto.Schema

		schema	"samples"	do

				field	:name

				timestamps

		end

end

Now	let's	configure	the	repository:

#	config/config.exs

config	:my_app,	MyApp.Repo,

		adapter:	Ecto.Adapters.Postgres,

		username:	"postgres",

		password:	"postgres",

		database:	"demo",

		hostname:	"localhost",

		pool_size:	10

And	define	a	migration:

#	priv/repo/migrations/20160101000000_create_sample.exs

defmodule	MyApp.Repo.Migrations.CreateSample	do

		use	Ecto.Migration

		def	change	do

				create	table(:samples)	do

						add	:name,	:string

						timestamps()

				end

		end

end

Now	let's	create	the	database,	migrate	it	and	then	start	an	IEx	session:

5.	Multi	tenancy	with	query	prefixes

27

$	mix	ecto.create

$	mix	ecto.migrate

$	iex	-S	mix

Interactive	Elixir	(1.4.0-dev)	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	help)

iex(1)>	MyApp.Repo.all	MyApp.Sample

[]

We	haven't	done	anything	unusual	so	far.	We	created	our	database	instance,	made	it	up	to
date	by	running	migrations	and	then	successfully	made	a	query	against	the	"samples"	table,
which	returned	an	empty	list.

By	default,	connections	to	Postgres'	databases	run	on	the	"public"	prefix.	When	we	run
migrations	and	queries,	they	are	all	running	against	the	"public"	prefix.	However	imagine
your	application	has	a	requirement	to	run	on	a	particular	prefix	in	production,	let's	call	it
"global_prefix".

Luckily	Postgres	allows	us	to	change	the	prefix	our	database	connections	run	on	by	setting
the	"schema	search	path".	The	best	moment	to	change	the	search	path	is	right	after	we
setup	the	database	connection,	ensuring	all	of	our	queries	will	run	on	that	particular	prefix,
throughout	the	connection	life-cycle.

To	do	so,	let's	change	our	database	configuration	in	"config/config.exs"	and	specify	an
	:after_connect		option.		:after_connect		expects	a	tuple	with	module,	function	and
arguments	it	will	invoke	with	the	connection	process,	as	soon	as	a	database	connection	is
established:

config	:my_app,	MyApp.Repo,

		adapter:	Ecto.Adapters.Postgres,

		username:	"postgres",

		password:	"postgres",

		database:	"demo_dev",

		hostname:	"localhost",

		pool_size:	10,

		after_connect:	{Postgrex,	:query!,	["SET	search_path	TO	global_prefix",	[]]}

Now	let's	try	to	run	the	same	query	as	before:

$	iex	-S	mix

Interactive	Elixir	(1.4.0-dev)	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	help)

iex(1)>	MyApp.Repo.all	MyApp.Sample

**	(Postgrex.Error)	ERROR	(undefined_table):	relation	"samples"	does	not	exist

Our	previously	successful	query	now	fails	because	there	is	no	table	"samples"	under	the
new	prefix.	Let's	try	to	fix	that	by	running	migrations:

5.	Multi	tenancy	with	query	prefixes

28

$	mix	ecto.migrate

**	(Postgrex.Error)	ERROR	(invalid_schema_name):	no	schema	has	been	selected	to	create	

in

Oops.	Now	migration	says	there	is	no	such	schema	name.	That's	because	Postgres
automatically	creates	the	"public"	prefix	every	time	we	create	a	new	database.	If	we	want	to
use	a	different	prefix,	we	must	explicitly	create	it	on	the	database	we	are	running	on:

$	psql	-d	demo_dev	-c	"CREATE	SCHEMA	global_prefix"

Now	we	are	ready	to	migrate	and	run	our	queries:

$	mix	ecto.migrate

$	iex	-S	mix

Interactive	Elixir	(1.4.0-dev)	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	help)

iex(1)>	MyApp.Repo.all	MyApp.Sample

[]

Data	in	different	prefixes	are	isolated.	Writing	to	the	"samples"	table	in	one	prefix	cannot	be
accessed	by	the	other	unless	we	change	the	prefix	in	the	connection	or	use	the	Ecto
conveniences	we	will	discuss	next.

Per-query	and	per-struct	prefixes
While	still	configured	to	connect	to	the	"global_prefix"	on		:after_connect	,	let's	run	some
queries:

iex(1)	MyApp.Repo.all	MyApp.Sample

[]

iex(2)	MyApp.Repo.insert	%MyApp.Sample{name:	"mary"}

{:ok,	%MyApp.Sample{...}}

iex(3)	MyApp.Repo.all	MyApp.Sample

[%MyApp.Sample{...}]

The	operations	above	ran	on	the	"global_prefix".	Now	what	happens	if	we	try	to	run	the
sample	query	on	the	"public"	prefix?	To	do	so,	let's	build	a	query	struct	and	set	the	prefix
field	manually:

5.	Multi	tenancy	with	query	prefixes

29

iex(4)>	query	=	Ecto.Queryable.to_query	MyApp.Sample

#Ecto.Query<from	s	in	MyApp.Sample>

iex(5)>		MyApp.Repo.all	%{query	|	prefix:	"public"}

[]

Notice	how	we	were	able	to	change	the	prefix	the	query	runs	on.	Back	in	the	default	"public"
prefix,	there	is	no	data.

Ecto	2.1	also	supports	the		:prefix		option	on	all	relevant	repository	operations:

iex(6)>	MyApp.Repo.all	MyApp.Sample

[%MyApp.Sample{...}]

iex(7)>	MyApp.Repo.all	MyApp.Sample,	prefix:	"public"

[]

One	interesting	aspect	of	prefixes	in	Ecto	is	that	the	prefix	information	is	carried	along	each
struct	returned	by	a	query:

iex(8)	[sample]	=	MyApp.Repo.all	MyApp.Sample

[%MyApp.Sample{}]

iex(9)>	Ecto.get_meta(sample,	:prefix)

nil

The	example	above	returned	nil,	which	means	no	prefix	was	specified	by	Ecto,	and	therefore
the	database	connection	default	will	be	used.	In	this	case,	"global_prefix"	will	be	used
because	of	the		:after_connect		callback	we	added	at	the	beginning	of	this	chapter.

Since	the	prefix	data	is	carried	in	the	struct,	we	can	use	such	to	copy	data	from	one	prefix	to
the	other.	Let's	copy	the	sample	above	from	the	"global_prefix"	to	the	"public"	one:

iex(10)>	public_sample	=	Ecto.put_meta(sample,	prefix:	"public")

%MyApp.Sample{}

iex(11)>	MyApp.Repo.insert	public_sample

{:ok,	%MyApp.Sample{}}

iex(12)>	[sample]	=	MyApp.Repo.all	MyApp.Sample,	prefix:	"public"

[%MyApp.Sample{}]

iex(13)>	Ecto.get_meta(sample,	:prefix)

"public"

Now	we	have	data	inserted	in	both	prefixes.

Prefixes	in	queries	and	structs	always	cascade.	For	example,	if	you	run
	MyApp.Repo.preload(sample,	[:some_association])	,	the	association	will	be	queried	for	and
loaded	in	the	same	prefix	as	the		sample		struct.	If		sample		has	associations	and	you	call

5.	Multi	tenancy	with	query	prefixes

30

	MyApp.Repo.insert(sample)		or		MyApp.Repo.update(sample)	,	the	associated	data	will	also	be
inserted/updated	in	the	same	prefix	as		sample	.	That's	by	design	to	facilitate	working	with
groups	of	data	in	the	same	prefix,	and	especially	because	data	in	different	prefixes	must
be	kept	isolated.

Migration	prefixes
So	far	we	have	explored	how	to	set	a	global	prefix	using	Postgres'	and	how	to	set	the	prefix
at	the	query	or	struct	level.	When	the	global	prefix	is	set,	it	also	changes	the	prefix
migrations	run	on.	However	it	is	also	possible	to	set	the	prefix	through	the	command	line	or
per	table	in	the	migration	itself.

For	example,	imagine	you	are	a	gaming	company	where	the	game	is	broken	in	128
partitions,	named	"prefix_1",	"prefix_2",	"prefix_3"	up	to	"prefix_128".	Now,	whenever	you
need	to	migrate	data,	you	need	to	migrate	data	on	all	different	128	prefixes.	There	are	two
ways	of	achieve	that.

The	first	mechanism	is	to	invoke		mix	ecto.migrate		multiple	times,	once	per	prefix,	passing
the		--prefix		option:

$	mix	ecto.migrate	--prefix	"prefix_1"

$	mix	ecto.migrate	--prefix	"prefix_2"

$	mix	ecto.migrate	--prefix	"prefix_3"

...

$	mix	ecto.migrate	--prefix	"prefix_128"

The	other	approach	is	by	changing	each	desired	migration	to	run	across	multiple	prefixes.
For	example:

5.	Multi	tenancy	with	query	prefixes

31

defmodule	MyApp.Repo.Migrations.CreateSample	do

		use	Ecto.Migration

		def	change	do

				for	i	<-	1..128	do

						prefix	=	"prefix_#{i}"

						create	table(:samples,	prefix:	prefix)	do

								add	:name,	:string

								timestamps()

						end

						#	Execute	the	commands	on	the	current	prefix

						#	before	moving	on	to	the	next	prefix

						flush()

				end

		end

end

Schema	prefixes
Finally,	Ecto	2.1	adds	the	ability	to	set	a	particular	schema	to	run	on	a	specific	prefix.
Imagine	you	are	building	a	multi-tenant	application.	Each	client	data	belongs	to	a	particular
prefix,	such	as	"client_foo",	"client_bar"	and	so	forth.	Yet	your	application	may	still	rely	on	a
set	of	tables	that	is	shared	across	all	clients.	One	of	such	tables	may	be	exactly	the	table
that	maps	the	Client	ID	to	its	database	prefix.	Let's	assume	we	want	to	store	this	data	in	a
prefix	named	"main":

defmodule	MyApp.Mapping	do

		use	Ecto.Schema

		@schema_prefix	"main"

		schema	"mappings"	do

				field	:client_id,	:integer

				field	:db_prefix

				timestamps

		end

end

Now	running		MyApp.Repo.all	MyApp.Mapping		will	by	default	run	on	the	"main"	prefix,
regardless	of	the	value	configured	globally	on	the		:after_connect		callback.	Similar	will
happen	to		insert	,		update	,	and	similar	operations,	the		@schema_prefix		is	used	unless	the
	:prefix		is	explicitly	changed	via		Ecto.put_meta/2		or	by	passing	the		:prefix		option	to	the
repository	operation.

5.	Multi	tenancy	with	query	prefixes

32

Keep	in	mind,	however,	that	queries	run	on	a	single	prefix.	For	example,	if		MyApp.Mapping	
on	prefix	"main"	depends	on	a	schema	named		MyApp.Other		on	prefix	"another",	a	query
starting	with		MyApp.Mapping		will	always	run	on	the	"main"	prefix.	By	design	it	is	not	possible
to	perform	query	joins	across	prefixes.	If	data	belongs	to	different	prefixes,	it	is	best	to	not
couple	them	structurally	nor	via	queries,	in	order	to	keep	data	in	different	prefixes
isolated.

Summing	up
Ecto	2.0	provides	many	conveniences	for	working	with	querying	prefixes.	Those
conveniences	have	been	further	improved	in	Ecto	2.1,	allowing	developers	to	configure
prefix	with	different	level	of	granularity:

global	prefixes	>	schema	prefix	>	query/struct	prefixes

This	allows	developers	to	tackle	different	scenarios,	from	production	requirements	to	multi-
tenant	applications.	Our	journey	on	exploring	the	new	query	constructs	is	almost	over.	The
next	and	last	query	chapter	is	on	aggregates	and	subqueries.

5.	Multi	tenancy	with	query	prefixes

33

Aggregates	and	subqueries

The	last	features	we	will	discuss	regarding	Ecto	queries	are	aggregates	and	subqueries.	As
we	will	learn,	one	builds	directly	on	the	other.

Aggregates
Ecto	2.0	includes	a	convenience	function	in	repositories	to	calculate	aggregates.

For	example,	if	we	assume	every	post	has	an	integer	column	named	visits,	we	can	find	the
average	number	of	visits	across	all	posts	with:

MyApp.Repo.aggregate(MyApp.Post,	:avg,	:visits)

#=>	#Decimal<1743>

Behind	the	scenes,	the	query	above	translates	to:

MyApp.Repo.one(from	p	in	MyApp.Post,	select:	avg(p.visits))

The		aggregate/3		function	supports	any	of	the	aggregate	operations	listed	in	the	Ecto	Query
API.

At	first,	it	looks	like	the	implementation	of		aggregate/3		is	quite	straight-forward.	You	could
even	start	to	wonder	why	it	was	added	to	Ecto	in	the	first	place.	However,	complexities	start
to	arise	on	queries	that	rely	on		limit	,		offset		or		distinct		clauses.

Imagine	that	instead	of	calculating	the	average	of	all	posts,	you	want	the	average	of	only	the
top	10.	Your	first	try	may	be:

6.	Aggregates	and	subqueries

34

https://hexdocs.pm/ecto/Ecto.Query.API.html

MyApp.Repo.one(from	p	in	MyApp.Post,

																order_by:	[desc:	:visits],

																limit:	10,

																select:	avg(p.visits))

#=>	#Decimal<1743>

Oops.	The	query	above	returned	the	same	value	as	the	queries	before.	The	option		limit:
10		has	no	effect	here	since	it	is	limiting	the	aggregated	result	and	queries	with	aggregates
return	only	a	single	row	anyway.	In	order	to	retrieve	the	correct	result,	we	would	need	to	first
find	the	top	10	posts	and	only	then	aggregate.	That's	exactly	what		aggregate/3		does:

query	=	from	MyApp.Post,	order_by:	[desc:	:visits],	limit:	10

MyApp.Repo.aggregate(query,	:avg,	:visits)	#=>	#Decimal<4682>

When		limit	,		offset		or		distinct		is	specified	in	the	query,		aggregate/3		automatically
wraps	the	given	query	in	a	subquery.	Therefore	the	query	executed	by		aggregate/3		above
is	rather	equivalent	to:

query	=	from	MyApp.Post,	order_by:	[desc:	:visits],	limit:	10

MyApp.Repo.one(from	q	in	subquery(query),	select:	avg(q.visits))

Let's	take	a	closer	look	at	subqueries.

Subqueries
In	the	previous	section	we	have	already	learned	some	queries	that	would	be	hard	to	express
without	support	for	subqueries.	That's	one	of	many	examples	that	caused	subqueries	to	be
added	to	Ecto.

Subqueries	in	Ecto	are	created	by	calling		Ecto.Query.subquery/1	.	This	function	receives	any
data	structure	that	can	be	converted	to	a	query,	via	the		Ecto.Queryable		protocol,	and
returns	a	subquery	construct	(which	is	also	queryable).

In	Ecto	2.0,	it	is	allowed	for	a	subquery	to	select	a	whole	table	(p)	or	a	field	(p.field).	All
fields	selected	in	a	subquery	can	be	accessed	from	the	parent	query.	Let's	revisit	the
aggregate	query	we	saw	in	the	previous	section:

query	=	from	MyApp.Post,	order_by:	[desc:	:visits],	limit:	10

MyApp.Repo.one(from	q	in	subquery(query),	select:	avg(q.visits))

6.	Aggregates	and	subqueries

35

Because	the	query	does	not	specify	a		:select		clause,	it	will	return		select:	p		where		p		is
controlled	by		MyApp.Post		schema.	Since	the	query	will	return	all	fields	in		MyApp.Post	,	when
we	convert	it	to	a	subquery,	all	of	the	fields	from		MyApp.Post		will	be	available	on	the	parent
query,	such	as		q.visits	.	In	fact,	Ecto	will	keep	the	schema	properties	across	queries.	For
example,	if	you	write		q.field_that_does_not_exist	,	your	Ecto	query	won't	compile.

Ecto	2.1	further	improves	subqueries	by	allowing	an	Elixir	map	to	be	returned	from	a
subquery,	making	the	map	keys	directly	available	to	the	parent	query.

Let's	see	one	last	example.	Imagine	you	manage	a	library	(as	in	an	actual	library	in	the	real
world)	and	there	is	a	table	that	logs	every	time	the	library	lends	a	book.	The	"lendings"	table
uses	an	auto-incrementing	primary	key	and	can	be	backed	by	the	following	schema:

defmodule	Library.Lending	do

		use	Ecto.Schema

		schema	"lendings"	do

				belongs_to	:book,	MyApp.Book							#	defines	book_id

				belongs_to	:visitor,	MyApp.Visitor	#	defines	visitor_id

		end

end

Now	consider	we	want	to	retrieve	the	name	of	every	book	alongside	the	name	of	the	last
person	the	library	has	lent	it	to.	To	do	so,	we	need	to	find	the	last	lending	ID	of	every	book,
and	then	join	on	the	book	and	visitor	tables.	With	subqueries,	that's	straight-forward:

last_lendings	=

		from	l	in	MyApp.Lending,

				group_by:	l.book_id,

				select:	%{book_id:	l.book_id,	last_lending_id:	max(l.id)}

from	l	in	Lending,

		join:	last	in	subquery(last_lendings),

				on:	last.last_lending_id	==	l.id,

		join:	b	in	assoc(l,	:book),

		join:	v	in	assoc(l,	:visitor),

		select:	{b.name,	v.name}

Subqueries	are	an	important	improvement	to	Ecto	which	makes	it	possible	to	express
queries	that	were	not	possible	before.	On	top	of	that,	we	were	able	to	add	features	such	as
aggregates,	which	provide	useful	functionality	while	shielding	the	user	from	corner	cases.

6.	Aggregates	and	subqueries

36

Improved	associations	and	factories

Ecto	2.0	largely	improved	how	associations	work.	To	understand	why	and	how,	let's	talk
about	Ecto's	original	design	goals.

Ecto	first	started	as	a	Summer	of	Code	project	from	Eric	Meadows-Jönsson,	today	part	of
the	Elixir	team	and	creator	of	Hex,	with	José	Valim,	creator	of	Elixir,	as	mentor.	This	was
back	in	2013	while	Elixir	was	still	at	version	0.9!

Similar	to	many	projects	at	the	time,	one	of	the	goals	behind	Ecto	was	to	validate	Elixir	itself
as	a	programming	language.	One	of	the	questions	it	aimed	to	answer	was:	"can	Elixir	be
used	to	create	a	database	wrapper	that	is	performant	and	secure?".	By	focusing	on	a	stable,
performant	and	secure	foundation,	it	would	be	straight-forward	to	add	conveniences	and
dynamism	later	on	-	while	the	opposite	direction	would	have	been	exceptionally	hard.

Ecto	1.0	was	this	secure	and	performant	foundation.	Since	the	focus	was	on	Ecto's	building
blocks,	the	higher-level	usage	felt	rigid	in	many	aspects	and	was	frequently	reported	as
limitations	by	the	community.

While	Ecto	2.0	fixes	some	missteps,	it	mostly	builds	on	top	of	this	foundation	by	adding	the
flexibilities	users	have	longed	for.	We	have	explored	many	of	them	in	the	first	chapters	of
this	book:	schemaless	queries,	schemaless	changesets,	dynamic	queries	and	more.	In	the
next	three	chapters,	we	will	explore	the	enhancements	done	to	schemas	and	associations.

In	this	particular	chapter,	we	will	learn	how	Ecto	is	capable	of	inserting	complex	data
structures	without	the	need	to	use	changesets	and	how	to	use	this	feature	to	manage
complex	data,	which	may	be	useful	when	building	database	scripts,	interacting	with	your
application	test	suite,	and	more.

7.	Improved	associations	and	factories

37

Less	changesets
At	the	same	time	Ecto	2.0	brings	many	features	to	changesets,	it	makes	changesets	less
necessary	throughout	Ecto	APIs.	For	example,	in	Ecto	1.0,		Ecto.Repo.insert/2		required
changesets.	This	means	that,	in	order	to	insert	any	entry	to	the	database,	such	as	a	post,	we
had	to	wrap	it	in	a	changeset	first:

%Post{title:	"hello	world"}

|>	Ecto.Changeset.change

|>	Repo.insert!()

This	reflected	throughout	Ecto	1.0	APIs.	If	you	wanted	to	create	a	post	with	some
comments,	you	had	to	wrap	each	comment	in	a	changeset	and	then	put	it	in	the	post
changeset:

comment1	=	%Comment{body:	"excellent	article"}	|>	Ecto.Changeset.change

comment2	=	%Comment{body:	"I	learned	something	new"}	|>	Ecto.Changeset.change

%Post{title:	"hello	world"}

|>	Ecto.Changeset.put_assoc(:comments,	[comment1,	comment2])

|>	Repo.insert!()

Furthermore,	when	handling	associations,	Ecto	1.0	forced	you	to	always	write	the	parent
changeset	first	and	then	the	children.	While	the	example	above	where	we	insert	a	post	(the
parent)	with	multiple	comments	(children)	worked,	the	following	example	would	not:

post	=	%Post{title:	"hello	world"}	|>	Ecto.Changeset.change()

%Comment{body:	"excellent	article"}

|>	Ecto.Changeset.put_assoc(:post,	[post])

|>	Repo.insert!()

Ecto	2.0	goes	away	with	all	of	those	limitations.	You	can	now	also	pass	structs	to	the
repository	and	Ecto	will	take	care	of	building	the	changesets	for	you	behind	the	scenes.	In
Ecto	2.0,	a	post	with	comments	can	be	inserted	directly	as	follows:

Repo.insert!	%Post{

		title:	"hello	world",

		comments:	[

				%Comment{body:	"excellent	article"},

				%Comment{body:	"I	learned	something	new"}

]

}

7.	Improved	associations	and	factories

38

You	are	also	able	to	insert,	update	and	delete	associations	from	any	direction,	be	it	from
parent	to	child	or	child	to	parent:

Repo.insert!	%Comment{

		body:	"excellent	article",

		post:	%Post{title:	"hello	world"}

}

This	feature	is	not	only	useful	when	writing	our	applications	but	also	when	testing	them,	as
we	will	see	next.

Test	factories
Many	projects	depend	on	external	libraries	to	build	their	test	data.	Some	of	those	libraries
are	called	factories	because	they	provide	convenience	functions	for	producing	different
groups	of	data.	However,	given	Ecto	2.0	is	able	to	manage	complex	data	trees,	we	can
implement	such	functionality	without	relying	on	third-party	projects.

To	get	started,	let's	create	a	file	at	"test/support/factory.ex"	with	the	following	contents:

7.	Improved	associations	and	factories

39

defmodule	MyApp.Factory	do

		alias	MyApp.Repo

		#	Factories

		def	build(:post)	do

				%MyApp.Post{title:	"hello	world"}

		end

		def	build(:comment)	do

				%MyApp.Comment{body:	"good	post"}

		end

		def	build(:post_with_comments)	do

				%MyApp.Post{

						title:	"hello	with	comments",

						comments:	[

								build(:comment,	body:	"first"),

								build(:comment,	body:	"second")

]

				}

		end

		def	build(:user)	do

				%MyApp.User{

						email:	"hello#{System.unique_integer()}",

						username:	"hello#{System.unique_integer()}"

				}

		end

		#	Convenience	API

		def	build(factory_name,	attributes)	do

				factory_name	|>	build()	|>	struct(attributes)

		end

		def	insert!(factory_name,	attributes	\\	[])	do

				Repo.insert!	build(factory_name,	attributes)

		end

end

Our	factory	module	defines	four	"factories"	as	different	clauses	to	the	build	function:		:post	,
	:comment	,		:post_with_comments		and		:user	.	Each	clause	defines	structs	with	the	fields	that
are	required	by	the	database.	In	certain	cases,	the	generated	struct	also	needs	to	generate
unique	fields,	such	as	the	user's	email	and	username.	We	did	so	by	calling	Elixir's
	System.unique_integer()		-	you	could	call		System.unique_integer([:positive])		if	you	need	a
strictly	positive	number.

7.	Improved	associations	and	factories

40

At	the	end,	we	defined	two	functions,		build/2		and		insert!/2	,	which	are	conveniences	for
building	structs	with	specific	attributes	and	for	inserting	data	directly	in	the	repository
respectively.

That's	literally	all	that	is	necessary	for	building	our	factories.	We	are	now	ready	to	use	them
in	our	tests.	First,	open	up	your	"mix.exs"	and	make	sure	the	"test/support/factory.ex"	file	is
compiled:

def	project	do

		[...,

			elixirc_paths:	elixirc_paths(Mix.env),

			...]

end

defp	elixirc_paths(:test),	do:	["lib",	"test/support"]

defp	elixirc_paths(_),	do:	["lib"]

Now	in	any	of	the	tests	that	need	to	generate	data,	we	can	import	the		MyApp.Factory	
module	and	use	its	functions:

import	MyApp.Factory

build(:post)

#=>	%MyApp.Post{id:	nil,	title:	"hello	world",	...}

build(:post,	title:	"custom	title")

#=>	%MyApp.Post{id:	nil,	title:	"custom	title",	...}

insert!(:post,	title:	"custom	title")

#=>	%MyApp.Post{id:	...,	title:	"custom	title"}

By	building	the	functionality	we	need	on	top	of	Ecto	capabilities,	we	are	able	to	extend	and
improve	our	factories	on	whatever	way	we	desire,	without	being	constrained	to	third-party
limitations.

7.	Improved	associations	and	factories

41

Many	to	many	and	casting

Besides		belong_to	,		has_many	,		has_one		and		:through		associations,	Ecto	2.0	also
includes		many_to_many	.		many_to_many		relationships,	as	the	name	says,	allows	a	record	from
table	X	to	have	many	associated	entries	from	table	Y	and	vice-versa.	Although
	many_to_many		associations	can	be	written	as		has_many	:through	,	using		many_to_many		may
considerably	simplify	some	workflows.

In	this	chapter,	we	will	talk	about	polymorphic	associations	and	how		many_to_many		can
remove	boilerplate	from	certain	approaches	compared	to		has_many	:through	.

Todo	lists	v65131
The	web	has	seen	its	share	of	todo	list	applications.	But	that	won't	stop	us	from	creating	our
own!

In	our	case,	there	is	one	aspect	of	todo	list	applications	we	are	interested	in,	which	is	the
relationship	where	the	todo	list	has	many	todo	items.	We	have	explored	this	exact	scenario
in	detail	in	an	article	we	posted	on	Plataformatec's	blog	about	nested	associations	and
embeds.	Let's	recap	the	important	points.

Our	todo	list	app	has	two	schemas,		Todo.List		and		Todo.Item	:

8.	Many	to	many	and	casting

42

http://blog.plataformatec.com.br/2015/08/working-with-ecto-associations-and-embeds/

defmodule	MyApp.TodoList	do

		use	Ecto.Schema

		schema	"todo_lists"	do

				field	:title

				has_many	:todo_items,	MyApp.TodoItem

				timestamps()

		end

end

defmodule	MyApp.TodoItem	do

		use	Ecto.Schema

		schema	"todo_items"	do

				field	:description

				timestamps()

		end

end

One	of	the	ways	to	introduce	a	todo	list	with	multiple	items	into	the	database	is	to	couple	our
UI	representation	to	our	schemas.	That's	the	approach	we	took	in	the	blog	post	with
Phoenix.	Roughly:

<%=	form_for	@todo_list_changeset,	todo_list_path(@conn,	:create),	fn	f	->	%>

		<%=	text_input	f,	:title	%>

		<%=	inputs_for	f,	:todo_items,	fn	i	->	%>

				...

		<%	end	%>

<%	end	%>

When	such	a	form	is	submitted	in	Phoenix,	it	will	send	parameters	with	the	following	shape:

%{"todo_list"	=>	%{

		"title"	=>	"shipping	list",

		"todo_items"	=>	%{

				0	=>	%{"description"	=>	"bread"},

				1	=>	%{"description"	=>	"eggs"},

		}

}}

We	could	then	retrieve	those	parameters	and	pass	it	to	an	Ecto	changeset	and	Ecto	would
automatically	figure	out	what	to	do:

8.	Many	to	many	and	casting

43

#	In	MyApp.TodoList

def	changeset(struct,	params	\\	%{})	do

		struct

		|>	Ecto.Changeset.cast(params,	[:title])

		|>	Ecto.Changeset.cast_assoc(:todo_items,	required:	true)

end

#	And	then	in	MyApp.TodoItem

def	changeset(struct,	params	\\	%{})	do

		struct

		|>	Ecto.Changeset.cast(params,	[:description])

end

By	calling		Ecto.Changeset.cast_assoc/3	,	Ecto	will	look	for	a	"todo_items"	key	inside	the
parameters	given	on	cast,	and	compare	those	parameters	with	the	items	stored	in	the	todo
list	struct.	Ecto	will	automatically	generate	instructions	to	insert,	update	or	delete	todo	items
such	that:

if	a	todo	item	sent	as	parameter	has	an	ID	and	it	matches	an	existing	associated	todo
item,	we	consider	that	todo	item	should	be	updated
if	a	todo	item	sent	as	parameter	does	not	have	an	ID	(nor	a	matching	ID),	we	consider
that	todo	item	should	be	inserted
if	a	todo	item	is	currenetly	associated	but	its	ID	was	not	sent	as	parameter,	we	consider
the	todo	item	is	being	replaced	and	we	act	according	to	the		:on_replace		callback.	By
default		:on_replace		will	raise	so	you	choose	a	behaviour	between	replacing,	deleting,
ignoring	or	nilifying	the	association

The	advantage	of	using		cast_assoc/3		is	that	Ecto	is	able	to	do	all	of	the	hard	work	of
keeping	the	entries	associated,	as	long	as	we	pass	the	data	exactly	in	the	format	that
Ecto	expects.	However,	as	we	learned	in	the	first	three	chapters	of	this	book,	such
approach	is	not	always	preferrable	and	in	many	situations	it	is	better	to	design	our
associations	differently	or	decouple	our	UIs	from	our	database	representation.

Polymorphic	todo	items
To	show	an	example	of	where	using		cast_assoc/3		is	just	too	complicated	to	be	worth	it,	let's
imagine	you	want	your	"todo	items"	to	be	polymorphic.	For	example,	you	want	to	be	able	to
add	todo	items	not	only	to	"todo	lists"	but	to	many	other	parts	of	your	application,	such	as
projects,	milestones,	you	name	it.

First	of	all,	it	is	important	to	remember	Ecto	does	not	provide	the	same	type	of	polymorphic
associations	available	in	frameworks	such	as	Rails	and	Laravel.	In	such	frameworks,	a
polymorphic	association	uses	two	columns,	the		parent_id		and		parent_type	.	For	example,

8.	Many	to	many	and	casting

44

one	todo	item	would	have		parent_id		of	1	with		parent_type		of	"TodoList"	while	another
would	have		parent_id		of	1	with		parent_type		of	"Project".

The	issue	with	the	design	above	is	that	it	breaks	database	references.	The	database	is	no
longer	capable	of	guaranteeing	the	item	you	associate	to	exists	or	will	continue	to	exist	in
the	future.	This	leads	to	an	inconsistent	database	which	end-up	pushing	workarounds	to
your	application.

The	design	above	is	also	extremely	inefficient.	In	the	past	we	have	worked	with	a	large	client
on	removing	such	polymorphic	references	because	frequent	polymorphic	queries	were
grinding	the	database	to	a	halt	even	after	adding	indexes	and	optimizing	the	database.

Luckily,	the	documentation	for	the		belongs_to		macro	includes	examples	on	how	to	design
sane	and	performant	associations.	One	of	those	approaches	consists	in	using	many	join
tables.	Besides	the	"todo_lists"	and	"projects"	tables	and	the	"todo_items"	table,	we	would
create	"todo_list_items"	and	"project_items"	to	associate	todo	items	to	todo	lists	and	todo
items	to	projects	respectively.	In	terms	of	migrations,	we	are	looking	at	the	following:

create	table(:todo_lists)		do

		add	:title

		timestamps()

end

create	table(:projects)		do

		add	:name

		timestamps()

end

create	table(:todo_items)		do

		add	:description

		timestamps()

end

create	table(:todo_lists_items)	do

		add	:todo_item_id,	references(:todo_items)

		add	:todo_list_id,	references(:todo_lists)

		timestamps()

end

create	table(:projects_items)	do

		add	:todo_item_id,	references(:todo_items)

		add	:project_id,	references(:projects)

		timestamps()

end

By	adding	one	table	per	association	pair,	we	keep	database	references	and	can	efficiently
perform	queries	that	relies	on	indexes.

8.	Many	to	many	and	casting

45

https://hexdocs.pm/ecto/Ecto.Schema.html#belongs_to/3-polymorphic-associations

First	let's	see	how	implement	this	functionality	in	Ecto	using	a		has_many	:through		and	then
use		many_to_many		to	remove	a	lot	of	the	boilerplate	we	were	forced	to	introduce.

Polymorphism	with	has_many	:through
Given	we	want	our	todo	items	to	be	polymorphic,	we	can	no	longer	associate	a	todo	list	to
todo	items	directly.	Instead	we	will	create	an	intermediate	schema	to	tie		MyApp.TodoList		and
	MyApp.TodoItem		together.

defmodule	MyApp.TodoList	do

		use	Ecto.Schema

		schema	"todo_lists"	do

				field	:title

				has_many	:todo_list_items,	MyApp.TodoListItem

				has_many	:todo_items,	through:	[:todo_list_items,	:todo_item]

				timestamps()

		end

end

defmodule	MyApp.TodoListItem	do

		use	Ecto.Schema

		schema	"todo_list_items"	do

				belongs_to	:todo_list,	MyApp.TodoList

				belongs_to	:todo_item,	MyApp.TodoItem

				timestamps()

		end

end

defmodule	MyApp.TodoItem	do

		use	Ecto.Schema

		schema	"todo_items"	do

				field	:description

				timestamps()

		end

end

Although	we	introduced		MyApp.TodoListItem		as	an	intermediate	schema,		has_many
:through		allows	us	to	access	all	todo	items	for	any	todo	list	transparently:

todo_lists	|>	Repo.preload(:todo_items)

8.	Many	to	many	and	casting

46

The	trouble	is	that		:through		associations	are	read-only	since	Ecto	does	not	have	enough
information	to	fill	in	the	intermediate	schema.	This	means	that,	if	we	still	want	to	use
	cast_assoc		to	insert	a	todo	list	with	many	todo	items	directly	from	the	UI,	we	cannot	use	the
	:through		association	and	instead	must	go	step	by	step.	We	would	need	to	first
	cast_assoc(:todo_list_items)		from		TodoList		and	then	call		cast_assoc(:todo_item)		from
the		TodoListItem		schema:

#	In	MyApp.TodoList

def	changeset(struct,	params	\\	%{})	do

		struct

		|>	Ecto.Changeset.cast(params,	[:title])

		|>	Ecto.Changeset.cast_assoc(:todo_list_items,	required:	true)

end

#	And	then	in	the	MyApp.TodoListItem

def	changeset(struct,	params	\\	%{})	do

		struct

		|>	Ecto.Changeset.cast_assoc(:todo_item,	required:	true)

end

#	And	then	in	MyApp.TodoItem

def	changeset(struct,	params	\\	%{})	do

		struct

		|>	Ecto.Changeset.cast(params,	[:description])

end

To	further	complicate	things,	remember		cast_assoc		expects	a	particular	shape	of	data	that
reflects	your	associations.	In	this	case,	because	of	the	intermediate	schema,	the	data	sent
through	your	forms	in	Phoenix	would	have	to	look	as	follows:

%{"todo_list"	=>	%{

		"title"	=>	"shipping	list",

		"todo_list_items"	=>	%{

				0	=>	%{"todo_item"	=>	%{"description"	=>	"bread"}},

				1	=>	%{"todo_item"	=>	%{"description"	=>	"eggs"}},

		}

}}

To	make	matters	worse,	you	would	have	to	duplicate	this	logic	for	every	intermediate
schema,	and	introduce		MyApp.TodoListItem		for	todo	lists,		MyApp.ProjectItem		for	projects,
etc.

Luckily,		many_to_many		allows	us	to	remove	all	of	this	boilerplate.

8.	Many	to	many	and	casting

47

Polymorphism	with	many_to_many
In	a	way,	the	idea	behind		many_to_many		associations	is	that	it	allows	us	to	associate	two
schemas	via	an	intermediate	schema	while	automatically	taking	care	of	all	details	about	the
intermediate	schema.	Let's	rewrite	the	schemas	above	to	use		many_to_many	:

defmodule	MyApp.TodoList	do

		use	Ecto.Schema

		schema	"todo_lists"	do

				field	:title

				many_to_many	:todo_items,	MyApp.TodoItem,	join_through:	MyApp.TodoListItem

				timestamps()

		end

end

defmodule	MyApp.TodoListItem	do

		use	Ecto.Schema

		schema	"todo_list_items"	do

				belongs_to	:todo_list,	MyApp.TodoList

				belongs_to	:todo_item,	MyApp.TodoItem

				timestamps()

		end

end

defmodule	MyApp.TodoItem	do

		use	Ecto.Schema

		schema	"todo_items"	do

				field	:description

				timestamps()

		end

end

Notice		MyApp.TodoList		no	longer	needs	to	define	a		has_many		association	pointing	to	the
	MyApp.TodoListItem		schema	and	instead	we	can	just	associate	to		:todo_items		using
	many_to_many	.

Differently	from		has_many	:through	,		many_to_many		associations	are	also	writeable.	This
means	we	can	send	data	through	our	forms	exactly	as	we	did	at	the	beginning	of	this
chapter:

8.	Many	to	many	and	casting

48

%{"todo_list"	=>	%{

		"title"	=>	"shipping	list",

		"todo_items"	=>	%{

				0	=>	%{"description"	=>	"bread"},

				1	=>	%{"description"	=>	"eggs"},

		}

}}

And	we	no	longer	need	to	define	a	changeset	function	in	the	intermediate	schema:

#	In	MyApp.TodoList

def	changeset(struct,	params	\\	%{})	do

		struct

		|>	Ecto.Changeset.cast(params,	[:title])

		|>	Ecto.Changeset.cast_assoc(:todo_items,	required:	true)

end

#	And	then	in	MyApp.TodoItem

def	changeset(struct,	params	\\	%{})	do

		struct

		|>	Ecto.Changeset.cast(params,	[:description])

end

In	other	words,	we	can	use	exactly	the	same	code	we	had	in	the	"todo	lists	has_many	todo
items"	case.	So	even	when	external	constraints	require	us	to	use	a	join	table,		many_to_many	
associations	can	automatically	manage	them	for	us.	Everything	you	know	about
associations	will	just	work	with		many_to_many		associations,	including	the	improvements	we
discussed	in	the	previous	chapter.

Finally,	even	though	we	have	specified	a	schema	as	the		:join_through		option	in
	many_to_many	,		many_to_many		can	also	work	without	intermediate	schemas	altogether	by
simply	giving	it	a	table	name:

defmodule	MyApp.TodoList	do

		use	Ecto.Schema

		schema	"todo_lists"	do

				field	:title

				many_to_many	:todo_items,	MyApp.TodoItem,	join_through:	"todo_list_items"

				timestamps()

		end

end

In	this	case,	you	can	completely	remove	the		MyApp.TodoListItem		schema	from	your
application	and	the	code	above	will	still	work.	The	only	difference	is	that	when	using	tables,
any	autogenerated	value	that	is	filled	by	Ecto	schema,	such	as	timestamps,	won't	be	filled

8.	Many	to	many	and	casting

49

as	we	no	longer	have	a	schema.	To	solve	this,	you	can	either	drop	those	fields	from	your
migrations	or	set	a	default	at	the	database	level.

Summary
In	this	chapter	we	used		many_to_many		associations	to	drastically	improve	a	polymorphic
association	design	that	relied	on		has_many	:through	.	Our	goal	was	to	allow	"todo_items"	to
associate	to	different	entities	in	our	code	base,	such	as	"todo_lists"	and	"projects".	We	have
done	this	by	creating	intermediate	tables	and	by	using		many_to_many		associations	to
automatically	manage	those	join	tables.

At	the	end,	our	schemas	may	look	like:

8.	Many	to	many	and	casting

50

defmodule	MyApp.TodoList	do

		use	Ecto.Schema

		schema	"todo_lists"	do

				field	:title

				many_to_many	:todo_items,	MyApp.TodoItem,	join_through:	"todo_list_items"

				timestamps()

		end

		def	changeset(struct,	params	\\	%{})	do

				struct

				|>	Ecto.Changeset.cast(params,	[:title])

				|>	Ecto.Changeset.cast_assoc(:todo_items,	required:	true)

		end

end

defmodule	MyApp.Project	do

		use	Ecto.Schema

		schema	"todo_lists"	do

				field	:name

				many_to_many	:todo_items,	MyApp.TodoItem,	join_through:	"project_items"

				timestamps()

		end

		def	changeset(struct,	params	\\	%{})	do

				struct

				|>	Ecto.Changeset.cast(params,	[:name])

				|>	Ecto.Changeset.cast_assoc(:todo_items,	required:	true)

		end

end

defmodule	MyApp.TodoItem	do

		use	Ecto.Schema

		schema	"todo_items"	do

				field	:description

				timestamps()

		end

		def	changeset(struct,	params	\\	%{})	do

				struct

				|>	Ecto.Changeset.cast(params,	[:description])

		end

end

And	the	database	migration:

8.	Many	to	many	and	casting

51

create	table("todo_lists")		do

		add	:title

		timestamps()

end

create	table("projects")		do

		add	:name

		timestamps()

end

create	table("todo_items")		do

		add	:description

		timestamps()

end

#	Primary	key	and	timestamps	are	not	required	if	using	many_to_many	without	schemas

create	table("todo_lists_items",	primary_key:	false)	do

		add	:todo_item_id,	references(:todo_items)

		add	:todo_list_id,	references(:todo_lists)

		#	timestamps()

end

#	Primary	key	and	timestamps	are	not	required	if	using	many_to_many	without	schemas

create	table("projects_items",	primary_key:	false)	do

		add	:todo_item_id,	references(:todo_items)

		add	:project_id,	references(:projects)

		#	timestamps()

end

Overall	our	code	looks	structurally	the	same	as		has_many		would,	although	at	the	database
level	our	relationships	are	expressed	with	join	tables.

While	in	this	chapter	we	changed	our	code	to	cope	with	the	parameter	format	required	by
	cast_assoc	,	in	the	next	chapter	we	will	drop		cast_assoc		altogether	and	use		put_assoc	
which	brings	more	flexibilities	when	working	with	associations.

8.	Many	to	many	and	casting

52

Many	to	many	and	upserts

In	the	previous	chapter	we	have	learned	about		many_to_many		associations	and	how	to	map
external	data	to	associated	entries	with	the	help	of		Ecto.Changeset.cast_assoc/3	.	While	in
the	previous	chapter	we	were	able	to	follow	the	rules	imposed	by		cast_assoc/3	,	doing	so	is
not	always	possible	nor	desired.

In	this	chapter,	we	are	going	to	look	at		Ecto.Changeset.put_assoc/4		in	contrast	to
	cast_assoc/3		and	explore	some	examples.	Finally,	we	will	learn	how	to	use	the	upsert
feature	from	Ecto	2.1.

put_assoc	vs	cast_assoc
Imagine	we	are	building	an	application	that	has	blog	posts	and	such	posts	may	have	many
tags.	Not	only	that,	a	given	tag	may	also	belong	to	many	posts.	This	is	a	classic	scenario
where	we	would	use		many_to_many		associations.	Our	migrations	would	look	like:

9.	Many	to	many	and	upserts

53

https://hexdocs.pm/ecto/Ecto.Schema.html#many_to_many/3
https://hexdocs.pm/ecto/Ecto.Changeset.html#cast_assoc/3
https://hexdocs.pm/ecto/Ecto.Changeset.html#put_assoc/4

create	table(:posts)	do

		add	:title

		add	:body

		timestamps()

end

create	table(:tags)	do

		add	:name

		timestamps()

end

create	unique_index(:tags,	[:name])

create	table(:posts_tags,	primary_key:	false)	do

		add	:post_id,	references(:posts)

		add	:tag_id,	references(:tags)

end

Note	we	added	a	unique	index	to	the	tag	name	because	we	don't	want	to	have	duplicated
tags	in	our	database.	It	is	important	to	add	an	index	at	the	database	level	instead	of	using	a
validation	since	there	is	always	a	chance	two	tags	with	the	same	name	would	be	validated
and	inserted	simultaneously,	passing	the	validation	and	leading	to	duplicated	entries.

Now	let's	also	imagine	we	want	the	user	to	input	such	tags	as	a	list	of	words	split	by	comma,
such	as:	"elixir,	erlang,	ecto".	Once	this	data	is	received	in	the	server,	we	will	break	it	apart
into	multiple	tags	and	associate	them	to	the	post,	creating	any	tag	that	does	not	yet	exist	in
the	database.

While	the	constraints	above	sound	reasonable,	that's	exactly	what	put	us	in	trouble	with
	cast_assoc/3	.	Remember	the		cast_assoc/3		changeset	function	was	designed	to	receive
external	parameters	and	compare	them	with	the	associated	data	in	our	structs.	To	do	so
correctly,	Ecto	requires	tags	to	be	sent	as	a	list	of	maps.	However	here	we	expect	tags	to	be
sent	in	a	string	separated	by	comma.

Furthermore,		cast_assoc/3		relies	on	the	primary	key	field	for	each	tag	sent	in	order	to
decide	if	it	should	be	inserted,	updated	or	deleted.	Again,	because	the	user	is	simply
passing	a	string,	we	don't	have	the	ID	information	at	hand.

When	we	can't	cope	with		cast_assoc/3	,	it	is	time	to	use		put_assoc/4	.	In		put_assoc/4	,	we
give	Ecto	structs	or	changesets	instead	of	parameters,	giving	us	the	ability	to	manipulate	the
data	as	we	want.	Let's	define	the	schema	and	the	changeset	function	for	a	post	which	may
receive	tags	as	a	string:

9.	Many	to	many	and	upserts

54

defmodule	MyApp.Post	do

		use	Ecto.Schema

		schema	"posts"	do

				field	:title

				field	:body

				many_to_many	:tags,	MyApp.Tag,	join_through:	"posts_tags",	on_replace:	:delete

				timestamps()

		end

		def	changeset(struct,	params	\\	%{})	do

				struct

				|>	Ecto.Changeset.cast(params,	[:title,	:body])

				|>	Ecto.Changeset.put_assoc(:tags,	parse_tags(params))

		end

		defp	parse_tags(params)		do

				(params["tags"]	||	"")

				|>	String.split(",")

				|>	Enum.map(&String.trim/1)

				|>	Enum.reject(&	&1	==	"")

				|>	Enum.map(&get_or_insert_tag/1)

		end

		defp	get_or_insert_tag(name)	do

				Repo.get_by(MyApp.Tag,	name:	name)	||

						Repo.insert!(MyApp.Tag,	%Tag{name:	name})

		end

end

In	the	changeset	function	above,	we	moved	all	the	handling	of	tags	to	a	separate	function,
called		parse_tags/1	,	which	checks	for	the	parameter,	breaks	each	tag	apart	via
	String.split/2	,	then	removes	any	left	over	whitespace	with		String.trim/1	,	rejects	any
empty	string	and	finally	checks	if	the	tag	exists	in	the	database	or	not,	creating	one	in	case
none	exists.

The		parse_tags/1		function	is	going	to	return	a	list	of		MyApp.Tag		structs	which	are	then
passed	to		put_assoc/3	.	By	calling		put_assoc/3	,	we	are	telling	Ecto	those	should	be	the
tags	associated	to	the	post	from	now	on.	In	case	a	previous	tag	was	associated	to	the	post
and	not	given	in		put_assoc/3	,	Ecto	will	invoke	the	behaviour	defined	in	the		:on_replace	
option,	which	we	have	set	to		:delete	.	The		:delete		behaviour	will	remove	the	association
between	the	post	and	the	removed	tag	from	the	database.

And	that's	all	we	need	to	use		many_to_many		associations	with		put_assoc/3	.		put_assoc/3		is
very	useful	when	we	want	to	have	more	explicit	control	over	our	associations	and	it	also
works	with		has_many	,		belongs_to		and	all	others	association	types.

However,	our	code	is	not	yet	ready	for	production.	Let's	see	why.

9.	Many	to	many	and	upserts

55

Constraints	and	race	conditions
Remember	we	added	a	unique	index	to	the	tag		:name		column	when	creating	the	tags	table.
We	did	so	to	protect	us	from	having	duplicate	tags	in	the	database.

By	adding	the	unique	index	and	then	using		get_by		with	a		insert!		to	get	or	insert	a	tag,
we	introduced	a	potential	error	in	our	application.	If	two	posts	are	submitted	at	the	same	time
with	a	similar	tag,	there	is	a	chance	we	will	check	if	the	tag	exists	at	the	same	time,	leading
both	submissions	to	believe	there	is	no	such	tag	in	the	database.	When	that	happens,	only
one	of	the	submissions	will	succeed	while	the	other	one	will	fail.	That's	a	race	condition:	your
code	will	error	from	time	to	time,	only	when	certain	conditions	are	met.	And	those	conditions
are	time	sensitive.

Many	developers	have	a	tendency	to	think	such	errors	won't	happen	in	practice	or,	if	they
happened,	they	would	be	irrelevant.	But	in	practice	they	often	lead	to	very	frustrating	user
experiences.	I	have	heard	a	first-hand	example	coming	from	a	mobile	game	company.	In	the
game,	a	player	is	able	to	play	quests	and	on	every	quest	you	have	to	choose	a	guest
character	from	another	player	out	of	a	short	list	to	go	on	the	quest	with	you.	At	the	end	of	the
quest,	you	have	the	option	to	add	the	guest	character	as	a	friend.

Originally	the	whole	guest	list	was	random	but,	as	time	passed,	players	started	to	complain
sometimes	old	accounts,	often	inactive,	were	being	shown	in	the	guests	options	list.	To
improve	the	situation,	the	game	developers	started	to	sort	the	guest	list	by	most	recently
active.	This	means	that,	if	you	have	just	played	recently,	there	is	a	higher	chance	of	you	to
be	on	someone's	guest	lists.

However,	when	they	did	such	change,	many	errors	started	to	show	up	and	users	were
suddenly	furious	in	the	game	forum.	That's	because	when	they	sorted	players	by	activity,	as
soon	as	two	players	logged	in,	their	characters	would	likely	appear	on	each	other's	guest
list.	If	those	players	picked	each	other's	characters,	the	first	to	add	the	other	as	friend	at	the
end	of	a	quest	would	be	able	to	succeed	but	an	error	would	appear	when	the	second	player
tried	to	add	the	other	as	a	friend	since	the	relationship	already	existed	in	the	database!
When	that	happened,	all	the	progress	done	in	the	quest	would	be	lost,	because	the	server
was	unable	to	properly	persist	the	quest	results	to	the	database.	Understandably,	players
started	to	file	complaints.

Long	story	short:	we	must	address	the	race	condition.

Luckily	Ecto	gives	us	a	mechanism	to	handle	constraint	errors	from	the	database.

9.	Many	to	many	and	upserts

56

Checking	for	constraint	errors
Since	our		get_or_insert_tag(name)		function	fails	when	a	tag	already	exists	in	the	database,
we	need	to	handle	such	scenarios	accordingly.	Let's	rewrite	it	taking	race	conditions	into
account:

defp	get_or_insert_tag(name)	do

		%Tag{}

		|>	Ecto.Changeset.change(name:	name)

		|>	Ecto.Changeset.unique_constraint(:name)

		|>	Repo.insert

		|>	case	do

				{:ok,	tag}	->	tag

				{:error,	_}	->	Repo.get_by!(MyApp.Tag,	name:	name)

		end

end

Instead	of	inserting	the	tag	directly,	we	now	build	a	changeset,	which	allows	us	to	use	the
	unique_constraint		annotation.	Now	if	the		Repo.insert		operation	fails	because	the	unique
index	for		:name		is	violated,	Ecto	won't	raise,	but	return	an		{:error,	changeset}		tuple.
Therefore,	if		Repo.insert		succeeds,	it	is	because	the	tag	was	saved,	otherwise	the	tag
already	exists,	which	we	then	fetch	with		Repo.get_by!	.

While	the	mechanism	above	fixes	the	race	condition,	it	is	a	quite	expensive	one:	we	need	to
perform	two	queries	for	every	tag	that	already	exists	in	the	database:	the	(failed)	insert	and
then	the	repository	lookup.	Given	that's	the	most	common	scenario,	we	may	want	to	rewrite
it	to	the	following:

defp	get_or_insert_tag(name)	do

		Repo.get_by(MyApp.Tag,	name:	name)	||	maybe_insert_tag(name)

end

defp	maybe_insert_tag(name)	do

		%Tag{}

		|>	Ecto.Changeset.change(name:	name)

		|>	Ecto.Changeset.unique_constraint(:name)

		|>	Repo.insert

		|>	case	do

				{:ok,	tag}	->	tag

				{:error,	_}	->	Repo.get_by!(MyApp.Tag,	name:	name)

		end

end

9.	Many	to	many	and	upserts

57

The	above	performs	1	query	for	every	tag	that	already	exists,	2	queries	for	every	new	tag
and	possibly	3	queries	in	the	case	of	race	conditions.	While	the	above	would	perform	slightly
better	on	average,	Ecto	2.1	has	a	better	option	in	stock.

Upserts
Ecto	2.1	supports	the	so-called	"upsert"	command	which	is	an	abbreviation	for	"update	or
insert".	The	idea	is	that	we	try	to	insert	a	record	and	in	case	it	conflicts	with	an	existing	entry,
for	example	due	to	a	unique	index,	we	can	choose	how	we	want	the	database	to	act	by
either	raising	an	error	(the	default	behaviour),	ignoring	the	insert	(no	error)	or	by	updating
the	conflicting	database	entries.

"upsert"	in	Ecto	2.1	is	done	with	the		:on_conflict		option.	Let's	rewrite
	get_or_insert_tag(name)		once	more	but	this	time	using	the		:on_conflict		option.
Remember	that	"upsert"	is	a	new	feature	in	PostgreSQL	9.5,	so	make	sure	you	are	up	to
date.

Your	first	try	in	using		:on_conflict		may	be	by	setting	it	to		:nothing	,	as	below:

defp	get_or_insert_tag(name)	do

		Repo.insert!(%MyApp.Tag{name:	name},	on_conflict:	:nothing)

end

While	the	above	won't	raise	an	error	in	case	of	conflicts,	it	also	won't	update	the	struct	given,
so	it	will	return	a	tag	without	ID.	One	solution	is	to	force	an	update	to	happen	in	case	of
conflicts,	even	if	the	update	is	about	setting	the	tag	name	to	its	current	name.	In	such	cases,
PostgreSQL	also	requires	the		:conflict_target		option	to	be	given,	which	is	the	column	(or
a	list	of	columns)	we	are	expecting	the	conflict	to	happen:

defp	get_or_insert_tag(name)	do

		Repo.insert!(%MyApp.Tag{name:	name},

															on_conflict:	[set:	[name:	name]],	conflict_target:	:name)

end

And	that's	it!	We	try	to	insert	a	tag	with	the	given	name	and	if	such	tag	already	exists,	we	tell
Ecto	to	update	its	name	to	the	current	value,	updating	the	tag	and	fetching	its	id.	While	the
above	is	certainly	a	step	up	from	all	solutions	so	far,	it	still	performs	one	query	per	tag.	If	10
tags	are	sent,	we	will	perform	10	queries.	Can	we	further	improve	this?

9.	Many	to	many	and	upserts

58

Upserts	and	insert_all
Ecto	2.1	did	not	only	add	the		:on_conflict		option	to		Repo.insert/2		but	also	to	the
	Repo.insert_all/3		function	introduced	in	Ecto	2.0.	This	means	we	can	build	one	query	that
attempts	to	insert	all	missing	tags	and	then	another	query	that	fetches	all	of	them	at	once.
Let's	see	how	our		Post		schema	will	look	like	after	those	changes:

defmodule	MyApp.Post	do

		use	Ecto.Schema

		#	Schema	is	the	same

		schema	"posts"	do

				add	:title

				add	:body

				many_to_many	:tags,	MyApp.Tag,	join_through:	"posts_tags",	on_replace:	:delete

				timestamps()

		end

		#	Changeset	is	the	same

		def	changeset(struct,	params	\\	%{})	do

				struct

				|>	Ecto.Changeset.cast(params,	[:title,	:body])

				|>	Ecto.Changeset.put_assoc(:tags,	parse_tags(params))

		end

		#	Parse	tags	has	slightly	changed

		defp	parse_tags(params)		do

				(params["tags"]	||	"")

				|>	String.split(",")

				|>	Enum.map(&String.trim/1)

				|>	Enum.reject(&	&1	==	"")

				|>	insert_and_get_all()

		end

		defp	insert_and_get_all([])	do

				[]

		end

		defp	insert_and_get_all(names)	do

				maps	=	Enum.map(names,	&%{name:	&1})

				Repo.insert_all	MyApp.Tag,	maps,	on_conflict:	:nothing

				Repo.all	from	t	in	MyApp.Tag,	where:	t.name	in	^names

		end

end

Instead	of	attempting	to	get	and	insert	each	tag	individually,	the	code	above	work	on	all	tags
at	once,	first	by	building	a	list	of	maps	which	is	given	to		insert_all		and	then	by	looking	up
all	tags	with	the	existing	names.	Therefore,	regardless	of	how	many	tags	are	sent,	we	will
perform	only	2	queries	(unless	no	tag	is	sent,	in	which	we	return	an	empty	list	back

9.	Many	to	many	and	upserts

59

promptly).	This	solution	is	only	possible	in	Ecto	2.1	thanks	to	the		:on_conflict		option,
which	guarantees		insert_all		won't	fail	in	case	a	unique	index	is	violated,	such	as	duplicate
tag	names.

Finally,	keep	in	mind	that	we	haven't	used	transactions	in	any	of	the	examples	so	far.	That
decision	was	deliberate	as	we	relied	on	the	fact	that	getting	or	inserting	tags	is	an
idempotent	operation,	i.e.	we	can	repeat	it	many	times	for	a	given	input	and	it	will	always
give	us	the	same	result	back.	Therefore,	even	if	we	fail	to	introduce	the	post	to	the	database
due	to	a	validation	error,	the	user	will	be	free	to	resubmit	the	form	and	we	will	just	attempt	to
get	or	insert	the	same	tags	once	again.	The	downside	of	this	approach	is	that	tags	will	be
created	even	if	creating	the	post	fails,	which	means	some	tags	may	not	have	posts
associated	to	them.	In	case	that's	not	desired,	the	whole	operation	could	be	wrapped	in	a
transaction	or	modeled	with	the		Ecto.Multi		abstraction	we	will	discuss	in	the	next	chapter.

9.	Many	to	many	and	upserts

60

https://hexdocs.pm/ecto/Ecto.Multi.html

Composable	transactions	with
Ecto.Multi

Ecto	relies	on	database	transactions	when	multiple	operations	must	be	performed
atomically.	Transactions	can	be	performed	via	the		Repo.transaction		function:

Repo.transaction(fn	->

		mary_update	=	from	Account,	where:	[id:	^mary.id],	update:	[inc:	[balance:	+10]]

		{1,	_}	=	Repo.update_all(mary_update)

		john_update	=	from	Account,	where:	[id:	^john.id],	update:	[inc:	[balance:	-10]]

		{1,	_}	=	Repo.update_all(john_update)

end)

When	we	expect	both	operations	to	succeed,	as	above,	transactions	are	quite	straight-
forward.	However,	transactions	get	more	complicated	if	we	need	to	check	the	status	of	each
operation	along	the	way:

Repo.transaction(fn	->

		mary_update	=	from	Account,	where:	[id:	^mary.id],	update:	[inc:	[balance:	+10]]

		case	Repo.update_all	query	do

				{1,	_}	->

						john_update	=	from	Account,	where:	[id:	^john.id],	update:	[inc:	[balance:	-10]]

						case	Repo.update_all	query	do

								{1,	_}	->

										{mary,	john}

								{_,	_}	->

										Repo.rollback({:failed_transfer,	john})

						end

				{_,	_}	->

						Repo.rollback({:failed_transfer,	mary})

		end

end)

10.	Composable	transactions	with	Ecto.Multi

61

Transactions	in	Ecto	can	also	be	nested	arbitrarily.	For	example,	imagine	the	transaction
above	is	moved	into	its	own	function	that	receives	both	accounts,	defined	as
	transfer_money(mary,	john,	10)	,	and	besides	transferring	money	we	also	want	to	log	the
transfer:

Repo.transaction(fn	->

		case	transfer_money(mary,	john,	10)	do

				{:ok,	{mary,	john}}	->

						Repo.insert!(%Transfer{from:	mary.id,	to:	john.id,	amount:	10})

				{:error,	error}	->

						Repo.rollback(error)

		end

end)

The	snippet	above	starts	a	transaction	and	then	calls		transfer_money/3		that	also	runs	in	a
transaction.	This	works	because	Ecto	converts	nested	transaction	into	savepoints.	In	case
an	inner	transaction	fails,	it	rolls	back	to	its	specific	savepoint.

While	nesting	transactions	can	improve	the	code	readability	by	breaking	large	transactions
into	multiple	smaller	transactions,	there	is	still	a	lot	of	boilerplate	involved	in	handling	the
success	and	failure	scenarios.	Furthermore,	composition	is	quite	limited,	as	all	operations
must	still	be	performed	inside	transaction	blocks.

A	more	declarative	approach	when	working	with	transactions	would	be	to	define	all
operations	we	want	to	perform	in	a	transaction	decoupled	from	the	transaction	execution.
This	way	we	would	be	able	to	compose	transactions	operations	without	worrying	about	its
execution	context	or	about	each	individual	success/failure	scenario.	That's	exactly	what
	Ecto.Multi		allows	us	to	do.

Composing	with	data	structures
Let's	rewrite	the	snippets	above	using		Ecto.Multi	.	The	first	snippet	that	transfers	money
between	mary	and	john	can	rewritten	to:

mary_update	=	from	Account,	where:	[id:	^mary.id],	update:	[inc:	[balance:	+10]]

john_update	=	from	Account,	where:	[id:	^john.id],	update:	[inc:	[balance:	-10]]

Ecto.Multi.new

|>	Ecto.Multi.update_all(:mary,	mary_update)

|>	Ecto.Multi.update_all(:john,	john_update)

	Ecto.Multi		is	a	data	structure	that	defines	multiple	operations	that	must	be	performed
together,	without	worrying	about	when	they	will	be	executed.		Ecto.Multi		mirrors	most	of	the
	Ecto.Repo		API,	with	the	difference	each	operation	must	be	explicitly	named.	In	the	example

10.	Composable	transactions	with	Ecto.Multi

62

above,	we	have	defined	two	update	operations,	named		:mary		and		:john	.	As	we	will	see
later,	the	names	are	important	when	handling	the	transaction	results.

Since		Ecto.Multi		is	just	a	data	structure,	we	can	pass	it	as	argument	to	other	functions,	as
well	as	return	it.	Assuming	the	multi	above	is	moved	into	its	own	function,	defined	as
	transfer_money(mary,	john,	value)	,	we	can	add	a	new	operation	to	the	multi	that	logs	the
transfer	as	follows:

transfer_money(mary,	john,	10)

|>	Ecto.Multi.insert(:transfer,	%Transfer{from:	mary.id,	to:	john.id,	amount:	10})

This	is	considerably	simpler	than	the	nested	transaction	approach	we	have	seen	earlier.
Once	all	operations	are	defined	in	the	multi,	we	can	finally	call		Repo.transaction	,	this	time
passing	the	multi:

transfer_money(mary,	john,	10)

|>	Ecto.Multi.insert(:transfer,	%Transfer{from:	mary.id,	to:	john.id,	amount:	10})

|>	Repo.transaction()

|>	case	do

		{:ok,	%{transfer:	transfer}}	->

				#	Handle	success	case

		{:error,	name,	value,	rolled_back_changes}	->

				#	Handle	failure	case

end

If	all	operations	in	the	multi	succeed,	it	returns		{:ok,	map}		where	the	map	contains	the
name	of	all	operations	as	keys	and	their	success	value.	If	any	operation	in	the	multi	fails,	the
transaction	is	rolled	back	and		Repo.transaction		returns		{:error,	name,	value,
rolled_back_changes}	,	where		name		is	the	name	of	the	failed	operation,		value		is	the	failure
value	and		rolled_back_changes		is	a	map	of	the	previously	successful	multi	operations	that
have	been	rolled	back	due	to	the	failure.

In	other	words,		Ecto.Multi		takes	care	of	all	the	flow	control	boilerplate	while	decoupling	the
transaction	definition	from	its	execution,	allowing	us	to	compose	operations	as	needed.

Dependent	values
Besides	operations	such	as		insert	,		update		and		delete	,		Ecto.Multi		also	provides
functions	for	handling	more	complex	scenarios.	For	example,		prepend		and		append		can	be
used	to	merge	multis	together.	And	more	generally,	the		Ecto.Multi.run/3		can	be	used	to
define	any	operation	that	depends	on	the	results	of	a	previous	multi	operation.

10.	Composable	transactions	with	Ecto.Multi

63

Let's	study	a	more	practical	example	by	revisiting	the	problem	defined	in	the	previous
chapter.	Back	then,	we	wanted	to	modify	a	post	while	possibly	giving	it	a	list	of	tags	as	a
string	separated	by	commas.	At	the	end	of	the	chapter,	we	built	a	solution	that	would	insert
any	missing	tag	and	then	fetch	all	of	them	using	only	two	queries:

defmodule	MyApp.Post	do

		use	Ecto.Schema

		#	Schema	is	the	same

		schema	"posts"	do

				field	:title

				field	:body

				many_to_many	:tags,	MyApp.Tag,	join_through:	"posts_tags",	on_replace:	:delete

				timestamps()

		end

		#	Changeset	is	the	same

		def	changeset(struct,	params	\\	%{})	do

				struct

				|>	Ecto.Changeset.cast(params,	[:title,	:body])

				|>	Ecto.Changeset.put_assoc(:tags,	parse_tags(params))

		end

		#	Parse	tags	has	slightly	changed

		defp	parse_tags(params)		do

				(params["tags"]	||	"")

				|>	String.split(",")

				|>	Enum.map(&String.trim/1)

				|>	Enum.reject(&	&1	==	"")

				|>	insert_and_get_all()

		end

		defp	insert_and_get_all([])	do

				[]

		end

		defp	insert_and_get_all(names)	do

				maps	=	Enum.map(names,	&%{name:	&1})

				Repo.insert_all	MyApp.Tag,	maps,	on_conflict:	:nothing

				Repo.all	from	t	in	MyApp.Tag,	where:	t.name	in	^names

		end

end

While		insert_and_get_all/1		is	idempotent,	allowing	us	to	run	it	multiple	times	and	get	the
same	result	back,	it	does	not	run	inside	a	transaction,	so	any	failure	while	attempting	to
modify	the	parent	post	struct	would	end-up	creating	tags	that	have	no	posts	associated	to
them.

10.	Composable	transactions	with	Ecto.Multi

64

Let's	fix	the	problem	above	by	introducing	using		Ecto.Multi	.	Let's	start	by	splitting	the	logic
into	both		Post		and		Tag		modules	and	keeping	it	free	from	side-effects	such	as	database
operations:

defmodule	MyApp.Post	do

		use	Ecto.Schema

		schema	"posts"	do

				field	:title

				field	:body

				many_to_many	:tags,	MyApp.Tag,	join_through:	"posts_tags",	on_replace:	:delete

				timestamps()

		end

		def	changeset(struct,	tags,	params)	do

				struct

				|>	Ecto.Changeset.cast(params,	[:title,	:body])

				|>	Ecto.Changeset.put_assoc(:tags,	tags)

		end

end

defmodule	MyApp.Tag	do

		use	Ecto.Schema

		schema	"tags"	do

				field	:name

				timestamps()

		end

		def	parse(tags)	do

				(tags	||	"")

				|>	String.split(",")

				|>	Enum.map(&String.trim/1)

				|>	Enum.reject(&	&1	==	"")

		end

end

Now,	whenever	we	need	to	introduce	a	post	with	tags,	we	can	create	a	multi	that	wraps	all
operations	and	the	repository	access:

10.	Composable	transactions	with	Ecto.Multi

65

def	insert_or_update_post_with_tags(post,	params)	do

		Ecto.Multi.new

		|>	Ecto.Multi.run(:tags,	&insert_and_get_all_tags(&1,	params))

		|>	Ecto.Multi.run(:post,	&insert_or_update_post(&1,	post,	params)

		|>	Repo.transaction()

end

defp	insert_and_get_all_tags(_changes,	params)	do

		case	MyApp.Tag.parse(params["tags"])	do

				[]	->

						{:ok,	[]}

				tags	->

						maps	=	Enum.map(names,	&%{name:	&1})

						Repo.insert_all(MyApp.Tag,	maps,	on_conflict:	:nothing)

						{:ok,	Repo.all(from	t	in	MyApp.Tag,	where:	t.name	in	^names)}

		end

end

defp	insert_or_update_post(%{tags:	tags},	post,	params)	do

		Repo.insert_or_update	MyApp.Post.changeset(post,	tags,	params)

end

In	the	example	above	we	have	used		Ecto.Multi.run/3		twice,	albeit	for	two	different
reasons.

1.	 In		Ecto.Multi.run(:tags,	...)	,	we	used		run/3		because	we	need	to	perform	both
	insert_all		and		all		operations,	and	while	the	multi	exposes
	Ecto.Multi.insert_all/4	,	it	does	not	yet	expose	a		Ecto.Multi.all/3	.	Whenever	we
need	to	perform	a	repository	operation	that	is	not	supported	by		Ecto.Multi	,	we	can
always	fallback	to		run/3	

2.	 In		Ecto.Multi.run(:post,	...)	,	we	used		run/3		because	we	need	to	access	the	value
of	a	previous	multi	operation.	The	function	given	to		run/3		receives	a	map	with	the
results	of	the	operations	performed	so	far.	To	grab	the	tags	returned	in	the	previous
step,	we	simply	pattern	match	on		%{tags:	tags}		on		insert_or_update_post	

While		run/3		is	very	handy	when	we	need	to	go	beyond	the	functionalities	provided	natively
by		Ecto.Multi	,	it	has	the	downside	that	operations	defined	with		Ecto.Multi.run/3		are
opaque	and	therefore	they	cannot	be	inspected	by	functions	such	as		Ecto.Multi.to_list/1	.
Still,		Ecto.Multi		allows	us	to	greatly	simplify	control	flow	logic	and	remove	boilerplate	when
working	with	transactions.

10.	Composable	transactions	with	Ecto.Multi

66

Concurrent	tests	with	the	SQL
Sandbox

Our	last	chapter	is	about	one	of	the	most	important	features	in	Ecto	2.0:	the	concurrent	SQL
sandbox.	Given	Elixir's	capability	of	using	all	of	the	machine	resources	available,	the	ability
to	run	database	dependent	tests	concurrently	gives	developers	a	low	effort	opportunity	to
speed	up	their	test	suite	by	2x,	4x,	8x	or	more	times,	depending	on	the	number	of	cores
available.

Whenever	you	start	an	Ecto	repository	in	your	supervision	tree,	such	as
	supervisor(MyApp.Repo,	[])	,	Ecto	starts	a	supervisor	with	a	connection	pool.	The
connection	pool	holds	multiple	open	connections	to	the	database.	Whenever	you	want	to
perform	a	database	operation,	for	example	in	a	web	request,	Ecto	automatically	gets	a
connection	from	the	pool,	performs	the	operation	you	requested,	and	then	puts	the
connection	back	in	the	pool.

This	means	that,	when	writing	tests	using	Ecto's	default	connection	pool	(and	not	the	SQL
sandbox),	each	time	you	run	a	query,	you	will	likely	get	a	different	connection	from	the	pool.
This	is	not	good	for	tests	since	we	want	all	operations	in	the	same	test	to	use	the	same
connection.

Not	only	that,	we	also	want	data	isolation	between	the	tests.	If	I	introduce	a	record	to	the
"users"	table	in	test	A,	test	B	should	not	see	those	entries	when	querying	the	same	"users"
table.

Ecto	1.0	solved	the	first	problem	by	simply	forcing	tests	to	have	only	one	connection	in	the
database	pool.	Similarly,	data	isolation	was	addressed	by	simply	not	allowing	tests	to	run
concurrently.	While	it	worked,	it	has	the	major	downside	of	being	unable	to	leverage	all	of
our	machine	resources.

11.	Concurrent	tests	with	the	SQL	Sandbox

67

https://hexdocs.pm/ecto/Ecto.Adapters.SQL.Sandbox.html

Explicit	checkouts
Ecto	2.0	solves	the	problems	above	differently.	The	main	idea	is	that	we	will	allow	the	pool	to
have	multiple	connections	but,	instead	of	the	connection	being	checked	out	implicitly	every
time	we	run	a	query,	the	connection	must	be	explicitly	checked	out	at	the	beginning	of	every
test.

Once	a	connection	is	explicitly	checked	out,	the	test	now	owns	that	particular	connection
until	the	test	is	over.	This	way	we	guarantee	that	every	time	a	connection	is	used	in	a	test,	it
is	always	the	same	connection.

Let's	start	by	setting	up	our	database	to	the	use		Ecto.Adapters.SQL.Sandbox		pool.	You	can
set	those	options	in	your		config/config.exs		(or	preferably		config/test.exs):

config	:my_app,	Repo,

		pool:	Ecto.Adapters.SQL.Sandbox

By	default	the	sandbox	pool	starts	in		:automatic		mode,	which	is	exactly	how	Ecto	works
without	the	SQL	sandbox	pool:	connections	are	checked	out	automatically	as	needed.	This
allows	us	to	set	up	the	database,	for	example	by	running	migrations	or	in	your
	test/test_helper.exs	,	as	usual.

Before	our	tests	start,	we	need	to	convert	the	pool	to		:manual		mode,	where	each
connection	must	be	explicitly	checked	out.	We	do	so	by	calling	the		mode/2		function,
typically	at	the	end	of	the		test/test_helper.exs		file:

#	At	the	end	of	your	test_helper.exs

#	Set	the	pool	mode	to	manual	for	explicit	checkouts

Ecto.Adapters.SQL.Sandbox.mode(MyApp.Repo,	:manual)

If	you	simply	add	the	line	above	and	you	do	not	change	your	tests	to	explicitly	check	a
connection	out	from	the	pool,	all	of	your	tests	will	now	fail.	To	solve	this,	you	could	explicitly
check	out	the	connection	on	each	test	but,	to	avoid	repetition,	let's	define	a
	ExUnit.CaseTemplate		that	automatically	does	so	in		setup	:

defmodule	MyApp.RepoCase	do

		use	ExUnit.CaseTemplate

		setup	do

				#	Explicitly	get	a	connection	before	each	test

				:ok	=	Ecto.Adapters.SQL.Sandbox.checkout(MyApp.Repo)

		end

end

11.	Concurrent	tests	with	the	SQL	Sandbox

68

Now	in	your	tests,	instead	of		use	ExUnit.Case	,	you	may	write		use	MyApp.RepoCase,	async:
true	.	By	following	the	steps	above,	we	are	now	able	to	have	multiple	tests	running
concurrently,	each	owning	a	specific	database	transaction.

However,	you	may	wonder,	how	does	Ecto	guarantees	that	the	data	generated	in	one	test
does	not	affect	other	tests?

Transactions
The	second	main	insight	in	the	SQL	Sandbox	is	the	idea	of	running	each	explicitly	checked
out	connection	inside	a	transaction.	Every	time	you	run
	Ecto.Adapters.SQL.Sandbox.checkout(MyApp.Repo)		in	a	test,	it	does	not	only	check	out	a
connection	but	it	also	guarantees	that	connection	has	opened	a	transaction	to	the	database.
This	way,	any	insert,	update	or	delete	you	perform	in	your	tests	will	be	visible	only	to	that
test.

Furthermore,	at	the	end	of	every	test,	we	automatically	rollback	the	transaction,	effectively
reverting	all	of	the	database	changes	you	have	performed	in	your	tests.	This	guarantees	a
test	won't	affect	tests	running	concurrently	nor	any	test	that	may	run	afterwards.

While	the	approach	of	using	multiple	connections	with	transactions	works	in	many	cases,	it
also	imposes	some	limitations	depending	on	how	database	engines	manage	transactions
and	perform	concurrency	control.	For	example,	while	both	PostgreSQL	and	MySQL	support
SQL	Sandbox,	only	PostgreSQL	supports	concurrent	tests	with	the	SQL	Sandbox.
Therefore,	do	not	use		async:	true		with	MySQL	as	you	may	run	into	deadlocks.

When	using	the	concurrent	SQL	sandbox,	there	is	also	a	chance	of	running	into	deadlocks
when	running	tests	with	PostgreSQL	with	shared	resources,	such	as	database	indexes.	But
those	cases	are	well	documented	in	the		Ecto.Adapters.SQL.Sandbox	,	under	the	FAQ	section.

Ownership
Whenever	a	test	explicitly	checks	out	a	connection	from	the	SQL	Sandbox	pool,	we	say	the
test	process	owns	the	connection.	If	a	test,	or	any	other	process,	does	not	own	a
connection,	that	test	will	error	with	a	message	describing	it	has	no	database	connection.

Let's	see	an	example:

11.	Concurrent	tests	with	the	SQL	Sandbox

69

https://hexdocs.pm/ecto/Ecto.Adapters.SQL.Sandbox.html

use	MyApp.RepoCase,	async:	true

test	"create	two	posts,	one	sync,	another	async"	do

		task	=	Task.async(fn	->

				Repo.insert!(%Post{title:	"async"})

		end)

		assert	%Post{}	=	Repo.insert!(%Post{title:	"sync"})

		assert	%Post{}	=	Task.await(task)

end

The	test	above	will	fail	with	an	error	similar	to:

**	(RuntimeError)	cannot	find	ownership	process	for	#PID<0.35.0>

Once	we	spawn	a		Task	,	there	is	no	connection	assigned	to	the	task	process,	causing	it	to
fail.

While	most	times	we	want	different	processes	to	have	their	own	database	connection,
sometimes	a	test	may	need	to	interact	with	multiple	processes	that	collaborate	over	the
same	data.	Therefore,	all	of	those	processes	must	the	same	connection	so	they	all	belong	to
the	same	transaction.

The	sandbox	module	provides	two	ways	of	doing	so,	via	allowances	or	by	running	in	shared
mode.

Allowances

If	a	process	explicitly	owns	a	connection,	that	process	may	also	allow	other	processes	to
use	that	connection,	effectively	allowing	multiple	processes	to	collaborate	over	the	same
connection	at	the	same	time.	Let's	give	it	a	try:

test	"create	two	posts,	one	sync,	another	async"	do

		parent	=	self()

		task	=	Task.async(fn	->

				Ecto.Adapters.SQL.Sandbox.allow(Repo,	parent,	self())

				Repo.insert!(%Post{title:	"async"})

		end)

		assert	%Post{}	=	Repo.insert!(%Post{title:	"sync"})

		assert	%Post{}	=	Task.await(task)

end

And	that's	it!	By	calling		allow/3	,	we	are	explicitly	assigning	the	parent's	connection	(i.e.	the
test	process'	connection)	to	the	task.

11.	Concurrent	tests	with	the	SQL	Sandbox

70

Because	allowances	use	an	explicit	mechanism,	their	advantage	is	that	you	can	still	run	your
tests	in	async	mode.	The	downside	is	that	you	need	to	explicitly	control	and	allow	every
single	process,	which	is	not	always	possible.	In	such	cases,	you	may	resort	to	shared	mode.

Shared	mode

Shared	mode	allows	a	process	to	share	its	connection	with	any	other	process	automatically,
without	relying	on	explicit	allowances.

Let's	change	the	example	above	to	use	shared	mode:

test	"create	two	posts,	one	sync,	another	async"	do

		#	Setting	the	shared	mode	must	be	done	only	after	checkout

		Ecto.Adapters.SQL.Sandbox.mode(Repo,	{:shared,	self()})

		task	=	Task.async(fn	->

				Repo.insert!(%Post{title:	"async"})

		end)

		assert	%Post{}	=	Repo.insert!(%Post{title:	"sync"})

		assert	%Post{}	=	Task.await(task)

end

By	calling		mode({:shared,	self()})	,	any	process	that	needs	to	talk	to	the	database	will	now
use	the	same	connection	as	the	one	checked	out	by	the	test	process.

The	advantage	of	shared	mode	is	that	by	calling	a	single	function,	you	will	ensure	all
upcoming	processes	and	operations	will	use	that	shared	connection,	without	a	need	to
explicitly	allow	them.	The	downside	is	that	tests	can	not	run	concurrently	in	shared	mode.

Summing	up
In	this	chapter	we	have	learned	about	the	powerful	concurrent	SQL	sandbox	and	how	it
leverages	transactions	and	explicit	checkouts	to	allow	tests	to	run	concurrently	even	when
they	need	to	communicate	to	the	database.

We	have	also	discussed	two	mechanism	for	a	test	to	share	ownerships:

Using	allowances	-	requires	explicit	allowances	via		allow/3	.	Tests	may	run
concurrently.

Using	shared	mode	-	does	not	require	explicit	allowances.	Tests	cannot	run
concurrently.

11.	Concurrent	tests	with	the	SQL	Sandbox

71

While	throughout	the	book	we	covered	how	Ecto	is	a	collection	of	tools	for	working	on	your
domain,	the	last	chapters	also	shows	Ecto	provides	tools	to	better	interact	to	the	database
regardless	of	your	domain,	such	as	Ecto.Multi	which	leverages	the	functional	properties
behind	Elixir,	as	well	as	the	SQL	Sandbox	which	exploits	the	concurrency	power	behind	the
Erlang	VM.

We	hope	you	have	learned	a	lot	throughout	this	journey	and	that	you	are	ready	to	write
clean,	performant	and	maintainable	applications.

11.	Concurrent	tests	with	the	SQL	Sandbox

72

11.	Concurrent	tests	with	the	SQL	Sandbox

73

CONTACT	US

http://plataformatec.com.br/contact?utm_source=ebook-ecto-2&utm_medium=referral&utm_campaign=ebook-ecto-2&utm_content=contracapa

	Foreword
	Introduction
	1. Ecto is not your ORM
	2. Schemaless queries
	3. Schemaless changesets
	4. Dynamic queries
	5. Multi tenancy with query prefixes
	6. Aggregates and subqueries
	7. Improved associations and factories
	8. Many to many and casting
	9. Many to many and upserts
	10. Composable transactions with Ecto.Multi
	11. Concurrent tests with the SQL Sandbox

