
1.1

1.2

1.3

1.4

1.4.1

1.4.1.1

1.4.1.2

1.4.1.3

1.4.1.4

1.4.2

1.4.2.1

1.4.2.2

1.4.2.3

1.4.2.4

1.4.3

1.5

1.5.1

1.5.2

1.5.3

1.6

1.6.1

1.6.2

1.6.3

1.7

1.7.1

1.7.2

1.8

1.8.1

1.8.2

1.8.3

Table	of	Contents
Introduction

Install

Core	Language

The	Elm	Architecture

User	Input

Buttons

Text	Fields

Forms

More

Effects

Random

HTTP

Time

Web	Sockets

More

Types

Reading	Types

Type	Aliases

Union	Types

Error	Handling	and	Tasks

Maybe

Result

Task

Interop

JSON

JavaScript

Scaling	The	Elm	Architecture

Labeled	Checkboxes

Radio	Buttons

Modules

1

1.8.4

1.9

1.9.1

1.9.2

More

Effect	Managers

Caching

Batching

2

An	Introduction	to	Elm
Elm	is	a	functional	language	that	compiles	to	JavaScript.	It	competes	with	projects	like
React	as	a	tool	for	creating	websites	and	web	apps.	Elm	has	a	very	strong	emphasis	on
simplicity,	ease-of-use,	and	quality	tooling.

This	guide	will:

Teach	you	the	fundamentals	of	programming	in	Elm.
Show	you	how	to	make	interactive	apps	with	The	Elm	Architecture.
Emphasize	the	principles	and	patterns	that	generalize	to	programming	in	any	language.

By	the	end	I	hope	you	will	not	only	be	able	to	create	great	web	apps	in	Elm,	but	also
understand	the	core	ideas	and	patterns	that	make	Elm	nice	to	use.

If	you	are	on	the	fence,	I	can	safely	guarantee	that	if	you	give	Elm	a	shot	and	actually	make
a	project	in	it,	you	will	end	up	writing	better	JavaScript	and	React	code.	The	ideas	transfer
pretty	easily!

A	Quick	Sample
Of	course	I	think	Elm	is	good,	so	look	for	yourself.

Here	is	a	simple	counter.	If	you	look	at	the	code,	it	just	lets	you	increment	and	decrement
the	counter:

Introduction

3

http://elm-lang.org/examples/buttons

import	Html	exposing	(Html,	button,	div,	text)

import	Html.Events	exposing	(onClick)

main	=

		Html.beginnerProgram	{	model	=	0,	view	=	view,	update	=	update	}

type	Msg	=	Increment	|	Decrement

update	msg	model	=

		case	msg	of

				Increment	->

						model	+	1

				Decrement	->

						model	-	1

view	model	=

		div	[]

				[button	[onClick	Decrement]	[text	"-"]

				,	div	[]	[text	(toString	model)]

				,	button	[onClick	Increment]	[text	"+"]

]

Notice	that	the		update		and		view		are	entirely	decoupled.	You	describe	your	HTML	in	a
declarative	way	and	Elm	takes	care	of	messing	with	the	DOM.

Why	a	functional	language?
Forget	what	you	have	heard	about	functional	programming.	Fancy	words,	weird	ideas,	bad
tooling.	Barf.	Elm	is	about:

No	runtime	errors	in	practice.	No		null	.	No		undefined		is	not	a	function.
Friendly	error	messages	that	help	you	add	features	more	quickly.
Well-architected	code	that	stays	well-architected	as	your	app	grows.
Automatically	enforced	semantic	versioning	for	all	Elm	packages.

No	combination	of	JS	libraries	can	ever	give	you	this,	yet	it	is	all	free	and	easy	in	Elm.	Now
these	nice	things	are	only	possible	because	Elm	builds	upon	40+	years	of	work	on	typed
functional	languages.	So	Elm	is	a	functional	language	because	the	practical	benefits	are
worth	the	couple	hours	you'll	spend	reading	this	guide.

I	have	put	a	huge	emphasis	on	making	Elm	easy	to	learn	and	use,	so	all	I	ask	is	that	you
give	Elm	a	shot	and	see	what	you	think.	I	hope	you	will	be	pleasantly	surprised!

Introduction

4

Introduction

5

Note:	If	you	do	not	want	to	install	yet,	you	can	follow	along	in	this	guide	with	the	online
editor	and	the	online	REPL.

Install
Mac	—	installer
Windows	—	installer
Anywhere	—	npm	installer	or	build	from	source

After	installing	through	any	of	those	routes,	you	will	have	the	following	command	line	tools:

	elm-repl		—	play	with	Elm	expressions
	elm-reactor		—	get	a	project	going	quickly
	elm-make		—	compile	Elm	code	directly
	elm-package		—	download	packages

We	will	go	over	how	they	all	work	in	more	detail	right	after	we	get	your	editor	set	up!

Troubleshooting:	The	fastest	way	to	learn	anything	is	to	talk	with	other	people	in	the
Elm	community.	We	are	friendly	and	happy	to	help!	So	if	you	get	stuck	during
installation	or	encounter	something	weird,	visit	the	Elm	Slack	and	ask	about	it.	In	fact,	if
you	run	into	something	confusing	at	any	point	while	learning	or	using	Elm,	come	ask	us
about	it.	You	can	save	yourself	hours.	Just	do	it!

Configure	Your	Editor
Using	Elm	is	way	nicer	when	you	have	a	code	editor	to	help	you	out.	There	are	Elm	plugins
for	at	least	the	following	editors:

Atom
Brackets
Emacs
IntelliJ
Light	Table
Sublime	Text
Vim
VS	Code

If	you	do	not	have	an	editor	at	all,	Sublime	Text	is	a	great	one	to	get	started	with!

You	may	also	want	to	try	out	elm-format	which	makes	your	code	pretty!

Install

6

http://elm-lang.org/try
http://elmrepl.cuberoot.in/
http://install.elm-lang.org/Elm-Platform-0.18.pkg
http://install.elm-lang.org/Elm-Platform-0.18.exe
https://www.npmjs.com/package/elm
https://github.com/elm-lang/elm-platform
http://elmlang.herokuapp.com/
https://atom.io/packages/language-elm
https://github.com/lepinay/elm-brackets
https://github.com/jcollard/elm-mode
https://github.com/durkiewicz/elm-plugin
https://github.com/rundis/elm-light
https://packagecontrol.io/packages/Elm%20Language%20Support
https://github.com/lambdatoast/elm.vim
https://github.com/sbrink/vscode-elm
https://www.sublimetext.com/
https://github.com/avh4/elm-format

The	Command	Line	Tools
So	we	installed	Elm,	and	it	gave	us		elm-repl	,		elm-reactor	,		elm-make	,	and		elm-package	.
But	what	do	they	all	do	exactly?

elm-repl

	elm-repl		lets	you	play	with	simple	Elm	expressions.

$	elm-repl

----	elm-repl	0.18.0	---

	:help	for	help,	:exit	to	exit,	more	at	<https://github.com/elm-lang/elm-repl>

--

>	1	/	2

0.5	:	Float

>	List.length	[1,2,3,4]

4	:	Int

>	String.reverse	"stressed"

"desserts"	:	String

>	:exit

$

We	will	be	using		elm-repl		in	the	upcoming	“Core	Language”	section,	and	you	can	read
more	about	how	it	works	here.

Note:		elm-repl		works	by	compiling	code	to	JavaScript,	so	make	sure	you	have
Node.js	installed.	We	use	that	to	evaluate	code.

elm-reactor

	elm-reactor		helps	you	build	Elm	projects	without	messing	with	the	command-line	too	much.
You	just	run	it	at	the	root	of	your	project,	like	this:

git	clone	https://github.com/evancz/elm-architecture-tutorial.git

cd	elm-architecture-tutorial

elm-reactor

This	starts	a	server	at		http://localhost:8000	.	You	can	navigate	to	any	Elm	file	and	see
what	it	looks	like.	Try	to	check	out		examples/01-button.elm	.

Notable	flags:

	--port		lets	you	pick	something	besides	port	8000.	So	you	can	say		elm-reactor	--
port=8123		to	get	things	to	run	at		http://localhost:8123	.

Install

7

https://github.com/elm-lang/elm-repl
https://github.com/elm-lang/elm-repl/blob/master/README.md
http://nodejs.org/
https://github.com/elm-lang/elm-reactor
http://localhost:8000

	--address		lets	you	replace		localhost		with	some	other	address.	For	example,	you
may	want	to	use		elm-reactor	--address=0.0.0.0		if	you	want	to	try	out	an	Elm	program
on	a	mobile	device	through	your	local	network.

elm-make
	elm-make		builds	Elm	projects.	It	can	compile	Elm	code	to	HTML	or	JavaScript.	It	is	the	most
general	way	to	compile	Elm	code,	so	if	your	project	becomes	too	advanced	for		elm-
reactor	,	you	will	want	to	start	using		elm-make		directly.

Say	you	want	to	compile		Main.elm		to	an	HTML	file	named		main.html	.	You	would	run	this
command:

elm-make	Main.elm	--output=main.html

Notable	flags:

	--warn		prints	warnings	to	improve	code	quality

elm-package

	elm-package		downloads	and	publishes	packages	from	our	package	catalog.	As	community
members	solve	problems	in	a	nice	way,	they	share	their	code	in	the	package	catalog	for
anyone	to	use!

Say	you	want	to	use		elm-lang/http		and		NoRedInk/elm-decode-pipeline		to	make	HTTP
requests	to	a	server	and	turn	the	resulting	JSON	into	Elm	values.	You	would	say:

elm-package	install	elm-lang/http

elm-package	install	NoRedInk/elm-decode-pipeline

This	will	add	the	dependencies	to	your		elm-package.json		file	that	describes	your	project.	(Or
create	it	if	you	do	not	have	one	yet!)	More	information	about	all	this	here!

Notable	commands:

	install	:	install	the	dependencies	in		elm-package.json	
	publish	:	publish	your	library	to	the	Elm	Package	Catalog
	bump	:	bump	version	numbers	based	on	API	changes
	diff	:	get	the	difference	between	two	APIs

Install

8

https://github.com/elm-lang/elm-make
https://github.com/elm-lang/elm-package
http://package.elm-lang.org/
http://package.elm-lang.org/help/design-guidelines
http://package.elm-lang.org/packages/elm-lang/http/latest
http://package.elm-lang.org/packages/NoRedInk/elm-decode-pipeline/latest
https://github.com/elm-lang/elm-package

Install

9

Core	Language
This	section	will	walk	you	through	Elm's	simple	core	language.

This	works	best	when	you	follow	along,	so	after	installing,	start	up		elm-repl		in	the	terminal.
(Or	use	the	online	REPL.)	Either	way,	you	should	see	something	like	this:

----	elm	repl	0.18.0	---

	:help	for	help,	:exit	to	exit,	more	at	<https://github.com/elm-lang/elm-repl>

--

>

The	REPL	prints	out	the	type	of	every	result,	but	we	will	leave	the	type	annotations	off	in
this	tutorial	for	the	sake	of	introducing	concepts	gradually.

We	will	cover	values,	functions,	lists,	tuples,	and	records.	These	building	blocks	all
correspond	pretty	closely	with	structures	in	languages	like	JavaScript,	Python,	and	Java.

Values
Let's	get	started	with	some	strings:

>	"hello"

"hello"

>	"hello"	++	"world"

"helloworld"

>	"hello"	++	"	world"

"hello	world"

Elm	uses	the		(++)		operator	to	put	strings	together.	Notice	that	both	strings	are	preserved
exactly	as	is	when	they	are	put	together	so	when	we	combine		"hello"		and		"world"		the
result	has	no	spaces.

Math	looks	normal	too:

>	2	+	3	*	4

14

>	(2	+	3)	*	4

20

Core	Language

10

http://elmrepl.cuberoot.in/

Unlike	JavaScript,	Elm	makes	a	distinction	between	integers	and	floating	point	numbers.
Just	like	Python	3,	there	is	both	floating	point	division		(/)		and	integer	division		(//)	.

>	9	/	2

4.5

>	9	//	2

4

Functions
Let's	start	by	writing	a	function		isNegative		that	takes	in	some	number	and	checks	if	it	is
less	than	zero.	The	result	will	be		True		or		False	.

>	isNegative	n	=	n	<	0

<function>

>	isNegative	4

False

>	isNegative	-7

True

>	isNegative	(-3	*	-4)

False

Notice	that	function	application	looks	different	than	in	languages	like	JavaScript	and	Python
and	Java.	Instead	of	wrapping	all	arguments	in	parentheses	and	separating	them	with
commas,	we	use	spaces	to	apply	the	function.	So		(add(3,4))		becomes		(add	3	4)		which
ends	up	avoiding	a	bunch	of	parens	and	commas	as	things	get	bigger.	Ultimately,	this	looks
much	cleaner	once	you	get	used	to	it!	The	elm-html	package	is	a	good	example	of	how	this
keeps	things	feeling	light.

If	Expressions
When	you	want	to	have	conditional	behavior	in	Elm,	you	use	an	if-expression.

>	if	True	then	"hello"	else	"world"

"hello"

>	if	False	then	"hello"	else	"world"

"world"

Core	Language

11

http://elm-lang.org/blog/blazing-fast-html

The	keywords		if			then			else		are	used	to	separate	the	conditional	and	the	two	branches
so	we	do	not	need	any	parentheses	or	curly	braces.

Elm	does	not	have	a	notion	of	“truthiness”	so	numbers	and	strings	and	lists	cannot	be	used
as	boolean	values.	If	we	try	it	out,	Elm	will	tell	us	that	we	need	to	work	with	a	real	boolean
value.

Now	let's	make	a	function	that	tells	us	if	a	number	is	over	9000.

>	over9000	powerLevel	=	\

|			if	powerLevel	>	9000	then	"It's	over	9000!!!"	else	"meh"

<function>

>	over9000	42

"meh"

>	over9000	100000

"It's	over	9000!!!"

Using	a	backslash	in	the	REPL	lets	us	split	things	on	to	multiple	lines.	We	use	this	in	the
definition	of		over9000		above.	Furthermore,	it	is	best	practice	to	always	bring	the	body	of	a
function	down	a	line.	It	makes	things	a	lot	more	uniform	and	easy	to	read,	so	you	want	to	do
this	with	all	the	functions	and	values	you	define	in	normal	code.

Lists
Lists	are	one	of	the	most	common	data	structures	in	Elm.	They	hold	a	sequence	of	related
things,	similar	to	arrays	in	JavaScript.

Lists	can	hold	many	values.	Those	values	must	all	have	the	same	type.	Here	are	a	few
examples	that	use	functions	from	the		List		library:

Core	Language

12

http://package.elm-lang.org/packages/elm-lang/core/latest/List

>	names	=	["Alice",	"Bob",	"Chuck"]

["Alice","Bob","Chuck"]

>	List.isEmpty	names

False

>	List.length	names

3

>	List.reverse	names

["Chuck","Bob","Alice"]

>	numbers	=	[1,4,3,2]

[1,4,3,2]

>	List.sort	numbers

[1,2,3,4]

>	double	n	=	n	*	2

<function>

>	List.map	double	numbers

[2,8,6,4]

Again,	all	elements	of	the	list	must	have	the	same	type.

Tuples
Tuples	are	another	useful	data	structure.	A	tuple	can	hold	a	fixed	number	of	values,	and
each	value	can	have	any	type.	A	common	use	is	if	you	need	to	return	more	than	one	value
from	a	function.	The	following	function	gets	a	name	and	gives	a	message	for	the	user:

>	import	String

>	goodName	name	=	\

|			if	String.length	name	<=	20	then	\

|					(True,	"name	accepted!")	\

|			else	\

|					(False,	"name	was	too	long;	please	limit	it	to	20	characters")

>	goodName	"Tom"

(True,	"name	accepted!")

This	can	be	quite	handy,	but	when	things	start	becoming	more	complicated,	it	is	often	best	to
use	records	instead	of	tuples.

Core	Language

13

Records
A	record	is	a	set	of	key-value	pairs,	similar	to	objects	in	JavaScript	or	Python.	You	will	find
that	they	are	extremely	common	and	useful	in	Elm!	Let's	see	some	basic	examples.

>	point	=	{	x	=	3,	y	=	4	}

{	x	=	3,	y	=	4	}

>	point.x

3

>	bill	=	{	name	=	"Gates",	age	=	57	}

{	age	=	57,	name	=	"Gates"	}

>	bill.name

"Gates"

So	we	can	create	records	using	curly	braces	and	access	fields	using	a	dot.	Elm	also	has	a
version	of	record	access	that	works	like	a	function.	By	starting	the	variable	with	a	dot,	you
are	saying	please	access	the	field	with	the	following	name.	This	means	that		.name		is	a
function	that	gets	the		name		field	of	the	record.

>	.name	bill

"Gates"

>	List.map	.name	[bill,bill,bill]

["Gates","Gates","Gates"]

When	it	comes	to	making	functions	with	records,	you	can	do	some	pattern	matching	to	make
things	a	bit	lighter.

>	under70	{age}	=	age	<	70

<function>

>	under70	bill

True

>	under70	{	species	=	"Triceratops",	age	=	68000000	}

False

So	we	can	pass	any	record	in	as	long	as	it	has	an		age		field	that	holds	a	number.

It	is	often	useful	to	update	the	values	in	a	record.

Core	Language

14

>	{	bill	|	name	=	"Nye"	}

{	age	=	57,	name	=	"Nye"	}

>	{	bill	|	age	=	22	}

{	age	=	22,	name	=	"Gates"	}

It	is	important	to	notice	that	we	do	not	make	destructive	updates.	When	we	update	some
fields	of		bill		we	actually	create	a	new	record	rather	than	overwriting	the	existing	one.	Elm
makes	this	efficient	by	sharing	as	much	content	as	possible.	If	you	update	one	of	ten	fields,
the	new	record	will	share	the	nine	unchanged	values.

Comparing	Records	and	Objects

Records	in	Elm	are	similar	to	objects	in	JavaScript,	but	there	are	some	crucial	differences.
The	major	differences	are	that	with	records:

You	cannot	ask	for	a	field	that	does	not	exist.
No	field	will	ever	be	undefined	or	null.
You	cannot	create	recursive	records	with	a		this		or		self		keyword.

Elm	encourages	a	strict	separation	of	data	and	logic,	and	the	ability	to	say		this		is	primarily
used	to	break	this	separation.	This	is	a	systemic	problem	in	Object	Oriented	languages	that
Elm	is	purposely	avoiding.

Records	also	support	structural	typing	which	means	records	in	Elm	can	be	used	in	any
situation	as	long	as	the	necessary	fields	exist.	This	gives	us	flexibility	without	compromising
reliability.

Core	Language

15

https://en.wikipedia.org/wiki/Structural_type_system

The	Elm	Architecture
The	Elm	Architecture	is	a	simple	pattern	for	architecting	webapps.	It	is	great	for	modularity,
code	reuse,	and	testing.	Ultimately,	it	makes	it	easy	to	create	complex	web	apps	that	stay
healthy	as	you	refactor	and	add	features.

This	architecture	seems	to	emerge	naturally	in	Elm.	We	first	observed	it	in	the	games	the
Elm	community	was	making.	Then	in	web	apps	like	TodoMVC	and	dreamwriter	too.	Now	we
see	it	running	in	production	at	companies	like	NoRedInk	and	CircuitHub.	The	architecture
seems	to	be	a	consequence	of	the	design	of	Elm	itself,	so	it	will	happen	to	you	whether	you
know	about	it	or	not.	This	has	proven	to	be	really	nice	for	onboarding	new	developers.	Their
code	just	turns	out	well-architected.	It	is	kind	of	spooky.

So	The	Elm	Architecture	is	easy	in	Elm,	but	it	is	useful	in	any	front-end	project.	In	fact,
projects	like	Redux	have	been	inspired	by	The	Elm	Architecture,	so	you	may	have	already
seen	derivatives	of	this	pattern.	Point	is,	even	if	you	ultimately	cannot	use	Elm	at	work	yet,
you	will	get	a	lot	out	of	using	Elm	and	internalizing	this	pattern.

The	Basic	Pattern
The	logic	of	every	Elm	program	will	break	up	into	three	cleanly	separated	parts:

Model	—	the	state	of	your	application
Update	—	a	way	to	update	your	state
View	—	a	way	to	view	your	state	as	HTML

This	pattern	is	so	reliable	that	I	always	start	with	the	following	skeleton	and	fill	in	details	for
my	particular	case.

The	Elm	Architecture

16

https://github.com/evancz/elm-todomvc
https://github.com/rtfeldman/dreamwriter#dreamwriter
https://www.noredink.com/
https://www.circuithub.com/

import	Html	exposing	(..)

--	MODEL

type	alias	Model	=	{	...	}

--	UPDATE

type	Msg	=	Reset	|	...

update	:	Msg	->	Model	->	Model

update	msg	model	=

		case	msg	of

				Reset	->	...

				...

--	VIEW

view	:	Model	->	Html	Msg

view	model	=

		...

That	is	really	the	essence	of	The	Elm	Architecture!	We	will	proceed	by	filling	in	this	skeleton
with	increasingly	interesting	logic.

The	Elm	Architecture

17

The	Elm	Architecture	+	User	Input
Your	web	app	is	going	to	need	to	deal	with	user	input.	This	section	will	get	you	familiar	with
The	Elm	Architecture	in	the	context	of	things	like:

Buttons
Text	Fields
Check	Boxes
Radio	Buttons
etc.

We	will	go	through	a	few	examples	that	build	knowledge	gradually,	so	go	in	order!

Follow	Along
In	the	last	section	we	used		elm-repl		to	get	comfortable	with	Elm	expressions.	In	this
section,	we	are	switching	to	creating	Elm	files	of	our	own.	You	can	do	that	in	the	online
editor,	or	if	you	have	Elm	installed,	you	can	follow	these	simple	instructions	to	get	everything
working	on	your	computer!

User	Input

18

http://elm-lang.org/try
https://github.com/evancz/elm-architecture-tutorial#run-the-examples

Buttons

Clone	the	code	or	follow	along	in	the	online	editor.

Our	first	example	is	a	simple	counter	that	can	be	incremented	or	decremented.	I	find	that	it
can	be	helpful	to	see	the	entire	program	in	one	place,	so	here	it	is!	We	will	break	it	down
afterwards.

Buttons

19

https://github.com/evancz/elm-architecture-tutorial/
http://elm-lang.org/examples/buttons

import	Html	exposing	(Html,	button,	div,	text)

import	Html.Events	exposing	(onClick)

main	=

		Html.beginnerProgram	{	model	=	model,	view	=	view,	update	=	update	}

--	MODEL

type	alias	Model	=	Int

model	:	Model

model	=

		0

--	UPDATE

type	Msg	=	Increment	|	Decrement

update	:	Msg	->	Model	->	Model

update	msg	model	=

		case	msg	of

				Increment	->

						model	+	1

				Decrement	->

						model	-	1

--	VIEW

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[button	[onClick	Decrement]	[text	"-"]

				,	div	[]	[text	(toString	model)]

				,	button	[onClick	Increment]	[text	"+"]

]

That's	everything!

Note:	This	section	has		type		and		type	alias		declarations.	You	can	read	all	about
these	in	the	upcoming	section	on	types.	You	do	not	need	to	deeply	understand	that	stuff
now,	but	you	are	free	to	jump	ahead	if	it	helps.

When	writing	this	program	from	scratch,	I	always	start	by	taking	a	guess	at	the	model.	To
make	a	counter,	we	at	least	need	to	keep	track	of	a	number	that	is	going	up	and	down.	So
let's	just	start	with	that!

Buttons

20

http://guide.elm-lang.org/types/index.html

type	alias	Model	=	Int

Now	that	we	have	a	model,	we	need	to	define	how	it	changes	over	time.	I	always	start	my
	UPDATE		section	by	defining	a	set	of	messages	that	we	will	get	from	the	UI:

type	Msg	=	Increment	|	Decrement

I	definitely	know	the	user	will	be	able	to	increment	and	decrement	the	counter.	The		Msg	
type	describes	these	capabilities	as	data.	Important!	From	there,	the		update		function	just
describes	what	to	do	when	you	receive	one	of	these	messages.

update	:	Msg	->	Model	->	Model

update	msg	model	=

		case	msg	of

				Increment	->

						model	+	1

				Decrement	->

						model	-	1

If	you	get	an		Increment		message,	you	increment	the	model.	If	you	get	a		Decrement	
message,	you	decrement	the	model.	Pretty	straight-forward	stuff.

Okay,	so	that's	all	good,	but	how	do	we	actually	make	some	HTML	and	show	it	on	screen?
Elm	has	a	library	called		elm-lang/html		that	gives	you	full	access	to	HTML5	as	normal	Elm
functions:

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[button	[onClick	Decrement]	[text	"-"]

				,	div	[]	[text	(toString	model)]

				,	button	[onClick	Increment]	[text	"+"]

]

You	can	see	more	examples	of	basic	HTML	here.

One	thing	to	notice	is	that	our		view		function	is	producing	a		Html	Msg		value.	This	means
that	it	is	a	chunk	of	HTML	that	can	produce		Msg		values.	And	when	you	look	at	the
definition,	you	see	the		onClick		attributes	are	set	to	give	out		Increment		and		Decrement	
values.	These	will	get	fed	directly	into	our		update		function,	driving	our	whole	app	forward.

Buttons

21

http://elm-lang.org/examples

Another	thing	to	notice	is	that		div		and		button		are	just	normal	Elm	functions.	These
functions	take	(1)	a	list	of	attributes	and	(2)	a	list	of	child	nodes.	It	is	just	HTML	with	slightly
different	syntax.	Instead	of	having		<		and		>		everywhere,	we	have		[and]	.	We	have
found	that	folks	who	can	read	HTML	have	a	pretty	easy	time	learning	to	read	this	variation.
Okay,	but	why	not	have	it	be	exactly	like	HTML?	Since	we	are	using	normal	Elm
functions,	we	have	the	full	power	of	the	Elm	programming	language	to	help	us	build
our	views!	We	can	refactor	repetitive	code	out	into	functions.	We	can	put	helpers	in
modules	and	import	them	just	like	any	other	code.	We	can	use	the	same	testing	frameworks
and	libraries	as	any	other	Elm	code.	Everything	that	is	nice	about	programming	in	Elm	is
100%	available	to	help	you	with	your	view.	No	need	for	a	hacked	together	templating
language!

There	is	also	something	a	bit	deeper	going	on	here.	The	view	code	is	entirely	declarative.
We	take	in	a		Model		and	produce	some		Html	.	That	is	it.	There	is	no	need	to	mutate	the
DOM	manually,	Elm	takes	care	of	that	behind	the	scenes.	This	gives	Elm	much	more
freedom	to	make	clever	optimizations	and	ends	up	making	rendering	faster	overall.	So	you
write	less	code	and	the	code	runs	faster.	The	best	kind	of	abstraction!

This	pattern	is	the	essence	of	The	Elm	Architecture.	Every	example	we	see	from	now	on	will
be	a	slight	variation	on	this	basic	pattern:		Model	,		update	,		view	.

Exercise:	One	cool	thing	about	The	Elm	Architecture	is	that	it	is	super	easy	to	extend
as	our	product	requirements	change.	Say	your	product	manager	has	come	up	with	this
amazing	"reset"	feature.	A	new	button	that	will	reset	the	counter	to	zero.

To	add	the	feature	you	come	back	to	the		Msg		type	and	add	another	possibility:		Reset	.
You	then	move	on	to	the		update		function	and	describe	what	happens	when	you	get
that	message.	Finally	you	add	a	button	in	your	view.

See	if	you	can	implement	the	"reset"	feature!

Buttons

22

http://elm-lang.org/blog/blazing-fast-html

Text	Fields

Clone	the	code	or	follow	along	in	the	online	editor.

We	are	about	to	create	a	simple	app	that	reverses	the	contents	of	a	text	field.	This	example
also	introduces	some	new	stuff	that	will	help	us	out	in	our	next	example.

Again	this	is	a	pretty	short	program,	so	I	have	included	the	whole	thing	here.	Skim	through	to
get	an	idea	of	how	everything	fits	together.	Right	after	that	we	will	go	into	much	more	detail!

Text	Fields

23

https://github.com/evancz/elm-architecture-tutorial/
http://elm-lang.org/examples/field

import	Html	exposing	(Html,	Attribute,	div,	input,	text)

import	Html.Attributes	exposing	(..)

import	Html.Events	exposing	(onInput)

import	String

main	=

		Html.beginnerProgram	{	model	=	model,	view	=	view,	update	=	update	}

--	MODEL

type	alias	Model	=

		{	content	:	String

		}

model	:	Model

model	=

		{	content	=	""	}

--	UPDATE

type	Msg

		=	Change	String

update	:	Msg	->	Model	->	Model

update	msg	model	=

		case	msg	of

				Change	newContent	->

						{	model	|	content	=	newContent	}

--	VIEW

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[input	[placeholder	"Text	to	reverse",	onInput	Change]	[]

				,	div	[]	[text	(String.reverse	model.content)]

]

This	code	is	a	slight	variant	of	the	counter	from	the	previous	section.	You	set	up	a	model.
You	define	some	messages.	You	say	how	to		update	.	You	make	your		view	.	The	difference
is	just	in	how	we	filled	this	skeleton	in.	Let's	walk	through	that!

As	always,	you	start	by	guessing	at	what	your		Model		should	be.	In	our	case,	we	know	we
are	going	to	have	to	keep	track	of	whatever	the	user	has	typed	into	the	text	field.	We	need
that	information	so	we	know	how	to	render	the	reversed	text.

Text	Fields

24

type	alias	Model	=

		{	content	:	String

		}

This	time	I	chose	to	represent	the	model	as	a	record.	(You	can	read	more	about	records
here	and	here.)	For	now,	the	record	stores	the	user	input	in	the		content		field.

Note:	You	may	be	wondering,	why	bother	having	a	record	if	it	only	holds	one	entry?
Couldn't	you	just	use	the	string	directly?	Yes,	of	course!	But	starting	with	a	record
makes	it	easy	to	add	more	fields	as	our	app	gets	more	complicated.	When	the	time
comes	where	we	want	two	text	inputs,	we	will	have	to	do	much	less	fiddling	around.

Okay,	so	we	have	our	model.	Now	in	this	app	there	is	only	one	kind	of	message	really.	The
user	can	change	the	contents	of	the	text	field.

type	Msg

		=	Change	String

This	means	our	update	function	just	has	to	handle	this	one	case:

update	:	Msg	->	Model	->	Model

update	msg	model	=

		case	msg	of

				Change	newContent	->

						{	model	|	content	=	newContent	}

When	we	receive	new	content,	we	use	the	record	update	syntax	to	update	the	contents	of
	content	.

Finally	we	need	to	say	how	to	view	our	application:

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[input	[placeholder	"Text	to	reverse",	onInput	Change]	[]

				,	div	[]	[text	(String.reverse	model.content)]

]

We	create	a		<div>		with	two	children.

The	interesting	child	is	the		<input>		node.	In	addition	to	the		placeholder		attribute,	it	uses
	onInput		to	declare	what	messages	should	be	sent	when	the	user	types	into	this	input.

Text	Fields

25

http://guide.elm-lang.org/core_language.html#records
http://elm-lang.org/docs/records

This		onInput		function	is	kind	of	interesting.	It	takes	one	argument,	in	this	case	the		Change	
function	which	was	created	when	we	declared	the		Msg		type:

Change	:	String	->	Msg

This	function	is	used	to	tag	whatever	is	currently	in	the	text	field.	So	let's	say	the	text	field
currently	holds		yol		and	the	user	types		o	.	This	triggers	an		input		event,	so	we	will	get	the
message		Change	"yolo"		in	our		update		function.

So	now	we	have	a	simple	text	field	that	can	reverse	user	input.	Neat!	Now	on	to	putting	a
bunch	of	text	fields	together	into	a	more	traditional	form.

Text	Fields

26

Forms

Clone	the	code	or	follow	along	in	the	online	editor.

Here	we	will	make	a	rudimentary	form.	It	has	a	field	for	your	name,	a	field	for	your	password,
and	a	field	to	verify	that	password.	We	will	also	do	some	very	simple	validation	(do	the	two
passwords	match?)	just	because	it	is	simple	to	add.

The	code	is	a	bit	longer	in	this	case,	but	I	still	think	it	is	valuable	to	look	through	it	before	you
get	into	the	description	of	what	is	going	on.

import	Html	exposing	(..)

import	Html.Attributes	exposing	(..)

import	Html.Events	exposing	(onInput)

main	=

		Html.beginnerProgram	{	model	=	model,	view	=	view,	update	=	update	}

--	MODEL

type	alias	Model	=

		{	name	:	String

		,	password	:	String

		,	passwordAgain	:	String

		}

model	:	Model

model	=

		Model	""	""	""

--	UPDATE

type	Msg

				=	Name	String

				|	Password	String

				|	PasswordAgain	String

update	:	Msg	->	Model	->	Model

update	msg	model	=

Forms

27

https://github.com/evancz/elm-architecture-tutorial/
http://elm-lang.org/examples/form

		case	msg	of

				Name	name	->

						{	model	|	name	=	name	}

				Password	password	->

						{	model	|	password	=	password	}

				PasswordAgain	password	->

						{	model	|	passwordAgain	=	password	}

--	VIEW

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[input	[type_	"text",	placeholder	"Name",	onInput	Name]	[]

				,	input	[type_	"password",	placeholder	"Password",	onInput	Password]	[]

				,	input	[type_	"password",	placeholder	"Re-enter	Password",	onInput	PasswordAgain

]	[]

				,	viewValidation	model

]

viewValidation	:	Model	->	Html	msg

viewValidation	model	=

		let

				(color,	message)	=

						if	model.password	==	model.passwordAgain	then

								("green",	"OK")

						else

								("red",	"Passwords	do	not	match!")

		in

				div	[style	[("color",	color)]]	[text	message]

This	is	pretty	much	exactly	how	our	text	field	example	looked,	just	with	more	fields.	Let's
walk	through	how	it	came	to	be!

As	always,	you	start	out	by	guessing	at	the		Model	.	We	know	there	are	going	to	be	three
text	fields,	so	let's	just	go	with	that:

type	alias	Model	=

		{	name	:	String

		,	password	:	String

		,	passwordAgain	:	String

		}

Great,	seems	reasonable.	We	expect	that	each	of	these	fields	can	be	changed	separately,
so	our	messages	should	account	for	each	of	those	scenarios.

Forms

28

type	Msg

				=	Name	String

				|	Password	String

				|	PasswordAgain	String

This	means	our		update		is	pretty	mechanical.	Just	update	the	relevant	field:

update	:	Msg	->	Model	->	Model

update	msg	model	=

		case	msg	of

				Name	name	->

						{	model	|	name	=	name	}

				Password	password	->

						{	model	|	password	=	password	}

				PasswordAgain	password	->

						{	model	|	passwordAgain	=	password	}

We	get	a	little	bit	fancier	than	normal	in	our		view		though.

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[input	[type_	"text",	placeholder	"Name",	onInput	Name]	[]

				,	input	[type_	"password",	placeholder	"Password",	onInput	Password]	[]

				,	input	[type_	"password",	placeholder	"Re-enter	Password",	onInput	PasswordAgain

]	[]

				,	viewValidation	model

]

It	starts	out	normal:	We	create	a		<div>		and	put	a	couple		<input>		nodes	in	it.	Each	one
has	an		onInput		attribute	that	will	tag	any	changes	appropriately	for	our		update		function.
(This	is	all	building	off	of	the	text	field	example	in	the	previous	section.)

But	for	the	last	child	we	do	not	directly	use	an	HTML	function.	Instead	we	call	the
	viewValidation		function,	passing	in	the	current	model.

Forms

29

viewValidation	:	Model	->	Html	msg

viewValidation	model	=

		let

				(color,	message)	=

						if	model.password	==	model.passwordAgain	then

								("green",	"OK")

						else

								("red",	"Passwords	do	not	match!")

		in

				div	[style	[("color",	color)]]	[text	message]

This	function	first	compares	the	two	passwords.	If	they	match,	you	want	green	text	and	a
positive	message.	If	they	do	not	match,	you	want	red	text	and	a	helpful	message.	With	that
info,	we	produce	a		<div>		filled	with	a	colorful	message	explaining	the	situation.

This	starts	to	show	the	benefits	of	having	our	HTML	library	be	normal	Elm	code.	It	would
have	looked	really	weird	to	jam	all	that	code	into	our		view	.	In	Elm,	you	just	refactor	like	you
would	with	any	other	code!

On	these	same	lines,	you	may	notice	that	the		<input>		nodes	all	are	created	with	pretty
similar	code.	Say	we	made	each	input	fancier:	there	is	an	outer		<div>		that	holds	a			
and	an		<input>		with	certain	classes.	It	would	make	total	sense	to	break	that	pattern	out	into
a		viewInput		function	so	you	never	have	to	repeat	yourself.	This	also	means	you	change	it
in	one	place	and	everyone	gets	the	updated	HTML.

Exercises:	One	cool	thing	about	breaking		viewValidation		out	is	that	it	is	pretty	easy	to
augment.	If	you	are	messing	with	the	code	as	you	read	through	this	(as	you	should	be!)
you	should	try	to:

Check	that	the	password	is	longer	than	8	characters.
Make	sure	the	password	contains	upper	case,	lower	case,	and	numeric	characters.
Add	an	additional	field	for		age		and	check	that	it	is	a	number.
Add	a	"Submit"	button.	Only	show	errors	after	it	has	been	pressed.

Be	sure	to	use	the	helpers	in	the		String		library	if	you	try	any	of	these!	Also,	we	need
to	learn	more	before	we	start	talking	to	servers,	so	before	you	try	that	here,	keep
reading	until	HTTP	is	introduced.	It	will	be	significantly	easier	with	proper	guidance!

Forms

30

http://package.elm-lang.org/packages/elm-lang/core/latest/String

More	About	User	Input
We	only	covered	buttons	and	text	fields,	but	there	are	other	crazier	inputs	that	you	will	need
eventually.

So	if	you	want	to	see	examples	of	radio	buttons	and	check	boxes,	visit	the	Elm	examples
page	which	has	a	bunch	of	small	examples	you	can	mess	around	with.	It	is	all	variations	on
stuff	we	have	learned	in	this	tutorial	already,	so	playing	with	these	examples	is	a	great	way
to	practice	and	become	more	comfortable	with	what	you	have	learned	so	far.	Maybe	try
incorporating	check	boxes	into	the	form	example?

That	said,	I	want	to	keep	up	the	momentum	of	this	tutorial	and	keep	introducing	new
concepts,	so	next	we	will	be	looking	at	how	to	work	with	things	like	HTTP	and	web	sockets!

More

31

http://elm-lang.org/examples

The	Elm	Architecture	+	Effects
The	last	section	showed	how	to	handle	all	sorts	of	user	input.	You	can	think	of	those
programs	like	this:

From	our	perspective,	we	just	receive	messages	and	produce	new		Html		to	get	rendered	on
screen.	The	“Elm	Runtime”	is	sitting	there	behind	the	scenes.	When	it	gets		Html		it	figures
out	how	to	render	it	on	screen	really	fast.	When	a	user	clicks	on	something,	it	figures	out
how	to	pipe	that	into	our	program	as	a		Msg	.	So	the	Elm	Runtime	is	in	charge	of	doing	stuff.
We	just	transform	data.

This	section	builds	on	that	pattern,	giving	you	the	ability	to	make	HTTP	requests	or
subscribe	to	messages	from	web	sockets.	Think	of	it	like	this:

Effects

32

http://elm-lang.org/blog/blazing-fast-html-round-two

Instead	of	just	producing		Html	,	we	will	now	be	producing	commands	and	subscriptions:

Commands	—	A		Cmd		lets	you	do	stuff:	generate	a	random	number,	send	an	HTTP
request,	etc.

Subscriptions	—	A		Sub		lets	you	register	that	you	are	interested	in	something:	tell	me
about	location	changes,	listen	for	web	socket	messages,	etc.

If	you	squint,	commands	and	subscriptions	are	pretty	similar	to		Html		values.	With		Html	,
we	never	touch	the	DOM	by	hand.	Instead	we	represent	the	desired	HTML	as	data	and	let
the	Elm	Runtime	do	some	clever	stuff	to	make	it	render	really	fast.	It	is	the	same	with
commands	and	subscriptions.	We	create	data	that	describes	what	we	want	to	do,	and	the
Elm	Runtime	does	the	dirty	work.

Don’t	worry	if	it	seems	a	bit	confusing	for	now,	the	examples	will	help!	So	first	let’s	look	at
how	to	fit	these	concepts	into	the	code	we	have	seen	before.

Extending	the	Architecture	Skeleton
So	far	our	architecture	skeleton	has	focused	on	creating		Model		types	and		update		and
	view		functions.	To	handle	commands	and	subscriptions,	we	need	to	extend	the	basic
architecture	skeleton	a	little	bit:

Effects

33

http://elm-lang.org/blog/blazing-fast-html-round-two

--	MODEL

type	alias	Model	=

		{	...

		}

--	UPDATE

type	Msg	=	Submit	|	...

update	:	Msg	->	Model	->	(Model,	Cmd	Msg)

update	msg	model	=

		...

--	VIEW

view	:	Model	->	Html	Msg

view	model	=

		...

--	SUBSCRIPTIONS

subscriptions	:	Model	->	Sub	Msg

subscriptions	model	=

		...

--	INIT

init	:	(Model,	Cmd	Msg)

init	=

		...

The	first	three	sections	are	almost	exactly	the	same,	but	there	are	a	few	new	things	overall:

1.	 The		update		function	now	returns	more	than	just	a	new	model.	It	returns	a	new	model
and	some	commands	you	want	to	run.	These	commands	are	all	going	to	produce		Msg	
values	that	will	get	fed	right	back	into	our		update		function.

2.	 There	is	a		subscriptions		function.	This	function	lets	you	declare	any	event	sources
you	need	to	subscribe	to	given	the	current	model.	Just	like	with		Html	Msg		and		Cmd
Msg	,	these	subscriptions	will	produce		Msg		values	that	get	fed	right	back	into	our
	update		function.

Effects

34

3.	 So	far		init		has	just	been	the	initial	model.	Now	it	produces	both	a	model	and	some
commands,	just	like	the	new		update	.	This	lets	us	provide	a	starting	value	and	kick	off
any	HTTP	requests	or	whatever	that	are	needed	for	initialization.

Now	it	is	totally	okay	if	this	does	not	really	make	sense	yet!	That	only	really	happens	when
you	start	seeing	it	in	action,	so	lets	hop	right	into	the	examples!

Aside:	One	crucial	detail	here	is	that	commands	and	subscriptions	are	data.	When	you
create	a	command,	you	do	not	actually	do	it.	Same	with	commands	in	real	life.	Let's	try
it.	Eat	an	entire	watermelon	in	one	bite!	Did	you	do	it?	No!	You	kept	reading	before	you
even	thought	about	buying	a	tiny	watermelon.

Point	is,	commands	and	subscriptions	are	data.	You	hand	them	to	Elm	to	actually	run
them,	giving	Elm	a	chance	to	log	all	of	this	information.	In	the	end,	effects-as-data
means	Elm	can:

Have	a	general	purpose	time-travel	debugger.
Keep	the	"same	input,	same	output"	guarantee	for	all	Elm	functions.
Avoid	setup/teardown	phases	when	testing		update		logic.
Cache	and	batch	effects,	minimizing	HTTP	connections	or	other	resources.

So	without	going	too	crazy	on	details,	pretty	much	all	the	nice	guarantees	and	tools	you
have	in	Elm	come	from	the	choice	to	treat	effects	as	data!	I	think	this	will	make	more
sense	as	you	get	deeper	into	Elm.

Effects

35

Random

Clone	the	code	or	follow	along	in	the	online	editor.

We	are	about	to	make	an	app	that	"rolls	dice",	producing	a	random	number	between	1	and
6.

When	I	write	code	with	effects,	I	usually	break	it	into	two	phases.	Phase	one	is	about	getting
something	on	screen,	just	doing	the	bare	minimum	to	have	something	to	work	from.	Phase
two	is	filling	in	details,	gradually	approaching	the	actual	goal.	We	will	use	this	process	here
too.

Phase	One	-	The	Bare	Minimum
As	always,	you	start	out	by	guessing	at	what	your		Model		should	be:

type	alias	Model	=

		{	dieFace	:	Int

		}

For	now	we	will	just	track		dieFace		as	an	integer	between	1	and	6.	Then	I	would	quickly
sketch	out	the		view		function	because	it	seems	like	the	easiest	next	step.

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[h1	[]	[text	(toString	model.dieFace)]

				,	button	[onClick	Roll]	[text	"Roll"]

]

So	this	is	typical.	Same	stuff	we	have	been	doing	with	the	user	input	examples	of	The	Elm
Architecture.	When	you	click	our		<button>		it	is	going	to	produce	a		Roll		message,	so	I
guess	it	is	time	to	take	a	first	pass	at	the		update		function	as	well.

Random

36

https://github.com/evancz/elm-architecture-tutorial/
http://elm-lang.org/examples/random

type	Msg	=	Roll

update	:	Msg	->	Model	->	(Model,	Cmd	Msg)

update	msg	model	=

		case	msg	of

				Roll	->

						(model,	Cmd.none)

Now	the		update		function	has	the	same	overall	shape	as	before,	but	the	return	type	is	a	bit
different.	Instead	of	just	giving	back	a		Model	,	it	produces	both	a		Model		and	a	command.
The	idea	is:	we	still	want	to	step	the	model	forward,	but	we	also	want	to	do	some	stuff.
In	our	case,	we	want	to	ask	Elm	to	give	us	a	random	value.	For	now,	I	just	fill	it	in	with
	Cmd.none		which	means	"I	have	no	commands,	do	nothing."	We	will	fill	this	in	with	the	good
stuff	in	phase	two.

Finally,	I	would	create	an		init		value	like	this:

init	:	(Model,	Cmd	Msg)

init	=

		(Model	1,	Cmd.none)

Here	we	specify	both	the	initial	model	and	some	commands	we'd	like	to	run	immediately
when	the	app	starts.	This	is	exactly	the	kind	of	stuff	that		update		is	producing	now	too.

At	this	point,	it	is	possible	to	wire	it	all	up	and	take	a	look.	You	can	click	the		<button>	,	but
nothing	happens.	Let's	fix	that!

Phase	Two	-	Adding	the	Cool	Stuff
The	obvious	thing	missing	right	now	is	the	randomness!	When	the	user	clicks	a	button	we
want	to	command	Elm	to	reach	into	its	internal	random	number	generator	and	give	us	a
number	between	1	and	6.	The	first	step	I	would	take	towards	that	goal	would	be	adding	a
new	kind	of	message:

type	Msg

		=	Roll

		|	NewFace	Int

We	still	have		Roll		from	before,	but	now	we	add		NewFace		for	when	Elm	hands	us	our	new
random	number.	That	is	enough	to	start	filling	in		update	:

Random

37

http://package.elm-lang.org/packages/elm-lang/core/latest/Platform-Cmd#none

update	:	Msg	->	Model	->	(Model,	Cmd	Msg)

update	msg	model	=

		case	msg	of

				Roll	->

						(model,	Random.generate	NewFace	(Random.int	1	6))

				NewFace	newFace	->

						(Model	newFace,	Cmd.none)

There	are	two	new	things	here.	First,	there	is	now	a	branch	for		NewFace		messages.	When	a
	NewFace		comes	in,	we	just	step	the	model	forward	and	do	nothing.	Second,	we	have	added
a	real	command	to	the		Roll		branch.	This	uses	a	couple	functions	from	the		Random		library.
Most	important	is		Random.generate	:

Random.generate	:	(a	->	msg)	->	Random.Generator	a	->	Cmd	msg

This	function	takes	two	arguments.	The	first	is	a	function	to	tag	random	values.	In	our	case
we	want	to	use		NewFace	:	Int	->	Msg		to	turn	the	random	number	into	a	message	for	our
	update		function.	The	second	argument	is	a	"generator"	which	is	like	a	recipe	for	producing
certain	types	of	random	values.	You	can	have	generators	for	simple	types	like		Int		or
	Float		or		Bool	,	but	also	for	fancy	types	like	big	custom	records	with	lots	of	fields.	In	this
case,	we	use	one	of	the	simplest	generators:

Random.int	:	Int	->	Int	->	Random.Generator	Int

You	provide	a	lower	and	upper	bound	on	the	integer,	and	now	you	have	a	generator	that
produces	integers	in	that	range!

That	is	it.	Now	we	can	click	and	see	the	number	flip	to	some	new	value!

So	the	big	lessons	here	are:

Write	your	programs	bit	by	bit.	Start	with	a	simple	skeleton,	and	gradually	add	the
tougher	stuff.
The		update		function	now	produces	a	new	model	and	a	command.
You	cannot	just	get	random	values	willy-nilly.	You	create	a	command,	and	Elm	will	go	do
some	work	behind	the	scenes	to	provide	it	for	you.	In	fact,	any	time	our	program	needs
to	get	unreliable	values	(randomness,	HTTP,	file	I/O,	database	reads,	etc.)	you	have	to
go	through	Elm.

At	this	point,	the	best	way	to	improve	your	understanding	of	commands	is	just	to	see	more	of
them!	They	will	appear	prominently	with	the		Http		and		WebSocket		libraries,	so	if	you	are
feeling	shaky,	the	only	path	forward	is	practicing	with	randomness	and	playing	with	other

Random

38

http://package.elm-lang.org/packages/elm-lang/core/latest/Random

examples	of	commands!

Exercises:	Here	are	some	that	build	on	stuff	that	has	already	been	introduced:

Instead	of	showing	a	number,	show	the	die	face	as	an	image.
Add	a	second	die	and	have	them	both	roll	at	the	same	time.

And	here	are	some	that	require	new	skills:

Instead	of	showing	an	image	of	a	die	face,	use	the		elm-lang/svg		library	to	draw	it
yourself.
After	you	have	learned	about	tasks	and	animation,	have	the	die	flip	around
randomly	before	they	settle	on	a	final	value.

Random

39

HTTP

Clone	the	code	or	follow	along	in	the	online	editor.

We	are	about	to	make	an	app	that	fetches	a	random	GIF	when	the	user	asks	for	another
image.

Now,	I	am	going	to	assume	you	just	read	the	randomness	example.	It	(1)	introduces	a	two
step	process	for	writing	apps	like	this	and	(2)	shows	the	simplest	kind	of	commands
possible.	Here	we	will	be	using	the	same	two	step	process	to	build	up	to	fancier	kinds	of
commands,	so	I	very	highly	recommend	going	back	one	page.	I	swear	you	will	reach	your
goals	faster	if	you	start	with	a	solid	foundation!

...

Okay,	so	you	read	it	now	right?	Good.	Let's	get	started	on	our	random	gif	fetcher!

Phase	One	-	The	Bare	Minimum
At	this	point	in	this	guide,	you	should	be	pretty	comfortable	smacking	down	the	basic
skeleton	of	an	Elm	app.	Guess	at	the	model,	fill	in	some	messages,	etc.	etc.

HTTP

40

https://github.com/evancz/elm-architecture-tutorial/
http://elm-lang.org/examples/http

--	MODEL

type	alias	Model	=

		{	topic	:	String

		,	gifUrl	:	String

		}

init	:	(Model,	Cmd	Msg)

init	=

		(Model	"cats"	"waiting.gif",	Cmd.none)

--	UPDATE

type	Msg	=	MorePlease

update	:	Msg	->	Model	->	(Model,	Cmd	Msg)

update	msg	model	=

		case	msg	of

				MorePlease	->

						(model,	Cmd.none)

--	VIEW

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[h2	[]	[text	model.topic]

				,	img	[src	model.gifUrl]	[]

				,	button	[onClick	MorePlease]	[text	"More	Please!"]

]

For	the	model,	I	decided	to	track	a		topic		so	I	know	what	kind	of	gifs	to	fetch.	I	do	not	want
to	hard	code	it	to		"cats"	,	and	maybe	later	we	will	want	to	let	the	user	decide	the	topic	too.	I
also	tracked	the		gifUrl		which	is	a	URL	that	points	at	some	random	gif.

Like	in	the	randomness	example,	I	just	made	dummy		init		and		update		functions.	None	of
them	actually	produce	any	commands	for	now.	The	point	is	just	to	get	something	on	screen!

Phase	Two	-	Adding	the	Cool	Stuff
Alright,	the	obvious	thing	missing	right	now	is	the	HTTP	request.	I	think	it	is	easiest	to	start
this	process	by	adding	new	kinds	of	messages.	Now	remember,	when	you	give	a
command,	you	have	to	wait	for	it	to	happen.	So	when	we	command	Elm	to	do	an	HTTP

HTTP

41

request,	it	is	eventually	going	to	tell	you	"hey,	here	is	what	you	wanted"	or	it	is	going	to	say
"oops,	something	went	wrong	with	the	HTTP	request".	We	need	this	to	be	reflected	in	our
messages:

type	Msg

		=	MorePlease

		|	FetchSucceed	String

		|	FetchFail	Http.Error

We	still	have		MorePlease		from	before,	but	for	the	HTTP	results,	we	add		FetchSucceed		that
holds	the	new	gif	URL	and		FetchFail		that	indicates	there	was	some	HTTP	issue	(server	is
down,	bad	URL,	etc.)

That	is	enough	to	start	filling	in		update	:

update	:	Msg	->	Model	->	(Model,	Cmd	Msg)

update	msg	model	=

		case	msg	of

				MorePlease	->

						(model,	getRandomGif	model.topic)

				FetchSucceed	newUrl	->

						(Model	model.topic	newUrl,	Cmd.none)

				FetchFail	_	->

						(model,	Cmd.none)

So	I	added	branches	for	our	new	messages.	In	the	case	of		FetchSucceed		we	update	the
	gifUrl		field	to	have	the	new	URL.	In	the	case	of		FetchFail		we	pretty	much	ignore	it,
giving	back	the	same	model	and	doing	nothing.

I	also	changed	the		MorePlease		branch	a	bit.	We	need	an	HTTP	command,	so	I	called	the
	getRandomGif		function.	The	trick	is	that	I	made	that	function	up.	It	does	not	exist	yet.	That	is
the	next	step!

Defining		getRandomGif		might	look	something	like	this:

HTTP

42

getRandomGif	:	String	->	Cmd	Msg

getRandomGif	topic	=

		let

				url	=

						"https://api.giphy.com/v1/gifs/random?api_key=dc6zaTOxFJmzC&tag="	++	topic

		in

				Task.perform	FetchFail	FetchSucceed	(Http.get	decodeGifUrl	url)

decodeGifUrl	:	Json.Decoder	String

decodeGifUrl	=

		Json.at	["data",	"image_url"]	Json.string

Okay,	so	the		getRandomGif		function	is	not	exceptionally	crazy.	We	first	define	the		url		we
need	to	hit	to	get	random	gifs.	Next	we	have	this		Http.get		function	which	is	going	to	GET
some	JSON	from	the		url		we	give	it.	The	interesting	part	there	is	The		decodeGifUrl	
argument	which	describes	how	to	turn	JSON	into	Elm	values.	In	our	case,	we	are	saying	“try
to	get	the	value	at		json.data.image_url		and	it	should	be	a	string.”

Note:	See	this	for	more	information	on	JSON	decoders.	It	will	clarify	how	it	works,	but
for	now,	you	really	just	need	a	high-level	understanding.	It	turns	JSON	into	Elm.

The		Task.perform		part	is	clarifying	what	to	do	with	the	result	of	this	GET:

1.	 The	first	argument		FetchFail		is	for	when	the	GET	fails.	If	the	server	is	down	or	the
URL	is	a	404,	we	tag	the	resulting	error	with		FetchFail		and	feed	it	into	our		update	
function.

2.	 The	second	argument		FetchSucceed		is	for	when	the	GET	succeeds.	When	we	get
some	URL	back	like		http://example.com/json	,	we	convert	it	into		FetchSucceed
"http://example.com/json"		so	that	it	can	be	fed	into	our		update		function.

We	will	get	into	the	details	of	how	this	all	works	later	in	this	guide,	but	for	now,	if	you	just
follow	the	pattern	here,	you	will	be	fine	using	HTTP.

And	now	when	you	click	the	"More"	button,	it	actually	goes	and	fetches	a	random	gif!

Exercises:	To	get	more	comfortable	with	this	code,	try	augmenting	it	with	skills	we
learned	in	previous	sections:

Show	a	message	explaining	why	the	image	didn't	change	when	you	get	a
	FetchFail	.
Allow	the	user	to	modify	the		topic		with	a	text	field.
Allow	the	user	to	modify	the		topic		with	a	drop	down	menu.

HTTP

43

http://package.elm-lang.org/packages/evancz/elm-http/3.0.1/Http#get
http://guide.elm-lang.org/interop/json.html

Time

Clone	the	code	or	follow	along	in	the	online	editor.

We	are	going	to	make	a	simple	clock.

So	far	we	have	focused	on	commands.	With	the	randomness	example,	we	asked	for	a
random	value.	With	the	HTTP	example,	we	asked	for	info	from	a	server.	That	pattern	does
not	really	work	for	a	clock.	In	this	case,	we	want	to	sit	around	and	hear	about	clock	ticks
whenever	they	happen.	This	is	where	subscriptions	come	in.

The	code	is	not	too	crazy	here,	so	I	am	going	to	include	it	in	full.	After	you	read	through,	we
will	come	back	to	normal	words	that	explain	it	in	more	depth.

import	Html	exposing	(Html)

import	Svg	exposing	(..)

import	Svg.Attributes	exposing	(..)

import	Time	exposing	(Time,	second)

main	=

		Html.program

				{	init	=	init

				,	view	=	view

				,	update	=	update

				,	subscriptions	=	subscriptions

				}

--	MODEL

type	alias	Model	=	Time

init	:	(Model,	Cmd	Msg)

init	=

		(0,	Cmd.none)

--	UPDATE

type	Msg

		=	Tick	Time

Time

44

https://github.com/evancz/elm-architecture-tutorial/
http://elm-lang.org/examples/time

update	:	Msg	->	Model	->	(Model,	Cmd	Msg)

update	msg	model	=

		case	msg	of

				Tick	newTime	->

						(newTime,	Cmd.none)

--	SUBSCRIPTIONS

subscriptions	:	Model	->	Sub	Msg

subscriptions	model	=

		Time.every	second	Tick

--	VIEW

view	:	Model	->	Html	Msg

view	model	=

		let

				angle	=

						turns	(Time.inMinutes	model)

				handX	=

						toString	(50	+	40	*	cos	angle)

				handY	=

						toString	(50	+	40	*	sin	angle)

		in

				svg	[viewBox	"0	0	100	100",	width	"300px"]

						[circle	[cx	"50",	cy	"50",	r	"45",	fill	"#0B79CE"]	[]

						,	line	[x1	"50",	y1	"50",	x2	handX,	y2	handY,	stroke	"#023963"]	[]

]

There	is	nothing	new	in	the		MODEL		or		UPDATE		sections.	Same	old	stuff.	The		view		function
is	kind	of	interesting.	Instead	of	using	HTML,	we	use	the		Svg		library	to	draw	some	shapes.
It	works	just	like	HTML	though.	You	provide	a	list	of	attributes	and	a	list	of	children	for	every
node.

The	important	thing	comes	in		SUBSCRIPTIONS		section.	The		subscriptions		function	takes	in
the	model,	and	instead	of	returning		Sub.none		like	in	the	examples	we	have	seen	so	far,	it
gives	back	a	real	life	subscription!	In	this	case		Time.every	:

Time.every	:	Time	->	(Time	->	msg)	->	Sub	msg

Time

45

The	first	argument	is	a	time	interval.	We	chose	to	get	ticks	every	second.	The	second
argument	is	a	function	that	turns	the	current	time	into	a	message	for	the		update		function.
We	are	tagging	times	with		Tick		so	the	time	1458863979862	would	become		Tick
1458863979862	.

That	is	all	there	is	to	setting	up	a	subscription!	These	messages	will	be	fed	to	your		update	
function	whenever	they	become	available.

Exercises:

Add	a	button	to	pause	the	clock,	turning	the		Time		subscription	off.
Make	the	clock	look	nicer.	Add	an	hour	and	minute	hand.	Etc.

Time

46

Web	Sockets

Clone	the	code	or	follow	along	in	the	online	editor.

We	are	going	to	make	a	simple	chat	app.	There	will	be	a	text	field	so	you	can	type	things	in
and	a	region	that	shows	all	the	messages	we	have	received	so	far.	Web	sockets	are	great
for	this	scenario	because	they	let	us	set	up	a	persistent	connection	with	the	server.	This
means:

1.	 You	can	send	messages	cheaply	whenever	you	want.
2.	 The	server	can	send	you	messages	whenever	it	feels	like	it.

In	other	words,		WebSocket		is	one	of	the	rare	libraries	that	makes	use	of	both	commands	and
subscriptions.

This	program	happens	to	be	pretty	short,	so	here	is	the	full	thing:

import	Html	exposing	(..)

import	Html.Attributes	exposing	(..)

import	Html.Events	exposing	(..)

import	WebSocket

main	=

		Html.program

				{	init	=	init

				,	view	=	view

				,	update	=	update

				,	subscriptions	=	subscriptions

				}

--	MODEL

type	alias	Model	=

		{	input	:	String

		,	messages	:	List	String

		}

init	:	(Model,	Cmd	Msg)

init	=

		(Model	""	[],	Cmd.none)

Web	Sockets

47

https://github.com/evancz/elm-architecture-tutorial/
http://elm-lang.org/examples/websockets

--	UPDATE

type	Msg

		=	Input	String

		|	Send

		|	NewMessage	String

update	:	Msg	->	Model	->	(Model,	Cmd	Msg)

update	msg	{input,	messages}	=

		case	msg	of

				Input	newInput	->

						(Model	newInput	messages,	Cmd.none)

				Send	->

						(Model	""	messages,	WebSocket.send	"ws://echo.websocket.org"	input)

				NewMessage	str	->

						(Model	input	(str	::	messages),	Cmd.none)

--	SUBSCRIPTIONS

subscriptions	:	Model	->	Sub	Msg

subscriptions	model	=

		WebSocket.listen	"ws://echo.websocket.org"	NewMessage

--	VIEW

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[div	[]	(List.map	viewMessage	model.messages)

				,	input	[onInput	Input]	[]

				,	button	[onClick	Send]	[text	"Send"]

]

viewMessage	:	String	->	Html	msg

viewMessage	msg	=

		div	[]	[text	msg]

The	interesting	parts	are	probably	the	uses	of		WebSocket.send		and		WebSocket.listen	.

For	simplicity	we	will	target	a	simple	server	that	just	echos	back	whatever	you	type.	So	you
will	not	be	able	to	have	the	most	exciting	conversations	in	the	basic	version,	but	that	is	why
we	have	exercises	on	these	examples!

Web	Sockets

48

Web	Sockets

49

More	about	The	Elm	Architecture
The	emphasis	of	this	section	has	been:	how	can	we	get	people	making	cool	Elm	projects
as	quickly	and	smoothly	as	possible?	So	we	covered:

The	basic	architecture	pattern.
How	to	create	buttons	and	text	fields.
How	to	make	HTTP	requests.
How	to	work	with	web	sockets.

You	can	go	quite	far	with	this	knowledge,	but	there	are	many	important	aspects	of	Elm	itself
that	we	have	not	covered	yet.	For	example,	union	types	are	one	of	the	most	important
features	in	the	whole	language	and	we	have	not	focused	on	them	at	all!

So	we	are	going	to	take	a	break	from	The	Elm	Architecture	for	a	couple	chapters	to	get	a
better	understanding	of	Elm	itself.	We	will	come	back	to	The	Elm	Architecture	in	a	few
chapters	and	focus	on	code	reuse	in	larger	applications.	In	the	meantime,	when	a	function
gets	so	big	it	feels	unmanageable	in	practice,	make	a	helper	function!	Elm	makes	refactoring
easy,	so	it	is	best	to	improve	architecture	as	needed	rather	than	preemptively.	More	about
that	later	though!

P.S.	Best	not	to	skip	ahead.	You	can	build	a	bigger	house	if	you	have	a	strong	foundation!

More

50

Types
One	of	Elm's	major	benefits	is	that	users	do	not	see	runtime	errors	in	practice.	This	is
possible	because	the	Elm	compiler	can	analyze	your	source	code	very	quickly	to	see	how
values	flow	through	your	program.	If	a	value	can	ever	be	used	in	an	invalid	way,	the	compiler
tells	you	about	it	with	a	friendly	error	message.	This	is	called	type	inference.	The	compiler
figures	out	what	type	of	values	flow	in	and	out	of	all	your	functions.

An	Example	of	Type	Inference
The	following	code	defines	a		toFullName		function	which	extracts	a	persons	full	name	as	a
string:

toFullName	person	=

		person.firstName	++	"	"	++	person.lastName

fullName	=

		toFullName	{	fistName	=	"Hermann",	lastName	=	"Hesse"	}

Like	in	JavaScript	or	Python,	we	just	write	the	code	with	no	extra	clutter.	Do	you	see	the	bug
though?

In	JavaScript,	the	equivalent	code	spits	out		"undefined	Hesse"	.	Not	even	an	error!	Hopefully
one	of	your	users	will	tell	you	about	it	when	they	see	it	in	the	wild.	In	contrast,	the	Elm
compiler	just	looks	at	the	source	code	and	tells	you:

Types

51

--	TYPE	MISMATCH	---

The	argument	to	function	`toFullName`	is	causing	a	mismatch.

6│			toFullName	{	fistName	=	"Hermann",	lastName	=	"Hesse"	}

																^^

Function	`toFullName`	is	expecting	the	argument	to	be:

				{	…,	firstName	:	…	}

But	it	is:

				{	…,	fistName	:	…	}

Hint:	I	compared	the	record	fields	and	found	some	potential	typos.

				firstName	<->	fistName

It	sees	that		toFullName		is	getting	the	wrong	type	of	argument.	Like	the	hint	in	the	error
message	says,	someone	accidentally	wrote		fist		instead	of		first	.

It	is	great	to	have	an	assistant	for	simple	mistakes	like	this,	but	it	is	even	more	valuable
when	you	have	hundreds	of	files	and	a	bunch	of	collaborators	making	changes.	No	matter
how	big	and	complex	things	get,	the	Elm	compiler	checks	that	everything	fits	together
properly	just	based	on	the	source	code.

The	better	you	understand	types,	the	more	the	compiler	feels	like	a	friendly	assistant.	So
let's	start	learning	more!

Types

52

Reading	Types
In	the	Core	Language	section	of	this	book,	we	ran	a	bunch	of	code	in	the	REPL.	Well,	we
are	going	to	do	it	again,	but	now	with	an	emphasis	on	the	types	that	are	getting	spit	out.	So
type		elm	repl		in	your	terminal	again.	You	should	see	this:

----	elm	repl	0.17.0	---

	:help	for	help,	:exit	to	exit,	more	at	<https://github.com/elm-lang/elm-repl>

--

>

Primitives	and	Lists
Let's	enter	some	simple	expressions	and	see	what	happens:

>	"hello"

"hello"	:	String

>	not	True

False	:	Bool

>	round	3.1415

3	:	Int

In	these	three	examples,	the	REPL	tells	us	the	resulting	value	along	with	what	type	of	value
it	happens	to	be.	The	value		"hello"		is	a		String	.	The	value		3		is	an		Int	.	Nothing	too
crazy	here.

Let's	see	what	happens	with	lists	holding	different	types	of	values:

>	["Alice",	"Bob"]

["Alice",	"Bob"]	:	List	String

>	[1.0,	8.6,	42.1]

[1.0,	8.6,	42.1]	:	List	Float

>	[]

[]	:	List	a

Reading	Types

53

In	the	first	case,	we	have	a		List		filled	with		String		values.	In	the	second,	the		List		is
filled	with		Float		values.	In	the	third	case	the	list	is	empty,	so	we	do	not	actually	know	what
kind	of	values	are	in	the	list.	So	the	type		List	a		is	saying	"I	know	I	have	a	list,	but	it	could
be	filled	with	anything".	The	lower-case		a		is	called	a	type	variable,	meaning	that	there	are
no	constraints	in	our	program	that	pin	this	down	to	some	specific	type.	In	other	words,	the
type	can	vary	based	on	how	it	is	used.

Functions
Let's	see	the	type	of	some	functions:

>	import	String

>	String.length

<function>	:	String	->	Int

The	function		String.length		has	type		String	->	Int	.	This	means	it	must	take	in	a		String	
argument,	and	it	will	definitely	return	an	integer	result.	So	let's	try	giving	it	an	argument:

>	String.length	"Supercalifragilisticexpialidocious"

34	:	Int

The	important	thing	to	understand	here	is	how	the	type	of	the	result		Int		is	built	up	from	the
initial	expression.	We	have	a		String	->	Int		function	and	give	it	a		String		argument.	This
results	in	an		Int	.

What	happens	when	you	do	not	give	a		String		though?

>	String.length	[1,2,3]

--	error!

>	String.length	True

--	error!

A		String	->	Int		function	must	get	a		String		argument!

Anonymous	Functions

Elm	has	a	feature	called	anonymous	functions.	Basically,	you	can	create	a	function	without
naming	it,	like	this:

Reading	Types

54

>	\n	->	n	/	2

<function>	:	Float	->	Float

Between	the	backslash	and	the	arrow,	you	list	the	arguments	of	the	function,	and	on	the
right	of	the	arrow,	you	say	what	to	do	with	those	arguments.	In	this	example,	it	is	saying:	I
take	in	some	argument	I	will	call		n		and	then	I	am	going	to	divide	it	by	two.

We	can	use	anonymous	functions	directly.	Here	is	us	using	our	anonymous	function	with
	128		as	the	argument:

>	(\n	->	n	/	2)	128

64	:	Float

We	start	with	a		Float	->	Float		function	and	give	it	a		Float		argument.	The	result	is
another		Float	.

Notes:	The	backslash	that	starts	an	anonymous	function	is	supposed	to	look	like	a
lambda		λ		if	you	squint.	This	is	a	possibly	ill-conceived	wink	to	the	intellectual	history
that	led	to	languages	like	Elm.

Also,	when	we	wrote	the	expression		(\n	->	n	/	2)	128	,	it	is	important	that	we	put
parentheses	around	the	anonymous	function.	After	the	arrow,	Elm	is	just	going	to	keep
reading	code	as	long	as	it	can.	The	parentheses	put	bounds	on	this,	indicating	where
the	function	body	ends.

Named	Functions

In	the	same	way	that	we	can	name	a	value,	we	can	name	an	anonymous	function.	So
rebellious!

>	oneHundredAndTwentyEight	=	128.0

128	:	Float

>	half	=	\n	->	n	/	2

<function>	:	Float	->	Float

>	half	oneHundredAndTwentyEight

64	:	Float

In	the	end,	it	works	just	like	when	nothing	was	named.	You	have	a		Float	->	Float		function,
you	give	it	a		Float	,	and	you	end	up	with	another		Float	.

Reading	Types

55

Here	is	the	crazy	secret	though:	this	is	how	all	functions	are	defined!	You	are	just	giving	a
name	to	an	anonymous	function.	So	when	you	see	things	like	this:

>	half	n	=	n	/	2

<function>	:	Float	->	Float

You	can	think	of	it	as	a	convenient	shorthand	for:

>	half	=	\n	->	n	/	2

<function>	:	Float	->	Float

This	is	true	for	all	functions,	no	matter	how	many	arguments	they	have.	So	now	let's	take
that	a	step	farther	and	think	about	what	it	means	for	functions	with	multiple	arguments:

>	divide	x	y	=	x	/	y

<function>	:	Float	->	Float	->	Float

>	divide	3	2

1.5	:	Float

That	seems	fine,	but	why	are	there	two	arrows	in	the	type	for		divide	?!	To	start	out,	it	is	fine
to	think	that	"all	the	arguments	are	separated	by	arrows,	and	whatever	is	last	is	the	result	of
the	function".	So		divide		takes	two	arguments	and	returns	a		Float	.

To	really	understand	why	there	are	two	arrows	in	the	type	of		divide	,	it	helps	to	convert	the
definition	to	use	anonymous	functions.

>	divide	x	y	=	x	/	y

<function>	:	Float	->	Float	->	Float

>	divide	x	=	\y	->	x	/	y

<function>	:	Float	->	Float	->	Float

>	divide	=	\x	->	(\y	->	x	/	y)

<function>	:	Float	->	Float	->	Float

All	of	these	are	totally	equivalent.	We	just	moved	the	arguments	over,	turning	them	into
anonymous	functions	one	at	a	time.	So	when	we	run	an	expression	like		divide	3	2		we	are
actually	doing	a	bunch	of	evaluation	steps:

Reading	Types

56

		divide	3	2

		(divide	3)	2																	--	Step	1	-	Add	the	implicit	parentheses

		((\x	->	(\y	->	x	/	y))	3)	2		--	Step	2	-	Expand	`divide`

		(\y	->	3	/	y)	2														--	Step	3	-	Replace	x	with	3

		3	/	2																								--	Step	4	-	Replace	y	with	2

		1.5																										--	Step	5	-	Do	the	math

After	you	expand		divide	,	you	actually	provide	the	arguments	one	at	a	time.	Replacing		x	
and		y		are	actually	two	different	steps.

Let's	break	that	down	a	bit	more	to	see	how	the	types	work.	In	evaluation	step	#3	we	saw
the	following	function:

>	(\y	->	3	/	y)

<function>	:	Float	->	Float

It	is	a		Float	->	Float		function,	just	like		half	.	Now	in	step	#2	we	saw	a	fancier	function:

>	(\x	->	(\y	->	x	/	y))

<function>	:	Float	->	Float	->	Float

Well,	we	are	starting	with		\x	->	...		so	we	know	the	type	is	going	to	be	something	like
	Float	->	We	also	know	that		(\y	->	x	/	y)		has	type		Float	->	Float	.

So	if	you	actually	wrote	down	all	the	parentheses	in	the	type,	it	would	instead	say		Float	->
(Float	->	Float)	.	You	provide	arguments	one	at	a	time.	So	when	you	replace		x	,	the	result
is	actually	another	function.

It	is	the	same	with	all	functions	in	Elm:

>	import	String

>	String.repeat

<function>	:	Int	->	String	->	String

This	is	really		Int	->	(String	->	String)		because	you	are	providing	the	arguments	one	at	a
time.

Because	all	functions	in	Elm	work	this	way,	you	do	not	need	to	give	all	the	arguments	at
once.	It	is	possible	to	say	things	like	this:

Reading	Types

57

>	divide	128

<function>	:	Float	->	Float

>	String.repeat	3

<function>	:	String	->	String

This	is	called	partial	application.	It	lets	us	use	the		|>		operator	to	chain	functions	together	in
a	nice	way,	and	it	is	why	function	types	have	so	many	arrows!

Type	Annotations
So	far	we	have	just	let	Elm	figure	out	the	types,	but	it	also	lets	you	write	a	type	annotation	on
the	line	above	a	definition	if	you	want.	So	when	you	are	writing	code,	you	can	say	things	like
this:

half	:	Float	->	Float

half	n	=

		n	/	2

divide	:	Float	->	Float	->	Float

divide	x	y	=

		x	/	y

askVegeta	:	Int	->	String

askVegeta	powerLevel	=

		if	powerLevel	>	9000	then

				"It's	over	9000!!!"

		else

				"It	is	"	++	toString	powerLevel	++	"."

People	can	make	mistakes	in	type	annotations,	so	what	happens	if	they	say	the	wrong
thing?	Well,	the	compiler	does	not	make	mistakes,	so	it	still	figures	out	the	type	on	its	own.	It
then	checks	that	your	annotation	matches	the	real	answer.	In	other	words,	the	compiler	will
always	verify	that	all	the	annotations	you	add	are	correct.

Note:	Some	folks	feel	that	it	is	odd	that	the	type	annotation	goes	on	the	line	above	the
actual	definition.	The	reasoning	is	that	it	should	be	easy	and	noninvasive	to	add	a	type
annotation	later.	This	way	you	can	turn	a	sloppy	prototype	into	higher-quality	code	just
by	adding	lines.

Reading	Types

58

http://package.elm-lang.org/packages/elm-lang/core/latest/Basics#|>

Type	Aliases
The	whole	point	of	type	aliases	is	to	make	your	type	annotations	easier	to	read.

As	your	programs	get	more	complicated,	you	find	yourself	working	with	larger	and	more
complex	data.	For	example,	maybe	you	are	making	twitter-for-dogs	and	you	need	to
represent	a	user.	And	maybe	you	want	a	function	that	checks	to	see	if	a	user	has	a	bio	or
not.	You	might	write	a	function	like	this:

hasBio	:	{	name	:	String,	bio	:	String,	pic	:	String	}	->	Bool

hasBio	user	=

		String.length	user.bio	>	0

That	type	annotation	is	kind	of	a	mess,	and	users	do	not	even	have	that	many	details!
Imagine	if	there	were	ten	fields.	Or	if	you	had	a	function	that	took	users	as	an	argument	and
gave	users	as	the	result.

In	cases	like	this,	you	should	create	a	type	alias	for	your	data:

type	alias	User	=

		{	name	:	String

		,	bio	:	String

		,	pic	:	String

		}

This	is	saying,	wherever	you	see		User	,	replace	it	by	all	this	other	stuff.	So	now	we	can
rewrite	our		hasBio		function	in	a	much	nicer	way:

hasBio	:	User	->	Bool

hasBio	user	=

		String.length	user.bio	>	0

Looks	way	better!	It	is	important	to	emphasize	that	these	two	definitions	are	exactly	the
same.	We	just	made	an	alias	so	we	can	say	the	same	thing	in	fewer	key	strokes.

So	if	we	write	a	function	to	add	a	bio,	it	would	be	like	this:

addBio	:	String	->	User	->	User

addBio	bio	user	=

		{	user	|	bio	=	bio	}

Type	Aliases

59

Imagine	what	that	type	annotation	would	look	like	if	we	did	not	have	the		User		type	alias.
Bad!

Type	aliases	are	not	just	about	cosmetics	though.	They	can	help	you	think	more	clearly.
When	writing	Elm	programs,	it	is	often	best	to	start	with	the	type	alias	before	writing	a	bunch
of	functions.	I	find	it	helps	direct	my	progress	in	a	way	that	ends	up	being	more	efficient
overall.	Suddenly	you	know	exactly	what	kind	of	data	you	are	working	with.	If	you	need	to
add	stuff	to	it,	the	compiler	will	tell	you	about	any	existing	code	that	is	affected	by	it.	I	think
most	experienced	Elm	folks	use	a	similar	process	when	working	with	records	especially.

Note:	When	you	create	a	type	alias	specifically	for	a	record,	it	also	generates	a	record
constructor.	So	our		User		type	alias	will	also	generate	this	function:

User	:	String	->	String	->	String	->	User

The	arguments	are	in	the	order	they	appear	in	the	type	alias	declaration.	You	may	want
to	use	this	sometimes.

Type	Aliases

60

Union	Types
Many	languages	have	trouble	expressing	data	with	weird	shapes.	They	give	you	a	small	set
of	built-in	types,	and	you	have	to	represent	everything	with	them.	So	you	often	find	yourself
using		null		or	booleans	or	strings	to	encode	details	in	a	way	that	is	quite	error	prone.

Elm's	union	types	let	you	represent	complex	data	much	more	naturally.	We	will	go	through	a
couple	concrete	examples	to	build	some	intuition	about	how	and	when	to	use	union	types.

Note:	Union	types	are	sometimes	called	tagged	unions.	Some	communities	call	them
ADTs.

Filtering	a	Todo	List
Problem:	We	are	creating	a	todo	list	full	of	tasks.	We	want	to	have	three	views:	show
all	tasks,	show	only	active	tasks,	and	show	only	completed	tasks.	How	do	we	represent
which	of	these	three	states	we	are	in?

Whenever	you	have	weird	shaped	data	in	Elm,	you	want	to	reach	for	a	union	type.	In	this
case,	we	would	create	a	type		Visibility		that	has	three	possible	values:

>	type	Visibility	=	All	|	Active	|	Completed

>	All

All	:	Visibility

>	Active

Active	:	Visibility

>	Completed

Completed	:	Visibility

Now	that	we	have	these	three	cases	defined,	we	want	to	create	a	function		keep		that	will
properly	filter	our	tasks.	It	should	work	like	this:

Union	Types

61

https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Algebraic_data_type
http://evancz.github.io/elm-todomvc/

type	alias	Task	=	{	task	:	String,	complete	:	Bool	}

buy	:	Task

buy	=

		{	task	=	"Buy	milk",	complete	=	True	}

drink	:	Task

drink	=

		{	task	=	"Drink	milk",	complete	=	False	}

tasks	:	List	Task

tasks	=

		[buy,	drink]

--	keep	:	Visibility	->	List	Task	->	List	Task

--	keep	All	tasks	==	[buy,drink]

--	keep	Active	tasks	==	[drink]

--	keep	Complete	tasks	==	[buy]

So	the		keep		function	needs	to	look	at	its	first	argument,	and	depending	on	what	it	is,	filter
the	list	in	various	ways.	We	use	a		case		expression	to	do	this.	It	is	like	an		if		on	steroids:

keep	:	Visibility	->	List	Task	->	List	Task

keep	visibility	tasks	=

		case	visibility	of

				All	->

						tasks

				Active	->

						List.filter	(\task	->	not	task.complete)	tasks

				Completed	->

						List.filter	(\task	->	task.complete)	tasks

The		case		is	saying,	look	at	the	structure	of		visibility	.	If	it	is		All	,	just	give	back	all	the
tasks.	If	it	is		Active	,	keep	only	the	tasks	that	are	not	complete.	If	it	is		Completed	,	keep	only
the	tasks	that	are	complete.

The	cool	thing	about		case		expressions	is	that	all	the	branches	are	checked	by	the	compiler.
This	has	some	nice	benefits:

1.	 If	you	mistype		Compleet		by	accident,	you	get	a	hint	about	the	typo.
2.	 If	you	forget	to	handle	a	case,	the	compiler	will	figure	it	out	and	tell	you.

Union	Types

62

So	say	you	want	to	add		Recent		as	a	fourth	possible		Visibility		value.	The	compiler	will
find	all	the		case		expressions	in	your	code	that	work	with		Visibility		values	and	remind
you	to	handle	the	new	possibility!	This	means	you	can	change	and	extend		Visibility	
without	the	risk	of	silently	creating	bugs	in	existing	code.

Exercise:	Imagine	how	you	would	solve	this	same	problem	in	JavaScript.	Three
strings?	A	boolean	that	can	be		null	?	What	would	the	definition	of		keep		look	like?
What	sort	of	tests	would	you	want	to	write	to	make	sure	adding	new	code	later	was
safe.

Anonymous	Users
Problem:	We	have	a	chat	room	where	people	can	post	whatever	they	want.	Some
users	are	logged	in	and	some	are	anonymous.	How	should	we	represent	a	user?

Again,	whenever	there	is	weird	shaped	data,	you	want	to	reach	for	a	union	type.	For	this
case,	we	want	one	where	users	are	either	anonymous	or	named:

>	type	User	=	Anonymous	|	Named	String

>	Anonymous

Anonymous	:	User

>	Named

<function>	:	String	->	User

>	Named	"AzureDiamond"

Named	"AzureDiamond"	:	User

>	Named	"abraham-lincoln"

Named	"abraham-lincoln"	:	User

So	creating	the	type		User		also	created	constructors	named		Anonymous		and		Named	.	If	you
want	to	create	a		User		you	must	use	one	of	these	two	constructors.	This	guarantees	that	all
the	possible		User		values	are	things	like:

		Anonymous

		Named	"AzureDiamond"

		Named	"abraham-lincoln"

		Named	"catface420"

		Named	"Tom"

		...

Union	Types

63

Now	that	we	have	a	representation	of	a	user,	lets	say	we	want	to	get	a	photo	of	them	to
show	next	to	their	posts.	Again,	we	need	to	use	a		case		expression	to	work	with	our		User	
type:

userPhoto	:	User	->	String

userPhoto	user	=

		case	user	of

				Anonymous	->

						"anon.png"

				Named	name	->

						"users/"	++	name	++	".png"

There	are	two	possible	cases	when	we	have	a		User	.	If	they	are		Anonymous		we	show	a
dummy	picture.	If	they	are		Named		we	construct	the	URL	of	their	photo.	This		case		is	slightly
fancier	than	the	one	we	saw	before.	Notice	that	the	second	branch	has	a	lower	case	variable
	name	.	This	means	that	when	we	see	a	value	like		Named	"AzureDiamond"	,	the		name		variable
will	be	bound	to		"AzureDiamond"		so	we	can	do	other	things	with	it.	This	is	called	pattern
matching.

Now	imagine	we	have	a	bunch	of	users	in	a	chat	room	and	we	want	to	show	their	pictures.

activeUsers	:	List	User

activeUsers	=

		[Anonymous,	Named	"catface420",	Named	"AzureDiamond",	Anonymous]

photos	:	List	String

photos	=

		List.map	userPhoto	activeUsers

--	["anon.png",	"users/catface420.png",	"users/AzureDiamond.png",	"anon.png"]

The	nice	thing	about	creating	a	type	like		User		is	that	no	one	in	your	whole	codebase	can
ever	"forget"	that	some	users	may	be	anonymous.	Anyone	who	can	get	a	hold	of	a		User	
needs	to	use	a		case		to	get	any	information	out	of	it,	and	the	compiler	guarantees	every
	case		and	handles	all	possible	scenarios!

Exercise:	Think	about	how	you	would	solve	this	problem	in	some	other	language.	A
string	where	empty	string	means	they	are	anonymous?	A	string	that	can	be	null?	How
much	testing	would	you	want	to	do	to	make	sure	that	everyone	handles	these	special
cases	correctly?

Widget	Dashboard

Union	Types

64

Problem:	You	are	creating	a	dashboard	with	three	different	kinds	of	widgets.	One
shows	recent	log	data,	one	shows	time	plots,	and	one	shows	scatter	plots.	How	do	you
represent	a	widget?

Alright,	we	are	getting	a	bit	fancier	now.	In	Elm,	you	want	to	start	by	solving	each	case
individually.	(As	you	get	more	experience,	you	will	see	that	Elm	wants	you	to	build	programs
out	of	small,	reusable	parts.	It	is	weird.)	So	I	would	create	representations	for	each	of	our
three	scenarios,	along	with		view		functions	to	actually	turn	them	into	HTML	or	SVG	or
whatever:

type	alias	LogsInfo	=

		{	logs	:	List	String

		}

type	alias	TimeInfo	=

		{	events	:	List	(Time,	Float)

		,	yAxis	:	String

		}

type	alias	ScatterInfo	=

		{	points	:	List	(Float,	Float)

		,	xAxis	:	String

		,	yAxis	:	String

		}

--	viewLogs	:	LogsInfo	->	Html	msg

--	viewTime	:	TimeInfo	->	Html	msg

--	viewScatter	:	ScatterInfo	->	Html	msg

At	this	point,	you	have	created	all	the	helper	functions	needed	to	work	with	these	three
cases	totally	independent	from	each	other.	Someone	can	come	along	later	and	say,	"I	need
a	nice	way	to	show	scatter	plots"	and	use	just	that	part	of	the	code.

So	the	question	is	really:	how	do	I	put	these	three	standalone	things	together	for	my
particular	scenario?

Again,	union	types	are	there	to	put	together	a	bunch	of	different	types!

Union	Types

65

>	type	Widget	=	Logs	LogsInfo	|	TimePlot	TimeInfo	|	ScatterPlot	ScatterInfo

>	Logs

<function>	:	LogsInfo	->	Widget

>	TimePlot

<function>	:	TimeInfo	->	Widget

>	ScatterPlot

<function>	:	ScatterInfo	->	Widget

So	we	created	a		Widget		type	that	can	only	be	created	with	these	constructor	functions.	You
can	think	of	these	constructors	as	tagging	the	data	so	we	can	tell	it	apart	at	runtime.	Now	we
can	write	something	to	render	a	widget	like	this:

view	:	Widget	->	Html	msg

view	widget	=

		case	widget	of

				Logs	info	->

						viewLogs	info

				TimePlot	info	->

						viewTime	info

				ScatterPlot	info	->

						viewScatter	info

One	nice	thing	about	this	approach	is	that	there	is	no	mystery	about	what	kind	of	widgets	are
supported.	There	are	exactly	three.	If	someone	wants	to	add	a	fourth,	they	modify	the
	Widget		type.	This	means	you	can	never	be	surprised	by	the	data	you	get,	even	if	someone
on	a	different	team	is	messing	with	your	code.

Takeaways:

Solve	each	subproblem	first.
Use	union	types	to	put	together	all	the	solutions.
Creating	a	union	type	generates	a	bunch	of	constructors.
These	constuctors	tag	data	so	that	we	can	differentiate	it	at	runtime.
A		case		expression	lets	us	tear	data	apart	based	on	these	tags.

The	same	strategies	can	be	used	if	you	are	making	a	game	and	have	a	bunch	of
different	bad	guys.	Goombas	should	update	one	way,	but	Koopa	Troopas	do	something
totally	different.	Solve	each	problem	independently,	and	then	use	a	union	type	to	put
them	all	together.

Union	Types

66

Linked	Lists
Problem:	You	are	stuck	on	a	bus	speeding	down	the	highway.	If	the	bus	slows	down,	it
will	blow	up.	The	only	way	to	save	yourself	and	everyone	on	the	bus	is	to	reimplement
linked	lists	in	Elm.	HURRY,	WE	ARE	RUNNING	OUT	OF	GAS!

Yeah,	yeah,	the	problem	is	contrived	this	time,	but	it	is	important	to	see	some	of	the	more
advanced	things	you	can	do	with	union	types!

A	linked	list	is	a	sequence	of	values.	If	you	are	looking	at	a	linked	list,	it	is	either	empty	or	it
is	a	value	and	more	list.	That	list	is	either	empty	or	is	a	value	and	more	list.	etc.	This	intuitive
definition	works	pretty	directly	in	Elm.	Let's	see	it	for	lists	of	integers:

>	type	IntList	=	Empty	|	Node	Int	IntList

>	Empty

Empty	:	IntList

>	Node

<function>	:	Int	->	IntList	->	IntList

>	Node	42	Empty

Node	42	Empty	:	IntList

>	Node	64	(Node	128	Empty)

Node	64	(Node	128	Empty)	:	IntList

Now	we	did	two	new	things	here:

1.	 The		Node		constructor	takes	two	arguments	instead	of	one.	This	is	fine.	In	fact,	you	can
have	them	take	as	many	arguments	as	you	want.

2.	 Our	union	type	is	recursive.	An		IntList		may	hold	another		IntList	.	Again,	this	is	fine
if	you	are	using	union	types.

The	nice	thing	about	our		IntList		type	is	that	now	we	can	only	build	valid	linked	lists.	Every
linked	list	needs	to	start	with		Empty		and	the	only	way	to	add	a	new	value	is	with		Node	.

It	is	equally	nice	to	work	with.	Let's	say	we	want	to	compute	the	sum	of	all	of	the	numbers	in
a	list.	Just	like	with	any	other	union	type,	we	need	to	use	a		case		and	handle	all	possible
scenarios:

Union	Types

67

https://en.wikipedia.org/wiki/Linked_list

sum	:	IntList	->	Int

sum	numbers	=

		case	numbers	of

				Empty	->

						0

				Node	n	remainingNumbers	->

						n	+	sum	remainingNumbers

If	we	get	an		Empty		value,	the	sum	is	0.	If	we	have	a		Node		we	add	the	first	element	to	the
sum	of	all	the	remaining	ones.	So	an	expression	like		(sum	(Node	1	(Node	2	(Node	3
Empty))))		is	evaluated	like	this:

		sum	(Node	1	(Node	2	(Node	3	Empty)))

		1	+	sum	(Node	2	(Node	3	Empty))

		1	+	(2	+	sum	(Node	3	Empty))

		1	+	(2	+	(3	+	sum	Empty))

		1	+	(2	+	(3	+	0))

		1	+	(2	+	3)

		1	+	5

		6

On	each	line,	we	see	one	evaluation	step.	When	we	call		sum		it	transforms	the	list	based	on
whether	it	is	looking	at	a		Node		or	an		Empty		value.

Note:	This	is	the	first	recursive	function	we	have	written	together!	Notice	that		sum		calls
itself	to	get	the	sum.	It	can	be	tricky	to	get	into	the	mindset	of	writing	recursive
functions,	so	I	wanted	to	share	one	weird	trick.	Pretend	you	are	already	done.

I	always	start	with	a		case		and	all	of	the	branches	listed	but	not	filled	in.	From	there,	I
solve	each	branch	one	at	a	time,	pretending	that	nothing	else	exists.	So	with		sum		I'd
look	at		Empty	->		and	say,	an	empty	list	has	to	sum	to	zero.	Then	I'd	look	at	the		Node	n
remainingNumbers	->		branch	and	think,	well,	I	know	I	have	a	number,	a	list,	and	a		sum	
function	that	definitely	already	exists	and	totally	works.	I	can	just	use	that	and	add	a
number	to	it!

Generic	Data	Structures
Problem:	The	last	section	showed	linked	lists	that	only	worked	for	integers.	That	is
pretty	lame.	How	can	we	make	linked	lists	that	hold	any	kind	of	value?

Everything	is	going	to	be	pretty	much	the	same,	except	we	are	going	to	introduce	a	type
variable	in	our	definition	of	lists:

Union	Types

68

>	type	List	a	=	Empty	|	Node	a	(List	a)

>	Empty

Empty	:	List	a

>	Node

<function>	:	a	->	List	a	->	List	a

>	Node	"hi"	Empty

Node	"hi"	Empty	:	List	String

>	Node	1.618	(Node	6.283	Empty)

Node	1.618	(Node	6.283	Empty)	:	List	Float

The	fancy	part	comes	in	the		Node		constructor.	Instead	of	pinning	the	data	to		Int		and
	IntList	,	we	say	that	it	can	hold		a		and		List	a	.	Basically,	you	can	add	a	value	as	long	as
it	is	the	same	type	of	value	as	everything	else	in	the	list.

Everything	else	is	the	same.	You	pattern	match	on	lists	with		case		and	you	write	recursive
functions.	The	only	difference	is	that	our	lists	can	hold	anything	now!

Exercise:	This	is	exactly	how	the		List		type	in	Elm	works,	so	take	a	look	at	the		List	
library	and	see	if	you	can	implement	some	of	those	functions	yourself.

Additional	Examples
We	have	seen	a	couple	scenarios,	but	the	best	way	to	get	more	comfortable	is	to	use	union
types	more!	So	here	are	two	examples	that	are	kind	of	fun.

Binary	Trees

Binary	trees	are	almost	exactly	the	same	as	linked	lists:

>	type	Tree	a	=	Empty	|	Node	a	(Tree	a)	(Tree	a)

>	Node

<function>	:	a	->	Tree	a	->	Tree	a	->	Tree	a

>	Node	"hi"	Empty	Empty

Node	"hi"	Empty	Empty	:	Tree	String

A	tree	is	either	empty	or	it	is	a	node	with	a	value	and	two	children.	Check	out	this	example
for	more	info	on	this.	If	you	can	do	all	of	the	exercises	at	the	end	of	that	link,	consider
yourself	a	capable	user	of	union	types!

Union	Types

69

http://package.elm-lang.org/packages/elm-lang/core/latest/List
https://en.wikipedia.org/wiki/Binary_tree
http://elm-lang.org/examples/binary-tree

Languages

We	can	even	model	a	programming	language	as	data	if	we	want	to	go	really	crazy!	In	this
case,	it	is	one	that	only	deals	with	Boolean	algebra:

type	Boolean

				=	T

				|	F

				|	Not	Boolean

				|	And	Boolean	Boolean

				|	Or	Boolean	Boolean

true	=	Or	T	F

false	=	And	T	(Not	T)

Once	we	have	modeled	the	possible	values	we	can	define	functions	like		eval		which
evaluates	any		Boolean		to		True		or		False	.	See	this	example	for	more	about	representing
boolean	expressions.

Union	Types

70

https://en.wikipedia.org/wiki/Boolean_algebra#Operations
http://elm-lang.org/examples/boolean-expressions

Error	Handling	and	Tasks
One	of	the	guarantees	of	Elm	is	that	you	will	not	see	runtime	errors	in	practice.	NoRedInk
has	been	using	Elm	in	production	for	about	a	year	now,	and	they	still	have	not	had	one!	Like
all	guarantees	in	Elm,	this	comes	down	to	fundamental	language	design	choices.	In	this
case,	we	are	helped	by	the	fact	that	Elm	treats	errors	as	data.	(Have	you	noticed	we	make
things	data	a	lot	here?)

This	section	is	going	to	walk	through	three	data	structures	that	help	you	handle	errors	in	a
couple	different	ways.

	Maybe	

	Result	

	Task	

Now	some	of	you	probably	want	to	jump	right	to	tasks,	but	trust	me	that	going	in	order	will
help	here!	You	can	think	of	these	three	data	structures	as	a	progression	that	slowly	address
crazier	and	crazier	situations.	So	if	you	jump	in	at	the	end,	it	will	be	a	lot	to	figure	out	all	at
once.

Some	Historical	Context
There	are	two	popular	language	features	that	consistently	cause	unexpected	problems.	If
you	have	used	Java	or	C	or	JavaScript	or	Python	or	Ruby,	you	have	almost	certainly	had
your	code	crash	because	of		null		values	or	surprise	exceptions	from	someone	else's	code.

Now	these	things	are	extremely	familiar	to	folks,	but	that	does	not	mean	they	are	good!

Null

Any	time	you	think	you	have	a		String		you	just	might	have	a		null		instead.	Should	you
check?	Did	the	person	giving	you	the	value	check?	Maybe	it	will	be	fine?	Maybe	it	will	crash
your	servers?	I	guess	we	will	find	out	later!

The	inventor,	Tony	Hoare,	has	this	to	say	about	it:

Error	Handling	and	Tasks

71

I	call	it	my	billion-dollar	mistake.	It	was	the	invention	of	the	null	reference	in	1965.	At
that	time,	I	was	designing	the	first	comprehensive	type	system	for	references	in	an
object	oriented	language	(ALGOL	W).	My	goal	was	to	ensure	that	all	use	of	references
should	be	absolutely	safe,	with	checking	performed	automatically	by	the	compiler.	But	I
couldn't	resist	the	temptation	to	put	in	a	null	reference,	simply	because	it	was	so	easy	to
implement.	This	has	led	to	innumerable	errors,	vulnerabilities,	and	system	crashes,
which	have	probably	caused	a	billion	dollars	of	pain	and	damage	in	the	last	forty	years.

As	we	will	see	soon,	the	point	of		Maybe		is	to	avoid	this	problem	in	a	pleasant	way.

Exceptions

Joel	Spolsky	outlined	the	issues	with	exceptions	pretty	nicely	in	the	year	2003.	Essentially,
code	that	looks	fine	may	actually	crash	at	runtime.	Surprise!

The	point	of		Result		is	to	make	the	possibility	of	failure	clear	and	make	sure	it	is	handled
appropriately.

The	point	of		Task		is	pretty	much	the	same,	but	it	also	works	when	we	have	code	that	runs
asynchronously.	Your	error	handling	mechanism	shouldn't	totally	fall	apart	just	because	you
make	an	HTTP	request!

Error	Handling	and	Tasks

72

http://www.joelonsoftware.com/items/2003/10/13.html

Maybe
It	is	best	to	just	start	with	the	definition	of		Maybe	.	It	is	a	union	type	just	like	in	all	the
examples	here.	It	is	defined	like	this:

>	type	Maybe	a	=	Nothing	|	Just	a

>	Nothing

Nothing	:	Maybe	a

>	Just

<function>	:	a	->	Maybe	a

>	Just	"hello"

Just	"hello"	:	Maybe	String

>	Just	1.618

Just	1.618	:	Maybe	Float

If	you	want	to	have	a		Maybe		value,	you	have	to	use	the		Nothing		or		Just		constructors	to
create	it.	This	means	that	to	deal	with	the	data,	you	have	to	use	a		case		expression.	This
means	the	compiler	can	ensure	that	you	have	definitely	covered	both	possibilities!

There	are	two	major	cases	where	you	will	see		Maybe		values.

Optional	Fields
Say	we	are	running	a	social	networking	website.	Connecting	people,	friendship,	etc.	You
know	the	spiel.	The	Onion	outlined	our	real	goals	best:	mine	as	much	data	as	possible	for
the	CIA.	And	if	we	want	all	the	data,	we	need	to	ease	people	into	it.	Let	them	add	it	later.
Add	features	that	encourage	them	to	share	more	and	more	information	over	time.

So	let's	start	with	a	simple	model	of	a	user.	They	must	have	a	name,	but	we	are	going	to
make	the	age	optional.

type	alias	User	=

		{	name	:	String

		,	age	:	Maybe	Int

		}

Now	say	Sue	logs	in	and	decides	not	to	provide	her	birthday:

Maybe

73

http://www.theonion.com/video/cias-facebook-program-dramatically-cut-agencys-cos-19753

sue	:	User

sue	=

		{	name	=	"Sue",	age	=	Nothing	}

Now	her	friends	cannot	wish	her	a	happy	birthday.	Sad!	Later	Tom	creates	a	profile	and
does	give	his	age:

tom	:	User

tom	=

		{	name	=	"Tom",	age	=	Just	24	}

Great,	that	will	be	nice	on	his	birthday.	But	more	importantly,	Tom	is	part	of	a	valuable
demographic!	The	advertisers	will	be	pleased.

Alright,	so	now	that	we	have	some	users,	how	can	we	market	alcohol	to	them	without
breaking	any	laws?	People	would	probably	be	mad	if	we	market	to	people	under	21,	so	let's
check	for	that:

canBuyAlcohol	:	User	->	Bool

canBuyAlcohol	user	=

		case	user.age	of

				Nothing	->

						False

				Just	age	->

						age	>=	21

Now	the	cool	thing	is	that	we	are	forced	to	use	a		case		to	pattern	match	on	the	users	age.	It
is	actually	impossible	to	write	code	where	you	forget	that	users	may	not	have	an	age.	Elm
can	make	sure	of	it.	Now	we	can	advertise	alcohol	confident	that	we	are	not	influencing
minors	directly!	Only	their	older	peers.

Partial	Functions
Sometimes	you	want	a	function	that	gives	an	answer	sometimes,	but	just	does	not	in	other
cases.

Let's	say	Mountain	Dew	wants	to	do	some	ad	buys	for	people	ages	13	to	18.	Honestly,	it	is
better	to	start	kids	on	Mountain	Dew	younger	than	that,	but	it	is	illegal	for	kids	under	13	to	be
on	our	site.

So	let's	say	we	want	to	write	a	function	that	will	tell	us	a	user's	age,	but	only	if	they	are
between	13	and	18:

Maybe

74

getTeenAge	:	User	->	Maybe	Int

getTeenAge	user	=

		case	user.age	of

				Nothing	->

						Nothing

				Just	age	->

						if	13	<=	age	&&	age	<=	18	then

								Just	age

						else

								Nothing

Again,	we	are	reminded	that	users	may	not	have	an	age,	but	if	they	do,	we	only	want	to
return	it	if	it	is	between	13	and	18.	Now	Elm	can	guarantee	that	anyone	who	calls
	getTeenAge		will	have	to	handle	the	possibility	that	the	age	is	out	of	range.

This	gets	pretty	cool	when	you	start	combining	it	with	library	functions	like		List.filterMap	
that	help	you	process	more	data.	For	example,	maybe	we	want	to	figure	out	the	distribution
of	ages	between	13	and	18.	We	could	do	it	like	this:

>	alice	=	User	"Alice"	(Just	14)

...	:	User

>	bob	=	User	"Bob"	(Just	16)

...	:	User

>	users	=	[sue,	tom,	alice,	bob]

...	:	List	User

>	List.filterMap	getTeenAge	users

[14,16]	:	List	Int

We	end	up	with	only	the	ages	we	care	about.	Now	we	can	feed	our		List	Int		into	a	function
that	figures	out	the	distributions	of	each	number.

Maybe

75

http://package.elm-lang.org/packages/elm-lang/core/latest/List#filterMap

Result
A		Result		is	useful	when	you	have	logic	that	may	"fail".	For	example,	parsing	a		String		into
an		Int		may	fail.	What	if	the	string	is	filled	with	the	letter	B?	In	cases	like	this,	we	want	a
function	with	this	type:

String.toInt	:	String	->	Result	String	Int

This	means	that		String.toInt		will	take	in	a	string	value	and	start	processing	the	string.	If	it
cannot	be	turned	into	an	integer,	we	provide	a		String		error	message.	If	it	can	be	turned
into	an	integer,	we	return	that		Int	.	So	the		Result	String	Int		type	is	saying,	"my	errors	are
strings	and	my	successes	are	integers."

To	make	this	as	concrete	as	possible,	let's	see	the	actual	definition	of		Result	.	It	is	actually
pretty	similar	to	the		Maybe		type,	but	it	has	two	type	variables:

type	Result	error	value

		=	Err	error

		|	Ok	value

You	have	two	constructors:		Err		to	tag	errors	and		Ok		to	tag	successes.	Let's	see	what
happens	when	we	actually	use		String.toInt		in	the	REPL:

>	import	String

>	String.toInt	"128"

Ok	128	:	Result	String	Int

>	String.toInt	"64"

Ok	64	:	Result	String	Int

>	String.toInt	"BBBB"

Err	"could	not	convert	string	'BBBB'	to	an	Int"	:	Result	String	Int

So	instead	of	throwing	an	exception	like	in	most	languages,	we	return	data	that	indicates
whether	things	have	gone	well	or	not.	Let's	imagine	someone	is	typing	their	age	into	a	text
field	and	we	want	to	show	a	validation	message:

Result

76

view	:	String	->	Html	msg

view	userInputAge	=

		case	String.toInt	userInputAge	of

				Err	msg	->

						span	[class	"error"]	[text	msg]

				Ok	age	->

						if	age	<	0	then

								span	[class	"error"]	[text	"I	bet	you	are	older	than	that!"]

						else	if	age	>	140	then

								span	[class	"error"]	[text	"Seems	unlikely..."]

						else

								text	"OK!"

Again,	we	have	to	use		case		so	we	are	guaranteed	to	handle	the	special	case	where	the
number	is	bad.

Result

77

Tasks
These	docs	are	getting	updated	for	0.18.	They	will	be	back	soon!	Until	then,	the	docs	will
give	a	partial	overview.

Task

78

http://package.elm-lang.org/packages/elm-lang/core/4.0.0/Task

Interop
Interop	is	extraordinarily	important	if	you	want	your	language	to	succeed!

This	is	just	a	historical	fact.	A	huge	part	of	why	C++	was	so	successful	was	that	it	was	easy
to	migrate	a	massive	C	codebase.	If	you	look	at	the	JVM,	you	see	Scala	and	Clojure	carving
out	pretty	big	niches	for	themselves	thanks	to	their	nice	interop	story	with	Java.	For	industrial
users,	there	is	no	point	in	having	an	amazing	language	with	great	guarantees	if	there	is	no
way	to	slowly	introduce	it	into	an	existing	codebase.	It	is	exactly	the	same	in	browsers	too.

This	section	focuses	on	the	major	kinds	of	interop	that	you	need	when	working	in	browsers.

1.	 How	to	communicate	with	external	services	using	JSON.
2.	 How	to	embed	Elm	programs	in	existing	HTML	or	React	apps.
3.	 How	to	communicate	with	existing	JavaScript	code.

Each	of	these	types	of	interop	are	guided	by	the	self-imposed	constraints	that	(1)	there	must
be	a	clear	way	to	introduce	Elm	gradually	into	diverse	environments	and	(2)	Elm	should	not
have	to	sacrifice	its	core	design	principles.	In	other	words,	Elm	should	be	great	and	it
should	be	possible	to	use	Elm	at	work.

Advice	on	Introducing	Elm
The	correct	path	is	to	first	use	Elm	in	a	small	experiment.	If	the	experiment	goes	bad,	stop	it!
If	it	goes	great,	expand	the	experiment	a	bit	more.	Then	just	repeat	this	process	until	you	are
using	Elm	or	not!	History	seems	to	suggest	that	there	is	no	realistic	way	to	translate	an
existing	project	into	a	new	language	all	at	once.	You	have	to	evolve	gradually!

Every	company	I	know	of	that	introduced	Elm	into	an	existing	codebase	did	it	gradually.	You
need	to	make	sure	it	is	worth	it.	You	probably	need	to	do	some	pairing	or	mentorship	to	get
your	teammates	comfortable.	You	may	even	want	to	use	React	as	a	stepping	stone	if	you
are	on	something	before	that.	Basically,	anything	you	can	do	to	minimize	risk	and	make	the
process	feel	gradual	will	improve	your	odds.	Now	none	of	this	is	as	fun	as	just	switching,	but
it	has	the	great	benefit	of	actually	working	out	in	practice.

Interop

79

JSON
You	will	be	sending	lots	of	JSON	in	your	programs.	You	use	the		Json.Decode		library	to
convert	wild	and	crazy	JSON	into	nicely	structured	Elm	values.

The	core	concept	for	working	with	JSON	is	called	a	decoder.	It	is	a	value	that	knows	how	to
turn	certain	JSON	values	into	Elm	values.	We	will	start	out	by	looking	at	some	very	basic
decoders	(how	do	I	get	a	string?)	and	then	look	at	how	to	put	them	together	to	handle	more
complex	scenarios.

Primitive	Decoders
Here	are	the	type	signatures	for	a	couple	primitive	decoders:

string	:	Decoder	String

int	:	Decoder	Int

float	:	Decoder	Float

bool	:	Decoder	Bool

These	become	useful	when	paired	with	the		decodeString		function:

decodeString	:	Decoder	a	->	String	->	Result	String	a

This	means	we	can	do	stuff	like	this:

>	import	Json.Decode	exposing	(..)

>	decodeString	int	"42"

Ok	42	:	Result	String	Int

>	decodeString	float	"3.14159"

Ok	3.14159	:	Result	String	Float

>	decodeString	bool	"true"

Ok	True	:	Result	String	Bool

>	decodeString	int	"true"

Err	"Expecting	an	Int	but	instead	got:	true"	:	Result	String	Int

So	our	little	decoders	let	us	turn	strings	of	JSON	values	into	a		Result		telling	us	how	the
conversion	went.

JSON

80

http://package.elm-lang.org/packages/elm-lang/core/latest/Json-Decode

Now	that	we	can	handle	the	simplest	JSON	values,	how	can	we	deal	with	more	complex
things	like	arrays	and	objects?

Combining	Decoders
The	cool	thing	about	decoders	is	that	they	snap	together	building	blocks.	So	if	we	want	to
handle	a	list	of	values,	we	would	reach	for	the	following	function:

list	:	Decoder	a	->	Decoder	(List	a)

We	can	combine	this	with	all	the	primitive	decoders	now:

>	import	Json.Decode	exposing	(..)

>	int

<decoder>	:	Decoder	Int

>	list	int

<decoder>	:	Decoder	(List	Int)

>	decodeString	(list	int)	"[1,2,3]"

Ok	[1,2,3]	:	Result	String	(List	Int)

>	decodeString	(list	string)	"""["hi",	"yo"]"""

Ok	["hi",	"yo"]	:	Result	String	(List	String)

So	now	we	can	handle	JSON	arrays.	If	we	want	to	get	extra	crazy,	we	can	even	nest	lists.

>	decodeString	(list	(list	int))	"[[0],	[1,2,3],	[4,5]]"

Ok	[[0],[1,2,3],[4,5]]	:	Result	String	(List	(List	Int))

Decoding	Objects
Decoding	JSON	objects	is	slightly	fancier	than	using	the		list		function,	but	it	is	the	same
idea.	The	important	functions	for	decoding	objects	is	an	infix	operator:

(:=)	:	String	->	Decoder	a	->	Decoder	a

This	says	"look	into	a	given	field,	and	try	to	decode	it	in	a	certain	way".	So	using	it	looks	like
this:

JSON

81

>	import	Json.Decode	exposing	(..)

>	"x"	:=	int

<decoder>	:	Decoder	Int

>	decodeString	("x"	:=	int)	"""{	"x":	3,	"y":	4	}"""

Ok	3	:	Result	String	Int

>	decodeString	("y"	:=	int)	"""{	"x":	3,	"y":	4	}"""

Ok	4	:	Result	String	Int

That	is	great,	but	it	only	works	on	one	field.	We	want	to	be	able	to	handle	objects	larger	than
that,	so	we	need	help	from	functions	like	this:

object2	:	(a	->	b	->	value)	->	Decoder	a	->	Decoder	b	->	Decoder	value

This	function	takes	in	two	different	decoders.	If	they	are	both	successful,	it	uses	the	given
function	to	combine	their	results.	So	now	we	can	put	together	two	different	decoders:

>	import	Json.Decode	exposing	(..)

>	(,)

<function>	:	a	->	b	->	(a,	b)

>	point	=	object2	(,)	("x"	:=	int)	("y"	:=	int)

<decoder>	:	Decoder	(Int,	Int)

>	decodeString	point	"""{	"x":	3,	"y":	4	}"""

Ok	(3,4)	:	Result	String	(Int,	Int)

There	are	a	bunch	of	functions	like		object2		(like		object3		and		object4)	for	handling
different	sized	objects.

Note:	Later	we	will	see	tricks	so	you	do	not	need	a	different	function	depending	on	the
size	of	the	object	you	are	dealing	with.	You	can	also	use	functions	like		dict		and
	keyValuePairs		if	the	JSON	you	are	processing	is	using	an	object	more	like	a	dictionary.

Optional	Fields
By	now	we	can	decode	arbitrary	objects,	but	what	if	that	object	has	an	optional	field?	Now
we	want	the		maybe		function:

maybe	:	Decoder	a	->	Decoder	(Maybe	a)

JSON

82

http://package.elm-lang.org/packages/elm-lang/core/latest/Json-Decode#dict
http://package.elm-lang.org/packages/elm-lang/core/latest/Json-Decode#keyValuePairs

It	is	saying,	try	to	use	this	decoder,	but	it	is	fine	if	it	does	not	work.

>	import	Json.Decode	exposing	(..)

>	type	alias	User	=	{	name	:	String,	age	:	Maybe	Int	}

>	user	=	object2	User	("name"	:=	string)	(maybe	("age"	:=	int))

<decoder>	:	Decoder	User

>	decodeString	user	"""{	"name":	"Tom",	"age":	42	}"""

Ok	{	name	=	"Tom",	age	=	Just	42	}	:	Result	String	User

>	decodeString	user	"""{	"name":	"Sue"	}"""

Ok	{	name	=	"Sue",	age	=	Nothing	}	:	Result	String	User

Weirdly	Shaped	JSON
There	is	also	the	possibility	that	a	field	can	hold	different	types	of	data	in	different	scenarios.
I	have	seen	a	case	where	a	field	is	usually	an	integer,	but	sometimes	it	is	a	string	holding	a
number.	I	am	not	naming	names,	but	it	was	pretty	lame.	Luckily,	it	is	not	too	crazy	to	make	a
decoder	for	this	situation	as	well.	The	two	functions	that	will	help	us	out	are		oneOf		and
	customDecoder	:

oneOf	:	List	(Decoder	a)	->	Decoder	a

customDecoder	:	Decoder	a	->	(a	->	Result	String	b)	->	Decoder	b

The		oneOf		function	takes	a	list	of	decoders	and	tries	them	all	until	one	works.	If	none	of
them	work,	the	whole	thing	fails.	The		customDecoder		function	runs	a	decoder,	and	if	it
succeeds,	does	whatever	further	processing	you	want.	So	the	solution	to	our	"sometimes	an
int,	sometimes	a	string"	problem	looks	like	this:

sillyNumber	:	Decoder	Int

sillyNumber	=

		oneOf

				[int

				,	customDecoder	string	String.toInt

]

We	first	try	to	just	read	an	integer.	If	that	fails,	we	try	to	read	a	string	and	then	convert	it	to	an
integer	with		String.toInt	.	In	your	face	crazy	JSON!

JSON

83

http://package.elm-lang.org/packages/elm-lang/core/latest/Json-Decode#oneOf
http://package.elm-lang.org/packages/elm-lang/core/latest/Json-Decode#customDecoder

Broader	Context
By	now	you	have	seen	a	pretty	big	chunk	of	the	actual		Json.Decode		API,	so	I	want	to	give
some	additional	context	about	how	this	fits	into	the	broader	world	of	Elm	and	web	apps.

Validating	Server	Data

The	conversion	from	JSON	to	Elm	doubles	as	a	validation	phase.	You	are	not	just
converting	from	JSON,	you	are	also	making	sure	that	JSON	conforms	to	a	particular
structure.

In	fact,	decoders	have	revealed	weird	data	coming	from	NoRedInk's	backend	code!	If	your
server	is	producing	unexpected	values	for	JavaScript,	the	client	just	gradually	crashes	as
you	run	into	missing	fields.	In	contrast,	Elm	recognizes	JSON	values	with	unexpected
structure,	so	NoRedInk	gives	a	nice	explanation	to	the	user	and	logs	the	unexpected	value.
This	has	actually	led	to	some	patches	in	Ruby	code!

A	General	Pattern

JSON	decoders	are	actually	an	instance	of	a	more	general	pattern	in	Elm.	You	see	it
whenever	you	want	to	wrap	up	complicated	logic	into	small	building	blocks	that	snap
together	easily.	Other	examples	include:

	Random		—	The		Random		library	has	the	concept	of	a		Generator	.	So	a		Generator	Int	
creates	random	integers.	You	start	with	primitive	building	blocks	that	generate	random
	Int		or		Bool	.	From	there,	you	use	functions	like		map		and		andMap		to	build	up
generators	for	fancier	types.

	Easing		—	The	Easing	library	has	the	concept	of	an		Interpolation	.	An		Interpolation
Float		describes	how	to	slide	between	two	floating	point	numbers.	You	start	with
interpolations	for	primitives	like		Float		or		Color	.	The	cool	thing	is	that	these
interpolations	compose,	so	you	can	build	them	up	for	much	fancier	types.

As	of	this	writing,	there	is	some	early	work	on	Protocol	Buffers	(binary	data	format)	that	uses
the	same	pattern.	In	the	end	you	get	a	nice	composable	API	for	converting	between	Elm
values	and	binary!

JSON

84

JavaScript	Interop
At	some	point	your	Elm	program	is	probably	going	to	need	to	talk	to	JavaScript.	We	do	this
by	(1)	embedding	Elm	in	HTML	and	(2)	sending	messages	back	and	forth	between	Elm	and
JavaScript:

This	way	we	can	have	access	to	full	power	of	JavaScript,	the	good	and	the	bad,	without
giving	up	on	all	the	things	that	are	nice	about	Elm.

Step	1:	Embed	in	HTML
Normally	when	you	run	the	Elm	compiler,	it	will	give	you	an	HTML	file	that	sets	everything	up
for	you.	So	running	this:

elm-make	src/Main.elm

Will	result	in	a		index.html		file	that	you	can	just	open	up	and	start	using.	To	do	fancier	stuff,
we	want	to	compile	to	JavaScript,	so	we	modify	the	command	slightly:

elm-make	src/Main.elm	--output=main.js

Now	the	compiler	will	generate	a	JavaScript	file	that	lets	you	initialize	your	program	like	this:

JavaScript

85

<div	id="main"></div>

<script	src="main.js"></script>

<script>

				var	node	=	document.getElementById('main');

				var	app	=	Elm.Main.embed(node);

				//	Note:	if	your	Elm	module	is	named	"MyThing.Root"	you

				//	would	call	"Elm.MyThing.Root.embed(node)"	instead.

</script>

This	is	doing	three	important	things:

1.	 We	create	a		<div>		that	will	hold	the	Elm	program.
2.	 We	load	the	JavaScript	generated	by	the	Elm	compiler.
3.	 We	grab	the	relevant	node	and	initialize	our	Elm	program	in	it.

So	now	we	can	set	Elm	up	in	any		<div>		we	want.	So	if	you	are	using	React,	you	can	create
a	component	that	just	sets	this	kind	of	thing	up.	If	you	are	using	Angular	or	Ember	or
something	else,	it	should	not	be	too	crazy	either.	Just	take	over	a		<div>	.

The	next	section	gets	into	how	to	get	your	Elm	and	JavaScript	code	to	communicate	with
each	other	in	a	nice	way.

Step	2:	Talk	to	JavaScript
There	are	two	major	ways	for	Elm	and	JavaScript	to	talk	to	each	other:	ports	and	flags.

Ports

Say	we	have	a	nice	Elm	program	and	everything	is	going	fine,	but	we	want	to	use	some
JavaScript	spell-checking	library	to	get	a	feature	done	real	quick.	The	final	result	is	shown
here,	and	we	will	walk	through	the	most	important	parts	here.

Okay,	in	Elm,	any	communication	with	JavaScript	goes	through	a	port.	Think	of	it	like	a
hole	in	the	side	of	your	Elm	program	where	you	can	send	values	in	and	out.	These	work
exactly	like	the	commands	and	subscriptions	from	the	Architecture	section.	Sending	values
out	to	JS	is	a	command.	Listening	for	values	coming	in	from	JS	is	a	subscription.	Pretty
neat!

So	if	we	want	to	talk	to	this	spell-checking	library,	our	Elm	program	will	need	these	additional
declarations:

JavaScript

86

https://gist.github.com/evancz/e69723b23958e69b63d5b5502b0edf90

port	module	Spelling	exposing	(..)

...

--	port	for	sending	strings	out	to	JavaScript

port	check	:	String	->	Cmd	msg

--	port	for	listening	for	suggestions	from	JavaScript

port	suggestions	:	(List	String	->	msg)	->	Sub	msg

...

Again,	you	can	see	the	whole	file	here,	but	these	are	the	important	additions:

1.	 We	change	the		module		declaration	to		port	module	.	This	indicates	that		port	
declarations	should	be	permitted.	(Very	few	modules	should	have	ports	in	them!)

2.	 We	create	a		check		port.	On	the	Elm	side,	we	can	create	commands	like		check
"badger"	,	resulting	in	a		Cmd	msg		that	sends	strings	to	the	JS	side.

3.	 We	create	a		suggestions		port.	This	one	looks	a	bit	fancier	than	the		check		port,	but
imagine	that	it	is	creating		Sub	(List	String)	.	You	are	essentially	subscribing	to	lists	of
strings	sent	into	Elm	from	JS.	So	when	the	spell-checking	library	has	a	suggestion,	it
will	send	things	through.	Now,	the	type	of		suggestions		is	a	bit	fancier	than	that.	You
provide	a	function	from		(List	String	->	msg)		so	you	can	convert	that	list	of	strings	to
your		Msg		type	immediately.	This	makes	it	easy	to	deal	with	in	your		update		function,
but	it	is	just	for	convenience.	The	real	point	is	to	send	a		List	String		from	JS	into	Elm.

Okay,	so	after	you	run		elm-make	Spelling.elm	--output=spelling.js		you	embed	it	in	HTML
like	this:

<div	id="spelling"></div>

<script	src="spelling.js"></script>

<script>

				var	app	=	Elm.Spelling.fullscreen();

				app.ports.check.subscribe(function(word)	{

								var	suggestions	=	spellCheck(word);

								app.ports.suggestions.send(suggestions);

				});

				function	spellCheck(word)	{

								//	have	a	real	implementation!

								return	[];

				}

</script>

JavaScript

87

https://gist.github.com/evancz/e69723b23958e69b63d5b5502b0edf90

Okay,	so	all	the	ports	you	declare	in	your	Elm	program	will	be	available	as	fields	of
	app.ports	.	In	the	code	above,	we	access		app.ports.check		and		app.ports.suggestions	.
They	work	like	this:

We	can	subscribe	to		app.ports.check	.	Every	time	Elm	says	to	send	a	value	out,	we	will
call	this	JavaScript	function.

We	can	send	values	to		app.ports.suggestions	.	So	whenever	we	have	some	new
suggestions	for	Elm,	we	just		send		them	through.

With	that	knowledge,	we	can	communicate	back	and	forth	with	JavaScript!

Note:	Elm	validates	all	values	coming	in	from	JavaScript.	In	Elm	we	said	we	can	only
handle		List	String		so	we	need	to	make	sure	that	the	JavaScript	code	does	not	break
that	contract!	More	about	that	farther	down	this	page.

Flags

The	second	way	to	talk	to	JavaScript	is	with	flags.	You	can	think	of	this	as	some	static
configuration	for	your	Elm	program.

Instead	of	creating	a		Program		with	the		program		function,	we	can	use	the
	programWithFlags	.	So	say	we	want	to	get	a	value	like	this	from	JavaScript	on	initialization:

type	alias	Flags	=

		{	user	:	String

		,	token	:	String

		}

We	would	set	up	our	Elm	program	like	this:

init	:	Flags	->	(Model,	Cmd	Msg)

init	flags	=

		...

main	=

		programWithFlags	{	init	=	init,	...	}

And	on	the	JavaScript	side,	we	start	the	program	like	this:

JavaScript

88

http://package.elm-lang.org/packages/elm-lang/html/latest/Html-App#program
http://package.elm-lang.org/packages/elm-lang/html/latest/Html-App#programWithFlags

//	if	you	want	it	to	be	fullscreen

var	app	=	Elm.MyApp.fullscreen({

				user:	'Tom',

				token:	'12345'

});

//	if	you	want	to	embed	your	app

var	node	=	document.getElementById('my-app');

var	app	=	Elm.MyApp.embed(node,	{

				user:	'Tom',

				token:	'12345'

});

Notice	that	this	is	exactly	the	same	as	normal,	but	we	provide	an	extra	argument	with	all	the
flags	we	want.

Just	like	ports,	the	values	sent	in	from	JavaScript	are	validated	to	make	sure	JavaScript
bugs	stay	in	JavaScript.

Customs	and	Border	Protection
Ports	and	flags	must	be	careful	about	what	values	are	allowed	through.	Elm	is	statically
typed,	so	each	port	is	fitted	with	some	border	protection	code	that	ensures	that	type	errors
are	kept	out.	Ports	also	do	some	conversions	so	that	you	get	nice	colloquial	data	structures
in	both	Elm	and	JS.

The	particular	types	that	can	be	sent	in	and	out	of	ports	are	quite	flexible,	covering	all	valid
JSON	values.	Specifically,	incoming	ports	can	handle	all	the	following	Elm	types:

Booleans	and	Strings	–	both	exist	in	Elm	and	JS!
Numbers	–	Elm	ints	and	floats	correspond	to	JS	numbers
Lists	–	correspond	to	JS	arrays
Arrays	–	correspond	to	JS	arrays
Tuples	–	correspond	to	fixed-length,	mixed-type	JS	arrays
Records	–	correspond	to	JavaScript	objects
Maybes	–		Nothing		and		Just	42		correspond	to		null		and		42		in	JS
Json	–		Json.Encode.Value		corresponds	to	arbitrary	JSON

Now	say	Elm	wants	a		List	String	,	but	someone	calls		app.ports.suggestions.send(42)		on
the	JavaScript	side.	We	know	it	will	cause	issues	in	Elm,	and	we	know	the	code	producing
invalid	data	is	on	the	JS	side.	So	rather	than	letting	the	bad	data	into	Elm	and	cause	a

JavaScript

89

http://www.json.org/
http://package.elm-lang.org/packages/elm-lang/core/latest/Json-Encode#Value

runtime	exception	eventually	(the	JavaScript	way!)	we	throw	a	runtime	exception
immediately	when	you	call		send		with	invalid	data.	So	we	cannot	solve	the	problem	of
invalid	data	in	JavaScript,	but	we	can	at	least	make	sure	it	stays	on	the	JavaScript	side!

Usage	Advice
I	showed	an	example	where	the	ports	were	declared	in	the	root	module.	This	is	not	a	strict
requirement.	You	can	actually	create	a		port	module		that	gets	imported	by	various	parts	of
your	app.

It	seems	like	it	is	probably	best	to	just	have	one		port	module		for	your	project	so	it	is	easier
to	figure	out	the	API	on	the	JavaScript	side.	I	plan	to	improve	tooling	such	that	you	can	just
ask	though.

Note:	Port	modules	are	not	permitted	in	the	package	repository.	Imagine	you	download
an	Elm	package	and	it	just	doesn't	work.	You	read	the	docs	and	discover	you	also	need
to	get	some	JS	code	and	hook	it	up	properly.	Lame.	Bad	experience.	Now	imagine	if
you	had	this	risk	with	every	package	out	there.	It	just	would	feel	crappy,	so	we	do	not
allow	that.

Historical	Context
Now	I	know	that	this	is	not	the	typical	interpretation	of	language	interop.	Usually	languages
just	go	for	full	backwards	compatibility.	So	C	code	can	be	used	anywhere	in	C++	code.	You
can	replace	C/C++	with	Java/Scala	or	JavaScript/TypeScript.	This	is	the	easiest	solution,	but
it	forces	you	to	make	quite	extreme	sacrifices	in	the	new	language.	All	the	problems	of	the
old	language	now	exist	in	the	new	one	too.	Hopefully	less	though.

Elm's	interop	is	built	on	the	observation	that	by	enforcing	some	architectural	rules,	you
can	make	full	use	of	the	old	language	without	making	sacrifices	in	the	new	one.	This
means	we	can	keep	making	guarantees	like	"you	will	not	see	runtime	errors	in	Elm"	even	as
you	start	introducing	whatever	crazy	JavaScript	code	you	need.

So	what	are	these	architectural	rules?	Turns	out	it	is	just	The	Elm	Architecture.	Instead	of
embedding	arbitrary	JS	code	right	in	the	middle	of	Elm,	we	use	commands	and
subscriptions	to	send	messages	to	external	JavaScript	code.	So	just	like	how	the		WebSocket	
library	insulates	you	from	all	the	crazy	failures	that	might	happen	with	web	sockets,	port
modules	insulate	you	from	all	the	crazy	failures	that	might	happen	in	JavaScript.	It	is	like
JavaScript-as-a-Service.

JavaScript

90

JavaScript

91

Scaling	The	Elm	Architecture
If	you	are	coming	from	JavaScript,	you	are	probably	wondering	“where	are	my	reusable
components?”	and	“how	do	I	do	parent-child	communication	between	them?”	A	great	deal	of
time	and	effort	is	spent	on	these	questions	in	JavaScript,	but	it	just	works	different	in	Elm.
We	do	not	think	in	terms	of	reusable	components.	Instead,	we	focus	on	reusable
functions.	It	is	a	functional	language	after	all!

So	this	chapter	will	go	through	a	few	examples	that	show	how	we	create	reusable	views	by
breaking	out	helper	functions	to	display	our	data.	We	will	also	learn	about	Elm’s	module
system	which	helps	you	break	your	code	into	multiple	files	and	hide	implementation	details.
These	are	the	core	tools	and	techniques	of	building	large	app	with	Elm.

In	the	end,	I	think	we	end	up	with	something	far	more	flexible	and	reliable	than	“reusable
components”	and	there	is	no	real	trick.	We	will	just	be	using	the	fundamental	tools	of
functional	programming!

Scaling	The	Elm	Architecture

92

Labeled	Checkboxes
Your	app	will	probably	have	some	options	people	can	mess	with.	If	something	happens,
should	you	send	them	an	email	notification?	If	they	come	across	a	video,	should	it	start
playing	by	itself?	That	kind	of	thing.	So	you	will	need	to	create	some	HTML	like	this:

<fieldset>

		<label><input	type="checkbox">Email	Notifications</label>

		<label><input	type="checkbox">Video	Autoplay</label>

		<label><input	type="checkbox">Use	Location</label>

</fieldset>

That	will	let	people	toggle	the	checkboxes,	and	using		<label>		means	they	get	a	much
bigger	area	they	can	click	on.	Let’s	write	an	Elm	program	that	manages	all	this	interaction!
As	always,	we	will	take	a	guess	at	our		Model	.	We	know	we	need	to	track	the	user’s	settings
so	we	will	put	them	in	our	model:

type	alias	Model	=

		{	notifications	:	Bool

		,	autoplay	:	Bool

		,	location	:	Bool

		}

From	there,	we	will	want	to	figure	out	our	messages	and	update	function.	Maybe	something
like	this:

type	Msg

		=	ToggleNotifications

		|	ToggleAutoplay

		|	ToggleLocation

update	:	Msg	->	Model	->	Model

update	msg	model	=

		case	msg	of

				ToggleNotifications	->

						{	model	|	notifications	=	not	model.notifications	}

				ToggleAutoplay	->

						{	model	|	autoplay	=	not	model.autoplay	}

				ToggleLocation	->

						{	model	|	location	=	not	model.location	}

Labeled	Checkboxes

93

That	seems	fine.	Now	to	create	our	view!

view	:	Model	->	Html	Msg

view	model	=

		fieldset	[]

				[label	[]

								[input	[type_	"checkbox",	onClick	ToggleNotifications]	[]

								,	text	"Email	Notifications"

]

				,	label	[]

								[input	[type_	"checkbox",	onClick	ToggleAutoplay]	[]

								,	text	"Video	Autoplay"

]

				,	label	[]

								[input	[type_	"checkbox",	onClick	ToggleLocation]	[]

								,	text	"Use	Location"

]

]

This	is	not	too	crazy,	but	we	are	repeating	ourselves	quite	a	bit.	How	can	we	make	our
	view		function	nicer?	If	you	are	coming	from	JavaScript,	your	first	instinct	is	probably	that
we	should	make	a	“labeled	checkbox	component”	but	your	first	instinct	is	wrong!	Instead,	we
will	create	a	helper	function!

view	:	Model	->	Html	Msg

view	model	=

		fieldset	[]

				[checkbox	ToggleNotifications	"Email	Notifications"

				,	checkbox	ToggleAutoplay	"Video	Autoplay"

				,	checkbox	ToggleLocation	"Use	Location"

]

checkbox	:	msg	->	String	->	Html	msg

checkbox	msg	name	=

		label	[]

				[input	[type_	"checkbox",	onClick	msg]	[]

				,	text	name

]

Now	we	have	a	highly	configurable		checkbox		function.	It	takes	two	arguments	to	configure
how	it	works:	the	message	it	produces	on	clicks	and	some	text	to	show	next	to	the
checkbox.	Now	if	we	decide	we	want	all	checkboxes	to	have	a	certain		class	,	we	just	add	it
in	the		checkbox		function	and	it	shows	up	everywhere!	This	is	the	essense	of	reusable
views	in	Elm.	Create	helper	functions!

Labeled	Checkboxes

94

Comparing	Reusable	Views	to	Reusable
Components
We	now	have	enough	information	to	do	a	simple	comparison	of	these	approaches.	Reusable
views	have	a	few	major	advantages	over	components:

It	is	just	functions.	We	are	not	doing	anything	special	here.	Functions	have	all	the
power	we	need,	and	they	are	very	simple	to	create.	It	is	the	most	basic	building	block	of
Elm!

No	parent-child	communication.	If	we	had	made	a	“checkbox	component”	we	would
have	to	figure	out	how	to	synchronize	the	state	in	the	checkbox	component	with	our
overall	model.	“That	checkbox	says	notifications	are	on,	but	the	model	says	they	are
off!”	Maybe	we	need	a	Flux	store	now?	By	using	functions	instead,	we	are	able	to	have
reuse	in	our	view	without	disrupting	our		Model		or		update	.	They	work	exactly	the	same
as	before,	no	need	to	touch	them!

This	means	we	can	always	create	reusable		view		code	without	changing	our	overall
architecture	or	introducing	any	fancy	ideas.	Just	write	smaller	functions.	That	sounds	nice,
but	let’s	see	some	more	examples	to	make	sure	it	is	true!

Labeled	Checkboxes

95

Radio	Buttons
Say	you	have	a	website	that	is	primarily	about	reading,	like	this	guide!	You	may	want	to	have
a	way	to	choose	between	small,	medium,	and	large	fonts	so	your	readers	can	customize	it
for	their	preferences.	In	that	case,	you	will	want	some	HTML	like	this:

<fieldset>

		<label><input	type="radio">Small</label>

		<label><input	type="radio">Medium</label>

		<label><input	type="radio">Large</label>

</fieldset>

Just	like	in	the	checkbox	example	from	the	previous	page,	this	will	let	people	choose	the	one
they	want,	and	using		<label>		means	they	get	a	much	bigger	area	they	can	click	on.	Like
always,	we	start	with	our		Model	.	This	one	is	kind	of	interesting	because	we	can	use	union
types	to	make	it	very	reliable!

type	alias	Model	=

		{	fontSize	:	FontSize

		,	content	:	String

		}

type	FontSize	=	Small	|	Medium	|	Large

This	means	there	are	exactly	three	possible	font	sizes:		Small	,		Medium	,	and		Large	.	It	is
impossible	to	have	any	other	value	in	our		fontSize		field.	If	you	are	coming	from	JavaScript,
you	know	their	alternative	is	to	use	strings	or	numbers	and	just	hope	that	there	is	never	a
typo	or	mistake.	You	could	use	values	like	that	in	Elm,	but	why	open	yourself	up	to	bugs	for
no	reason?!

Note:	You	should	always	be	looking	for	opportunities	to	use	union	types	in	your	data.
The	best	way	to	avoid	invalid	states	is	to	make	them	impossible	to	represent	in	the	first
place!

Alright,	now	we	need	to		update		our	model.	In	this	case	we	just	want	to	switch	between	font
sizes	as	the	user	toggles	the	radio	buttons:

Radio	Buttons

96

type	Msg

		=	SwitchTo	FontSize

update	:	Msg	->	Model	->	Model

update	msg	model	=

		case	msg	of

				SwitchTo	newFontSize	->

						{	model	|	fontSize	=	newFontSize	}

Now	we	need	to	describe	how	to	show	our		Model		on	screen.	First	let’s	see	the	one	where
we	put	all	our	code	in	one	function	and	repeat	ourselves	a	bunch	of	times:

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[fieldset	[]

								[label	[]

												[input	[type_	"radio",	onClick	(SwitchTo	Small)]	[]

												,	text	"Small"

]

								,	label	[]

												[input	[type_	"radio",	onClick	(SwitchTo	Medium)]	[]

												,	text	"Medium"

]

								,	label	[]

												[input	[type_	"radio",	onClick	(SwitchTo	Large)]	[]

												,	text	"Large"

]

]

				,	section	[]	[text	model.content]

]

That	is	kind	of	a	mess!	The	best	thing	to	do	is	to	start	making	helper	functions	(not
components!).	We	see	some	repetition	in	the	radio	buttons,	so	we	will	start	there.

Radio	Buttons

97

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[fieldset	[]

								[radio	(SwitchTo	Small)	"Small"

								,	radio	(SwitchTo	Medium)	"Medium"

								,	radio	(SwitchTo	Large)	"Large"

]

				,	section	[]	[text	model.content]

]

radio	:	msg	->	String	->	Html	msg

radio	msg	name	=

		label	[]

				[input	[type_	"radio",	onClick	msg]	[]

				,	text	name

]

Our		view		function	is	quite	a	bit	easier	to	read	now.	Great!

If	that	is	the	only	chunk	of	radio	buttons	on	your	page,	you	are	done.	But	perhaps	you	have
a	couple	sets	of	radio	buttons.	For	example,	this	guide	not	only	lets	you	set	font	size,	but
also	color	scheme	and	whether	you	use	a	serif	or	sans-serif	font.	Each	of	those	can	be
implemented	as	a	set	of	radio	buttons,	so	we	could	do	a	bit	more	refactoring,	like	this:

view	:	Model	->	Html	Msg

view	model	=

		div	[]

				[viewPicker

								[("Small",	SwitchTo	Small)

								,	("Medium",	SwitchTo	Medium)

								,	("Large",	SwitchTo	Large)

]

				,	section	[]	[text	model.content]

]

viewPicker	:	List	(String,	msg)	->	Html	msg

viewPicker	options	=

		fieldset	[]	(List.map	radio	options)

radio	:	(String,	msg)	->	Html	msg

radio	(name,	msg)	=

		label	[]

				[input	[type_	"radio",	onClick	msg]	[]

				,	text	name

]

Radio	Buttons

98

So	if	we	want	to	let	users	choose	a	color	scheme	or	toggle	serifs,	the		view		can	reuse
	viewPicker		for	each	case.	If	we	do	that,	we	may	want	to	add	additional	arguments	to	the
	viewPicker		function.	If	we	want	to	be	able	to	set	a	class	on	each		<fieldset>	,	we	could	add
an	argument	like	this:

viewPicker	:	String	->	List	(String,	msg)	->	Html	msg

viewPicker	pickerClass	options	=

		fieldset	[class	pickerClass]	(List.map	radio	options)

Or	if	we	wanted	even	more	flexibility,	we	could	let	people	pass	in	whatever	attributes	they
please,	like	this:

viewPicker	:	List	(Attribute	msg)	->	List	(String,	msg)	->	Html	msg

viewPicker	attributes	options	=

		fieldset	attributes	(List.map	radio	options)

And	if	we	wanted	even	MORE	flexibility,	we	could	let	people	pass	in	attributes	for	each	radio
button	too!	There	is	really	no	end	to	what	can	be	configured.	You	just	add	a	bit	more
information	to	an	argument.

Too	Much	Reuse?
In	this	case,	we	saw	quite	a	few	ways	to	write	the	same	code.	But	which	way	is	the	right	way
to	do	it?	A	good	rule	to	pick	an	API	is	choose	the	absolute	simplest	thing	that	does
everything	you	need.	Here	are	some	scenarios	that	test	this	rule:

1.	 There	is	the	only	radio	button	thing	on	your	page.	In	that	case,	just	make	them!	Do	not
worry	about	making	a	highly	configurable	and	reusable	function	for	radio	buttons.
Refactoring	is	easy	in	Elm,	so	wait	for	a	legitimate	need	before	doing	that	work!

2.	 There	are	a	couple	radio	button	things	on	your	page,	all	with	the	same	styling.	That	is
how	the	options	on	this	guide	look.	This	is	a	great	case	for	sharing	a	view	function.	You
may	not	even	need	to	change	any	classes	or	add	any	custom	attributes.	If	you	do	not
need	that,	do	not	design	for	it!	It	is	easy	to	add	later.

3.	 There	are	a	couple	radio	button	things	on	your	page,	but	they	are	very	different.	You
could	do	an	extremely	flexible	picker	that	lets	you	configure	everything,	but	at	some
point,	things	that	look	similar	are	not	actually	similar	enough	for	this	to	be	worth	it.	So	if
you	ever	find	yourself	with	tons	of	complex	arguments	configuring	a	view	function,	you
may	have	overdone	it	on	the	reuse.	I	personally	would	prefer	to	have	two	chunks	of
similar	view	code	that	are	both	simple	and	easy	to	change	than	one	chunk	of	view	code
that	is	complex	and	hard	to	understand.

Radio	Buttons

99

Point	is,	there	is	no	magic	recipe	here.	The	answer	will	depend	on	the	particulars	of	your
application,	and	you	should	always	try	to	find	the	simplest	approach.	Sometimes	that	means
sharing	code.	Sometimes	it	means	writing	similar	code.	It	takes	practice	and	experience	to
get	good	at	this,	so	do	not	be	afraid	to	experiment	to	find	simpler	ways!

Radio	Buttons

100

Modules
In	the	last	few	sections,	we	learned	how	to	create	reusable	views.	Whenever	you	start
seeing	a	pattern	in	your		view		code,	you	can	break	it	out	into	a	helper	function.	But	so	far,
we	have	just	been	growing	our	files	longer	and	longer.	At	some	point	this	gets	out	of	control
though,	we	do	not	want	to	have	2000	line	files!

So	Elm	has	modules	to	help	you	grow	your	codebase	in	a	nice	way.	On	the	most	basic	level,
modules	let	you	break	your	code	into	multiple	files.	Like	everything	else	in	Elm,	you	should
only	reach	for	a	fancier	tool	when	you	feel	you	need	it.	So	if	you	have	a	400	line	file	and
notice	that	a	bunch	of	code	is	all	related	to	showing	radio	buttons	in	a	certain	way,	it	may	be
a	good	idea	to	move	all	the	relevant	functions	and	types	into	their	own	module.

Before	we	get	into	the	nuances	of	using	modules	appropriately,	let’s	learn	how	to	use	them
at	all!

Defining	Modules
Every	module	starts	with	a	module	declaration.	So	if	I	wanted	to	define	my	own	version	of
the		Maybe		module,	I	might	start	with	something	like	this:

module	Optional	exposing	(..)

type	Optional	a	=	Some	a	|	None

isNone	:	Optional	a	->	Bool

isNone	optional	=

		case	optional	of

				Some	_	->

						False

				None	->

						True

The	new	thing	here	is	that	first	line.	You	can	read	it	as	“This	module	is	named		Optional		and
it	exposes	everything	to	people	who	use	the	module.”

Exposing	everything	is	fine	for	prototyping	and	exploration,	but	a	serious	project	will	want	to
make	the	exposed	values	explicit,	like	this:

module	Optional	exposing	(Optional(..),	isNone)

Modules

101

Read	this	as	“This	module	is	named		Optional		and	it	exposes	the		Optional		type,	the
	Some		and		None		constructors,	and	the		isNone		function	to	people	who	use	the	module.”
Now	there	is	no	reason	to	list	everything	that	is	defined,	so	later	we	will	see	how	this	can	be
used	to	hide	implementation	details.

Note:	If	you	forget	to	add	a	module	declaration,	Elm	will	use	this	one	instead:

module	Main	exposing	(..)

This	makes	things	easier	for	beginners	working	in	just	one	file.	They	should	not	be
confronted	with	the	module	system	on	their	first	day!

Using	Modules
Okay,	we	have	our		Optional		module,	but	how	do	we	use	it?	We	can	create		import	
declarations	at	the	top	of	files	that	describe	which	modules	are	needed.	So	if	we	wanted	to
make	the	“No	shoes,	no	shirt,	no	service”	policy	explicit	in	code,	we	could	write	this:

import	Optional

noService	:	Optional.Optional	a	->	Optional.Optional	a	->	Bool

noService	shoes	shirt	=

		Optional.isNone	shoes	&&	Optional.isNone	shirt

The		import	Optional		line	means	you	can	use	anything	exposed	by	the	module	as	long	as
you	put		Optional.		before	it.	So	in	the		noService		function,	you	see		Optional.Optional		and
	Optional.isNone	.	These	are	called	qualified	names.	Which		isNone		is	it?	The	one	from	the
	Optional		module!	It	says	it	right	there	in	the	code.

Generally,	it	is	best	to	always	use	qualified	names.	In	a	project	with	twenty	imports,	it	is
extremely	helpful	to	be	able	to	quickly	see	where	a	value	comes	from.

That	said,	there	are	a	few	ways	to	customize	an	import	that	can	come	in	handy.

As

You	can	use	the		as		keyword	to	provide	a	shorter	name.	To	stick	with	the		Optional	
module,	we	could	abbreviate	it	to	just		Opt		like	this:

Modules

102

import	Optional	as	Opt

noService	:	Opt.Optional	a	->	Opt.Optional	a	->	Bool

noService	shoes	shirt	=

		Opt.isNone	shoes	&&	Opt.isNone	shirt

Now	we	can	refer	to		Opt.Optional		and		Opt.isNone	.	It	is	kind	of	nice	in	this	case,	but	this
feature	is	best	used	on	very	long	module	names.	Cases	like	this:

import	Facebook.News.Story	as	Story

It	would	be	annoying	to	type	out	the	whole	module	name	every	time	we	need	a	function	from
it,	so	we	shorten	it	to	a	name	that	is	clear	and	helpful.

Exposing

You	can	also	use	the		exposing		keyword	to	bring	in	the	contents	of	the	module	without	a
qualifier.	You	will	sometimes	see	things	like	this:

import	Optional	exposing	(Optional)

noService	:	Optional	a	->	Optional	a	->	Bool

noService	shoes	shirt	=

		Optional.isNone	shoes	&&	Optional.isNone	shirt

This	way	you	can	refer	to	the		Optional		type	directly,	but	still	need	to	say		Optional.isNone	
and		Optional.None		for	everything	else	exposed	by	the	module.

This		exposing		keyword	works	just	like	it	does	in	module	declarations.	If	you	want	to	expose
everything	you	use		exposing	(..)	.	If	you	want	to	expose	everything	explicitly,	you	would
say		exposing	(Optional(..),	isNone)	.

Mixing	Both
It	is	possible	to	use		as		and		exposing		together.	You	could	write:

import	Optional	as	Opt	exposing	(Optional)

noService	:	Optional	a	->	Optional	a	->	Bool

noService	shoes	shirt	=

		Opt.isNone	shoes	&&	Opt.isNone	shirt

Modules

103

No	matter	how	you	choose	to		import		a	module,	you	will	only	be	able	to	refer	to	types	and
values	that	the	module	has	made	publicly	available.	You	may	get	to	see	only	one	function
from	a	module	that	has	twenty.	That	is	up	to	the	author	of	the	module!

Building	Projects	with	Multiple	Modules
We	know	what	the	Elm	code	looks	like	now,	but	how	do	we	get		elm-make		to	recognize	our
modules?

Every	Elm	project	has	an		elm-package.json		file	at	its	root.	It	will	look	something	like	this:

{

				"version":	"1.0.0",

				"summary":	"helpful	summary	of	your	project,	less	than	80	characters",

				"repository":	"https://github.com/user/project.git",

				"license":	"BSD3",

				"source-directories":	[

								"src",

								"benchmarks/src"

],

				"exposed-modules":	[],

				"dependencies":	{

								"elm-lang/core":	"4.0.2	<=	v	<	5.0.0",

								"elm-lang/html":	"1.1.0	<=	v	<	2.0.0"

				},

				"elm-version":	"0.17.0	<=	v	<	0.18.0"

}

There	are	two	important	parts	for	us:

	"source-directories"		—	This	is	a	list	of	all	the	directories	that		elm-make		will	search
through	to	find	modules.	Saying		import	Optional		means		elm-make		will	search	for
	src/Optional.elm		and		benchmarks/src/Optional.elm	.	Notice	that	the	name	of	the
module	needs	to	match	the	name	of	the	file	exactly.

	"dependencies"		—	This	lists	all	the	community	packages	you	depend	on.	Saying
	import	Optional		means		elm-make		will	also	search	the		elm-lang/core		and		elm-
lang/html		packages	for	modules	named		Optional	.

Typically,	you	will	say		"source-directories":	["src"]		and	have	your	project	set	up	like
this:

my-project/elm-package.json

my-project/src/Main.elm

my-project/src/Optional.elm

Modules

104

http://package.elm-lang.org/
http://package.elm-lang.org/packages/elm-lang/core/latest/
http://package.elm-lang.org/packages/elm-lang/html/latest/

And	when	you	want	to	compile	your		Main.elm		file,	you	say:

cd	my-project

elm-make	src/Main.elm

With	this	setup,		elm-make		will	know	exactly	where	to	find	the		Optional		module.

Note:	If	you	want	fancier	directory	structure	for	your	Elm	code,	you	can	use	module
names	like		Facebook.Feed.Story	.	That	module	would	need	to	live	in	a	file	at
	Facebook/Feed/Story.elm		so	that	the	file	name	matches	the	module	name.

Modules

105

More
Right	now	this	section	gives	a	brief	introduction	to	reusable	views.	Instead	of	thinking	about
components,	you	create	simple	functions	and	configure	them	by	passing	in	arguments.	You
can	see	the	most	extreme	versions	of	this	by	checking	out	the	following	projects:

	evancz/elm-sortable-table	

	thebritican/elm-autocomplete	

The	README	of		elm-sortable-table		has	some	nice	guidance	on	how	to	use	APIs	like
these	and	why	they	are	designed	as	they	are.	You	can	also	watch	the	API	design	session
where	Greg	and	I	figured	out	an	API	for		elm-autocomplete		here:

Video	link

We	talk	through	a	lot	of	the	design	considerations	that	go	into	APIs	like	these.	One	big
takeaway	is	that	you	should	not	expect	to	do	something	as	elaborate	as	this	for	every	single
thing	in	your	app!	As	of	this	writing,	NoRedInk	has	more	than	30k	lines	of	Elm	and	one	or
two	instances	where	they	felt	it	made	sense	to	design	something	as	elaborate	as	this.

Hopefully	those	resources	help	guide	you	as	you	make	larger	and	larger	programs!

More

106

https://github.com/evancz/elm-sortable-table
https://github.com/thebritican/elm-autocomplete
http://youtube.com/watch?v=KSuCYUqY058

Note:	I	plan	to	fill	this	section	in	with	more	examples	of	growing	your		Model		and
	update		functions.	It	is	roughly	the	same	ideas	though.	If	you	find	yourself	repeating
yourself,	maybe	break	things	out.	If	a	function	gets	too	big,	make	a	helper	function.	If
you	see	related	things,	maybe	move	them	to	a	module.	But	at	the	end	of	the	day,	it	is
not	a	huge	deal	if	you	let	things	get	big.	Elm	is	great	at	finding	problems	and	making
refactors	easy,	so	it	is	not	actually	a	huge	deal	if	you	have	a	bunch	of	entries	in	your
	Model		because	it	does	not	seem	better	to	break	them	out	in	some	way.	I	will	be	writing
more	about	this!

More

107

Effect	Managers
Commands	and	subscriptions	are	a	big	part	of	how	Elm	works.	So	far	we	have	just	accepted
that	they	exist	and	that	they	are	very	useful.

Well,	behind	the	scenes	there	are	these	effect	managers	that	handle	all	the	resource
management	and	optimization	that	makes	commands	and	subscriptions	so	nice	to	use!

General	Overview
Effect	managers	are	an	expert	feature	that:

1.	 Let	library	authors	to	do	all	the	dirty	work	of	managing	exotic	effects.
2.	 Let	application	authors	use	all	that	work	with	a	nice	simple	API	of	commands	and

subscriptions.

The	best	example	is	probably	web	sockets.	As	a	user,	you	just	subscribe	to	messages	on
a	particular	URL.	Very	simple.	This	is	hiding	the	fact	that	web	sockets	are	a	pain	to	manage!
Behind	the	scenes	an	effect	manager	is	in	charge	of	opening	connections	(which	may	fail),
sending	messages	(which	may	fail),	detecting	when	connections	go	down,	queuing
messages	until	the	connection	is	back,	and	trying	to	reconnect	with	an	exponential	backoff
strategy.	All	sorts	of	annoying	stuff.	As	the	author	of	the	effect	manager	for	web	sockets,	I
can	safely	say	that	no	one	wants	to	think	about	this	stuff!	Effect	managers	mean	that	this
pain	only	has	to	be	felt	by	a	handful	of	people	in	the	community.

This	pattern	exists	for	a	lot	of	backend	services.	Other	good	examples	include:

GraphQL	—	The	neat	thing	about	GraphQL	is	not	just	the	query	language,	but	the	fact
that	you	can	do	query	optimization.	Say	the	app	makes	4	queries	within	a	few
milliseconds.	Instead	of	blindly	doing	4	separate	HTTP	requests,	an	effect	manager
could	batch	them	all	into	one.	Furthermore,	it	could	keep	a	cache	of	results	around	and
try	to	reuse	results	to	avoid	sending	requests	all	together!
Phoenix	Channels	—	This	is	a	variation	of	web	sockets	specific	to	the	Elixir
programming	language.	If	that	is	your	backend,	you	will	definitely	want	it	to	be	super
simple	to	subscribe	to	particular	topics	in	Elm.	An	effect	manager	would	let	you
separate	out	all	the	code	that	manages	the	underlying	web	socket	connection	and	does
topic	filtering.
Firebase	—	You	want	to	make	it	super	easy	for	application	code	to	change	things	or
subscribe	to	changes.	Behind	the	scenes	a	bunch	of	intense	stuff	needs	to	happen.

Effect	Managers

108

Hopefully	the	pattern	is	becoming	more	clear.	A	library	author	sorts	out	how	to	interact	with	a
particular	backend	service	once,	and	then	every	other	developer	ever	can	just	use
commands	and	subscriptions	without	caring	about	what	is	behind	the	curtain.

Simple	Example
Implement	an	effect	manager	for	producing	unique	IDs.

Effect	Managers

109

Caching
Work	in	Progress	-	Full	docs	coming	in	the	next	few	weeks!

Caching

110

Batching
Work	in	Progress	-	Full	docs	coming	in	the	next	few	weeks!

Batching

111

	Introduction
	Install
	Core Language
	The Elm Architecture
	User Input
	Buttons
	Text Fields
	Forms
	More

	Effects
	Random
	HTTP
	Time
	Web Sockets

	More

	Types
	Reading Types
	Type Aliases
	Union Types

	Error Handling and Tasks
	Maybe
	Result
	Task

	Interop
	JSON
	JavaScript

	Scaling The Elm Architecture
	Labeled Checkboxes
	Radio Buttons
	Modules
	More

	Effect Managers
	Caching
	Batching

