Author: Daniele Zambon,
Affiliation: Università della Svizzera italiana
eMail: daniele.zambon@usi.ch
Last Update: 31/01/2020
@article{zambon2019change,
title={Change-Point Methods on a Sequence of Graphs},
author={Daniele Zambon, Cesare Alippi and Lorenzo Livi},
year={2019},
doi={10.1109/TSP.2019.2953596},
journal={IEEE Transactions on Signal Processing},
}
run_simulation.py
is the main script that runs a repeated experiement (with the same settings). It adopts the frameworkcdg.simulations
in cdg.settings.py
contains info related to the datasets and declares the predefined experimental settings.config.py
define parameters like: seed, folder of the results and significance level of the tests.red_button.py
is a wrapper that allows to run multiple experiments.
Delaunay graphs can be directly generated by cdg
. The procedure is the following.
Check in the file settings.py
that every folder is correct; if a data set needs to be created,
then make sure that the associated folder has been already created.
Then generate and precompute distance and kernel matrices
python red_button.py --generate --precompute
Data is also available here: delaunay, iam, kaggle-seizure.
Run the actual experiments
python red_button.py --delaunay
python red_button.py --iam
python red_button.py --kaggle
python red_button.py --supmat
fetch results
find $PWD/<prefix>*.zip > exp_list.txt
python red_button.py --readfrom exp_list.txt
Generate some of the figures
python red_button.py --figures
Each experiment has its own ID. To check the available ones
python run_simulation.py --help
For more details on what each ID corresponds to, please look at setting.py
file.
Once selected the ID, say del_ratio
, run the following command with the parameters of your choice
python run_simulation.py --numSimulations 100 --seed 20190512 --noJobs 15 --test mucpm --experiment del_ratio