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Chapter 1

Fundamentals

1.1 Binary Exponentiation
Binary exponentiation (also known as exponentiation by squaring) is a trick
which allows to calculate an using only O(logn) multiplications (instead of O(n)
multiplications required by the naive approach).

It also has important applications in many tasks unrelated to arithmetic,
since it can be used with any operations that have the property of associativity:

(X · Y ) · Z = X · (Y · Z)

Most obviously this applies to modular multiplication, to multiplication of
matrices and to other problems which we will discuss below.

1.1.1 Algorithm
Raising a to the power of n is expressed naively as multiplication by a done n− 1
times: an = a · a · . . . · a. However, this approach is not practical for large a or n.

ab+c = ab · ac and a2b = ab · ab = (ab)2.
The idea of binary exponentiation is, that we split the work using the binary

representation of the exponent.
Let’s write n in base 2, for example:

313 = 311012 = 38 · 34 · 31

Since the number n has exactly blog2 nc+ 1 digits in base 2, we only need to
perform O(logn) multiplications, if we know the powers a1, a2, a4, a8, . . . , ablognc.

So we only need to know a fast way to compute those. Luckily this is very
easy, since an element in the sequence is just the square of the previous element.
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31 = 3

32 =
(
31
)2

= 32 = 9

34 =
(
32
)2

= 92 = 81

38 =
(
34
)2

= 812 = 6561

So to get the final answer for 313, we only need to multiply three of them
(skipping 32 because the corresponding bit in n is not set): 313 = 6561 · 81 · 3 =
1594323

The final complexity of this algorithm is O(logn): we have to compute logn
powers of a, and then have to do at most logn multiplications to get the final
answer from them.

The following recursive approach expresses the same idea:

an =


1 if n == 0(
a
n
2
)2

if n > 0 and n even(
a
n−1

2
)2
· a if n > 0 and n odd

1.1.2 Implementation
First the recursive approach, which is a direct translation of the recursive formula:

long long binpow(long long a, long long b) {
if (b == 0)

return 1;
long long res = binpow(a, b / 2);
if (b % 2)

return res * res * a;
else

return res * res;
}

The second approach accomplishes the same task without recursion. It
computes all the powers in a loop, and multiplies the ones with the corresponding
set bit in n. Although the complexity of both approaches is identical, this
approach will be faster in practice since we have the overhead of the recursive
calls.

long long binpow(long long a, long long b) {
long long res = 1;
while (b > 0) {

if (b & 1)
res = res * a;

a = a * a;
b >>= 1;
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}
return res;

}

1.1.3 Applications

Effective computation of large exponents modulo a number

Problem: Compute xn mod m. This is a very common operation. For instance
it is used in computing the modular multiplicative inverse.

Solution: Since we know that the module operator doesn’t interfere with
multiplications (a · b ≡ (a mod m) · (b mod m) (mod m)), we can directly use the
same code, and just replace every multiplication with a modular multiplication:

long long binpow(long long a, long long b, long long m) {
a %= m;
long long res = 1;
while (b > 0) {

if (b & 1)
res = res * a % m;

a = a * a % m;
b >>= 1;

}
return res;

}

Note: If m is a prime number we can speed up a bit this algorithm by
calculating xn mod (m−1) instead of xn. This follows directly from Fermat’s little
theorem.

Effective computation of Fibonacci numbers

Problem: Compute n-th Fibonacci number Fn.
Solution: For more details, see the Fibonacci Number article. We will only

go through an overview of the algorithm. To compute the next Fibonacci number,
only the two previous ones are needed, as Fn = Fn−1 + Fn−2. We can build a
2× 2 matrix that describes this transformation: the transition from Fi and Fi+1
to Fi+1 and Fi+2. For example, applying this transformation to the pair F0 and
F1 would change it into F1 and F2. Therefore, we can raise this transformation
matrix to the n-th power to find Fn in time complexity O(logn).

Applying a permutation k times

Problem: You are given a sequence of length n. Apply to it a given permutation
k times.

Solution: Simply raise the permutation to k-th power using binary exponen-
tiation, and then apply it to the sequence. This will give you a time complexity
of O(n log k).

Note: This task can be solved more efficiently in linear time by building
the permutation graph and considering each cycle independently. You could
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then compute k modulo the size of the cycle and find the final position for each
number which is part of this cycle.

Fast application of a set of geometric operations to a set of points

Problem: Given n points pi, apply m transformations to each of these points.
Each transformation can be a shift, a scaling or a rotation around a given axis
by a given angle. There is also a “loop” operation which applies a given list of
transformations k times (“loop” operations can be nested). You should apply all
transformations faster than O(n · length), where length is the total number of
transformations to be applied (after unrolling “loop” operations).

Solution: Let’s look at how the different types of transformations change
the coordinates:

• Shift operation: adds a different constant to each of the coordinates.
• Scaling operation: multiplies each of the coordinates by a different constant.
• Rotation operation: the transformation is more complicated (we won’t go

in details here), but each of the new coordinates still can be represented as
a linear combination of the old ones.

As you can see, each of the transformations can be represented as a linear
operation on the coordinates. Thus, a transformation can be written as a 4× 4
matrix of the form: 

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


that, when multiplied by a vector with the old coordinates and an unit gives

a new vector with the new coordinates and an unit:

(
x y z 1

)
·


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =
(
x′ y′ z′ 1

)

(Why introduce a fictitious fourth coordinate, you ask? Without this, it
would not be possible to implement the shift operation, as it requires us to add a
constant to the coordinates. Without the fictitious coordinates, we would only
be able to apply a linear combination to the coordinates, not being able to add a
constant.)

Here are some examples of how transformations are represented in matrix
form:

• Shift operation: shift x coordinate by 5, y coordinate by 7 and z coordinate
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by 9. 
1 0 0 0
0 1 0 0
0 0 1 0
5 7 9 1


• Scaling operation: scale the x coordinate by 10 and the other two by 5.

10 0 0 0
0 5 0 0
0 0 5 0
0 0 0 1


• Rotation operation: rotate θ degrees around the x axis following the right-

hand rule (counter-clockwise direction).
1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


Now, once every transformation is described as a matrix, the sequence of

transformations can be described as a product of these matrices, and a “loop”
of k repetitions can be described as the matrix raised to the power of k (which
can be calculated using binary exponentiation in O(log k)). This way, the matrix
which represents all transformations can be calculated first in O(m log k), and
then it can be applied to each of the n points in O(n) for a total complexity of
O(n+m log k).

Number of paths of length k in a graph

Problem: Given a directed unweighted graph of n vertices, find the number of
paths of length k from any vertex u to any other vertex v.

Solution: This problem is considered in more detail in a separate article.
The algorithm consists of raising the adjacency matrix M of the graph (a matrix
where mij = 1 if there is an edge from i to j, or 0 otherwise) to the k-th power.
Now mij will be the number of paths of length k from i to j. The time complexity
of this solution is O(n3 log k).

Note: In that same article, another variation of this problem is considered:
when the edges are weighted and it is required to find the minimum weight path
containing exactly k edges. As shown in that article, this problem is also solved
by exponentiation of the adjacency matrix. The matrix would have the weight
of the edge from i to j, or ∞ if there is no such edge. Instead of the usual
operation of multiplying two matrices, a modified one should be used: instead of
multiplication, both values are added, and instead of a summation, a minimum
is taken. That is: resultij = min

1 ≤ k ≤ n
(aik + bkj).
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Variation of binary exponentiation: multiplying two numbers modulo
m

Problem: Multiply two numbers a and b modulo m. a and b fit in the built-in
data types, but their product is too big to fit in a 64-bit integer. The idea is to
compute a · b (mod m) without using bignum arithmetics.

Solution: We simply apply the binary construction algorithm described
above, only performing additions instead of multiplications. In other words, we
have “expanded” the multiplication of two numbers to O(logm) operations of
addition and multiplication by two (which, in essence, is an addition).

a · b =


0 if a = 0
2 · a2 · b if a > 0 and a even
2 · a−1

2 · b+ b if a > 0 and a odd

Note: You can solve this task in a different way by using floating-point
operations. First compute the expression a·b

m using floating-point numbers and
cast it to an unsigned integer q. Subtract q ·m from a · b using unsigned integer
arithmetics and take it modulo m to find the answer. This solution looks rather
unreliable, but it is very fast, and very easy to implement. See here for more
information.

1.1.4 Practice Problems
• UVa 1230 - MODEX
• UVa 374 - Big Mod
• UVa 11029 - Leading and Trailing
• Codeforces - Parking Lot
• SPOJ - The last digit
• SPOJ - Locker
• LA - 3722 Jewel-eating Monsters
• SPOJ - Just add it

https://cs.stackexchange.com/questions/77016/modular-multiplication
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=3671
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=310
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1970
http://codeforces.com/problemset/problem/630/I
http://www.spoj.com/problems/LASTDIG/
http://www.spoj.com/problems/LOCKER/
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1723
http://www.spoj.com/problems/ZSUM/
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1.2 Euclidean algorithm for computing the greatest
common divisor

Given two non-negative integers a and b, we have to find their GCD (greatest
common divisor), i.e. the largest number which is a divisor of both a and b. It’s
commonly denoted by gcd(a, b). Mathematically it is defined as:

gcd(a, b) = max
k=1...∞ : k|a ∧k |b

k.

(here the symbol “|” denotes divisibility, i.e. “k | a” means “k divides a”)
When one of the numbers is zero, while the other is non-zero, their greatest

common divisor, by definition, is the second number. When both numbers are
zero, their greatest common divisor is undefined (it can be any arbitrarily large
number), but we can define it to be zero. Which gives us a simple rule: if one of
the numbers is zero, the greatest common divisor is the other number.

The Euclidean algorithm, discussed below, allows to find the greatest common
divisor of two numbers a and b in O(log min(a, b)).

The algorithm was first described in Euclid’s “Elements” (circa 300 BC), but
it is possible that the algorithm has even earlier origins.

1.2.1 Algorithm
The algorithm is extremely simple:

gcd(a, b) =
{
a, if b = 0
gcd(b, a mod b), otherwise.

1.2.2 Implementation
int gcd (int a, int b) {

if (b == 0)
return a;

else
return gcd (b, a % b);

}

Using the ternary operator in C++, we can write it as a one-liner.
int gcd (int a, int b) {

return b ? gcd (b, a % b) : a;
}

And finally, here is a non-recursive implementation:
int gcd (int a, int b) {

while (b) {
a %= b;
swap(a, b);

}
return a;

}
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1.2.3 Correctness Proof
First, notice that in each iteration of the Euclidean algorithm the second argument
strictly decreases, therefore (since the arguments are always non-negative) the
algorithm will always terminate.

For the proof of correctness, we need to show that gcd(a, b) = gcd(b, a mod b)
for all a ≥ 0, b > 0.

We will show that the value on the left side of the equation divides the value
on the right side and vice versa. Obviously, this would mean that the left and
right sides are equal, which will prove Euclid’s algorithm.

Let d = gcd(a, b). Then by definition d | a and d | b.
Now let’s represent the remainder of the division of a by b as follows:

a mod b = a− b ·
⌊a
b

⌋
From this it follows that d | (a mod b), which means we have the system of

divisibilities: {
d | b,
d | (a mod b)

Now we use the fact that for any three numbers p, q, r, if p | q and p | r then
p | gcd(q, r). In our case, we get:

d = gcd(a, b) | gcd(b, a mod b)

Thus we have shown that the left side of the original equation divides the
right. The second half of the proof is similar.

1.2.4 Time Complexity
The running time of the algorithm is estimated by Lamé’s theorem, which
establishes a surprising connection between the Euclidean algorithm and the
Fibonacci sequence:

If a > b ≥ 1 and b < Fn for some n, the Euclidean algorithm performs at
most n− 2 recursive calls.

Moreover, it is possible to show that the upper bound of this theorem is
optimal. When a = Fn and b = Fn−1, gcd(a, b) will perform exactly n − 2
recursive calls. In other words, consecutive Fibonacci numbers are the worst case
input for Euclid’s algorithm.

Given that Fibonacci numbers grow exponentially, we get that the Euclidean
algorithm works in O(log min(a, b)).

1.2.5 Least common multiple
Calculating the least common multiple (commonly denoted LCM) can be reduced
to calculating the GCD with the following simple formula:

lcm(a, b) = a · b
gcd(a, b)
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Thus, LCM can be calculated using the Euclidean algorithm with the same
time complexity:

A possible implementation, that cleverly avoids integer overflows by first
dividing a with the GCD, is given here:
int lcm (int a, int b) {

return a / gcd(a, b) * b;
}

1.2.6 Binary GCD
The Binary GCD algorithm is an optimization to the normal Eulidean algorithm.

The slow part of the normal algorithm are the modulo operations. Modulo
operations, although we see them as O(1), are a lot slower than simpler operations
like addition, subtraction or bitwise operations. So it would be better to avoid
those.

It turns out, that you can design a fast GCD algorithm that avoids modulo
operations. It’s based on a few properties:

• If both numbers are even, then we can factor out a two of both and compute
the GCD of the remaining numbers: gcd(2a, 2b) = 2 gcd(a, b).

• If one of the numbers is even and the other one is odd, then we can remove
the factor 2 from the even one: gcd(2a, b) = gcd(a, b) if b is odd.

• If both numbers are odd, then subtracting one number of the other one
will not change the GCD: gcd(a, b) = gcd(b, a− b) (this can be proven in
the same way as the correctness proof of the normal algorithm)

Using only these properties, and some fast bitwise functions from GCC, we
can implement a fast version:
int gcd(int a, int b) {

if (!a || !b)
return a | b;

unsigned shift = __builtin_ctz(a | b);
a >>= __builtin_ctz(a);
do {

b >>= __builtin_ctz(b);
if (a > b)

swap(a, b);
b -= a;

} while (b);
return a << shift;

}

Notice, that such an optimization is usually not necessary, and most program-
ming languages already have a GCD function in their standard libraries. E.g.
C++17 has such a function in the numeric header.

1.2.7 Practice Problems
• Codechef - GCD and LCM

https://www.codechef.com/problems/FLOW016
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1.3 Extended Euclidean Algorithm
While the Euclidean algorithm calculates only the greatest common divisor (GCD)
of two integers a and b, the extended version also finds a way to represent GCD
in terms of a and b, i.e. coefficients x and y for which:

a · x+ b · y = gcd(a, b)

It’s important to note, that we can always find such a representation, for
instance gcd(55, 80) = 5 therefore we can represent 5 as a linear combination
with the terms 55 and 80: 55 · 3 + 80 · (−2) = 5

A more general form of that problem is discussed in the article about Linear
Diophantine Equations. It will build upon this algorithm.

1.3.1 Algorithm
We will denote the GCD of a and b with g in this section.

The changes to the original algorithm are very simple. If we recall the
algorithm, we can see that the algorithm ends with b = 0 and a = g. For these
parameters we can easily find coefficients, namely g · 1 + 0 · 0 = g.

Starting from these coefficients (x, y) = (1, 0), we can go backwards up the
recursive calls. All we need to do is to figure out how the coefficients x and y
change during the transition from (a, b) to (b, a mod b).

Let us assume we found the coefficients (x1, y1) for (b, a mod b):

b · x1 + (a mod b) · y1 = g

and we want to find the pair (x, y) for (a, b):

a · x+ b · y = g

We can represent a mod b as:

a mod b = a−
⌊
a

b

⌋
· b

Substituting this expression in the coefficient equation of (x1, y1) gives:

g = b · x1 + (a mod b) · y1 = b · x1 +
(
a−

⌊
a

b

⌋
· b
)
· y1

and after rearranging the terms:

g = a · y1 + b ·
(
x1 − y1 ·

⌊
a

b

⌋)
We found the values of x and y:{

x = y1

y = x1 − y1 ·
⌊
a
b

⌋

algebra/linear-diophantine-equation.html
algebra/linear-diophantine-equation.html
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1.3.2 Implementation
int gcd(int a, int b, int& x, int& y) {

if (b == 0) {
x = 1;
y = 0;
return a;

}
int x1, y1;
int d = gcd(b, a % b, x1, y1);
x = y1;
y = x1 - y1 * (a / b);
return d;

}

The recursive function above returns the GCD and the values of coefficients
to x and y (which are passed by reference to the function).

This implementation of extended Euclidean algorithm produces correct results
for negative integers as well.

1.3.3 Iterative version
It’s also possible to write the Extended Euclidean algorithm in an iterative way.
Because it avoids recursion, the code will run a little bit faster than the recursive
one.

int gcd(int a, int b, int& x, int& y) {
x = 1, y = 0;
int x1 = 0, y1 = 1, a1 = a, b1 = b;
while (b1) {

int q = a1 / b1;
tie(x, x1) = make_tuple(x1, x - q * x1);
tie(y, y1) = make_tuple(y1, y - q * y1);
tie(a1, b1) = make_tuple(b1, a1 - q * b1);

}
return a1;

}

If you look closely at the variable a1 and b1, you can notice that they taking
exactly the same values as in the iterative version of the normal Euclidean
algorithm. So the algorithm will at least compute the correct GCD.

To see why the algorithm also computes the correct coefficients, you can check
that the following invariants will hold at any time (before the while loop, and at
the end of each iteration): x · a+ y · b = a1 and x1 · a+ y1 · b = b1. It’s trivial to
see, that these two equations are satisfied at the beginning. And you can check
that the update in the loop iteration will still keep those equalities valid.

At the end we know that a1 contains the GCD, so x · a+ y · b = g. Which
means that we have found the required coefficients.

You can even optimize the code more, and remove the variable a1 and b1
from the code, and just reuse a and b. However if you do so, you loose the ability
to argue about the invariants.

algebra/euclid-algorithm.html
algebra/euclid-algorithm.html
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1.3.4 Practice Problems
• 10104 - Euclid Problem
• GYM - (J) Once Upon A Time
• UVA - 12775 - Gift Dilemma

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1045
http://codeforces.com/gym/100963
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4628
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1.4 Linear Diophantine Equation
A Linear Diophantine Equation (in two variables) is an equation of the general
form:

ax+ by = c

where a, b, c are given integers, and x, y are unknown integers.
In this article, we consider several classical problems on these equations:

• finding one solution
• finding all solutions
• finding the number of solutions and the solutions themselves in a given

interval
• finding a solution with minimum value of x+ y

1.4.1 The degenerate case
A degenerate case that need to be taken care of is when a = b = 0. It is easy to
see that we either have no solutions or infinitely many solutions, depending on
whether c = 0 or not. In the rest of this article, we will ignore this case.

1.4.2 Finding a solution
To find one solution of the Diophantine equation with 2 unknowns, you can use
the Extended Euclidean algorithm. First, assume that a and b are non-negative.
When we apply Extended Euclidean algorithm for a and b, we can find their
greatest common divisor g and 2 numbers xg and yg such that:

axg + byg = g

If c is divisible by g = gcd(a, b), then the given Diophantine equation has a
solution, otherwise it does not have any solution. The proof is straight-forward:
a linear combination of two numbers is divisible by their common divisor.

Now supposed that c is divisible by g, then we have:

a · xg ·
c

g
+ b · yg ·

c

g
= c

Therefore one of the solutions of the Diophantine equation is:

x0 = xg ·
c

g
,

y0 = yg ·
c

g
.

The above idea still works when a or b or both of them are negative. We only
need to change the sign of x0 and y0 when necessary.

Finally, we can implement this idea as follows (note that this code does not
consider the case a = b = 0):

algebra/extended-euclid-algorithm.html
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int gcd(int a, int b, int& x, int& y) {
if (b == 0) {

x = 1;
y = 0;
return a;

}
int x1, y1;
int d = gcd(b, a % b, x1, y1);
x = y1;
y = x1 - y1 * (a / b);
return d;

}

bool find_any_solution(int a, int b, int c, int &x0, int &y0, int &g) {
g = gcd(abs(a), abs(b), x0, y0);
if (c % g) {

return false;
}

x0 *= c / g;
y0 *= c / g;
if (a < 0) x0 = -x0;
if (b < 0) y0 = -y0;
return true;

}

1.4.3 Getting all solutions
From one solution (x0, y0), we can obtain all the solutions of the given equation.

Let g = gcd(a, b) and let x0, y0 be integers which satisfy the following:

a · x0 + b · y0 = c

Now, we should see that adding b/g to x0, and, at the same time subtracting
a/g from y0 will not break the equality:

a ·
(
x0 + b

g

)
+ b ·

(
y0 −

a

g

)
= a · x0 + b · y0 + a · b

g
− b · a

g
= c

Obviously, this process can be repeated again, so all the numbers of the form:

x = x0 + k · b
g

y = y0 − k ·
a

g

are solutions of the given Diophantine equation.
Moreover, this is the set of all possible solutions of the given Diophantine

equation.
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1.4.4 Finding the number of solutions and the solutions in a
given interval

From previous section, it should be clear that if we don’t impose any restrictions
on the solutions, there would be infinite number of them. So in this section, we
add some restrictions on the interval of x and y, and we will try to count and
enumerate all the solutions.

Let there be two intervals: [minx;maxx] and [miny;maxy] and let’s say we
only want to find the solutions in these two intervals.

Note that if a or b is 0, then the problem only has one solution. We don’t
consider this case here.

First, we can find a solution which have minimum value of x, such that
x ≥ minx. To do this, we first find any solution of the Diophantine equation.
Then, we shift this solution to get x ≥ minx (using what we know about the
set of all solutions in previous section). This can be done in O(1). Denote this
minimum value of x by lx1.

Similarly, we can find the maximum value of x which satisfy x ≤ maxx.
Denote this maximum value of x by rx1.

Similarly, we can find the minimum value of y (y ≥ miny) and maximum
values of y (y ≤ maxy). Denote the corresponding values of x by lx2 and rx2.

The final solution is all solutions with x in intersection of [lx1, rx1] and [lx2, rx2].
Let denote this intersection by [lx, rx].

Following is the code implementing this idea. Notice that we divide a and
b at the beginning by g. Since the equation ax + by = c is equivalent to the
equation a

gx+ b
gy = c

g , we can use this one instead and have gcd(ag ,
b
g ) = 1, which

simplifies the formulas.

void shift_solution(int & x, int & y, int a, int b, int cnt) {
x += cnt * b;
y -= cnt * a;

}

int find_all_solutions(int a, int b, int c, int minx, int maxx, int miny, int maxy) {
int x, y, g;
if (!find_any_solution(a, b, c, x, y, g))

return 0;
a /= g;
b /= g;

int sign_a = a > 0 ? +1 : -1;
int sign_b = b > 0 ? +1 : -1;

shift_solution(x, y, a, b, (minx - x) / b);
if (x < minx)

shift_solution(x, y, a, b, sign_b);
if (x > maxx)

return 0;
int lx1 = x;
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shift_solution(x, y, a, b, (maxx - x) / b);
if (x > maxx)

shift_solution(x, y, a, b, -sign_b);
int rx1 = x;

shift_solution(x, y, a, b, -(miny - y) / a);
if (y < miny)

shift_solution(x, y, a, b, -sign_a);
if (y > maxy)

return 0;
int lx2 = x;

shift_solution(x, y, a, b, -(maxy - y) / a);
if (y > maxy)

shift_solution(x, y, a, b, sign_a);
int rx2 = x;

if (lx2 > rx2)
swap(lx2, rx2);

int lx = max(lx1, lx2);
int rx = min(rx1, rx2);

if (lx > rx)
return 0;

return (rx - lx) / abs(b) + 1;
}

Once we have lx and rx, it is also simple to enumerate through all the solutions.
Just need to iterate through x = lx + k · bg for all k ≥ 0 until x = rx, and find the
corresponding y values using the equation ax+ by = c.

1.4.5 Find the solution with minimum value of x + y

Here, x and y also need to be given some restriction, otherwise, the answer may
become negative infinity.

The idea is similar to previous section: We find any solution of the Diophantine
equation, and then shift the solution to satisfy some conditions.

Finally, use the knowledge of the set of all solutions to find the minimum:

x′ = x+ k · b
g
,

y′ = y − k · a
g
.

Note that x+ y change as follows:

x′ + y′ = x+ y + k ·
(
b

g
− a

g

)
= x+ y + k · b− a

g

If a < b, we need to select smallest possible value of k. If a > b, we need to
select the largest possible value of k. If a = b, all solution will have the same sum
x+ y.
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1.4.6 Practice Problems
• Spoj - Crucial Equation
• SGU 106
• Codeforces - Ebony and Ivory
• Codechef - Get AC in one go
• LightOj - Solutions to an equation

http://www.spoj.com/problems/CEQU/
http://codeforces.com/problemsets/acmsguru/problem/99999/106
http://codeforces.com/contest/633/problem/A
https://www.codechef.com/problems/COPR16G
http://www.lightoj.com/volume_showproblem.php?problem=1306
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1.5 Fibonacci Numbers
The Fibonacci sequence is defined as follows:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

The first elements of the sequence (OEIS A000045) are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

1.5.1 Properties
Fibonacci numbers possess a lot of interesting properties. Here are a few of them:

• Cassini’s identity:
Fn−1Fn+1 − F 2

n = (−1)n

• The “addition” rule:

Fn+k = FkFn+1 + Fk−1Fn

• Applying the previous identity to the case k = n, we get:

F2n = Fn(Fn+1 + Fn−1)

• From this we can prove by induction that for any positive integer k, Fnk is
multiple of Fn.

• The inverse is also true: if Fm is multiple of Fn, then m is multiple of n.

• GCD identity:
GCD(Fm, Fn) = FGCD(m,n)

• Fibonacci numbers are the worst possible inputs for Euclidean algorithm
(see Lame’s theorem in Euclidean algorithm)

1.5.2 Fibonacci Coding
We can use the sequence to encode positive integers into binary code words.
According to Zeckendorf’s theorem, any natural number n can be uniquely
represented as a sum of Fibonacci numbers:

N = Fk1 + Fk2 + . . .+ Fkr

such that k1 ≥ k2 + 2, k2 ≥ k3 + 2, . . . , kr ≥ 2 (i.e.: the representation
cannot use two consecutive Fibonacci numbers).

It follows that any number can be uniquely encoded in the Fibonacci coding.
And we can describe this representation with binary codes d0d1d2 . . . ds1, where
di is 1 if Fi+2 is used in the representation. The code will be appended by a 1 do

http://oeis.org/A000045
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indicate the end of the code word. Notice that this is the only occurrence where
two consecutive 1-bits appear.

1 = 1 = F2 = (11)F
2 = 2 = F3 = (011)F
6 = 5 + 1 = F5 + F2 = (10011)F
8 = 8 = F6 = (000011)F
9 = 8 + 1 = F6 + F2 = (100011)F

19 = 13 + 5 + 1 = F7 + F5 + F2 = (1001011)F

The encoding of an integer n can be done with a simple greedy algorithm:

1. Iterate through the Fibonacci numbers from the largest to the smallest
until you find one less than or equal to n.

2. Suppose this number was Fi. Subtract Fi from n and put a 1 in the
i− 2 position of the code word (indexing from 0 from the leftmost to the
rightmost bit).

3. Repeat until there is no remainder.

4. Add a final 1 to the codeword to indicate its end.

To decode a code word, first remove the final 1. Then, if the i-th bit is set
(indexing from 0 from the leftmost to the rightmost bit), sum Fi+2 to the number.

1.5.3 Formulas for the n-th Fibonacci number
The n-th Fibonacci number can be easily found in O(n) by computing the
numbers one by one up to n. However, there are also faster ways, as we will see.

Closed-form expression

There is a formula known as “Binet’s formula”, even though it was already known
by Moivre:

Fn =

(
1+
√

5
2

)n
−
(

1−
√

5
2

)n
√

5
This formula is easy to prove by induction, but it can be deduced with the

help of the concept of generating functions or by solving a functional equation.
You can immediately notice that the second term’s absolute value is always

less than 1, and it also decreases very rapidly (exponentially). Hence the value of
the first term alone is “almost” Fn. This can be written strictly as:

Fn =


(

1+
√

5
2

)n
√

5
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where the square brackets denote rounding to the nearest integer.
As these two formulas would require very high accuracy when working with

fractional numbers, they are of little use in practical calculations.

Matrix form

It is easy to prove the following relation:

(
Fn−1 Fn

)
=
(
Fn−2 Fn−1

)
·
(

0 1
1 1

)

Denoting P ≡
(

0 1
1 1

)
, we have:(
Fn Fn+1

)
=
(
F0 F1

)
· Pn

Thus, in order to find Fn, we must raise the matrix P to n. This can be done
in O(logn) (see Binary exponentiation).

Fast Doubling Method

Using above method we can find these equations:

F2k = Fk (2Fk+1 − Fk) .
F2k+1 = F 2

k+1 + F 2
k .

Thus using above two equations Fibonacci numbers can be calculated easily by
the following code:

pair<int, int> fib (int n) {
if (n == 0)

return {0, 1};

auto p = fib(n >> 1);
int c = p.first * (2 * p.second - p.first);
int d = p.first * p.first + p.second * p.second;
if (n & 1)

return {d, c + d};
else

return {c, d};
}

The above code returns Fn and Fn+1 as a pair.

1.5.4 Periodicity modulo p
Consider the Fibonacci sequence modulo p. We will prove the sequence is periodic
and the period begins with F1 = 1 (that is, the pre-period contains only F0).

Let us prove this by contradiction. Consider the first p2 + 1 pairs of Fibonacci
numbers taken modulo p:
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(F1, F2), (F2, F3), . . . , (Fp2+1, Fp2+2)

There can only be p different remainders modulo p, and at most p2 different
remainders, so there are at least two identical pairs among them. Thus the
sequence is periodic.

We now choose two pairs of identical remainders with the smallest indices
in the sequence. Let the pairs be (Fa, Fa+1) and (Fb, Fb+1). We will prove
that a = 1. If this was false, there would be two previous pairs (Fa−1, Fa) and
(Fb−1, Fb), which, by the property of Fibonacci numbers, would also be equal.
However, this contradicts the fact that we had chosen pairs with the smallest
indices, completing our proof.

1.5.5 Practice Problems
• SPOJ - Euclid Algorithm Revisited
• SPOJ - Fibonacci Sum
• HackerRank - Is Fibo
• Project Euler - Even Fibonacci numbers
• DMOJ - Fibonacci Sequence
• DMOJ - Fibonacci Sequence (Harder)

http://www.spoj.com/problems/MAIN74/
http://www.spoj.com/problems/FIBOSUM/
https://www.hackerrank.com/contests/codesprint5/challenges/is-fibo/problem
https://www.hackerrank.com/contests/projecteuler/challenges/euler002/problem
https://dmoj.ca/problem/fibonacci
https://dmoj.ca/problem/fibonacci2
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Chapter 2

Prime numbers

2.1 Sieve of Eratosthenes
Sieve of Eratosthenes is an algorithm for finding all the prime numbers in a
segment [1;n] using O(n log logn) operations.

The algorithm is very simple: at the beginning we write down all numbers
between 2 and n. We mark all proper multiples of 2 (since 2 is the smallest
prime number) as composite. A proper multiple of a number x, is a number
greater than x and divisible by x. Then we find the next number that hasn’t
been marked as composite, in this case it is 3. Which means 3 is prime, and we
mark all proper multiples of 3 as composite. The next unmarked number is 5,
which is the next prime number, and we mark all proper multiples of it. And we
continue this procedure until we processed all numbers in the row.

In the following image you can see a visualization of the algorithm for com-
puting all prime numbers in the range [1; 16]. It can be seen, that quite often we
mark numbers as composite multiple times.

Figure 2.1: Sieve of Eratosthenes
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The idea behind is this: A number is prime, if none of the smaller prime
numbers divides it. Since we iterate over the prime numbers in order, we already
marked all numbers, who are divisible by at least one of the prime numbers, as
divisible. Hence if we reach a cell and it is not marked, then it isn’t divisible by
any smaller prime number and therefore has to be prime.

2.1.1 Implementation
int n;
vector<bool> is_prime(n+1, true);
is_prime[0] = is_prime[1] = false;
for (int i = 2; i <= n; i++) {

if (is_prime[i] && (long long)i * i <= n) {
for (int j = i * i; j <= n; j += i)

is_prime[j] = false;
}

}

This code first marks all numbers except zero and one as potential prime
numbers, then it begins the process of sifting composite numbers. For this it
iterates over all numbers from 2 to n. If the current number i is a prime number,
it marks all numbers that are multiples of i as composite numbers, starting from
i2. This is already an optimization over naive way of implementing it, and is
allowed as all smaller numbers that are multiples of i necessary also have a prime
factor which is less than i, so all of them were already sifted earlier. Since i2 can
easily overflow the type int, the additional verification is done using type long
long before the second nested loop.

Using such implementation the algorithm consumes O(n) of the memory
(obviously) and performs O(n log logn) (see next section).

2.1.2 Asymptotic analysis
Let’s prove that algorithm’s running time is O(n log logn). The algorithm will
perform n

p operations for every prime p ≤ n the inner loop. Hence, we need to
evaluate the next expression:

∑
p≤n,
p prime

n

p
= n ·

∑
p≤n,
p prime

1
p
.

Let’s recall two known facts.

• The number of prime numbers less than or equal to n is approximately n
lnn .

• The k-th prime number approximately equals k ln k (that follows immedi-
ately from the previous fact).

Thus we can write down the sum in the following way:

∑
p≤n,
p prime

1
p
≈ 1

2 +
n

lnn∑
k=2

1
k ln k .
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Here we extracted the first prime number 2 from the sum, because k = 1 in
approximation k ln k is 0 and causes a division by zero.

Now, let’s evaluate this sum using the integral of a same function over k from
2 to n

lnn (we can make such approximation because, in fact, the sum is related to
the integral as its approximation using the rectangle method):

n
lnn∑
k=2

1
k ln k ≈

∫ n
lnn

2

1
k ln kdk.

The antiderivative for the integrand is ln ln k. Using a substitution and
removing terms of lower order, we’ll get the result:

∫ n
lnn

2

1
k ln kdk = ln ln n

lnn − ln ln 2 = ln(lnn− ln lnn)− ln ln 2 ≈ ln lnn.

Now, returning to the original sum, we’ll get its approximate evaluation:∑
p≤n,

p is prime

n

p
≈ n ln lnn+ o(n).

You can find a more strict proof (that gives more precise evaluation which is
accurate within constant multipliers) in the book authored by Hardy & Wright
“An Introduction to the Theory of Numbers” (p. 349).

2.1.3 Different optimizations of the Sieve of Eratosthenes
The biggest weakness of the algorithm is, that it “walks” along the memory multi-
ple times, only manipulating single elements. This is not very cache friendly. And
because of that, the constant which is concealed in O(n log logn) is comparably
big.

Besides, the consumed memory is a bottleneck for big n.
The methods presented below allow us to reduce the quantity of the performed

operations, as well as to shorten the consumed memory noticeably.

Sieving till root

Obviously, to find all the prime numbers until n, it will be enough just to perform
the sifting only by the prime numbers, which do not exceed the root of n.

int n;
vector<bool> is_prime(n+1, true);
is_prime[0] = is_prime[1] = false;
for (int i = 2; i * i <= n; i++) {

if (is_prime[i]) {
for (int j = i * i; j <= n; j += i)

is_prime[j] = false;
}

}
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Such optimization doesn’t affect the complexity (indeed, by repeating the proof
presented above we’ll get the evaluation n ln ln

√
n+o(n), which is asymptotically

the same according to the properties of logarithms), though the number of
operations will reduce noticeably.

Sieving by the odd numbers only

Since all even numbers (except 2) are composite, we can stop checking even
numbers at all. Instead, we need to operate with odd numbers only.

First, it will allow us to half the needed memory. Second, it will reduce the
number of operations performing by algorithm approximately in half.

Memory consumption and speed of operations

We should notice, that these two implementations of the Sieve of Eratosthenes
use n bits of memory by using the data structure vector<bool>. vector<bool>
is not a regular container that stores a series of bool (as in most computer
architectures a bool takes one byte of memory). It’s a memory-optimization
specialization of vector<T>, that only consumes N

8 bytes of memory.
Modern processors architectures work much more efficiently with bytes

than with bits as they usually cannot access bits directly. So underneath the
vector<bool> stores the bits in a large continuous memory, accesses the memory
in blocks of a few bytes, and extracts/sets the bits with bit operations like bit
masking and bit shifting.

Because of that there is a certain overhead when you read or write bits with
a vector<bool>, and quite often using a vector<char> (which uses 1 byte for
each entry, so 8x the amount of memory) is faster.

However, for the simple implementations of the Sieve of Eratosthenes using a
vector<bool> is faster. You are limited by how fast you can load the data into
the cache, and therefore using less memory gives a big advantage. A benchmark
(link) shows, that using a vector<bool> is between 1.4x and 1.7x faster than
using a vector<char>.

Segmented Sieve

It follows from the optimization “sieving till root” that there is no need to keep
the whole array is_prime[1...n] at all time. For sieving it is enough to just
keep the prime numbers until the root of n, i.e. prime[1... sqrt(n)], split the
complete range into blocks, and sieve each block separately.

Let s be a constant which determines the size of the block, then we have
dns e blocks altogether, and the block k (k = 0...bns c) contains the numbers in a
segment [ks; ks+ s− 1]. We can work on blocks by turns, i.e. for every block k
we will go through all the prime numbers (from 1 to

√
n) and perform sieving

using them. It is worth noting, that we have to modify the strategy a little
bit when handling the first numbers: first, all the prime numbers from [1;

√
n]

shouldn’t remove themselves; and second, the numbers 0 and 1 should be marked

https://gist.github.com/jakobkogler/e6359ea9ced24fe304f1a8af3c9bee0e
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as non-prime numbers. While working on the last block it should not be forgotten
that the last needed number n is not necessary located in the end of the block.

As discussed previously, the typical implementation of the Sieve of Eratos-
thenes is limited by the speed how fast you can load data into the CPU caches.
By splitting the range of potential prime numbers [1;n] into smaller blocks, we
never have to keep multiple blocks in memory at the same time, and all operations
are much more cache-friendlier. As we are now no longer limited by the cache
speeds, we can replace the vector<bool> with a vector<char>, and gain some
additional performance as the processors can handle read and writes with bytes
directly and don’t need to rely on bit operations for extracting individual bits.
The benchmark (link) shows, that using a vector<char> is about 3x faster in
this situation than using a vector<bool>. A word of caution: those numbers
might differ depending on architecture, compiler, and optimization levels.

Here we have an implementation that counts the number of primes smaller
than or equal to n using block sieving.

int count_primes(int n) {
const int S = 10000;

vector<int> primes;
int nsqrt = sqrt(n);
vector<char> is_prime(nsqrt + 2, true);
for (int i = 2; i <= nsqrt; i++) {

if (is_prime[i]) {
primes.push_back(i);
for (int j = i * i; j <= nsqrt; j += i)

is_prime[j] = false;
}

}

int result = 0;
vector<char> block(S);
for (int k = 0; k * S <= n; k++) {

fill(block.begin(), block.end(), true);
int start = k * S;
for (int p : primes) {

int start_idx = (start + p - 1) / p;
int j = max(start_idx, p) * p - start;
for (; j < S; j += p)

block[j] = false;
}
if (k == 0)

block[0] = block[1] = false;
for (int i = 0; i < S && start + i <= n; i++) {

if (block[i])
result++;

}
}
return result;

}

https://gist.github.com/jakobkogler/e6359ea9ced24fe304f1a8af3c9bee0e
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The running time of block sieving is the same as for regular sieve of Eratos-
thenes (unless the size of the blocks is very small), but the needed memory will
shorten to O(

√
n+ S) and we have better caching results. On the other hand,

there will be a division for each pair of a block and prime number from [1;
√
n],

and that will be far worse for smaller block sizes. Hence, it is necessary to keep
balance when selecting the constant S. We achieved the best results for block
sizes between 104 and 105.

2.1.4 Find primes in range
Sometimes we need to find all prime numbers in a range [L,R] of small size
(e.g. R− L+ 1 ≈ 1e7), where R can be very large (e.g. 1e12).

To solve such a problem, we can use the idea of the Segmented sieve. We
pre-generate all prime numbers up to

√
R, and use those primes to mark all

composite numbers in the segment [L,R].

vector<char> segmentedSieve(long long L, long long R) {
// generate all primes up to sqrt(R)
long long lim = sqrt(R);
vector<char> mark(lim + 1, false);
vector<long long> primes;
for (long long i = 2; i <= lim; ++i) {

if (!mark[i]) {
primes.emplace_back(i);
for (long long j = i * i; j <= lim; j += i)

mark[j] = true;
}

}

vector<char> isPrime(R - L + 1, true);
for (long long i : primes)

for (long long j = max(i * i, (L + i - 1) / i * i); j <= R; j += i)
isPrime[j - L] = false;

if (L == 1)
isPrime[0] = false;

return isPrime;
}

Time complexity of this approach is O((R−L+1) log log(R)+
√
R log log

√
R).

It’s also possible that we don’t pre-generate all prime numbers:

vector<char> segmentedSieveNoPreGen(long long L, long long R) {
vector<char> isPrime(R - L + 1, true);
long long lim = sqrt(R);
for (long long i = 2; i <= lim; ++i)

for (long long j = max(i * i, (L + i - 1) / i * i); j <= R; j += i)
isPrime[j - L] = false;

if (L == 1)
isPrime[0] = false;

return isPrime;
}
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Obviously, the complexity is worse, which is O((R − L + 1) log(R) +
√
R).

However, it still runs very fast in practice.

2.1.5 Linear time modification
We can modify the algorithm in a such a way, that it only has linear time
complexity. This approach is described in the article Sieve of Eratosthenes
Having Linear Time Complexity. However, this algorithm also has its own
weaknesses.

2.1.6 Practice Problems
• SPOJ - Printing Some Primes
• SPOJ - A Conjecture of Paul Erdos
• SPOJ - Primal Fear
• SPOJ - Primes Triangle (I)
• Codeforces - Almost Prime
• Codeforces - Sherlock And His Girlfriend
• SPOJ - Namit in Trouble
• SPOJ - Bazinga!
• Project Euler - Prime pair connection
• SPOJ - N-Factorful
• SPOJ - Binary Sequence of Prime Numbers
• UVA 11353 - A Different Kind of Sorting
• SPOJ - Prime Generator
• SPOJ - Printing some primes (hard)
• Codeforces - Nodbach Problem
• Codefoces - Colliders

http://www.spoj.com/problems/TDPRIMES/
http://www.spoj.com/problems/HS08PAUL/
http://www.spoj.com/problems/VECTAR8/
http://www.spoj.com/problems/PTRI/
http://codeforces.com/contest/26/problem/A
http://codeforces.com/contest/776/problem/B
http://www.spoj.com/problems/NGIRL/
http://www.spoj.com/problems/DCEPC505/
https://www.hackerrank.com/contests/projecteuler/challenges/euler134
http://www.spoj.com/problems/NFACTOR/
http://www.spoj.com/problems/BSPRIME/
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2338
http://www.spoj.com/problems/PRIME1/
http://www.spoj.com/problems/PRIMES2/
https://codeforces.com/problemset/problem/17/A
https://codeforces.com/problemset/problem/154/B
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2.2 Sieve of Eratosthenes Having Linear Time Com-
plexity

Given a number n, find all prime numbers in a segment [2;n].
The standard way of solving a task is to use the sieve of Eratosthenes. This

algorithm is very simple, but it has runtime O(n log logn).
Although there are a lot of known algorithms with sublinear runtime (i.e. o(n)),

the algorithm described below is interesting by its simplicity: it isn’t any more
complex than the classic sieve of Eratosthenes.

Besides, the algorithm given here calculates factorizations of all numbers
in the segment [2;n] as a side effect, and that can be helpful in many practical
applications.

The weakness of the given algorithm is in using more memory than the classic
sieve of Eratosthenes’: it requires an array of n numbers, while for the classic
sieve of Eratosthenes it is enough to have n bits of memory (which is 32 times
less).

Thus, it makes sense to use the described algorithm only until for numbers of
order 107 and not greater.

The algorithm’s authorship appears to belong to Gries & Misra (Gries, Misra,
1978: see references in the end of the article). And, strictly speaking, this
algorithm shouldn’t be called “sieve of Eratosthenes” since it’s too different from
the classic one.

2.2.1 Algorithm
Our goal is to calculate minimum prime factor lp[i] for every number i in the
segment [2;n].

Besides, we need to store the list of all the found prime numbers - let’s call it
pr[].

We’ll initialize the values lp[i] with zeros, which means that we assume all
numbers are prime. During the algorithm execution this array will be filled
gradually.

Now we’ll go through the numbers from 2 to n. We have two cases for the
current number i:

• lp[i] = 0 - that means that i is prime, i.e. we haven’t found any smaller
factors for it.
Hence, we assign lp[i] = i and add i to the end of the list pr[].

• lp[i] 6= 0 - that means that i is composite, and its minimum prime factor is
lp[i].

In both cases we update values of lp[] for the numbers that are divisible by i.
However, our goal is to learn to do so as to set a value lp[] at most once for every
number. We can do it as follows:

Let’s consider numbers xj = i · pj , where pj are all prime numbers less than
or equal to lp[i] (this is why we need to store the list of all prime numbers).
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We’ll set a new value lp[xj ] = pj for all numbers of this form.
The proof of correctness of this algorithm and its runtime can be found after

the implementation.

2.2.2 Implementation
const int N = 10000000;
int lp[N+1];
vector<int> pr;

for (int i=2; i<=N; ++i) {
if (lp[i] == 0) {

lp[i] = i;
pr.push_back (i);

}
for (int j=0; j<(int)pr.size() && pr[j]<=lp[i] && i*pr[j]<=N; ++j)

lp[i * pr[j]] = pr[j];
}

We can speed it up a bit by replacing vector pr with a simple array and a
counter, and by getting rid of the second multiplication in the nested for loop
(for that we just need to remember the product in a variable).

2.2.3 Correctness Proof
We need to prove that the algorithm sets all values lp[] correctly, and that every
value will be set exactly once. Hence, the algorithm will have linear runtime,
since all the remaining actions of the algorithm, obviously, work for O(n).

Notice that every number i has exactly one representation in form:
i = lp[i] · x ,
where lp[i] is the minimal prime factor of i, and the number x doesn’t have

any prime factors less than lp[i], i.e.
lp[i] ≤ lp[x].
Now, let’s compare this with the actions of our algorithm: in fact, for every x

it goes through all prime numbers it could be multiplied by, i.e. all prime numbers
up to lp[x] inclusive, in order to get the numbers in the form given above.

Hence, the algorithm will go through every composite number exactly once,
setting the correct values lp[] there. Q.E.D.

2.2.4 Runtime and Memory
Although the running time of O(n) is better than O(n log logn) of the classic
sieve of Eratosthenes, the difference between them is not so big. In practice that
means just double difference in speed, and the optimized versions of the sieve
run as fast as the algorithm given here.

Considering the memory requirements of this algorithm - an array lp[] of
length n, and an array of pr[] of length n

lnn , this algorithm seems to worse than
the classic sieve in every way.
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However, its redeeming quality is that this algorithm calculates an array lp[],
which allows us to find factorization of any number in the segment [2;n] in the
time of the size order of this factorization. Moreover, using just one extra array
will allow us to avoid divisions when looking for factorization.

Knowing the factorizations of all numbers is very useful for some tasks, and
this algorithm is one of the few which allow to find them in linear time.

2.2.5 References
• David Gries, Jayadev Misra. A Linear Sieve Algorithm for Finding

Prime Numbers [1978]
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2.3 Primality tests
This article describes multiple algorithms to determine if a number is prime or
not.

2.3.1 Trial division
By definition a prime number doesn’t have any divisors other than 1 and itself.
A composite number has at least one additional divisor, let’s call it d. Naturally
n
d is also a divisor of n. It’s easy to see, that either d ≤

√
n or n

d ≤
√
n, therefore

one of the divisors d and n
d is ≤

√
n. We can use this information to check for

primality.
We try to find a non-trivial divisor, by checking if any of the numbers between

2 and
√
n is a divisor of n. If it is a divisor, than n is definitely not prime,

otherwise it is.

bool isPrime(int x) {
for (int d = 2; d * d <= x; d++) {

if (x % d == 0)
return false;

}
return true;

}

This is the simplest form of a prime check. You can optimize this function
quite a bit, for instance by only checking all odd numbers in the loop, since the
only even prime number is 2. Multiple such optimizations are described in the
article about integer factorization.

2.3.2 Fermat primality test
This is a probabilistic test.

Fermat’s little theorem (see also Euler’s totient function) states, that for a
prime number p and a coprime integer a the following equation holds:

ap−1 ≡ 1 mod p
In general this theorem doesn’t hold for composite numbers.
This can be used to create a primality test. We pick an integer 2 ≤ a ≤ p− 2,

and check if the equation holds or not. If it doesn’t hold, e.g. ap−1 6≡ 1 mod p,
we know that p cannot be a prime number. In this case we call the base a a
Fermat witness for the compositeness of p.

However it is also possible, that the equation holds for a composite number.
So if the equation holds, we don’t have a proof for primality. We only can say
that p is probably prime. If it turns out that the number is actually composite,
we call the base a a Fermat liar.

By running the test for all possible bases a, we can actually prove that a
number is prime. However this is not done in practice, since this is a lot more
effort that just doing trial division. Instead the test will be repeated multiple

https://cp-algorithms.com/algebra/phi-function.html


Algebra, Chapter 2. Prime numbers 34

times with random choices for a. If we find no witness for the compositeness, it
is very likely that the number is in fact prime.

bool probablyPrimeFermat(int n, int iter=5) {
if (n < 4)

return n == 2 || n == 3;

for (int i = 0; i < iter; i++) {
int a = 2 + rand() % (n - 3);
if (binpower(a, n - 1, n) != 1)

return false;
}
return true;

}

We use Binary Exponentiation to efficiently compute the power ap−1.
There is one bad news though: there exist some composite numbers where

an−1 ≡ 1 mod n holds for all a coprime to n, for instance for the number
561 = 3 · 11 · 17. Such numbers are called Carmichael numbers. The Fermat
primality test can identify these numbers only, if we have immense luck and
choose a base a with gcd(a, n) 6= 1.

The Fermat test is still be used in practice, as it is very fast and Carmichael
numbers are very rare. E.g. there only exist 646 such numbers below 109.

2.3.3 Miller-Rabin primality test
The Miller-Rabin test extends the ideas from the Fermat test.

For an odd number n, n − 1 is even and we can factor out all powers of 2.
We can write:

n− 1 = 2s · d, with d odd.

This allows us to factorize the equation of Fermat’s little theorem:

an−1 ≡ 1 mod n ⇐⇒ a2sd − 1 ≡ 0 mod n
⇐⇒ (a2s−1d + 1)(a2s−1d − 1) ≡ 0 mod n
⇐⇒ (a2s−1d + 1)(a2s−2d + 1)(a2s−2d − 1) ≡ 0 mod n

...
⇐⇒ (a2s−1d + 1)(a2s−2d + 1) · · · (ad + 1)(ad − 1) ≡ 0 mod n

If n is prime, then n has to divide one of these factors. And in the Miller-
Rabin primality test we check exactly that statement, which is a more stricter
version of the statement of the Fermat test. For a base 2 ≤ a ≤ n− 2 we check if
either

ad ≡ 1 mod n

holds or
a2rd ≡ −1 mod n

holds for some 0 ≤ r ≤ s− 1.
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If we found a base a which doesn’t satisfy any of the above equalities, than
we found a witness for the compositeness of n. In this case we have proven that
n is not a prime number.

Similar to the Fermat test, it is also possible that the set of equations is
satisfied for a composite number. In that case the base a is called a strong liar.
If a base a satisfies the equations (one of them), n is only strong probable prime.
However, there are no numbers like the Carmichael numbers, where all non-trivial
bases lie. In fact it is possible to show, that at most 1

4 of the bases can be strong
liars. If n is composite, we have a probability of ≥ 75% that a random base
will tell us that it is composite. By doing multiple iterations, choosing different
random bases, we can tell with very high probability if the number is truly prime
or if it is composite.

Here is an implementation for 64 bit integer.

using u64 = uint64_t;
using u128 = __uint128_t;

u64 binpower(u64 base, u64 e, u64 mod) {
u64 result = 1;
base %= mod;
while (e) {

if (e & 1)
result = (u128)result * base % mod;

base = (u128)base * base % mod;
e >>= 1;

}
return result;

}

bool check_composite(u64 n, u64 a, u64 d, int s) {
u64 x = binpower(a, d, n);
if (x == 1 || x == n - 1)

return false;
for (int r = 1; r < s; r++) {

x = (u128)x * x % n;
if (x == n - 1)

return false;
}
return true;

};

bool MillerRabin(u64 n, int iter=5) { // returns true if n is probably prime, else returns false.
if (n < 4)

return n == 2 || n == 3;

int s = 0;
u64 d = n - 1;
while ((d & 1) == 0) {

d >>= 1;
s++;

}
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for (int i = 0; i < iter; i++) {
int a = 2 + rand() % (n - 3);
if (check_composite(n, a, d, s))

return false;
}
return true;

}

Before the Miller-Rabin test you can test additionally if one of the first few
prime numbers is a divisor. This can speed up the test by a lot, since most
composite numbers have very small prime divisors. E.g. 88% of all numbers have
a prime factors smaller than 100.

Deterministic version

Miller showed that it is possible to make the algorithm deterministic by only
checking all bases ≤ O((lnn)2). Bach later gave a concrete bound, it is only
necessary to test all bases a ≤ 2 ln(n)2.

This is still a pretty large number of bases. So people have invested quite a
lot of computation power into finding lower bounds. It turns out, for testing a 32
bit integer it is only necessary to check the first 4 prime bases: 2, 3, 5 and 7. The
smallest composite number that fails this test is 3, 215, 031, 751 = 151 ·751 ·28351.
And for testing 64 bit integer it is enough to check the first 12 prime bases: 2, 3,
5, 7, 11, 13, 17, 19, 23, 29, 31, and 37.

This results in the following deterministic implementation:

bool MillerRabin(u64 n) { // returns true if n is prime, else returns false.
if (n < 2)

return false;

int r = 0;
u64 d = n - 1;
while ((d & 1) == 0) {

d >>= 1;
r++;

}

for (int a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
if (n == a)

return true;
if (check_composite(n, a, d, r))

return false;
}
return true;

}

It’s also possible to do the check with only 7 bases: 2, 325, 9375, 28178,
450775, 9780504 and 1795265022. However, since these numbers (except 2) are
not prime, you need to check additionally if the number you are checking is equal
to any prime divisor of those bases: 2, 3, 5, 13, 19, 73, 193, 407521, 299210837.
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2.3.4 Practice Problems
• SPOJ - Prime or Not

https://www.spoj.com/problems/PON/
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2.4 Integer factorization
In this article we list several algorithms for factorizing integers, each of them can
be both fast and also slow (some slower than others) depending on their input.

Notice, if the number that you want to factorize is actually a prime number,
most of the algorithms, especially Fermat’s factorization algorithm, Pollard’s
p-1, Pollard’s rho algorithm will run very slow. So it makes sense to perform a
probabilistic (or a fast deterministic) primality test before trying to factorize the
number.

2.4.1 Trial division
This is the most basic algorithm to find a prime factorization.

We divide by each possible divisor d. We can notice, that it is impossible that
all prime factors of a composite number n are bigger than

√
n. Therefore, we

only need to test the divisors 2 ≤ d ≤
√
n, which gives us the prime factorization

in O(
√
n).

The smallest divisor has to be a prime number. We remove the factor from
the number, and repeat the process. If we cannot find any divisor in the range
[2;
√
n], then the number itself has to be prime.

vector<long long> trial_division1(long long n) {
vector<long long> factorization;
for (long long d = 2; d * d <= n; d++) {

while (n % d == 0) {
factorization.push_back(d);
n /= d;

}
}
if (n > 1)

factorization.push_back(n);
return factorization;

}

Wheel factorization

This is an optimization of the trial division. The idea is the following. Once
we know that the number is not divisible by 2, we don’t need to check every
other even number. This leaves us with only 50% of the numbers to check. After
checking 2, we can simply start with 3 and skip every other number.

vector<long long> trial_division2(long long n) {
vector<long long> factorization;
while (n % 2 == 0) {

factorization.push_back(2);
n /= 2;

}
for (long long d = 3; d * d <= n; d += 2) {

while (n % d == 0) {
factorization.push_back(d);
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n /= d;
}

}
if (n > 1)

factorization.push_back(n);
return factorization;

}

This method can be extended. If the number is not divisible by 3, we can
also ignore all other multiples of 3 in the future computations. So we only need
to check the numbers 5, 7, 11, 13, 17, 19, 23, . . .. We can observe a pattern of
these remaining numbers. We need to check all numbers with d mod 6 = 1 and
d mod 6 = 5. So this leaves us with only 33.3% percent of the numbers to check.
We can implement this by checking the primes 2 and 3 first, and then start
checking with 5 and alternatively skip 1 or 3 numbers.

We can extend this even further. Here is an implementation for the prime
number 2, 3 and 5. It’s convenient to use an array to store how much we have to
skip.

vector<long long> trial_division3(long long n) {
vector<long long> factorization;
for (int d : {2, 3, 5}) {

while (n % d == 0) {
factorization.push_back(d);
n /= d;

}
}
static array<int, 8> increments = {4, 2, 4, 2, 4, 6, 2, 6};
int i = 0;
for (long long d = 7; d * d <= n; d += increments[i++]) {

while (n % d == 0) {
factorization.push_back(d);
n /= d;

}
if (i == 8)

i = 0;
}
if (n > 1)

factorization.push_back(n);
return factorization;

}

If we extend this further with more primes, we can even reach better percent-
ages. However, also the skip lists will get a lot bigger.

Precomputed primes

Extending the wheel factorization with more and more primes will leave exactly
the primes to check. So a good way of checking is just to precompute all prime
numbers with the Sieve of Eratosthenes until

√
n and test them individually.



Algebra, Chapter 2. Prime numbers 40

vector<long long> primes;

vector<long long> trial_division4(long long n) {
vector<long long> factorization;
for (long long d : primes) {

if (d * d > n)
break;

while (n % d == 0) {
factorization.push_back(d);
n /= d;

}
}
if (n > 1)

factorization.push_back(n);
return factorization;

}

2.4.2 Fermat’s factorization method
We can write an odd composite number n = p · q as the difference of two squares
n = a2 − b2:

n =
(
p+ q

2

)2
−
(
p− q

2

)2

Fermat’s factorization method tries to exploit the fact, by guessing the first
square a2, and check if the remaining part b2 = a2 − n is also a square number.
If it is, then we have found the factors a− b and a+ b of n.

int fermat(int n) {
int a = ceil(sqrt(n));
int b2 = a*a - n;
int b = round(sqrt(b2));
while (b * b != b2) {

a = a + 1;
b2 = a*a - n;
b = round(sqrt(b2));

}
return a - b;

}

Notice, this factorization method can be very fast, if the difference between
the two factors p and q is small. The algorithm runs in O(|p− q|) time. However
since it is very slow, once the factors are far apart, it is rarely used in practice.

However there are still a huge number of optimizations for this approach. E.g.
by looking at the squares a2 modulo a fixed small number, you can notice that
you don’t have to look at certain values a since they cannot produce a square
number a2 − n.

2.4.3 Pollard’s p− 1 method
It is very likely that at least one factor of a number is B-powersmooth for
small B. B-powersmooth means, that every power dk of a prime d that divides
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p − 1 is at most B. E.g. the prime factorization of 4817191 are is 1303 · 3697.
And the factors are 31-powersmooth and 16-powersmooth respectably, because
1303− 1 = 2 · 3 · 7 · 31 and 3697− 1 = 24 · 3 · 7 · 11. In 1974 John Pollard invented
a method to extracts B-powersmooth factors from a composite number.

The idea comes from Fermat’s little theorem. Let a factorization of n be
n = p · q. It says that if a is coprime to p, the following statement holds:

ap−1 ≡ 1 (mod p)

This also means that

a(p−1)k ≡ ak·(p−1) ≡ 1 (mod p).

So for any M with p − 1 | M we know that aM ≡ 1. This means that
aM − 1 = p · r, and because of that also p | gcd(aM − 1, n).

Therefore, if p− 1 for a factor p of n divides M , we can extract a factor using
Euclid’s algorithm.

It is clear, that the smallest M that is a multiple of every B-powersmooth
number is lcm(1, 2 , 3 , 4 , . . . , B). Or alternatively:

M =
∏

prime q≤B
qblogq Bc

Notice, if p − 1 divides M for all prime factors p of n, then gcd(aM − 1, n)
will just be n. In this case we don’t receive a factor. Therefore we will try to
perform the gcd multiple time, while we compute M .

Some composite numbers don’t have B-powersmooth factors for small B.
E.g. the factors of the composite number 100.000.000.000.000.493 = 763.013 ·
131.059.365.961 are 190.753-powersmooth and 1092161383-powersmooth. We
would have to choose B >= 190.753 to factorize the number.

In the following implementation we start with B = 10 and increase B after
each each iteration.

long long pollards_p_minus_1(long long n) {
int B = 10;
long long g = 1;
while (B <= 1000000 && g < n) {

long long a = 2 + rand() % (n - 3);
g = gcd(a, n);
if (g > 1)

return g;

// compute aˆM
for (int p : primes) {

if (p >= B)
continue;

long long p_power = 1;
while (p_power * p <= B)

p_power *= p;
a = power(a, p_power, n);
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g = gcd(a - 1, n);
if (g > 1 && g < n)

return g;
}
B *= 2;

}
return 1;

}

Notice, this is a probabilistic algorithm. It can happen that the algorithm
doesn’t find a factor.

The complexity is O(B logB log2 n) per iteration.

2.4.4 Pollard’s rho algorithm
Another factorization algorithm from John Pollard.

Let the prime factorization from a number be n = pq. The algorithm look
at a pseudo-random sequence {xi} = {x0, f(x0), f(f(x0)), . . . } where f is a
polynomial function, usually f(x) = x2 + c mod n is chosen with c = 1.

Actually we are not very interested in the sequence {xi}, we are more interested
in the sequence {xi mod p}. Since f is a polynomial function and all the values
are in the range [0; p) this sequence will begin to cycle sooner or later. The
birthday paradox actually suggests, that the expected number of elements is
O(√p) until the repetition starts. If p is smaller than

√
n, the repetition will

start very likely in O( 4
√
n).

Here is a visualization of such a sequence {xi mod p} with n = 2206637,
p = 317, x0 = 2 and f(x) = x2 + 1. From the form of the sequence you can see
very clearly why the algorithm is called Pollard’s ρ algorithm.
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There is still one big open question. We don’t know p yet, so how can we
argue about the sequence {xi mod p}?

It’s actually quite easy. There is a cycle in the sequence {xi mod p}i≤j if and
only if there are two indices s, t ≤ j and t with xs ≡ xt mod p. This equation
can be rewritten as xs − xt ≡ 0 mod p which is the same as p | gcd(xs − xt, n).

Therefore, if we find two indices s and t with g = gcd(xs−xt, n) > 1, we have
found a cycle and also a factor g of n. Notice that it is possible that g = n. In
this case we haven’t found a proper factor, and we have to repeat the algorithm
with different parameter (different starting value x0, different constant c in the
polynomial function f).

To find the cycle, we can use any common cycle detection algorithm.

Floyd’s cycle-finding algorithm

This algorithm finds a cycle by using two pointer. These pointers move over the
sequence at different speeds. In each iteration the first pointer advances to the
next element, but the second pointer advances two elements. It’s not hard to
see, that if there exists a cycle, the second pointer will make at least one full
cycle and then meet the first pointer during the next few cycle loops. If the
cycle length is λ and the µ is the first index at which the cycle starts, then the
algorithm will run in O(λ+ µ) time.

This algorithm is also known as tortoise and the hare algorithm, based
on the tale in which a tortoise (here a slow pointer) and a hare (here a faster
pointer) make a race.

It is actually possible to determine the parameter λ and µ using this algorithm
(also in O(λ+ µ) time and O(1) space), but here is just the simplified version
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for finding the cycle at all. The algorithm and returns true as soon as it detects
a cycle. If the sequence doesn’t have a cycle, then the function will never stop.
However this cannot happen during Pollard’s rho algorithm.

function floyd(f, x0):
tortoise = x0
hare = f(x0)
while tortoise != hare:

tortoise = f(tortoise)
hare = f(f(hare))

return true

Implementation

First here is a implementation using the Floyd’s cycle-finding algorithm.
The algorithm runs (usually) in O( 4

√
n log(n)) time.

long long mult(long long a, long long b, long long mod) {
return (__int128)a * b % mod;

}

long long f(long long x, long long c, long long mod) {
return (mult(x, x, mod) + c) % mod;

}

long long rho(long long n, long long x0=2, long long c=1) {
long long x = x0;
long long y = x0;
long long g = 1;
while (g == 1) {

x = f(x, c, n);
y = f(y, c, n);
y = f(y, c, n);
g = gcd(abs(x - y), n);

}
return g;

}

The following table shows the values of x and y during the algorithm for
n = 2206637, x0 = 2 and c = 1.

i xi mod n x2i mod n xi mod 317 x2i mod 317 gcd(xi − x2i, n)
0 2 2 2 2 −
1 5 26 5 26 1
2 26 458330 26 265 1
3 677 1671573 43 32 1
4 458330 641379 265 88 1
5 1166412 351937 169 67 1
6 1671573 1264682 32 169 1
7 2193080 2088470 74 74 317
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The implementation uses a function mult, that multiplies two integers ≤ 1018

without overflow by using a GCC’s type __int128 for 128-bit integer. If GCC is
not available, you can using a similar idea as binary exponentiation.

long long mult(long long a, long long b, long long mod) {
long long result = 0;
while (b) {

if (b & 1)
result = (result + a) % mod;

a = (a + a) % mod;
b >>= 1;

}
return result;

}

Alternatively you can also implement the Montgomery multiplication.
As already noticed above: if n is composite and the algorithm returns n as

factor, you have to repeat the procedure with different parameter x0 and c. E.g.
the choice x0 = c = 1 will not factor 25 = 5 · 5. The algorithm will just return 25.
However the choice x0 = 1, c = 2 will factor it.

Brent’s algorithm

Brent uses a similar algorithm as Floyd. It also uses two pointer. But instead of
advancing the pointers by one and two respectably, we advance them in powers
of two. As soon as 2i is greater than λ and µ, we will find the cycle.

function floyd(f, x0):
tortoise = x0
hare = f(x0)
l = 1
while tortoise != hare:

tortoise = hare
repeat l times:

hare = f(hare)
if tortoise == hare:

return true
l *= 2

return true

Brent’s algorithm also runs in linear time, but is usually faster than Floyd’s
algorithm, since it uses less evaluations of the function f .

Implementation

The straightforward implementation using Brent’s algorithms can be speeded
up by noticing, that we can omit the terms xl − xk if k < 3·l

2 . Also, instead of
performing the gcd computation at every step, we multiply the terms and do it
every few steps and backtrack if we overshoot.
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long long brent(long long n, long long x0=2, long long c=1) {
long long x = x0;
long long g = 1;
long long q = 1;
long long xs, y;

int m = 128;
int l = 1;
while (g == 1) {

y = x;
for (int i = 1; i < l; i++)

x = f(x, c, n);
int k = 0;
while (k < l && g == 1) {

xs = x;
for (int i = 0; i < m && i < l - k; i++) {

x = f(x, c, n);
q = mult(q, abs(y - x), n);

}
g = gcd(q, n);
k += m;

}
l *= 2;

}
if (g == n) {

do {
xs = f(xs, c, n);
g = gcd(abs(xs - y), n);

} while (g == 1);
}
return g;

}

The combination of a trial division for small prime numbers together with
Brent’s version of Pollard’s rho algorithm will make a very powerful factorization
algorithm.

2.4.5 Practice Problems
• SPOJ - FACT0
• SPOJ - FACT1
• SPOJ - FACT2
• GCPC 15 - Divisions

https://www.spoj.com/problems/FACT0/
https://www.spoj.com/problems/FACT1/
https://www.spoj.com/problems/FACT2/
https://codeforces.com/gym/100753
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Chapter 3

Number-theoretic functions

3.1 Euler’s totient function
Euler’s totient function, also known as phi-function φ(n), counts the number of
integers between 1 and n inclusive, which are coprime to n. Two numbers are
coprime if their greatest common divisor equals 1 (1 is considered to be coprime
to any number).

Here are values of φ(n) for the first few positive integers:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
φ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12

3.1.1 Properties
The following properties of Euler totient function are sufficient to calculate it for
any number:

• If p is a prime number, then gcd(p, q) = 1 for all 1 ≤ q < p. Therefore we
have:

φ(p) = p− 1.

• If p is a prime number and k ≥ 1, then there are exactly pk/p numbers
between 1 and pk that are divisible by p. Which gives us:

φ(pk) = pk − pk−1.

• If a and b are relatively prime, then:

φ(ab) = φ(a) · φ(b).

This relation is not trivial to see. It follows from the Chinese remainder
theorem. The Chinese remainder theorem guarantees, that for each 0 ≤
x < a and each 0 ≤ y < b, there exists a unique 0 ≤ z < ab with z ≡ x
(mod a) and z ≡ y (mod b). It’s not hard to show that z is coprime to ab
if and only if x is coprime to a and y is coprime to b. Therefore the amount
of integers coprime to ab is equal to product of the amounts of a and b.
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• In general, for not coprime a and b, the equation

φ(ab) = φ(a) · φ(b) · d

φ(d)

with d = gcd(a, b) holds.

Thus, using the first three properties, we can compute φ(n) through the
factorization of n (decomposition of n into a product of its prime factors). If
n = p1

a1 · p2
a2 · · · pkak , where pi are prime factors of n,

φ(n) = φ(p1
a1) · φ(p2

a2) · · ·φ(pkak)

=
(
p1
a1 − p1

a1−1
)
·
(
p2
a2 − p2

a2−1
)
· · ·
(
pk
ak − pkak−1

)
= pa1

1 ·
(

1− 1
p1

)
· pa2

2 ·
(

1− 1
p2

)
· · · pakk ·

(
1− 1

pk

)
= n ·

(
1− 1

p1

)
·
(

1− 1
p2

)
· · ·
(

1− 1
pk

)

3.1.2 Implementation
Here is an implementation using factorization in O(

√
n):

int phi(int n) {
int result = n;
for (int i = 2; i * i <= n; i++) {

if (n % i == 0) {
while (n % i == 0)

n /= i;
result -= result / i;

}
}
if (n > 1)

result -= result / n;
return result;

}

3.1.3 Euler totient function from 1 to n in O(n log log n)
If we need all all the totient of all numbers between 1 and n, then factorizing all n
numbers is not efficient. We can use the same idea as the Sieve of Eratosthenes. It
is still based on the property shown above, but instead of updating the temporary
result for each prime factor for each number, we find all prime numbers and for
each one update the temporary results of all numbers that are divisible by that
prime number.

Since this approach is basically identical to the Sieve of Eratosthenes, the
complexity will also be the same: O(n log logn)

algebra/sieve-of-eratosthenes.html
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void phi_1_to_n(int n) {
vector<int> phi(n + 1);
phi[0] = 0;
phi[1] = 1;
for (int i = 2; i <= n; i++)

phi[i] = i;

for (int i = 2; i <= n; i++) {
if (phi[i] == i) {

for (int j = i; j <= n; j += i)
phi[j] -= phi[j] / i;

}
}

}

3.1.4 Divisor sum property
This interesting property was established by Gauss:∑

d|n
φ(d) = n

Here the sum is over all positive divisors d of n.
For instance the divisors of 10 are 1, 2, 5 and 10. Hence φ(1) + φ(2) + φ(5) +

φ(10) = 1 + 1 + 4 + 4 = 10.

Finding the totient from 1 to n using the divisor sum property

The divisor sum property also allows us to compute the totient of all numbers
between 1 and n. This implementation is a little simpler than the previous
implementation based on the Sieve of Eratosthenes, however also has a slightly
worse complexity: O(n logn)

void phi_1_to_n(int n) {
vector<int> phi(n + 1);
phi[0] = 0;
phi[1] = 1;
for (int i = 2; i <= n; i++)

phi[i] = i - 1;

for (int i = 2; i <= n; i++)
for (int j = 2 * i; j <= n; j += i)

phi[j] -= phi[i];
}

3.1.5 Application in Euler’s theorem
The most famous and important property of Euler’s totient function is expressed
in Euler’s theorem:

aφ(m) ≡ 1 (mod m)
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if a and m are relatively prime.
In the particular case when m is prime, Euler’s theorem turns into Fermat’s

little theorem:
am−1 ≡ 1 (mod m)

Euler’s theorem and Euler’s totient function occur quite often in practical
applications, for example both are used to compute the modular multiplicative
inverse.

As immediate consequence we also get the equivalence:

an ≡ an mod φ(m) (mod m)

This allows computing xn mod m for very big n, especially if n is the result of
another computation, as it allows to compute n under a modulo.

3.1.6 Generalization
There is a less known version of the last equivalence, that allows computing
xn mod m efficiently for not coprime x and m. For arbitrary x,m and n ≥ log2m:

xn ≡ xφ(m)+[n mod φ(m)] mod m

Proof:
Let p1, . . . , pt be common prime divisors of x and m, and ki their exponents

in m. With those we define a = pk1
1 . . . pktt , which makes m

a coprime to x. And let
k be the smallest number such that a divides xk. Assuming n ≥ k, we can write:

xn mod m = xk

a
axn−k mod m

= xk

a

(
axn−k mod m

)
mod m

= xk

a

(
axn−k mod am

a

)
mod m

= xk

a
a

(
xn−k mod m

a

)
mod m

= xk
(
xn−k mod m

a

)
mod m

The equivalence between the third and forth line follows from the fact that
ab mod ac = a(b mod c). Indeed if b = cd + r with r < c, then ab = acd + ar
with ar < ac.

Since x and m
a are coprime, we can apply Euler’s theorem and get the efficient

(since k is very small; in fact k ≤ log2m) formula:

xn mod m = xk
(
xn−k mod φ(m

a
) mod m

a

)
mod m.

This formula is difficult to apply, but we can use it to analyze the behav-
ior of xn mod m. We can see that the sequence of powers (x1 mod m,x2 mod
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m,x3 mod m, . . . ) enters a cycle of length φ
(
m
a

)
after the first k (or less) elements.

φ
(
m
a

)
divides φ(m) (because a and m

a are coprime we have φ(a) · φ
(
m
a

)
= φ(m)),

therefore we can also say that the period has length φ(m). And since φ(m) ≥
log2m ≥ k, we can conclude the desired, much simpler, formula:

xn ≡ xφ(m)x(n−φ(m)) mod φ(m) mod m ≡ xφ(m)+[n mod φ(m)] mod m.

3.1.7 Practice Problems
• SPOJ #4141 “Euler Totient Function” [Difficulty: CakeWalk]
• UVA #10179 “Irreducible Basic Fractions” [Difficulty: Easy]
• UVA #10299 “Relatives” [Difficulty: Easy]
• UVA #11327 “Enumerating Rational Numbers” [Difficulty: Medium]
• TIMUS #1673 “Admission to Exam” [Difficulty: High]
• UVA 10990 - Another New Function
• Codechef - Golu and Sweetness
• SPOJ - LCM Sum
• GYM - Simple Calculations (F)
• UVA 13132 - Laser Mirrors
• SPOJ - GCDEX
• UVA 12995 - Farey Sequence
• SPOJ - Totient in Permutation (easy)
• LOJ - Mathematically Hard
• SPOJ - Totient Extreme
• SPOJ - Playing with GCD
• SPOJ - G Force
• SPOJ - Smallest Inverse Euler Totient Function
• Codeforces - Power Tower

http://www.spoj.com/problems/ETF/
http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1120
http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1240
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2302
http://acm.timus.ru/problem.aspx?space=1&num=1673
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1931
https://www.codechef.com/problems/COZIE
http://www.spoj.com/problems/LCMSUM/
http://codeforces.com/gym/100975
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=5043
http://www.spoj.com/problems/GCDEX/
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4878
http://www.spoj.com/problems/TIP1/
http://lightoj.com/volume_showproblem.php?problem=1007
http://www.spoj.com/problems/DCEPCA03/
http://www.spoj.com/problems/NAJPWG/
http://www.spoj.com/problems/DCEPC12G/
http://www.spoj.com/problems/INVPHI/
http://codeforces.com/problemset/problem/906/D
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3.2 Number of divisors / sum of divisors
In this article we discuss how to compute the number of divisors d(n) and the
sum of divisors σ(n) of a given number n.

3.2.1 Number of divisors
It should be obvious that the prime factorization of a divisor d has to be a subset
of the prime factorization of n, e.g. 6 = 2 · 3 is a divisor of 60 = 22 · 3 · 5. So we
only need to find all different subsets of the prime factorization of n.

Usually the number of subsets is 2x for a set with x elements. However this is
no longer true, if there are repeated elements in the set. In our case some prime
factors may appear multiple times in the prime factorization of n.

If a prime factor p appears e times in the prime factorization of n, then we
can use the factor p up to e times in the subset. Which means we have e + 1
choices.

Therefore if the prime factorization of n is pe1
1 ·p

e2
2 · · · p

ek
k , where pi are distinct

prime numbers, then the number of divisors is:

d(n) = (e1 + 1) · (e2 + 1) · · · (ek + 1)

A way of thinking about it is the following:

• If there is only one distinct prime divisor n = pe1
1 , then there are obviously

e1 + 1 divisors (1, p1, p
2
1, . . . , p

e1
1 ).

• If there are two distinct prime divisors n = pe1
1 · p

e2
2 , then you can arrange

all divisors in form of a tabular.

1 p2 p2
2 . . . pe2

2
1 1 p2 p2

2 . . . pe2
2

p1 p1 p1 · p2 p1 · p2
2 . . . p1 · pe2

2
p2

1 p2
1 p2

1 · p2 p2
1 · p2

2 . . . p2
1 · p

e2
2

...
...

...
... . . . ...

pe1
1 pe1

1 pe1
1 · p2 pe1

1 · p2
2 . . . pe1

1 · p
e2
2

So the number of divisors is trivially (e1 + 1) · (e2 + 1).

• A similar argument can be made if there are more then two distinct prime
factors.

3.2.2 Sum of divisors
We can use the same argument of the previous section.

• If there is only one distinct prime divisor n = pe1
1 , then the sum is:

1 + p1 + p2
1 + · · ·+ pe1

1 = pe1+1
1 − 1
p1 − 1
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• If there are two distinct prime divisors n = pe1
1 · p

e2
2 , then we can make

the same table as before. The only difference is that now we now want to
compute the sum instead of counting the elements. It is easy to see, that
the sum of each combination can be expressed as:(

1 + p1 + p2
1 + · · ·+ pe1

1

)
·
(
1 + p2 + p2

2 + · · ·+ pe2
2

)

= pe1+1
1 − 1
p1 − 1 · p

e2+1
2 − 1
p2 − 1

• In general, for n = pe1
1 · p

e2
2 · · · p

ek
k we receive the formula:

σ(n) = pe1+1
1 − 1
p1 − 1 · p

e2+1
2 − 1
p2 − 1 · · ·

pek+1
k − 1
pk − 1

3.2.3 Multiplicative functions
A multiplicative function is a function f(x) which satisfies

f(a · b) = f(a) · f(b)

if a and b are coprime.
Both d(n) and σ(n) are multiplicative functions.
Multiplicative functions have a huge variety of interesting properties, which

can be very useful in number theory problems. For instance the Dirichlet
convolution of two multiplicative functions is also multiplicative.

3.2.4 Practice Problems
• SPOJ - COMDIV
• SPOJ - DIVSUM
• SPOJ - DIVSUM2

https://www.spoj.com/problems/COMDIV/
https://www.spoj.com/problems/DIVSUM/
https://www.spoj.com/problems/DIVSUM2/
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Chapter 4

Modular arithmetic

4.1 Modular Multiplicative Inverse

4.1.1 Definition
A modular multiplicative inverse of an integer a is an integer x such that a · x is
congruent to 1 modular some modulus m. To write it in a formal way: we want
to find an integer x so that

a · x ≡ 1 mod m.

We will also denote x simply with a−1.
We should note that the modular inverse does not always exist. For example,

let m = 4, a = 2. By checking all possible values modulo m is should become
clear that we cannot find a−1 satisfying the above equation. It can be proven
that the modular inverse exists if and only if a and m are relatively prime
(i.e. gcd(a,m) = 1).

In this article, we present two methods for finding the modular inverse in
case it exists, and one method for finding the modular inverse for all numbers in
linear time.

4.1.2 Finding the Modular Inverse using Extended Euclidean
algorithm

Consider the following equation (with unknown x and y):

a · x+m · y = 1
This is a Linear Diophantine equation in two variables. As shown in the

linked article, when gcd(a,m) = 1, the equation has a solution which can be
found using the extended Euclidean algorithm. Note that gcd(a,m) = 1 is also
the condition for the modular inverse to exist.

Now, if we take modulo m of both sides, we can get rid of m · y, and the
equation becomes:

a · x ≡ 1 mod m

http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
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Thus, the modular inverse of a is x.
The implementation is as follows:

int x, y;
int g = extended_euclidean(a, m, x, y);
if (g != 1) {

cout << "No solution!";
}
else {

x = (x % m + m) % m;
cout << x << endl;

}

Notice that we way we modify x. The resulting x from the extended Euclidean
algorithm may be negative, so x % m might also be negative, and we first have
to add m to make it positive.

4.1.3 Finding the Modular Inverse using Binary Exponentiation
Another method for finding modular inverse is to use Euler’s theorem, which
states that the following congruence is true if a and m are relatively prime:

aφ(m) ≡ 1 mod m

φ is Euler’s Totient function. Again, note that a and m being relative prime
was also the condition for the modular inverse to exist.

If m is a prime number, this simplifies to Fermat’s little theorem:

am−1 ≡ 1 mod m

Multiply both sides of the above equations by a−1, and we get:

• For an arbitrary (but coprime) modulus m: aφ(m)−1 ≡ a−1 mod m
• For a prime modulus m: am−2 ≡ a−1 mod m

From these results, we can easily find the modular inverse using the binary
exponentiation algorithm, which works in O(logm) time.

Even though this method is easier to understand than the method described
in previous paragraph, in the case when m is not a prime number, we need to
calculate Euler phi function, which involves factorization of m, which might be
very hard. If the prime factorization of m is known, then the complexity of this
method is O(logm).

4.1.4 Finding the modular inverse for every number modulo m

The problem is the following: we want to compute the modular inverse for every
number in the range [1,m− 1].

Applying the algorithms described in the previous sections, we can obtain a
solution with complexity O(m logm).

http://en.wikipedia.org/wiki/Fermat's_little_theorem
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Here we present a better algorithm with complexity O(m). However for this
specific algorithm we require that the modulus m is prime.

We denote by inv[i] the modular inverse of i. Then for i > 1 the following
equation is valid:

inv[i] = −
⌊
m

i

⌋
· inv[m mod i] mod m

Thus the implementation is very simple:

inv[1] = 1;
for(int i = 2; i < m; ++i)

inv[i] = m - (m/i) * inv[m%i] % m;

Proof

We have:
m mod i = m−

⌊
m

i

⌋
· i

Taking both sides modulo m yields:

m mod i ≡ −
⌊
m

i

⌋
· i mod m

Multiply both sides by i−1 · (m mod i)−1 yields

(m mod i) · i−1 · (m mod i)−1 ≡ −
⌊
m

i

⌋
· i · i−1 · (m mod i)−1 mod m,

which simplifies to:

i−1 ≡ −
⌊
m

i

⌋
· (m mod i)−1 mod m,

4.1.5 Practice Problems
• UVa 11904 - One Unit Machine
• Hackerrank - Longest Increasing Subsequence Arrays
• Codeforces 300C - Beautiful Numbers
• Codeforces 622F - The Sum of the k-th Powers
• Codeforces 717A - Festival Organization
• Codeforces 896D - Nephren Runs a Cinema

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3055
https://www.hackerrank.com/contests/world-codesprint-5/challenges/longest-increasing-subsequence-arrays
http://codeforces.com/problemset/problem/300/C
http://codeforces.com/problemset/problem/622/F
http://codeforces.com/problemset/problem/717/A
http://codeforces.com/problemset/problem/896/D
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4.2 Linear Congruence Equation
This equation is of the form:

a · x = b (mod n),

where a, b and n are given integers and x is an unknown integer.
It is required to find the value x from the interval [0, n− 1] (clearly, on the

entire number line there can be infinitely many solutions that will differ from
each other in n · k , where k is any integer). If the solution is not unique, then
we will consider how to get all the solutions.

4.2.1 Solution by finding the inverse element
Let us first consider a simpler case where a and n are coprime (gcd(a, n) = 1).
Then one can find the inverse of a, and multiplying both sides of the equation
with the inverse, and we can get a unique solution.

x = b · a−1 (mod n)

Now consider the case where a and n are not coprime (gcd(a, n) 6= 1). Then
the solution will not always exist (for example 2 · x = 1 (mod 4) has no solution).

Let g = gcd(a, n), i.e. the greatest common divisor of a and n (which in this
case is greater than one).

Then, if b is not divisible by g, there is no solution. In fact, for any x the left
side of the equation a · x (mod n) , is always divisible by g, while the right-hand
side is not divisible by it, hence it follows that there are no solutions.

If g divides b, then by dividing both sides of the equation by g (i.e. dividing
a, b and n by g), we receive a new equation:

a′ · x = b′ (mod n′)

in which a′ and n′ are already relatively prime, and we have already learned
how to handle such an equation. We get x′ as solution for x.

It is clear that this x′ will also be a solution of the original equation. However
it will not be the only solution. It can be shown that the original equation
has exactly g solutions, and they will look like this:

xi = (x′ + i · n′) (mod n) for i = 0 . . . g − 1

Summarizing, we can say that the number of solutions of the linear
congruence equation is equal to either g = gcd(a, n) or to zero.

4.2.2 Solution with the Extended Euclidean Algorithm
We can rewrite the linear congruence to the following Diophantine equation:

a · x+ n · k = b,

where x and k are unknown integers.
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The method of solving this equation is described in the corresponding article
Linear Diophantine equations and it consists of applying the Extended Euclidean
Algorithm.

It also describes the method of obtaining all solutions of this equation from
one found solution, and incidentally this method, when carefully considered, is
absolutely equivalent to the method described in the previous section.
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4.3 Chinese Remainder Theorem
The Chinese Remainder Theorem (which will be referred to as CRT in the rest
of this article) was discovered by Chinese mathematician Sun Zi.

4.3.1 Formulation
Let p = p1p2 · · · pk, where pi are pairwise relatively prime. In addition to pi, we
are also given a set of congruence equations

a ≡ a1 (mod p1)
a ≡ a2 (mod p2)
. . .

a ≡ ak (mod pk)

where ai are some given constants. The original form of CRT then states that
the given set of congruence equations always has one and exactly one solution
modulo p.

Corollary

A consequence of the CRT is that the equation

x ≡ a (mod p)

is equivalent to the system of equations

x ≡ a1 (mod p1)
. . .

x ≡ ak (mod pk)

(As above, assume that p = p1p2 · · · pk and pi are pairwise relatively prime).

4.3.2 Garner’s Algorithm
Another consequence of the CRT is that we can represent big numbers using an
array of small integers. For example, let p be the product of the first 1000 primes.
From calculations we can see that p has around 3000 digits.

Any number a less than p can be represented as an array a1, . . . , ak, where
ai ≡ a (mod pi). But to do this we obviously need to know how to get back the
number a from its representation. In this section, we discuss Garner’s Algorithm,
which can be used for this purpose. We seek a representation on the form

a = x1 + x2p1 + x3p1p2 + . . .+ xkp1 . . . pk−1

which is called the mixed radix representation of a. Garner’s algorithm computes
the coefficients x1, . . . , xk.
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Let rij denote the inverse of pi modulo pj
rij = (pi)−1 (mod pj)

which can be found using the algorithm described in Modular Inverse. Substituting
a from the mixed radix representation into the first congruence equation we obtain

a1 ≡ x1 (mod p1).

Substituting into the second equation yields

a2 ≡ x1 + x2p1 (mod p2).

which can be rewritten by subtracting x1 and dividing by p1 to get
a2 − x1 ≡ x2p1 (mod p2)

(a2 − x1)r12 ≡ x2 (mod p2)
x2 ≡ (a2 − x1)r12 (mod p2)

Similarly we get that

x3 ≡ ((a3 − x1)r13 − x2)r23 (mod p3).

Now, we can clearly see an emerging pattern, which can be expressed by the
following code:
for (int i = 0; i < k; ++i) {

x[i] = a[i];
for (int j = 0; j < i; ++j) {

x[i] = r[j][i] * (x[i] - x[j]);

x[i] = x[i] % p[i];
if (x[i] < 0)

x[i] += p[i];
}

}

So we learned how to calculate coefficients xi in O(k2) time. The number a
can now be calculated using the previously mentioned formula

a = x1 + x2p1 + x3p1p2 + . . .+ xkp1 . . . pk−1

It is worth noting that in practice, we almost always need to compute the
answer using Big Integers, but the coefficients xi can usually be calculated using
built-in types, and therefore Garner’s algorithm is very efficient.

4.3.3 Implementation of Garner’s Algorithm
It is convenient to implement this algorithm using Java, because it has built-in
support for large numbers through the BigInteger class.

Here we show an implementation that can store big numbers in the form of a
set of congruence equations. It supports addition, subtraction and multiplication.
And with Garner’s algorithm we can convert the set of equations into the unique
integer. In this code, we take 100 prime numbers greater than 109, which allows
numbers as large as 10900.
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final int SZ = 100;
int pr[] = new int[SZ];
int r[][] = new int[SZ][SZ];

void init() {
for (int x = 1000 * 1000 * 1000, i = 0; i < SZ; ++x)

if (BigInteger.valueOf(x).isProbablePrime(100))
pr[i++] = x;

for (int i = 0; i < SZ; ++i)
for (int j = i + 1; j < SZ; ++j)

r[i][j] =
BigInteger.valueOf(pr[i]).modInverse(BigInteger.valueOf(pr[j])).intValue();

}

class Number {
int a[] = new int[SZ];

public Number() {
}

public Number(int n) {
for (int i = 0; i < SZ; ++i)

a[i] = n % pr[i];
}

public Number(BigInteger n) {
for (int i = 0; i < SZ; ++i)

a[i] = n.mod(BigInteger.valueOf(pr[i])).intValue();
}

public Number add(Number n) {
Number result = new Number();
for (int i = 0; i < SZ; ++i)

result.a[i] = (a[i] + n.a[i]) % pr[i];
return result;

}

public Number subtract(Number n) {
Number result = new Number();
for (int i = 0; i < SZ; ++i)

result.a[i] = (a[i] - n.a[i] + pr[i]) % pr[i];
return result;

}

public Number multiply(Number n) {
Number result = new Number();
for (int i = 0; i < SZ; ++i)

result.a[i] = (int)((a[i] * 1l * n.a[i]) % pr[i]);
return result;

}
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public BigInteger bigIntegerValue(boolean can_be_negative) {
BigInteger result = BigInteger.ZERO, mult = BigInteger.ONE;
int x[] = new int[SZ];
for (int i = 0; i < SZ; ++i) {

x[i] = a[i];
for (int j = 0; j < i; ++j) {

long cur = (x[i] - x[j]) * 1l * r[j][i];
x[i] = (int)((cur % pr[i] + pr[i]) % pr[i]);

}
result = result.add(mult.multiply(BigInteger.valueOf(x[i])));
mult = mult.multiply(BigInteger.valueOf(pr[i]));

}

if (can_be_negative)
if (result.compareTo(mult.shiftRight(1)) >= 0)

result = result.subtract(mult);

return result;
}

}

Note on negative numbers

• Let p be the product of all primes.

• Modular scheme itself does not allow representing negative numbers. How-
ever, it can be seen that if we know that the absolute values our numbers
are smaller than p/2, then we know that it must be negative when the
resulting number is greater than p/2. The flag can_be_negative in this
code allows converting it to negative in this case.

4.3.4 Practice Problems:
• Hackerrank - Number of sequences
• Codeforces - Remainders Game

https://www.hackerrank.com/contests/w22/challenges/number-of-sequences
http://codeforces.com/problemset/problem/687/B
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4.4 Factorial modulo p

In some cases it is necessary to consider complex formulas modulo some prime
p, containing factorials in both numerator and denominator, like such that you
encounter in the formula for Binomial coefficients. We consider the case when p
is relatively small. This problem makes only sense when the factorials appear
in both numerator and denominator of fractions. Otherwise p! and subsequent
terms will reduce to zero. But in fractions the factors of p can cancel, and the
resulting expression will be non-zero modulo p.

Thus, formally the task is: You want to calculate n! mod p, without taking
all the multiple factors of p into account that appear in the factorial. Imaging
you write down the prime factorization of n!, remove all factors p, and compute
the product modulo p. We will denote this modified factorial with n!%p. For
instance 7!%p ≡ 1 · 2 · 1︸︷︷︸

3

·4 · 5 2︸︷︷︸
6

·7 ≡ 2 mod 3.

Learning how to effectively calculate this modified factorial allows us to
quickly calculate the value of the various combinatorial formulas (for example,
Binomial coefficients).

4.4.1 Algorithm
Let’s write this modified factorial explicitly.

n!%p = 1 · 2 · 3 · . . . · (p− 2) · (p− 1) · 1︸︷︷︸
p

·(p+ 1) · (p+ 2) · . . . · (2p− 1) · 2︸︷︷︸
2p

·(2p+ 1) · . . . · (p2 − 1) · 1︸︷︷︸
p2

·(p2 + 1) · . . . · n (mod p)

= 1 · 2 · 3 · . . . · (p− 2) · (p− 1) · 1︸︷︷︸
p

·1 · 2 · . . . · (p− 1) · 2︸︷︷︸
2p

·1 · 2

· . . . · (p− 1) · 1︸︷︷︸
p2

·1 · 2 · . . . · (n mod p) (mod p)

It can be clearly seen that factorial is divided into several blocks of same
length except for the last one.

n!%p = 1 · 2 · 3 · . . . · (p− 2) · (p− 1) · 1︸ ︷︷ ︸
1st

· 1 · 2 · 3 · . . . · (p− 2) · (p− 1) · 2︸ ︷︷ ︸
2nd

· . . .

· 1 · 2 · 3 · . . . · (p− 2) · (p− 1) · 1︸ ︷︷ ︸
pth

· . . . · 1 · 2 · · . . . · (n mod p)︸ ︷︷ ︸
tail

(mod p).

The main part of the blocks it is easy to count — it’s just (p− 1)! mod p. We
can compute that programmatically or just apply Wilson theorem which states
that (p− 1)! mod p = −1 for any prime p.

We have exactly bnp c such blocks, therefore we need to raise −1 to the power of
bnp c. This can be done in logarithmic time using Binary Exponentiation; however
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you can also notice that the result will switch between −1 and 1, so we only need
to look at the parity of the exponent and multiply by −1 if the parity is odd.
And instead of a multiplication, we can also just subtract the current result from
p.

The value of the last partial block can be calculated separately in O(p).
This leaves only the last element of each block. If we hide the already handled

elements, we can see the following pattern:

n!%p = . . . · 1︸ ︷︷ ︸ · . . . · 2︸ ︷︷ ︸ · . . . · . . . · (p− 1)︸ ︷︷ ︸ · . . . · 1︸ ︷︷ ︸ · . . . · 1︸ ︷︷ ︸ · . . . · 2︸ ︷︷ ︸ · · ·
This again is a modified factorial, only with a much smaller dimension. It’s

bn/pc!%p.
Thus, during the calculation of the modified factorial n%p we did O(p) opera-

tions and are left with the calculation of bn/pc!%p. We have a recursive formula.
The recursion depth is O(logp n), and therefore the complete asymptotic behavior
of the algorithm is O(p logp n).

Notice, if you precompute the factorials 0!, 1!, 2!, . . . , (p − 1)! modulo p,
then the complexity will just be O(logp n).

4.4.2 Implementation
We don’t need recursion because this is a case of tail recursion and thus can
be easily implemented using iteration. In the following implementation we
precompute the factorials 0!, 1!, . . . , (p − 1)!, and thus have the runtime
O(p+ logp n). If you need to call the function multiple times, then you can do
the precomputation outside of the function and do the computation of n!%p in
O(logp n) time.

int factmod(int n, int p) {
vector<int> f(p);
f[0] = 1;
for (int i = 1; i < p; i++)

f[i] = f[i-1] * i % p;

int res = 1;
while (n > 1) {

if ((n/p) % 2)
res = p - res;

res = res * f[n%p] % p;
n /= p;

}
return res;

}

Alternative, if you only have limit memory and can’t afford storing all
factorials, you can also just remember the factorials that you need, sort them, and
then compute them in one sweep by computing the factorials 0!, 1!, 2!, . . . , (p−1)!
in a loop without storing them explicitly.
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4.4.3 Multiplicity of p

If we want to compute a Binomial coefficient modulo p, then we additionally
need the multiplicity of the p in n, i.e. the number of times p occurs in the prime
factorization of n, or number of times we erased p during the computation of the
modified factorial.

Legendre’s formula gives us a way to compute this in O(logp n) time. The
formula gives the multiplicity νp as:

νp(n!) =
∞∑
i=1

⌊
n

pi

⌋
Thus we get the implementation:

int multiplicity_factorial(int n, int p) {
int count = 0;
do {

n /= p;
count += n;

} while (n);
return count;

}

This formula can be proven very easily using the same ideas that we did in
the previous sections. Remove all elements that don’t contain the factor p. This
leaves bn/pc element remaining. If we remove the factor p from each of them, we
get the product 1 · 2 · · · bn/pc = bn/pc!, and again we have a recursion.

https://en.wikipedia.org/wiki/Legendre%27s_formula
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4.5 Discrete Logarithm
The discrete logarithm is an integer x satisfying the equation

ax ≡ b (mod m)

for given integers a, b and m.
The discrete logarithm does not always exist, for instance there is no solution

to 2x ≡ 3 (mod 7). There is no simple condition to determine if the discrete
logarithm exists.

In this article, we describe theBaby-step giant-step algorithm, an algorithm
to compute the discrete logarithm proposed by Shanks in 1971, which has the
time complexity O(

√
m). This is a meet-in-the-middle algorithm because it

uses the technique of separating tasks in half.

4.5.1 Algorithm
Consider the equation:

ax ≡ b (mod m),

where a and m are relatively prime.
Let x = np− q, where n is some pre-selected constant (we will describe how

to select n later). p is known as giant step, since increasing it by one increases
x by n. Similarly, q is known as baby step.

Obviously, any number x in the interval [0;m) can be represented in this
form, where p ∈ [1; dmn e] and q ∈ [0;n].

Then, the equation becomes:

anp−q ≡ b (mod m).

Using the fact that a and m are relatively prime, we obtain:

anp ≡ baq (mod m)

This new equation can be rewritten in a simplified form:

f1(p) = f2(q).

This problem can be solved using the meet-in-the-middle method as follows:

• Calculate f1 for all possible arguments p. Sort the array of value-argument
pairs.

• For all possible arguments q, calculate f2 and look for the corresponding p
in the sorted array using binary search.
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4.5.2 Complexity
We can calculate f1(p) in O(logm) using the binary exponentation algorithm.
Similarly for f2(q).

In the first step of the algorithm, we need to calculate f1 for every possible
argument p and then sort the values. Thus, this step has complexity:

O

(⌈
m

n

⌉(
logm+ log

⌈
m

n

⌉))
= O

(⌈
m

n

⌉
logm

)
In the second step of the algorithm, we need to calculate f2(q) for every

possible argument q and then do a binary search on the array of values of f1,
thus this step has complexity:

O

(
n

(
logm+ log m

n

))
= O (n logm) .

Now, when we add these two complexities, we get logm multiplied by the
sum of n and m/n, which is minimal when n = m/n, which means, to achieve
optimal performance, n should be chosen such that:

n =
√
m.

Then, the complexity of the algorithm becomes:

O(
√
m logm).

4.5.3 Implementation

The simplest implementation

In the following code, the function powmod calculates ab (mod m) and the function
solve produces a proper solution to the problem. It returns −1 if there is no
solution and returns one of the possible solutions otherwise.

int powmod(int a, int b, int m) {
int res = 1;
while (b > 0) {

if (b & 1) {
res = (res * 1ll * a) % m;

}
a = (a * 1ll * a) % m;
b >>= 1;

}
return res;

}

int solve(int a, int b, int m) {
a %= m, b %= m;
int n = sqrt(m) + 1;
map<int, int> vals;
for (int p = 1; p <= n; ++p)
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vals[powmod(a, p * n, m)] = p;
for (int q = 0; q <= n; ++q) {

int cur = (powmod(a, q, m) * 1ll * b) % m;
if (vals.count(cur)) {

int ans = vals[cur] * n - q;
return ans;

}
}
return -1;

}

In this code, we used map from the C++ standard library to store the values
of f1. Internally, map uses a red-black tree to store values. Thus this code is a
little bit slower than if we had used an array and binary searched, but is much
easier to write.

Notice that our code assumes 00 = 1, i.e. the code will compute 0 as solution
for the equation 0x ≡ 1 (mod m) and also as solution for 0x ≡ 0 (mod 1). This
is an often used convention in algebra, but it’s also not univerally accepted in all
areas. Sometimes 00 is simply undefined. If you don’t like our convention, then
you need to handle the case a = 0 separately:

if (a == 0)
return b == 0 ? 1 : -1;

Another thing to note is that, if there are multiple arguments p that map to the
same value of f1, we only store one such argument. This works in this case because
we only want to return one possible solution. If we need to return all possible
solutions, we need to change map<int, int> to, say, map<int, vector<int>>.
We also need to change the second step accordingly.

4.5.4 Improved implementation
A possible improvement is to get rid of binary exponentiation. This can be
done by keeping a variable that is multiplied by a each time we increase q and
a variable that is multiplied by an each time we increase p. With this change,
the complexity of the algorithm is still the same, but now the log factor is only
for the map. Instead of a map, we can also use a hash table (unordered_map in
C++) which has the average time complexity O(1) for inserting and searching.

Problems often ask for the minimum x which satisfies the solution.
It is possible to get all answers and take the minimum, or reduce the first found
answer using Euler’s theorem, but we can be smart about the order in which we
calculate values and ensure the first answer we find is the minimum.

// Returns minimum x for which a ˆ x % m = b % m, a and m are coprime.
int solve(int a, int b, int m) {

a %= m, b %= m;
int n = sqrt(m) + 1;

int an = 1;
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for (int i = 0; i < n; ++i)
an = (an * 1ll * a) % m;

unordered_map<int, int> vals;
for (int q = 0, cur = b; q <= n; ++q) {

vals[cur] = q;
cur = (cur * 1ll * a) % m;

}

for (int p = 1, cur = 1; p <= n; ++p) {
cur = (cur * 1ll * an) % m;
if (vals.count(cur)) {

int ans = n * p - vals[cur];
return ans;

}
}
return -1;

}

The complexity is O(
√
m) using unordered_map.

4.5.5 When a and m are not coprime
Let g = gcd(a,m), and g > 1. Clearly ax mod m for every x ≥ 1 will be divisible
by g.

If g - b, there is no solution for x.
If g | b, let a = gα, b = gβ,m = gν.

ax ≡ b mod m

(gα)ax−1 ≡ gβ mod gν

αax−1 ≡ β mod ν

The baby-step giant-step algorithm can be easily extended to solve kax ≡ b
(mod m) for x.

// Returns minimum x for which a ˆ x % m = b % m.
int solve(int a, int b, int m) {

a %= m, b %= m;
int k = 1, add = 0, g;
while ((g = gcd(a, m)) > 1) {

if (b == k)
return add;

if (b % g)
return -1;

b /= g, m /= g, ++add;
k = (k * 1ll * a / g) % m;

}

int n = sqrt(m) + 1;
int an = 1;
for (int i = 0; i < n; ++i)
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an = (an * 1ll * a) % m;

unordered_map<int, int> vals;
for (int q = 0, cur = b; q <= n; ++q) {

vals[cur] = q;
cur = (cur * 1ll * a) % m;

}

for (int p = 1, cur = k; p <= n; ++p) {
cur = (cur * 1ll * an) % m;
if (vals.count(cur)) {

int ans = n * p - vals[cur] + add;
return ans;

}
}
return -1;

}

The time complexity remains O(
√
m) as before since the initial reduction to

coprime a and m is done in O(log2m).

4.5.6 Practice Problems
• Spoj - Power Modulo Inverted
• Topcoder - SplittingFoxes3
• CodeChef - Inverse of a Function
• Hard Equation (assume that 00 is undefined)
• CodeChef - Chef and Modular Sequence

4.5.7 References
• Wikipedia - Baby-step giant-step
• Answer by Zander on Mathematics StackExchange

http://www.spoj.com/problems/MOD/
https://community.topcoder.com/stat?c=problem_statement&pm=14386&rd=16801
https://www.codechef.com/problems/INVXOR/
https://codeforces.com/gym/101853/problem/G
https://www.codechef.com/problems/CHEFMOD
https://en.wikipedia.org/wiki/Baby-step_giant-step
https://math.stackexchange.com/a/133054
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4.6 Primitive Root

4.6.1 Definition
In modular arithmetic, a number g is called a primitive root modulo n if every
number coprime to n is congruent to a power of g modulo n. Mathematically,
g is a primitive root modulo n if and only if for any integer a such that
gcd(a, n) = 1, there exists an integer k such that:

gk ≡ a (mod n).
k is then called the index or discrete logarithm of a to the base g modulo

n. g is also called the generator of the multiplicative group of integers modulo
n.

In particular, for the case where n is a prime, the powers of primitive root
runs through all numbers from 1 to n− 1.

4.6.2 Existence
Primitive root modulo n exists if and only if:

• n is 1, 2, 4, or
• n is power of an odd prime number (n = pk), or
• n is twice power of an odd prime number (n = 2 · pk).

This theorem was proved by Gauss in 1801.

4.6.3 Relation with the Euler function
Let g be a primitive root modulo n. Then we can show that the smallest number
k for which gk ≡ 1 (mod n) is equal φ(n). Moreover, the reverse is also true, and
this fact will be used in this article to find a primitive root.

Furthermore, the number of primitive roots modulo n, if there are any, is
equal to φ(φ(n)).

4.6.4 Algorithm for finding a primitive root
A naive algorithm is to consider all numbers in range [1, n− 1]. And then check
if each one is a primitive root, by calculating all its power to see if they are all
different. This algorithm has complexity O(g · n), which would be too slow. In
this section, we propose a faster algorithm using several well-known theorems.

From previous section, we know that if the smallest number k for which gk ≡ 1
(mod n) is φ(n), then g is a primitive root. Since for any number a relative prime
to n, we know from Euler’s theorem that aφ(n) ≡ 1 (mod n), then to check if g is
primitive root, it is enough to check that for all d less than φ(n), gd 6≡ 1 (mod n).
However, this algorithm is still too slow.

From Lagrange’s theorem, we know that the index of 1 of any number modulo
n must be a divisor of φ(n). Thus, it is sufficient to verify for all proper divisor
d | φ(n) that gd 6≡ 1 (mod n). This is already a much faster algorithm, but we
can still do better.
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Factorize φ(n) = pa1
1 · · · pass . We prove that in the previous algorithm, it is

sufficient to consider only the values of d which have the form φ(n)
pj

. Indeed, let d
be any proper divisor of φ(n). Then, obviously, there exists such j that d | φ(n)

pj
,

i.e. d · k = φ(n)
pj

. However, if gd ≡ 1 (mod n), we would get:

g
φ(n)
pj ≡ gd·k ≡ (gd)k ≡ 1k ≡ 1 (mod n).

i.e. among the numbers of the form φ(n)
pi

, there would be at least one such
that the conditions were not met.

Now we have a complete algorithm for finding the primitive root:

• First, find φ(n) and factorize it.

• Then iterate through all numbers g ∈ [1, n], and for each number, to check
if it is primitive root, we do the following:

– Calculate all g
φ(n)
pi (mod n).

– If all the calculated values are different from 1, then g is a primitive
root.

Running time of this algorithm is O(Ans · log φ(n) · logn) (assume that
φ(n) has log φ(n) divisors).

Shoup (1990, 1992) proved, assuming the generalized Riemann hypothesis,
that g is O(log6 p).

4.6.5 Implementation
The following code assumes that the modulo p is a prime number. To make it
works for any value of p, we must add calculation of φ(p).

int powmod (int a, int b, int p) {
int res = 1;
while (b)

if (b & 1)
res = int (res * 1ll * a % p), --b;

else
a = int (a * 1ll * a % p), b >>= 1;

return res;
}

int generator (int p) {
vector<int> fact;
int phi = p-1, n = phi;
for (int i=2; i*i<=n; ++i)

if (n % i == 0) {
fact.push_back (i);
while (n % i == 0)

n /= i;
}

http://en.wikipedia.org/wiki/Generalized_Riemann_hypothesis
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if (n > 1)
fact.push_back (n);

for (int res=2; res<=p; ++res) {
bool ok = true;
for (size_t i=0; i<fact.size() && ok; ++i)

ok &= powmod (res, phi / fact[i], p) != 1;
if (ok) return res;

}
return -1;

}
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4.7 Discrete Root
The problem of finding a discrete root is defined as follows. Given a prime n and
two integers a and k, find all x for which:

xk ≡ a (mod n)

4.7.1 The algorithm
We will solve this problem by reducing it to the discrete logarithm problem.

Let’s apply the concept of a primitive root modulo n. Let g be a primitive
root modulo n. Note that since n is prime, it must exist, and it can be found in
O(Ans · log φ(n) · logn) = O(Ans · log2 n) plus time of factoring φ(n).

We can easily discard the case where a = 0. In this case, obviously there is
only one answer: x = 0.

Since we know that n is a prime and any number between 1 and n− 1 can be
represented as a power of the primitive root, we can represent the discrete root
problem as follows:

(gy)k ≡ a (mod n)
where
x ≡ gy (mod n)
This, in turn, can be rewritten as
(gk)y ≡ a (mod n)
Now we have one unknown y, which is a discrete logarithm problem. The

solution can be found using Shanks’ baby-step giant-step algorithm in O(
√
n logn)

(or we can verify that there are no solutions).
Having found one solution y0, one of solutions of discrete root problem will

be x0 = gy0 (mod n).

4.7.2 Finding all solutions from one known solution
To solve the given problem in full, we need to find all solutions knowing one of
them: x0 = gy0 (mod n).

Let’s recall the fact that a primitive root always has order of φ(n), i.e. the
smallest power of g which gives 1 is φ(n). Therefore, if we add the term φ(n) to
the exponential, we still get the same value:

xk ≡ gy0·k+l·φ(n) ≡ a (mod n)∀l ∈ Z
Hence, all the solutions are of the form:
x = gy0+ l·φ(n)

k (mod n)∀l ∈ Z.
where l is chosen such that the fraction must be an integer. For this to be

true, the numerator has to be divisible by the least common multiple of φ(n) and
k. Remember that least common multiple of two numbers lcm(a, b) = a·b

gcd(a,b) ;
we’ll get

x = g
y0+i φ(n)

gcd(k,φ(n)) (mod n)∀i ∈ Z.
This is the final formula for all solutions of the discrete root problem.
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4.7.3 Implementation
Here is a full implementation, including procedures for finding the primitive root,
discrete log and finding and printing all solutions.
int gcd(int a, int b) {

return a ? gcd(b % a, a) : b;
}

int powmod(int a, int b, int p) {
int res = 1;
while (b > 0) {

if (b & 1) {
res = res * a % p;

}
a = a * a % p;
b >>= 1;

}
return res;

}

// Finds the primitive root modulo p
int generator(int p) {

vector<int> fact;
int phi = p-1, n = phi;
for (int i = 2; i * i <= n; ++i) {

if (n % i == 0) {
fact.push_back(i);
while (n % i == 0)

n /= i;
}

}
if (n > 1)

fact.push_back(n);

for (int res = 2; res <= p; ++res) {
bool ok = true;
for (int factor : fact) {

if (powmod(res, phi / factor, p) == 1) {
ok = false;
break;

}
}
if (ok) return res;

}
return -1;

}

// This program finds all numbers x such that xˆk = a (mod n)
int main() {

int n, k, a;
scanf("%d %d %d", &n, &k, &a);
if (a == 0) {
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puts("1\n0");
return 0;

}

int g = generator(n);

// Baby-step giant-step discrete logarithm algorithm
int sq = (int) sqrt (n + .0) + 1;
vector<pair<int, int>> dec(sq);
for (int i = 1; i <= sq; ++i)

dec[i-1] = {powmod(g, i * sq * k % (n - 1), n), i};
sort(dec.begin(), dec.end());
int any_ans = -1;
for (int i = 0; i < sq; ++i) {

int my = powmod(g, i * k % (n - 1), n) * a % n;
auto it = lower_bound(dec.begin(), dec.end(), make_pair(my, 0));
if (it != dec.end() && it->first == my) {

any_ans = it->second * sq - i;
break;

}
}
if (any_ans == -1) {

puts("0");
return 0;

}

// Print all possible answers
int delta = (n-1) / gcd(k, n-1);
vector<int> ans;
for (int cur = any_ans % delta; cur < n-1; cur += delta)

ans.push_back(powmod(g, cur, n));
sort(ans.begin(), ans.end());
printf("%d\n", ans.size());
for (int answer : ans)

printf("%d ", answer);
}

4.7.4 Practice problems
• Codeforces - Lunar New Year and a Recursive Sequence

https://codeforces.com/contest/1106/problem/F
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4.8 Montgomery Multiplication
Many algorithms in number theory, like prime testing or integer factorization, and
in cryptography, like RSA, require lots of operations modulo a large number. A
multiplications like xy mod n is quite slow to compute with the typical algorithms,
since it requires a division to know how many times n has to be subtracted from
the product. And division is a really expensive operation, especially with big
numbers.

The Montgomery (modular) multiplication is a method that allows
computing such multiplications faster. Instead of dividing the product and
subtracting n multiple times, it adds multiples of n to cancel out the lower bits
and then just discards the lower bits.

4.8.1 Montgomery representation
However the Montgomery multiplication doesn’t come for free. The algorithm
works only in the Montgomery space. And we need to transform our numbers
into that space, before we can start multiplying.

For the space we need a positive integer r ≥ n coprime to n, i.e. gcd(n, r) = 1.
In practice we always choose r to be 2m for a positive integer m, since multipli-
cations, divisions and modulo r operations can then be efficiently implemented
using shifts and other bit operations. n will be an odd number in pretty much
all applications, since it is not hard to factorize an even number. So every power
of 2 will be coprime to n.

The representative x̄ of a number x in the Montgomery space is defined as:

x̄ := x · r mod n

Notice, the transformation is actually such a multiplication that we want
to optimize. So this is still an expensive operation. However you only need to
transform a number once into the space. As soon as you are in the Montgomery
space, you can perform as many operations as you want efficiently. And at the
end you transform the final result back. So as long as you are doing lots of
operations modulo n, this will be no problem.

Inside the Montgomery space you can still perform most operations as usual.
You can add two elements (x · r + y · r ≡ (x+ y) · r mod n), subtract, check for
equality, and even compute the greatest common multiple of a number with n
(since gcd(n, r) = 1). All with the usual algorithms.

However this is not the case for multiplication.
We expect the result to be:

x̄ ∗ ȳ = x · y = (x · y) · r mod n.

But the normal multiplication will give us:

x̄ · ȳ = (x · y) · r · r mod n.

Therefore the multiplication in the Montgomery space is defined as:

x̄ ∗ ȳ := x̄ · ȳ · r−1 mod n.
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4.8.2 Montgomery reduction
The multiplication of two numbers in the Montgomery space requires an effi-
cient computation of x · r−1 mod n. This operation is called the Montgomery
reduction, and is also known as the algorithm REDC.

Because gcd(n, r) = 1, we know that there are two numbers r−1 and n′ with
0 < r−1, n′ < n with

r · r−1 + n · n′ = 1.

Both r−1 and n′ can be computed using the Extended Euclidean algorithm.
Using this identity we can write x · r−1 as:

x · r−1 = x · r · r−1/r = x · (−n · n′ + 1)/r
= (−x · n · n′ + x)/r ≡ (−x · n · n′ + l · r · n+ x)/r mod n
≡ ((−x · n′ + l · r) · n+ x)/r mod n

The equivalences hold for any arbitrary integer l. This means, that we can
add or subtract an arbitrary multiple of r to x · n′, or in other words, we can
compute q := x · n′ modulo r.

This gives us the following algorithm to compute x · r−1 mod n:

function reduce(x):
q = (x mod r) * n' mod r
a = (x - q * n) / r
if a < 0:

a += n
return a

Since x < n · n < r · n (even if x is the product of a multiplication) and
q · n < r · n we know that −n < (x − q · n)/r < n. Therefore the final modulo
operation is implemented using a single check and one addition.

As we see, we can perform the Montgomery reduction without any heavy
modulo operations. If we choose r as a power of 2, the modulo operations and
divisions in the algorithm can be computed using bitmasking and shifting.

A second application of the Montgomery reduction is to transfer a number
back from the Montgomery space into the normal space.

4.8.3 Fast inverse trick
For computing the inverse n′ := n−1 mod r efficiently, we can use the following
trick (which is inspired from the Newton’s method):

a · x ≡ 1 mod 2k =⇒ a · x · (2− a · x) ≡ 1 mod 22k
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This can easily be proven. If we have a · x = 1 +m · 2k, then we have:

a · x · (2− a · x) = 2 · a · x− (a · x)2

= 2 · (1 +m · 2k)− (1 +m · 2k)2

= 2 + 2 ·m · 2k − 1− 2 ·m · 2k −m2 · 22k

= 1−m2 · 22k

≡ 1 mod 22k.

This means we can start with x = 1 as the inverse of a modulo 21, apply the
trick a few times and in each iteration we double the number of correct bits of x.

4.8.4 Implementation
Using the GCC compiler we can compute x · y mod n still efficiently, when all
three numbers are 64 bit integer, since the compiler supports 128 bit integer with
the types __int128 and __uint128.

long long result = (__int128)x * y % n;

However there is no type for 256 bit integer. Therefore we will here show an
implementation for a 128 bit multiplication.

using u64 = uint64_t;
using u128 = __uint128_t;
using i128 = __int128_t;

struct u256 {
u128 high, low;

static u256 mult(u128 x, u128 y) {
u64 a = x >> 64, b = x;
u64 c = y >> 64, d = y;
// (a*2ˆ64 + b) * (c*2ˆ64 + d) =
// (a*c) * 2ˆ128 + (a*d + b*c)*2ˆ64 + (b*d)
u128 ac = (u128)a * c;
u128 ad = (u128)a * d;
u128 bc = (u128)b * c;
u128 bd = (u128)b * d;
u128 carry = (u128)(u64)ad + (u128)(u64)bc + (bd >> 64u);
u128 high = ac + (ad >> 64u) + (bc >> 64u) + (carry >> 64u);
u128 low = (ad << 64u) + (bc << 64u) + bd;
return {high, low};

}
};

struct Montgomery {
Montgomery(u128 n) : mod(n), inv(1) {

for (int i = 0; i < 7; i++)
inv *= 2 - n * inv;

}
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u128 init(u128 x) {
x %= mod;
for (int i = 0; i < 128; i++) {

x <<= 1;
if (x >= mod)

x -= mod;
}
return x;

}

u128 reduce(u256 x) {
u128 q = x.low * inv;
i128 a = x.high - u256::mult(q, mod).high;
if (a < 0)

a += mod;
return a;

}

u128 mult(u128 a, u128 b) {
return reduce(u256::mult(a, b));

}

u128 mod, inv;
};

4.8.5 Fast transformation
The current method of transforming a number into Montgomery space is pretty
slow. There are faster ways.

You can notice the following relation:

x̄ := x · r mod n = x · r2/r = x ∗ r2

Transforming a number into the space is just a multiplication inside the space
of the number with r2. Therefore we can precompute r2 mod n and just perform
a multiplication instead of shifting the number 128 times.

In the following code we initialize r2 with -n % n, which is equivalent to
r − n ≡ r mod n, shift it 4 times to get r · 24 mod n. This number can be
interpreted as 24 in Montgomery space. If we square it 5 times, we get (24)25 =
(24)32 = 2128 = r in Montgomery space, which is exactly r2 mod n.

struct Montgomery {
Montgomery(u128 n) : mod(n), inv(1), r2(-n % n) {

for (int i = 0; i < 7; i++)
inv *= 2 - n * inv;

for (int i = 0; i < 4; i++) {
r2 <<= 1;
if (r2 >= mod)
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r2 -= mod;
}
for (int i = 0; i < 5; i++)

r2 = mul(r2, r2);
}

u128 init(u128 x) {
return mult(x, r2);

}

u128 mod, inv, r2;
};
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Chapter 5

Number systems

5.1 Balanced Ternary

Figure 5.1: “Setun computer using Balanced Ternary system”

This is a non-standard but still positional numeral system. Its feature is that
digits can have one of the values -1, 0 and 1. Nevertheless, its base is still 3
(because there are three possible values). Since it is not convenient to write -1
as a digit, we’ll use letter Z further for this purpose. If you think it is quite a
strange system - look at the picture - here is one of the computers utilizing it.

So here are few first numbers written in balanced ternary:

0 0
1 1
2 1Z
3 10
4 11
5 1ZZ
6 1Z0
7 1Z1
8 10Z
9 100

This system allows you to write negative values without leading minus sign:
you can simply invert digits in any positive number.
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-1 Z
-2 Z1
-3 Z0
-4 ZZ
-5 Z11

Note that a negative number starts with Z and positive with 1.

5.1.1 Conversion algorithm
It is easy to represent a given number in balanced ternary via temporary
representing it in normal ternary number system. When value is in standard
ternary, its digits are either 0 or 1 or 2. Iterating from the lowest digit we can
safely skip any 0s and 1s, however 2 should be turned into Z with adding 1 to the
next digit. Digits 3 should be turned into 0 on the same terms - such digits are
not present in the number initially but they can be encountered after increasing
some 2s.

Example 1: Let us convert 64 to balanced ternary. At first we use normal
ternary to rewrite the number:

6410 = 021013

Let us process it from the least significant (rightmost) digit:

• 1,0 and 1 are skipped as it is.( Because 0 and 1 are allowed in balanced
ternary )

• 2 is turned into Z increasing the digit to its left, so we get 1Z101.

The final result is 1Z101.
Let us convert it back to the decimal system by adding the weighted positional

values:
1Z101 = 81 · 1 + 27 · (−1) + 9 · 1 + 3 · 0 + 1 · 1 = 6410

Example 2: Let us convert 237 to balanced ternary. At first we use normal
ternary to rewrite the number:

23710 = 222103

Let us process it from the least significant (rightmost) digit:

• 0 and 1 are skipped as it is.( Because 0 and 1 are allowed in balanced
ternary )

• 2 is turned into Z increasing the digit to its left, so we get 23Z10.
• 3 is turned into 0 increasing the digit to its left, so we get 30Z10.
• 3 is turned into 0 increasing the digit to its left( which is by default 0 ),

and so we get 100Z10.

The final result is 100Z10.
Let us convert it back to the decimal system by adding the weighted positional

values:
100Z10 = 243 · 1 + 81 · 0 + 27 · 0 + 9 · (−1) + 3 · 1 + 1 · 0 = 23710
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5.1.2 Practice Problems
• Topcoder SRM 604, Div1-250

http://community.topcoder.com/stat?c=problem_statement&pm=12917&rd=15837
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5.2 Gray code
Gray code is a binary numeral system where two successive values differ in only
one bit.

For example, the sequence of Gray codes for 3-bit numbers is: 000, 001, 011,
010, 110, 111, 101, 100, so G(4) = 6.

This code was invented by Frank Gray in 1953.

5.2.1 Finding Gray code
Let’s look at the bits of number n and the bits of number G(n). Notice that
i-th bit of G(n) equals 1 only when i-th bit of n equals 1 and i+ 1-th bit equals
0 or the other way around (i-th bit equals 0 and i + 1-th bit equals 1). Thus,
G(n) = n⊕ (n >> 1):

int g (int n) {
return n ˆ (n >> 1);

}

5.2.2 Finding inverse Gray code
Given Gray code g, restore the original number n.

We will move from the most significant bits to the least significant ones (the
least significant bit has index 1 and the most significant bit has index k). The
relation between the bits ni of number n and the bits gi of number g:

nk = gk,

nk−1 = gk−1 ⊕ nk = gk ⊕ gk−1,

nk−2 = gk−2 ⊕ nk−1 = gk ⊕ gk−1 ⊕ gk−2,

nk−3 = gk−3 ⊕ nk−2 = gk ⊕ gk−1 ⊕ gk−2 ⊕ gk−3,

...

The easiest way to write it in code is:

int rev_g (int g) {
int n = 0;
for (; g; g >>= 1)
n ˆ= g;

return n;
}

5.2.3 Practical applications
Gray codes have some useful applications, sometimes quite unexpected:

• Gray code of n bits forms a Hamiltonian cycle on a hypercube, where each
bit corresponds to one dimension.
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• Gray codes are used to minimize the errors in digital-to-analog signals
conversion (for example, in sensors).

• Gray code can be used to solve the Towers of Hanoi problem. Let n denote
number of disks. Start with Gray code of length n which consists of all
zeroes (G(0)) and move between consecutive Gray codes (from G(i) to
G(i+ 1)). Let i-th bit of current Gray code represent n-th disk (the least
significant bit corresponds to the smallest disk and the most significant bit
to the biggest disk). Since exactly one bit changes on each step, we can treat
changing i-th bit as moving i-th disk. Notice that there is exactly one move
option for each disk (except the smallest one) on each step (except start and
finish positions). There are always two move options for the smallest disk
but there is a strategy which will always lead to answer: if n is odd then
sequence of the smallest disk moves looks like f → t→ r → f → t→ r → ...
where f is the initial rod, t is the terminal rod and r is the remaining rod),
and if n is even: f → r → t→ f → r → t→ ....

• Gray codes are also used in genetic algorithms theory.

5.2.4 Practice Problems
• SGU #249 “Matrix” [Difficulty: medium]
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Chapter 6

Miscellaneous

6.1 Submask Enumeration

6.1.1 Enumerating all submasks of a given mask
Given a bitmask m, you want to efficiently iterate through all of its submasks,
that is, masks s in which only bits that were included in mask m are set.

Consider the implementation of this algorithm, based on tricks with bit
operations:

int s = m;
while (s > 0) {
... you can use s ...
s = (s-1) & m;
}

or, using a more compact for statement:

for (int s=m; s; s=(s-1)&m)
... you can use s ...

In both variants of the code, the submask equal to zero will not be processed.
We can either process it outside the loop, or use a less elegant design, for example:

for (int s=m; ; s=(s-1)&m) {
... you can use s ...
if (s==0) break;
}

Let us examine why the above code visits all submasks ofm, without repetition,
and in descending order.

Suppose we have a current bitmask s, and we want to move on to the next
bitmask. By subtracting from the mask s one unit, we will remove the rightmost
set bit and all bits to the right of it will become 1. Then we remove all the “extra”
one bits that are not included in the mask m and therefore can’t be a part of a
submask. We do this removal by using the bitwise operation (s-1) & m. As a
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result, we “cut” mask s− 1 to determine the highest value that it can take, that
is, the next submask after s in descending order.

Thus, this algorithm generates all submasks of this mask in descending order,
performing only two operations per iteration.

A special case is when s = 0. After executing s− 1 we get a mask where all
bits are set (bit representation of -1), and after (s-1) & m we will have that s
will be equal to m. Therefore, with the mask s = 0 be careful — if the loop does
not end at zero, the algorithm may enter an infinite loop.

6.1.2 Iterating through all masks with their submasks. Com-
plexity O(3n)

In many problems, especially those that use bitmask dynamic programming, you
want to iterate through all bitmasks and for each mask, iterate through all of its
submasks:

for (int m=0; m<(1<<n); ++m)
for (int s=m; s; s=(s-1)&m)

... s and m ...

Let’s prove that the inner loop will execute a total of O(3n) iterations.
First proof : Consider the i-th bit. There are exactly three options for it:

1. it is not included in the mask m (and therefore not included in submask s),
2. it is included in m, but not included in s, or
3. it is included in both m and s.

As there are a total of n bits, there will be 3n different combinations.
Second proof : Note that if mask m has k enabled bits, then it will have

2k submasks. As we have a total of
(n
k

)
masks with k enabled bits (see binomial

coefficients), then the total number of combinations for all masks will be:

n∑
k=0

(
n

k

)
· 2k

To calculate this number, note that the sum above is equal to the expansion
of (1 + 2)n using the binomial theorem. Therefore, we have 3n combinations, as
we wanted to prove.

6.1.3 Practice Problems
• Atcoder - Close Group
• Codeforces - Nuclear Fusion
• Codeforces - Sandy and Nuts
• Uva 1439 - Exclusive Access 2
• UVa 11825 - Hackers’ Crackdown

https://atcoder.jp/contests/abc187/tasks/abc187_f
http://codeforces.com/problemset/problem/71/E
http://codeforces.com/problemset/problem/599/E
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4185
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2925
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6.2 Arbitrary-Precision Arithmetic
Arbitrary-Precision arithmetic, also known as “bignum” or simply “long arith-
metic” is a set of data structures and algorithms which allows to process much
greater numbers than can be fit in standard data types. Here are several types
of arbitrary-precision arithmetic.

6.2.1 Classical Integer Long Arithmetic
The main idea is that the number is stored as an array of its “digits” in some
base. Several most frequently used bases are decimal, powers of decimal (104 or
109) and binary.

Operations on numbers in this form are performed using “school” algorithms
of column addition, subtraction, multiplication and division. It’s also possible
to use fast multiplication algorithms: fast Fourier transform and Karatsuba
algorithm.

Here we describe long arithmetic for only non-negative integers. To extend
the algorithms to handle negative integers one has to introduce and maintain
additional “negative number” flag or use two’s complement integer representation.

Data Structure

We’ll store numbers as a vector<int>, in which each element is a single “digit”
of the number.

typedef vector<int> lnum;

To improve performance we’ll use 109 as the base, so that each “digit” of the
long number contains 9 decimal digits at once.

const int base = 1000*1000*1000;

Digits will be stored in order from least to most significant. All operations
will be implemented so that after each of them the result doesn’t have any
leading zeros, as long as operands didn’t have any leading zeros either. All
operations which might result in a number with leading zeros should be followed
by code which removes them. Note that in this representation there are two valid
notations for number zero: and empty vector, and a vector with a single zero
digit.

Output

Printing the long integer is the easiest operation. First we print the last element
of the vector (or 0 if the vector is empty), followed by the rest of the elements
padded with leading zeros if necessary so that they are exactly 9 digits long.

printf ("%d", a.empty() ? 0 : a.back());
for (int i=(int)a.size()-2; i>=0; --i)

printf ("%09d", a[i]);
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Note that we cast a.size() to integer to avoid unsigned integer underflow if
vector contains less than 2 elements.

Input

To read a long integer, read its notation into a string and then convert it to
“digits”:

for (int i=(int)s.length(); i>0; i-=9)
if (i < 9)

a.push_back (atoi (s.substr (0, i).c_str()));
else

a.push_back (atoi (s.substr (i-9, 9).c_str()));

If we use an array of char instead of a string, the code will be even shorter:

for (int i=(int)strlen(s); i>0; i-=9) {
s[i] = 0;
a.push_back (atoi (i>=9 ? s+i-9 : s));

}

If the input can contain leading zeros, they can be removed as follows:

while (a.size() > 1 && a.back() == 0)
a.pop_back();

Addition

Increment long integer a by b and store result in a:

int carry = 0;
for (size_t i=0; i<max(a.size(),b.size()) || carry; ++i) {

if (i == a.size())
a.push_back (0);

a[i] += carry + (i < b.size() ? b[i] : 0);
carry = a[i] >= base;
if (carry) a[i] -= base;

}

Subtraction

Decrement long integer a by b (a ≥ b) and store result in a:

int carry = 0;
for (size_t i=0; i<b.size() || carry; ++i) {

a[i] -= carry + (i < b.size() ? b[i] : 0);
carry = a[i] < 0;
if (carry) a[i] += base;

}
while (a.size() > 1 && a.back() == 0)

a.pop_back();

Note that after performing subtraction we remove leading zeros to keep up
with the premise that our long integers don’t have leading zeros.
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Multiplication by short integer

Multiply long integer a by short integer b (b < base) and store result in a:

int carry = 0;
for (size_t i=0; i<a.size() || carry; ++i) {

if (i == a.size())
a.push_back (0);

long long cur = carry + a[i] * 1ll * b;
a[i] = int (cur % base);
carry = int (cur / base);

}
while (a.size() > 1 && a.back() == 0)

a.pop_back();

Additional optimization: If runtime is extremely important, you can try to
replace two divisions with one by finding only integer result of division (variable
carry) and then use it to find modulo using multiplication. This usually makes
the code faster, though not dramatically.

Multiplication by long integer

Multiply long integers a and b and store result in c:

lnum c (a.size()+b.size());
for (size_t i=0; i<a.size(); ++i)

for (int j=0, carry=0; j<(int)b.size() || carry; ++j) {
long long cur = c[i+j] + a[i] * 1ll * (j < (int)b.size() ? b[j] : 0) + carry;
c[i+j] = int (cur % base);
carry = int (cur / base);

}
while (c.size() > 1 && c.back() == 0)

c.pop_back();

Division by short integer

Divide long integer a by short integer b (b < base), store integer result in a and
remainder in carry:

int carry = 0;
for (int i=(int)a.size()-1; i>=0; --i) {

long long cur = a[i] + carry * 1ll * base;
a[i] = int (cur / b);
carry = int (cur % b);

}
while (a.size() > 1 && a.back() == 0)

a.pop_back();

6.2.2 Long Integer Arithmetic for Factorization Representation
The idea is to store the integer as its factorization, i.e. the powers of primes
which divide it.
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This approach is very easy to implement, and allows to do multiplication
and division easily (asymptotically faster than the classical method), but not
addition or subtraction. It is also very memory-efficient compared to the classical
approach.

This method is often used for calculations modulo non-prime number M; in
this case a number is stored as powers of divisors of M which divide the number,
plus the remainder modulo M.

6.2.3 Long Integer Arithmetic in prime modulos (Garner Algo-
rithm)

The idea is to choose a set of prime numbers (typically they are small enough
to fit into standard integer data type) and to store an integer as a vector of
remainders from division of the integer by each of those primes.

Chinese remainder theorem states that this representation is sufficient to
uniquely restore any number from 0 to product of these primes minus one. Garner
algorithm allows to restore the number from such representation to normal integer.

This method allows to save memory compared to the classical approach
(though the savings are not as dramatic as in factorization representation).
Besides, it allows to perform fast addition, subtraction and multiplication in
time proportional to the number of prime numbers used as modulos (see Chinese
remainder theorem article for implementation).

The tradeoff is that converting the integer back to normal form is rather
laborious and requires implementing classical arbitrary-precision arithmetic with
multiplication. Besides, this method doesn’t support division.

6.2.4 Fractional Arbitrary-Precision Arithmetic
Fractions occur in programming competitions less frequently than integers, and
long arithmetic is much trickier to implement for fractions, so programming
competitions feature only a small subset of fractional long arithmetic.

Arithmetic in Irreducible Fractions

A number is represented as an irreducible fraction a
b , where a and b are integers.

All operations on fractions can be represented as operations on integer numerators
and denominators of these fractions. Usually this requires using classical arbitrary-
precision arithmetic for storing numerator and denominator, but sometimes a
built-in 64-bit integer data type suffices.

Storing Floating Point Position as Separate Type

Sometimes a problem requires handling very small or very large numbers without
allowing overflow or underflow. Built-in double data type uses 8-10 bytes and
allows values of the exponent in [−308; 308] range, which sometimes might be
insufficient.
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The approach is very simple: a separate integer variable is used to store the
value of the exponent, and after each operation the floating-point number is
normalized, i.e. returned to [0.1; 1) interval by adjusting the exponent accordingly.

When two such numbers are multiplied or divided, their exponents should be
added or subtracted, respectively. When numbers are added or subtracted, they
have to be brought to common exponent first by multiplying one of them by 10
raised to the power equal to the difference of exponent values.

As a final note, the exponent base doesn’t have to equal 10. Based on the
internal representation of floating-point numbers, it makes most sense to use 2 as
the exponent base.

6.2.5 Practice Problems
• UVA - How Many Fibs?
• UVA - Product
• UVA - Maximum Sub-sequence Product
• SPOJ - Fast Multiplication
• SPOJ - GCD2
• UVA - Division
• UVA - Fibonacci Freeze
• UVA - Krakovia
• UVA - Simplifying Fractions
• UVA - 500!
• Hackerrank - Factorial digit sum
• UVA - Immortal Rabbits
• SPOJ - 0110SS
• Codeforces - Notepad

https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1124
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1047
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=728
http://www.spoj.com/problems/MUL/en/
http://www.spoj.com/problems/GCD2/
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1024
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=436
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1866
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1755
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=564
https://www.hackerrank.com/contests/projecteuler/challenges/euler020/problem
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4803
http://www.spoj.com/problems/IWGBS/
http://codeforces.com/contest/17/problem/D
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6.3 Fast Fourier transform
In this article we will discuss an algorithm that allows us to multiply two
polynomials of length n in O(n logn) time, which is better than the trivial
multiplication which takes O(n2) time. Obviously also multiplying two long
numbers can be reduced to multiplying polynomials, so also two long numbers
can be multiplied in O(n logn) time (where n is the number of digits in the
numbers).

The discovery of the Fast Fourier transformation (FFT) is attributed to
Cooley and Tukey, who published an algorithm in 1965. But in fact the FFT has
been discovered repeatedly before, but the importance of it was not understood
before the inventions of modern computers. Some researchers attribute the
discovery of the FFT to Runge and König in 1924. But actually Gauss developed
such a method already in 1805, but never published it.

Notice, that the FFT algorithm presented here runs in O(n logn) time,
but it doesn’t work for multiplying arbitrary big polynomials with arbitrary
large coefficients or for multiplying arbitrary big integers. It can easily handle
polynomials of size 105 with small coefficients, or multiplying two numbers of
size 106, but at some point the range and the precision of the used floating
point numbers will not no longer be enough to give accurate results. That is
usually enough for solving competitive programming problems, but there are also
more complex variations that can perform arbitrary large polynomial/integer
multiplications. E.g. in 1971 Schönhage and Strasser developed a variation for
multiplying arbitrary large numbers that applies the FFT recursively in rings
structures running in O(n logn log logn). And recently (in 2019) Harvey and van
der Hoeven published an algorithm that runs in true O(logn).

6.3.1 Discrete Fourier transform
Let there be a polynomial of degree n− 1:

A(x) = a0x
0 + a1x

1 + · · ·+ an−1x
n−1

Without loss of generality we assume that n - the number of coefficients - is a
power of 2. If n is not a power of 2, then we simply add the missing terms aixi
and set the coefficients ai to 0.

The theory of complex numbers tells us that the equation xn = 1 has n
complex solutions (called the n-th roots of unity), and the solutions are of the
form wn,k = e

2kπi
n with k = 0 . . . n− 1. Additionally these complex numbers have

some very interesting properties: e.g. the principal n-th root wn = wn,1 = e
2πi
n

can be used to describe all other n-th roots: wn,k = (wn)k.
The discrete Fourier transform (DFT) of the polynomial A(x) (or equiv-

alently the vector of coefficients (a0, a1, . . . , an−1) is defined as the values of the
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polynomial at the points x = wn,k, i.e. it is the vector:

DFT(a0, a1, . . . , an−1) = (y0, y1, . . . , yn−1)
= (A(wn,0), A(wn,1), . . . , A(wn,n−1))
= (A(w0

n), A(w1
n), . . . , A(wn−1

n ))

Similarly the inverse discrete Fourier transform is defined: The inverse
DFT of values of the polynomial (y0, y1, . . . , yn−1) are the coefficients of the
polynomial (a0, a1, . . . , an−1).

InverseDFT(y0, y1, . . . , yn−1) = (a0, a1, . . . , an−1)

Thus, if a direct DFT computes the values of the polynomial at the points at
the n-th roots, the inverse DFT can restore the coefficients of the polynomial
using those values.

Application of the DFT: fast multiplication of polynomials

Let there be two polynomials A and B. We compute the DFT for each of them:
DFT(A) and DFT(B).

What happens if we multiply these polynomials? Obviously at each point the
values are simply multiplied, i.e.

(A ·B)(x) = A(x) ·B(x).

This means that if we multiply the vectors DFT(A) and DFT(B) - by mul-
tiplying each element of one vector by the corresponding element of the other
vector - then we get nothing other than the DFT of the polynomial DFT(A ·B):

DFT(A ·B) = DFT(A) ·DFT(B)

Finally, applying the inverse DFT, we obtain:

A ·B = InverseDFT(DFT(A) ·DFT(B))

On the right the product of the two DFTs we mean the pairwise product of
the vector elements. This can be computed in O(n) time. If we can compute the
DFT and the inverse DFT in O(n logn), then we can compute the product of
the two polynomials (and consequently also two long numbers) with the same
time complexity.

It should be noted, that the two polynomials should have the same degree.
Otherwise the two result vectors of the DFT have different length. We can
accomplish this by adding coefficients with the value 0.

And also, since the result of the product of two polynomials is a polynomial
of degree 2(n− 1), we have to double the degrees of each polynomial (again by
padding 0s). From a vector with n values we cannot reconstruct the desired
polynomial with 2n− 1 coefficients.
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Fast Fourier Transform

The fast Fourier transform is a method that allows computing the DFT in
O(n logn) time. The basic idea of the FFT is to apply divide and conquer.
We divide the coefficient vector of the polynomial into two vectors, recursively
compute the DFT for each of them, and combine the results to compute the DFT
of the complete polynomial.

So let there be a polynomial A(x) with degree n− 1, where n is a power of 2,
and n > 1:

A(x) = a0x
0 + a1x

1 + · · ·+ an−1x
n−1

We divide it into two smaller polynomials, the one containing only the
coefficients of the even positions, and the one containing the coefficients of the
odd positions:

A0(x) = a0x
0 + a2x

1 + · · ·+ an−2x
n
2−1

A1(x) = a1x
0 + a3x

1 + · · ·+ an−1x
n
2−1

It is easy to see that

A(x) = A0(x2) + xA1(x2).

The polynomials A0 and A1 are only half as much coefficients as the polynomial
A. If we can compute the DFT(A) in linear time using DFT(A0) and DFT(A1),
then we get the recurrence TDFT(n) = 2TDFT

(
n
2
)

+O(n) for the time complexity,
which results in TDFT(n) = O(n logn) by the master theorem.

Let’s learn how we can accomplish that.
Suppose we have computed the vectors

(
y0
k

)n/2−1
k=0 = DFT(A0) and

(
y1
k

)n/2−1
k=0 =

DFT(A1). Let us find a expression for (yk)n−1
k=0 = DFT(A).

For the first n
2 values we can just use the previously noted equation A(x) =

A0(x2) + xA1(x2):

yk = y0
k + wkny

1
k, k = 0 . . . n2 − 1.

However for the second n
2 values we need to find a slightly, different expression:

yk+n/2 = A
(
wk+n/2
n

)
= A0

(
w2k+n
n

)
+ wk+n/2

n A1
(
w2k+n
n

)
= A0

(
w2k
n w

n
n

)
+ wknw

n/2
n A1

(
w2k
n w

n
n

)
= A0

(
w2k
n

)
− wknA1

(
w2k
n

)
= y0

k − wkny1
k

Here we used again A(x) = A0(x2) + xA1(x2) and the two identities wnn = 1 and
w
n/2
n = −1.
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Therefore we get the desired formulas for computing the whole vector (yk):

yk = y0
k + wkny

1
k, k = 0 . . . n2 − 1,

yk+n/2 = y0
k − wkny1

k, k = 0 . . . n2 − 1.

(This pattern a+ b and a− b is sometimes called a butterfly.)
Thus we learned how to compute the DFT in O(n logn) time.

Inverse FFT

Let the vector (y0, y1, . . . yn−1) - the values of polynomial A of degree n−1 in the
points x = wkn - be given. We want to restore the coefficients (a0, a1, . . . , an−1)
of the polynomial. This known problem is called interpolation, and there
are general algorithms for solving it. But in this special case (since we know
the values of the points at the roots of unity), we can obtains a much simpler
algorithm (that is practically the same as the direct FFT).

We can write the DFT, according to its definition, in the matrix form:

w0
n w0

n w0
n w0

n · · · w0
n

w0
n w1

n w2
n w3

n · · · wn−1
n

w0
n w2

n w4
n w6

n · · · w
2(n−1)
n

w0
n w3

n w6
n w9

n · · · w
3(n−1)
n

...
...

...
... . . . ...

w0
n wn−1

n w
2(n−1)
n w

3(n−1)
n · · · w

(n−1)(n−1)
n





a0
a1
a2
a3
...

an−1


=



y0
y1
y2
y3
...

yn−1


This matrix is called the Vandermonde matrix.

Thus we can compute the vector (a0, a1, . . . , an−1) by multiplying the vector
(y0, y1, . . . yn−1) from the left with the inverse of the matrix:



a0
a1
a2
a3
...

an−1


=



w0
n w0

n w0
n w0

n · · · w0
n

w0
n w1

n w2
n w3

n · · · wn−1
n

w0
n w2

n w4
n w6

n · · · w
2(n−1)
n

w0
n w3

n w6
n w9

n · · · w
3(n−1)
n

...
...

...
... . . . ...

w0
n wn−1

n w
2(n−1)
n w

3(n−1)
n · · · w

(n−1)(n−1)
n



−1

y0
y1
y2
y3
...

yn−1


A quick check can verify that the inverse of the matrix has the following form:

1
n



w0
n w0

n w0
n w0

n · · · w0
n

w0
n w−1

n w−2
n w−3

n · · · w
−(n−1)
n

w0
n w−2

n w−4
n w−6

n · · · w
−2(n−1)
n

w0
n w−3

n w−6
n w−9

n · · · w
−3(n−1)
n

...
...

...
... . . . ...

w0
n w

−(n−1)
n w

−2(n−1)
n w

−3(n−1)
n · · · w

−(n−1)(n−1)
n
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Thus we obtain the formula:

ak = 1
n

n−1∑
j=0

yjw
−kj
n

Comparing this to the formula for yk

yk =
n−1∑
j=0

ajw
kj
n ,

we notice that these problems are almost the same, so the coefficients ak can be
found by the same divide and conquer algorithm, as well as the direct FFT, only
instead of wkn we have to use w−kn , and at the end we need to divide the resulting
coefficients by n.

Thus the computation of the inverse DFT is almost the same as the calculation
of the direct DFT, and it also can be performed in O(n logn) time.

Implementation

Here we present a simple recursive implementation of the FFT and the inverse
FFT, both in one function, since the difference between the forward and the
inverse FFT are so minimal. To store the complex numbers we use the complex
type in the C++ STL.

using cd = complex<double>;
const double PI = acos(-1);

void fft(vector<cd> & a, bool invert) {
int n = a.size();
if (n == 1)

return;

vector<cd> a0(n / 2), a1(n / 2);
for (int i = 0; 2 * i < n; i++) {

a0[i] = a[2*i];
a1[i] = a[2*i+1];

}
fft(a0, invert);
fft(a1, invert);

double ang = 2 * PI / n * (invert ? -1 : 1);
cd w(1), wn(cos(ang), sin(ang));
for (int i = 0; 2 * i < n; i++) {

a[i] = a0[i] + w * a1[i];
a[i + n/2] = a0[i] - w * a1[i];
if (invert) {

a[i] /= 2;
a[i + n/2] /= 2;

}
w *= wn;

}
}
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The function gets passed a vector of coefficients, and the function will compute
the DFT or inverse DFT and store the result again in this vector. The argument
invert shows whether the direct or the inverse DFT should be computed. Inside
the function we first check if the length of the vector is equal to one, if this is
the case then we don’t have to do anything. Otherwise we divide the vector a
into two vectors a0 and a1 and compute the DFT for both recursively. Then we
initialize the value wn and a variable w, which will contain the current power
of wn. Then the values of the resulting DFT are computed using the above
formulas.

If the flag invert is set, then we replace wn with wn−1, and each of the values
of the result is divided by 2 (since this will be done in each level of the recursion,
this will end up dividing the final values by n).

Using this function we can create a function for multiplying two polyno-
mials:

vector<int> multiply(vector<int> const& a, vector<int> const& b) {
vector<cd> fa(a.begin(), a.end()), fb(b.begin(), b.end());
int n = 1;
while (n < a.size() + b.size())

n <<= 1;
fa.resize(n);
fb.resize(n);

fft(fa, false);
fft(fb, false);
for (int i = 0; i < n; i++)

fa[i] *= fb[i];
fft(fa, true);

vector<int> result(n);
for (int i = 0; i < n; i++)

result[i] = round(fa[i].real());
return result;

}

This function works with polynomials with integer coefficients, however you
can also adjust it to work with other types. Since there is some error when
working with complex numbers, we need round the resulting coefficients at the
end.

Finally the function for multiplying two long numbers practically doesn’t
differ from the function for multiplying polynomials. The only thing we have to
do afterwards, is to normalize the number:

int carry = 0;
for (int i = 0; i < n; i++)

result[i] += carry;
carry = result[i] / 10;
result[i] %= 10;

}
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Since the length of the product of two numbers never exceed the total length
of both numbers, the size of the vector is enough to perform all carry operations.

Improved implementation: in-place computation

To increase the efficiency we will switch from the recursive implementation to an
iterative one. In the above recursive implementation we explicitly separated the
vector a into two vectors - the element on the even positions got assigned to one
temporary vector, and the elements on odd positions to another. However if we
reorder the elements in a certain way, we don’t need to create these temporary
vectors (i.e. all the calculations can be done “in-place”, right in the vector A
itself).

Note that at the first recursion level, the elements whose lowest bit of the
position was zero got assigned to the vector a0, and the ones with a one as the
lowest bit of the position got assigned to a1. In the second recursion level the
same thing happens, but with the second lowest bit instead, etc. Therefore if we
reverse the bits of the position of each coefficient, and sort them by these reversed
values, we get the desired order (it is called the bit-reversal permutation).

For example the desired order for n = 8 has the form:

a = {[(a0, a4), (a2, a6)] , [(a1, a5), (a3, a7)]}

Indeed in the first recursion level (surrounded by curly braces), the vector gets
divided into two parts [a0, a2, a4, a6] and [a1, a3, a5, a7]. As we see, in the bit-
reversal permutation this corresponds to simply dividing the vector into two
halves: the first n

2 elements and the last n
2 elements. Then there is a recursive

call for each halve. Let the resulting DFT for each of them be returned in place
of the elements themselves (i.e. the first half and the second half of the vector a
respectively.

a =
{

[y0
0, y

0
1, y

0
2, y

0
3], [y1

0, y
1
1, y

1
2, y

1
3]
}

Now we want to combine the two DFTs into one for the complete vector. The
order of the elements is ideal, and we can also perform the union directly in this
vector. We can take the elements y0

0 and y1
0 and perform the butterfly transform.

The place of the resulting two values is the same as the place of the two initial
values, so we get:

a =
{

[y0
0 + w0

ny
1
0, y

0
1, y

0
2, y

0
3], [y0

0 − w0
ny

1
0, y

1
1, y

1
2, y

1
3]
}

Similarly we can compute the butterfly transform of y0
1 and y1

1 and put the results
in their place, and so on. As a result we get:

a =
{

[y0
0 + w0

ny
1
0, y

0
1 + w1

ny
1
1, y

0
2 + w2

ny
1
2, y

0
3 + w3

ny
1
3], [y0

0 − w0
ny

1
0, y

0
1 − w1

ny
1
1, y

0
2 − w2

ny
1
2, y

0
3 − w3

ny
1
3]
}

Thus we computed the required DFT from the vector a.
Here we described the process of computing the DFT only at the first recursion

level, but the same works obviously also for all other levels. Thus, after applying
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the bit-reversal permutation, we can compute the DFT in-place, without any
additional memory.

This additionally allows us to get rid of the recursion. We just start at the
lowest level, i.e. we divide the vector into pairs and apply the butterfly transform
to them. This results with the vector a with the work of the last level applied.
In the next step we divide the vector into vectors of size 4, and again apply the
butterfly transform, which gives us the DFT for each block of size 4. And so on.
Finally in the last step we obtained the result of the DFTs of both halves of a,
and by applying the butterfly transform we obtain the DFT for the complete
vector a.

using cd = complex<double>;
const double PI = acos(-1);

int reverse(int num, int lg_n) {
int res = 0;
for (int i = 0; i < lg_n; i++) {

if (num & (1 << i))
res |= 1 << (lg_n - 1 - i);

}
return res;

}

void fft(vector<cd> & a, bool invert) {
int n = a.size();
int lg_n = 0;
while ((1 << lg_n) < n)

lg_n++;

for (int i = 0; i < n; i++) {
if (i < reverse(i, lg_n))

swap(a[i], a[reverse(i, lg_n)]);
}

for (int len = 2; len <= n; len <<= 1) {
double ang = 2 * PI / len * (invert ? -1 : 1);
cd wlen(cos(ang), sin(ang));
for (int i = 0; i < n; i += len) {

cd w(1);
for (int j = 0; j < len / 2; j++) {

cd u = a[i+j], v = a[i+j+len/2] * w;
a[i+j] = u + v;
a[i+j+len/2] = u - v;
w *= wlen;

}
}

}

if (invert) {
for (cd & x : a)

x /= n;
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}
}

At first we apply the bit-reversal permutation by swapping the each element
with the element of the reversed position. Then the logn − 1 states of the
algorithm we compute the DFT for each block of the corresponding size len. For
all those blocks we have the same root of unity wlen. We iterate all blocks and
perform the butterfly transform on each of them.

We can further optimize the reversal of the bits. In the previous implemen-
tation we iterated all bits of the index and created the bitwise reversed index.
However we can reverse the bits in a different way.

Suppose that j already contains the reverse of i. Then by to go to i + 1,
we have to increment i, and we also have to increment j, but in a “reversed”
number system. Adding one in the conventional binary system is equivalent to
flip all tailing ones into zeros and flipping the zero right before them into a one.
Equivalently in the “reversed” number system, we flip all leading ones, and the
also the next zero.

Thus we get the following implementation:

using cd = complex<double>;
const double PI = acos(-1);

void fft(vector<cd> & a, bool invert) {
int n = a.size();

for (int i = 1, j = 0; i < n; i++) {
int bit = n >> 1;
for (; j & bit; bit >>= 1)

j ˆ= bit;
j ˆ= bit;

if (i < j)
swap(a[i], a[j]);

}

for (int len = 2; len <= n; len <<= 1) {
double ang = 2 * PI / len * (invert ? -1 : 1);
cd wlen(cos(ang), sin(ang));
for (int i = 0; i < n; i += len) {

cd w(1);
for (int j = 0; j < len / 2; j++) {

cd u = a[i+j], v = a[i+j+len/2] * w;
a[i+j] = u + v;
a[i+j+len/2] = u - v;
w *= wlen;

}
}

}

if (invert) {
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for (cd & x : a)
x /= n;

}
}

Additionally we can precompute the bit-reversal permutation beforehand.
This is especially useful when the size n is the same for all calls. But even when
we only have three calls (which are necessary for multiplying two polynomials),
the effect is noticeable. Also we can precompute all roots of unity and their
powers.

6.3.2 Number theoretic transform
Now we switch the objective a little bit. We still want to multiply two polynomials
in O(n logn) time, but this time we want to compute the coefficients modulo some
prime number p. Of course for this task we can use the normal DFT and apply
the modulo operator to the result. However, doing so might lead to rounding
errors, especially when dealing with large numbers. The number theoretic
transform (NTT) has the advantage, that it only works with integer, and
therefore the result are guaranteed to be correct.

The discrete Fourier transform is based on complex numbers, and the n-th
roots of unity. To efficiently compute it, we extensively use properties of the roots
(e.g. that there is one root that generates all other roots by exponentiation).

But the same properties hold for the n-th roots of unity in modular arithmetic.
A n-th root of unity under a primitive field is such a number wn that satisfies:

(wn)n = 1 (mod p),
(wn)k 6= 1 (mod p), 1 ≤ k < n.

The other n− 1 roots can be obtained as powers of the root wn.
To apply it in the fast Fourier transform algorithm, we need a root to exist

for some n, which is a power of 2, and also for all smaller powers. We can notice
the following interesting property:

(w2
n)m = wnn = 1 (mod p), with m = n

2
(w2

n)k = w2k
n 6= 1 (mod p), 1 ≤ k < m.

Thus if wn is a n-th root of unity, then w2
n is a n

2 -th root of unity. And consequently
for all smaller powers of two there exist roots of the required degree, and they
can be computed using wn.

For computing the inverse DFT, we need the inverse w−1
n of wn. But for a

prime modulus the inverse always exists.
Thus all the properties that we need from the complex roots are also available

in modular arithmetic, provided that we have a large enough module p for which
a n-th root of unity exists.

For example we can take the following values: module p = 7340033, w220 = 5.
If this module is not enough, we need to find a different pair. We can use that
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fact that for modules of the form p = c2k + 1 (and p is prime), there always exists
the 2k-th root of unity. It can be shown that gc is such a 2k-th root of unity,
where g is a primitive root of p.

const int mod = 7340033;
const int root = 5;
const int root_1 = 4404020;
const int root_pw = 1 << 20;

void fft(vector<int> & a, bool invert) {
int n = a.size();

for (int i = 1, j = 0; i < n; i++) {
int bit = n >> 1;
for (; j & bit; bit >>= 1)

j ˆ= bit;
j ˆ= bit;

if (i < j)
swap(a[i], a[j]);

}

for (int len = 2; len <= n; len <<= 1) {
int wlen = invert ? root_1 : root;
for (int i = len; i < root_pw; i <<= 1)

wlen = (int)(1LL * wlen * wlen % mod);

for (int i = 0; i < n; i += len) {
int w = 1;
for (int j = 0; j < len / 2; j++) {

int u = a[i+j], v = (int)(1LL * a[i+j+len/2] * w % mod);
a[i+j] = u + v < mod ? u + v : u + v - mod;
a[i+j+len/2] = u - v >= 0 ? u - v : u - v + mod;
w = (int)(1LL * w * wlen % mod);

}
}

}

if (invert) {
int n_1 = inverse(n, mod);
for (int & x : a)

x = (int)(1LL * x * n_1 % mod);
}

}

Here the function inverse computes the modular inverse (see Modular Mul-
tiplicative Inverse). The constants mod, root, root_pw determine the module
and the root, and root_1 is the inverse of root modulo mod.

In practice this implementation is slower than the implementation using
complex numbers (due to the huge number of modulo operations), but it has
some advantages such as less memory usage and no rounding errors.
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6.3.3 Multiplication with arbitrary modulus
Here we want to achieve the same goal as in previous section. Multiplying two
polynomial A(x) and B(x), and computing the coefficients modulo some number
M . The number theoretic transform only works for certain prime numbers. What
about the case when the modulus is not of the desired form?

One option would be to perform multiple number theoretic transforms with
different prime numbers of the form c2k + 1, then apply the Chinese Remainder
Theorem to compute the final coefficients.

Another options is to distribute the polynomials A(x) and B(x) into two
smaller polynomials each

A(x) = A1(x) +A2(x) · C
B(x) = B1(x) +B2(x) · C

with C ≈
√
M .

Then the product of A(x) and B(x) can then be represented as:

A(x)·B(x) = A1(x)·B1(x)+(A1(x) ·B2(x) +A2(x) ·B1(x))·C+(A2(x) ·B2(x))·C2

The polynomials A1(x), A2(x), B1(x) and B2(x) contain only coefficients
smaller than

√
M , therefore the coefficients of all the appearing products are

smaller than M · n, which is usually small enough to handle with typical floating
point types.

This approach therefore requires computing the products of polynomials with
smaller coefficients (by using the normal FFT and inverse FFT), and then the
original product can be restored using modular addition and multiplication in
O(n) time.

6.3.4 Applications
DFT can be used in a huge variety of other problems, which at the first glance
have nothing to do with multiplying polynomials.

All possible sums

We are given two arrays a[] and b[]. We have to find all possible sums a[i] + b[j],
and for each sum count how often it appears.

For example for a = [1, 2, 3] and b = [2, 4] we get: then sum 3 can be
obtained in 1 way, the sum 4 also in 1 way, 5 in 2, 6 in 1, 7 in 1.

We construct for the arrays a and b two polynomials A and B. The numbers
of the array will act as the exponents in the polynomial (a[i]⇒ xa[i]); and the
coefficients of this term will by how often the number appears in the array.

Then, by multiplying these two polynomials in O(n logn) time, we get a
polynomial C, where the exponents will tell us which sums can be obtained, and
the coefficients tell us how often. To demonstrate this on the example:

(1x1 + 1x2 + 1x3)(1x2 + 1x4) = 1x3 + 1x4 + 2x5 + 1x6 + 1x7
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All possible scalar products

We are given two arrays a[] and b[] of length n. We have to compute the products
of a with every cyclic shift of b.

We generate two new arrays of size 2n: We reverse a and append n zeros
to it. And we just append b to itself. When we multiply these two arrays as
polynomials, and look at the coefficients c[n − 1], c[n], . . . , c[2n − 2] of the
product c, we get:

c[k] =
∑
i+j=k

a[i]b[j]

And since all the elements a[i] = 0 for i ≥ n:

c[k] =
n−1∑
i=0

a[i]b[k − i]

It is easy to see that this sum is just the scalar product of the vector a with the
(k− (n− 1))-th cyclic left shift of b. Thus these coefficients are the answer to the
problem, and we were still able to obtain it in O(n logn) time. Note here that
c[2n− 1] also gives us the n-th cyclic shift but that is the same as the 0-th cyclic
shift so we don’t need to consider that separately into our answer.

Two stripes

We are given two Boolean stripes (cyclic arrays of values 0 and 1) a and b. We
want to find all ways to attach the first stripe to the second one, such that at no
position we have a 1 of the first stripe next to a 1 of the second stripe.

The problem doesn’t actually differ much from the previous problem. Attach-
ing two stripes just means that we perform a cyclic shift on the second array,
and we can attach the two stripes, if scalar product of the two arrays is 0.

String matching

We are given two strings, a text T and a pattern P , consisting of lowercase letters.
We have to compute all the occurrences of the pattern in the text.

We create a polynomial for each string (T [i] and P [I] are numbers between 0
and 25 corresponding to the 26 letters of the alphabet):

A(x) = a0x
0 + a1x

1 + · · ·+ an−1x
n−1, n = |T |

with
ai = cos(αi) + i sin(αi), αi = 2πT [i]

26 .

And
B(x) = b0x

0 + b1x
1 + · · ·+ bm−1x

m−1, m = |P |

with
bi = cos(βi)− i sin(βi), βi = 2πP [m− i− 1]

26 .

Notice that with the expression P [m− i− 1] explicitly reverses the pattern.
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The (m− 1 + i)th coefficients of the product of the two polynomials C(x) =
A(x) ·B(x) will tell us, if the pattern appears in the text at position i.

cm−1+i =
m−1∑
j=0

ai+j · bm−1−j =
m−1∑
j=0

(cos(αi+j) + i sin(αi+j)) · (cos(βj)− i sin(βj))

with αi+j = 2πT [i+j]
26 and βj = 2πP [j]

26
If there is a match, than T [i+ j] = P [j], and therefore αi+j = βj . This gives

(using the Pythagorean trigonometric identity):

cm−1+i =
m−1∑
j=0

(cos(αi+j) + i sin(αi+j)) · (cos(αi+j)− i sin(αi+j))

=
m−1∑
j=0

cos(αi+j)2 + sin(αi+j)2 =
m−1∑
j=0

1 = m

If there isn’t a match, then at least a character is different, which leads that
one of the products ai+1 · bm−1−j is not equal to 1, which leads to the coefficient
cm−1+i 6= m.

String matching with wildcards

This is an extension of the previous problem. This time we allow that the pattern
contains the wildcard character ∗, which can match every possible letter. E.g.
the pattern a ∗ c appears in the text abccaacc at exactly three positions, at index
0, index 4 and index 5.

We create the exact same polynomials, except that we set bi = 0 if P [m−
i− 1] = ∗. If x is the number of wildcards in P , then we will have a match of P
in T at index i if cm−1+i = m− x.

6.3.5 Practice problems
• SPOJ - POLYMUL
• SPOJ - MAXMATCH
• SPOJ - ADAMATCH
• Codeforces - Yet Another String Matching Problem
• Codeforces - Lightsabers (hard)
• Codeforces - Running Competition
• Kattis - K-Inversions
• Codeforces - Dasha and cyclic table
• CodeChef - Expected Number of Customers
• CodeChef - Power Sum

http://www.spoj.com/problems/POLYMUL/
http://www.spoj.com/problems/MAXMATCH/
http://www.spoj.com/problems/ADAMATCH/
http://codeforces.com/problemset/problem/954/I
http://codeforces.com/problemset/problem/958/F3
https://codeforces.com/contest/1398/problem/G
https://open.kattis.com/problems/kinversions
http://codeforces.com/contest/754/problem/E
https://www.codechef.com/COOK112A/problems/MMNN01
https://www.codechef.com/SEPT19A/problems/PSUM
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6.4 Operations on polynomials and series
In this article we will cover common operations that you will probably have to
do if you deal with polynomials.

6.4.1 Basic Notion and Facts
Consider a polynomial A(x) = a0 + a1x+ · · ·+ anx

n such that an 6= 0.

• For simplicity we will write A instead of A(x) wherever possible, which will
be understandable from the context.

• We will define the degree of polynomial A as degA = n. It is convenient to
say that degA = −∞ for A(x) = 0.

• For arbitrary polynomials A and B it holds that degAB = degA+ degB.
• Polynomials form an euclidean ring which means that for any polynomials
A and B 6= 0 we can uniquely represent A as:

A = D ·B +R, degR < degB.

Here R is called remainder of A modulo B and D is called quotient.
• If A and B have the same remainder modulo C, they’re said to be equivalent

modulo C, which is denoted as:

A ≡ B (mod C)

• For any linear polynomial x− r it holds that:

A(x) ≡ A(r) (mod x− r)

• In particular:

A(r) = 0 ⇐⇒ A(x) ≡ 0 (mod x− r)

Which means that A is divisible by x− r ⇐⇒ A(r) = 0.
• If A ≡ B (mod C ·D) then A ≡ B (mod C)
• A ≡ a0 + a1x+ · · ·+ ak−1x

k−1 (mod xk)

6.4.2 Basic implementation
Here you can find the basic implementation of polynomial algebra.

It supports all trivial operations and some other useful methods. The main
class is poly<T> for polynomials with coefficients of class T.

All arithmetic operation +, -, *, % and / are supported, % and / standing for
remainder and quotient in integer division.

There is also the class modular<m> for performing arithmetic operations on
remainders modulo a prime number m.

Other useful functions:

• deriv(): computes the derivative P ′(x) of P (x).

https://github.com/e-maxx-eng/e-maxx-eng-aux/blob/master/src/polynomial.cpp
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• integr(): computes the indefinite integral Q(x) =
∫
P (x) of P (x) such

that Q(0) = 0.
• inv(size_t n): calculate the first n coefficients of P−1(x) in O(n logn).
• log(size_t n): calculate the first n coefficients of lnP (x) in O(n logn).
• exp(size_t n): calculate the first n coefficients of expP (x) in O(n logn).
• pow(size_t k, size_t n): calculate the first n coefficients for P k(x) in
O(n lognk).

• deg(): returns the degree of P (x).
• lead(): returns the coefficient of xdegP (x).
• resultant(poly<T> a, poly<T> b): computes the resultant of a and b

in O(|a| · |b|).
• bpow(T x, size_t n): computes xn.
• bpow(T x, size_t n, T m): computes xn (mod m).
• chirpz(T z, size_t n): computes P (1), P (z), P (z2), . . . , P (zn−1) in
O(n logn).

• vector<T> eval(vector<T> x): evaluates P (x1), . . . , P (xn) in
O(n log2 n).

• poly<T> inter(vector<T> x, vector<T> y): interpolates a polynomial
by a set of pairs P (xi) = yi in O(n log2 n).

• And some more, feel free to explore the code!

6.4.3 Arithmetic

Multiplication

The very core operation is the multiplication of two polynomials, that is, given
polynomial A and B:

A = a0 + a1x+ · · ·+ anx
n

B = b0 + b1x+ · · ·+ bmx
m

You have to compute polynomial C = A ·B:

C =
n∑
i=0

m∑
j=0

aibjx
i+j = c0 + c1x+ · · ·+ cn+mx

n+m

It can be computed in O(n logn) via the Fast Fourier transform and almost all
methods here will use it as subroutine.

Inverse series

If A(0) 6= 0 there always exists an infinite series A−1(x) =
∞∑
i=0

a′ix
i such that

A−1A = 1.
It may be reasonable for us to calculate first k coefficients of A−1:

1. Let’s say that A−1 ≡ Bk (mod xa). That means that ABk ≡ 1 (mod xa).
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2. We want to find Bk+1 ≡ Bk + xaC (mod x2a) such that ABk+1 ≡ 1
(mod x2a):

A(Bk + xaC) ≡ 1 (mod x2a)

3. Note that since ABk ≡ 1 (mod xa) it also holds that ABk ≡ 1 + xaD
(mod x2a). Thus:

xa(D+AC) ≡ 0 (mod x2a) =⇒ D ≡ −AC (mod xa) =⇒ C ≡ −BkD (mod xa)

4. From this we obtain that:

xaC ≡ −BkxaD ≡ Bk(1−ABk) (mod x2a) =⇒ Bk+1 ≡ Bk(2−ABk) (mod x2a)

Thus starting with B0 ≡ a−1
0 (mod x) we will compute the sequence Bk such

that ABk ≡ 1 (mod x2k) with the complexity:

T (n) = T (n/2) +O(n logn) = O(n logn)

Division with remainder

Consider two polynomials A(x) and B(x) of degrees n and m. As it was said
earlier you can rewrite A(x) as:

A(x) = B(x)D(x) +R(x), degR < degB

Let n ≥ m, then you can immediately find out that degD = n−m and that
leading n−m+ 1 coefficients of A don’t influence R.

That means that you can recover D(x) from the largest n−m+ 1 coefficients
of A(x) and B(x) if you consider it as a system of equations.

The formal way to do it is to consider the reversed polynomials:

AR(x) = xnA(x−1) = an + an−1x+ · · ·+ a0x
n

BR(x) = xmB(x−1) = bm + bm−1x+ · · ·+ b0x
m

DR(x) = xn−mD(x−1) = dn−m + dn−m−1x+ · · ·+ d0x
n−m

Using these terms you can rewrite that statement about the largest n−m+ 1
coefficients as:

AR(x) ≡ BR(x)DR(x) (mod xn−m+1)

From which you can unambiguously recover all coefficients of D(x):

DR(x) ≡ AR(x)(BR(x))−1 (mod xn−m+1)

And from this in turn you can easily recover R(x) as R(x) = A(x)−B(x)D(x).
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6.4.4 Calculating functions of polynomial

Newton’s method

Let’s generalize the inverse series approach. You want to find a polynomial P (x)
satisfying F (P ) = 0 where F (x) is some function represented as:

F (x) =
∞∑
i=0

αi(x− β)k

Where β is some constant. It can be proven that if we introduce a new formal
variable y, we can express F (x) as:

F (x) = F (y) + (x− y)F ′(y) + (x− y)2G(x, y)

Where F ′(x) is the derivative formal power series defined as F ′(x) =
∞∑
i=0

(k +

1)αi+1(x− β)k and G(x, y) is some formal power series of x and y.
Given this we can find the coefficients of the solution iteratively:

1. Assume that F (Qk) ≡ 0 (mod xa), we want to find Qk+1 ≡ Qk + xaC
(mod x2a) such that F (Qk+1) ≡ 0 (mod x2a).

2. Pasting x = Qk+1 and y = Qk in the formula above we get:

F (Qk+1) ≡ F (Qk)+(Qk+1−Qk)F ′(Qk)+(Qk+1−Qk)2G(x, y) (mod x)2a

3. SinceQk+1−Qk ≡ 0 (mod xa) we can say that (Qk+1−Qk)2 ≡ 0 (mod x2a),
thus:

0 ≡ F (Qk+1) ≡ F (Qk) + (Qk+1 −Qk)F ′(Qk) (mod x2a)

4. From the last formula we derive the value of Qk+1:

Qk+1 = Qk −
F (Qk)
F ′(Qk)

(mod x2a)

Thus knowing how to invert arbitrary polynomial and how to compute F (Qk)
quickly, we can find n coefficients of P with the complexity:

T (n) = T (n/2) + f(n)

Where f(n) is the maximum of O(n logn) needed to invert series and time needed
to compute F (Qk) which is usually also O(n logn).

Logarithm

For the function lnP (x) it’s known that:

(lnP (x))′ = P ′(x)
P (x)

Thus we can calculate n coefficients of lnP (x) in O(n logn).



Algebra, Chapter 6. Miscellaneous 112

Inverse series

Turns out, we can get the formula for A−1 using Newton’s method. For this we
take the equation A = Q−1, thus:

F (Q) = Q−1 −A

F ′(Q) = −Q−2

Qk+1 ≡ Qk(2−AQk) (mod x2k+1)

Exponent

Let’s learn to calculate eP (x) = Q(x). It should hold that lnQ = P , thus:

F (Q) = lnQ− P

F ′(Q) = Q−1

Qk+1 ≡ Qk(1 + P − lnQk) (mod x2k+1)

k-th power

Now we need to calculate P k(x) = Q. This may be done via the following
formula:

Q = exp [k lnP (x)]

Note though, that you can calculate the logarithms and the exponents correctly
only if you can find some initial Q0.

To find it, you should calculate the logarithm or the exponent of the constant
coefficient of the polynomial.

But the only reasonable way to do it is if P (0) = 1 for Q = lnP so Q(0) = 0
and if P (0) = 0 for Q = eP so Q(0) = 1.

Thus you can use formula above only if P (0) = 1. Otherwise if P (x) = αxtT (x)
where T (0) = 1 you can write that:

P k(x) = αkxkt exp[k lnT (x)]

Note that you also can calculate some k-th root of a polynomial if you can
calculate k

√
α, for example for α = 1.

6.4.5 Evaluation and Interpolation

Chirp-z Transform

For the particular case when you need to evaluate a polynomial in the points
xr = z2r you can do the following:

A(z2r) =
n∑
k=0

akz
2kr
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Let’s substitute 2kr = r2 + k2 − (r − k)2. Then this sum rewrites as:

A(z2r) = zr
2

n∑
k=0

(akzk
2)z−(r−k)2

Which is up to the factor zr2 equal to the convolution of the sequences
uk = akz

k2 and vk = z−k
2 .

Note that uk has indexes from 0 to n here and vk has indexes from −n to m
where m is the maximum power of z which you need.

Now if you need to evaluate a polynomial in the points xr = z2r+1 you can
reduce it to the previous task by the transformation ak → akz

k.
It gives us an O(n logn) algorithm when you need to compute values in

powers of z, thus you may compute the DFT for non-powers of two.

Multi-point Evaluation

Assume you need to calculate A(x1), . . . , A(xn). As mentioned earlier, A(x) ≡
A(xi) (mod x− xi). Thus you may do the following:

1. Compute a segment tree such that in the segment [l, r) stands the product
Pl,r(x) = (x− xl)(x− xl+1) . . . (x− xr−1).

2. Starting with l = 1 and r = n at the root node. Let m = b(l + r)/2c. Let’s
move down to [l,m) with the polynomial A(x) (mod Pl,m(x)).

3. This will recursively compute A(xl), . . . , A(xm−1), now do the same for
[m, r) with A(x) (mod Pm,r(x)).

4. Concatenate the results from the first and second recursive call and return
them.

The whole procedure will run in O(n log2 n).

Interpolation

There’s a direct formula by Lagrange to interpolate a polynomial, given set of
pairs (xi, yi):

A(x) =
n∑
i=1

yi
∏
j 6=i

x− xj
xi − xj

Computing it directly is a hard thing but turns out, we may compute it in
O(n log2 n) with a divide and conquer approach:

Consider P (x) = (x − x1) . . . (x − xn). To know the coefficients of the
denominators in A(x) we should compute products like:

Pi =
∏
j 6=i

(xi − xj)

But if you consider the derivative P ′(x) you’ll find out that P ′(xi) = Pi. Thus
you can compute Pi’s via evaluation in O(n log2 n).
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Now consider the recursive algorithm done on same segment tree as in the
multi-point evaluation. It starts in the leaves with the value yi

Pi
in each leaf.

When we return from the recursion we should merge the results from the left
and the right vertices as Al,r = Al,mPm,r + Pl,mAm,r.

In this way when you return back to the root you’ll have exactly A(x) in it.
The total procedure also works in O(n log2 n).

6.4.6 GCD and Resultants
Assume you’re given polynomials A(x) = a0 + a1x + · · · + anx

n and B(x) =
b0 + b1x+ · · ·+ bmx

m.
Let λ0, . . . , λn be the roots of A(x) and let µ0, . . . , µm be the roots of B(x)

counted with their multiplicities.
You want to know if A(x) and B(x) have any roots in common. There are

two interconnected ways to do that.

Euclidean algorithm

Well, we already have an article about it. For an arbitrary euclidean domain you
can write the Euclidean algorithm as easy as:

template<typename T>
T gcd(const T &a, const T &b) {

return b == T(0) ? a : gcd(b, a % b);
}

It can be proven that for polynomials A(x) and B(x) it will work in O(nm).

Resultant

Let’s calculate the product A(µ0) · · ·A(µm). It will be equal to zero if and only
if some µi is the root of A(x).

For symmetry we can also multiply it with bnm and rewrite the whole product
in the following form:

R(A,B) = bnm

m∏
j=0

A(µj) = bnma
n
m

n∏
i=0

m∏
j=0

(µj − λi) = (−1)mnamn
n∏
i=0

B(λi)

The value defined above is called the resultant of the polynomials A(x) and
B(x). From the definition you may find the following properties:

1. R(A,B) = (−1)nmR(B,A).
2. R(A,B) = amn b

n
m when n = 0 or m = 0.

3. If bm = 1 then R(A−CB,B) = R(A,B) for an arbitrary polynomial C(x)
and n,m ≥ 1.

4. From this follows R(A,B) = b
deg(A)−deg(A−CB)
m R(A−CB,B) for arbitrary

A(x), B(x), C(x).
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Miraculously it means that resultant of two polynomials is actually always
from the same ring as their coefficients!

Also these properties allow us to calculate the resultant alongside the Euclidean
algorithm, which works in O(nm).

template<typename T>
T resultant(poly<T> a, poly<T> b) {

if(b.is_zero()) {
return 0;

} else if(b.deg() == 0) {
return bpow(b.lead(), a.deg());

} else {
int pw = a.deg();
a %= b;
pw -= a.deg();
base mul = bpow(b.lead(), pw) * base((b.deg() & a.deg() & 1) ? -1 : 1);
base ans = resultant(b, a);
return ans * mul;

}
}

Half-GCD algorithm

There is a way to calculate the GCD and resultants in O(n log2 n). To do this
you should note that if you consider a(x) = a0 + xka1 and b(x) = b0 + xkb1
where k = min(deg a,deg b)/2 then basically the first few operations of Euclidean
algorithm on a(x) and b(x) are defined by the Euclidean algorithm on a1(x)
and b1(x) for which you may also calculate GCD recursively and then somehow
memorize linear transforms you made with them and apply it to a(x) and b(x) to
lower the degrees of polynomials. Implementation of this algorithm seems pretty
tedious and technical thus it’s not considered in this article yet.

6.4.7 Problems
• CodeChef - RNG
• CodeForces - Basis Change
• CodeForces - Permutant
• CodeForces - Medium Hadron Collider

https://www.codechef.com/problems/RNG
https://codeforces.com/gym/102129/problem/D
https://codeforces.com/gym/102129/problem/G
https://codeforces.com/gym/102129/problem/C
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Part II

Data Structures
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Chapter 7

Fundamentals

7.1 Minimum stack / Minimum queue
In this article we will consider three problems: first we will modify a stack in a
way that allows us to find the smallest element of the stack in O(1), then we will
do the same thing with a queue, and finally we will use these data structures to
find the minimum in all subarrays of a fixed length in an array in O(n)

7.1.1 Stack modification
We want to modify the stack data structure in such a way, that it possible to
find the smallest element in the stack in O(1) time, while maintaining the same
asymptotic behavior for adding and removing elements from the stack. Quick
reminder, on a stack we only add and remove elements on one end.

To do this, we will not only store the elements in the stack, but we will store
them in pairs: the element itself and the minimum in the stack starting from this
element and below.
stack<pair<int, int>> st;

It is clear that finding the minimum in the whole stack consists only of looking
at the value stack.top().second.

It is also obvious that adding or removing a new element to the stack can be
done in constant time.

Implementation:

• Adding an element:
int new_min = st.empty() ? new_elem : min(new_elem, st.top().second);
st.push({new_elem, new_min});

• Removing an element:
int removed_element = st.top().first;
st.pop();

• Finding the minimum:
int minimum = st.top().second;
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7.1.2 Queue modification (method 1)
Now we want to achieve the same operations with a queue, i.e. we want to add
elements at the end and remove them from the front.

Here we consider a simple method for modifying a queue. It has a big
disadvantage though, because the modified queue will actually not store all
elements.

The key idea is to only store the items in the queue that are needed to
determine the minimum. Namely we will keep the queue in nondecreasing order
(i.e. the smallest value will be stored in the head), and of course not in any
arbitrary way, the actual minimum has to be always contained in the queue. This
way the smallest element will always be in the head of the queue. Before adding a
new element to the queue, it is enough to make a “cut”: we will remove all trailing
elements of the queue that are larger than the new element, and afterwards add
the new element to the queue. This way we don’t break the order of the queue,
and we will also not loose the current element if it is at any subsequent step the
minimum. All the elements that we removed can never be a minimum itself, so
this operation is allowed. When we want to extract an element from the head, it
actually might not be there (because we removed it previously while adding a
smaller element). Therefore when deleting an element from a queue we need to
know the value of the element. If the head of the queue has the same value, we
can safely remove it, otherwise we do nothing.

Consider the implementations of the above operations:

deque<int> q;

• Finding the minimum:

int minimum = q.front();

• Adding an element:

while (!q.empty() && q.back() > new_element)
q.pop_back();

q.push_back(new_element);

• Removing an element:

if (!q.empty() && q.front() == remove_element)
q.pop_front();

It is clear that on average all these operation only take O(1) time (because
every element can only be pushed and popped once).

7.1.3 Queue modification (method 2)
This is a modification of method 1. We want to be able to remove elements
without knowing which element we have to remove. We can accomplish that by
storing the index for each element in the queue. And we also remember how
many elements we already have added and removed.
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deque<pair<int, int>> q;
int cnt_added = 0;
int cnt_removed = 0;

• Finding the minimum:

int minimum = q.front().first;

• Adding an element:

while (!q.empty() && q.back().first > new_element)
q.pop_back();

q.push_back({new_element, cnt_added});
cnt_added++;

• Removing an element:

if (!q.empty() && q.front().second == cnt_removed)
q.pop_front();

cnt_removed++;

7.1.4 Queue modification (method 3)
Here we consider another way of modifying a queue to find the minimum in O(1).
This way is somewhat more complicated to implement, but this time we actually
store all elements. And we also can remove an element from the front without
knowing its value.

The idea is to reduce the problem to the problem of stacks, which was already
solved by us. So we only need to learn how to simulate a queue using two stacks.

We make two stacks, s1 and s2. Of course these stack will be of the modified
form, so that we can find the minimum in O(1). We will add new elements to
the stack s1, and remove elements from the stack s2. If at any time the stack
s2 is empty, we move all elements from s1 to s2 (which essentially reverses the
order of those elements). Finally finding the minimum in a queue involves just
finding the minimum of both stacks.

Thus we perform all operations in O(1) on average (each element will be once
added to stack s1, once transferred to s2, and once popped from s2)

Implementation:

stack<pair<int, int>> s1, s2;

• Finding the minimum:

if (s1.empty() || s2.empty())
minimum = s1.empty() ? s2.top().second : s1.top().second;

else
minimum = min(s1.top().second, s2.top().second);

• Add element:
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int minimum = s1.empty() ? new_element : min(new_element, s1.top().second);
s1.push({new_element, minimum});

• Removing an element:

if (s2.empty()) {
while (!s1.empty()) {

int element = s1.top().first;
s1.pop();
int minimum = s2.empty() ? element : min(element, s2.top().second);
s2.push({element, minimum});

}
}
int remove_element = s2.top().first;
s2.pop();

7.1.5 Finding the minimum for all subarrays of fixed length
Suppose we are given an array A of length N and a given M ≤ N . We have to
find the minimum of each subarray of length M in this array, i.e. we have to find:

min
0≤i≤M−1

A[i], min
1≤i≤M

A[i], min
2≤i≤M+1

A[i], . . . , min
N−M≤i≤N−1

A[i]

We have to solve this problem in linear time, i.e. O(n).
We can use any of the three modified queues to solve the problem. The

solutions should be clear: we add the first M element of the array, find and
output its minimum, then add the next element to the queue and remove the
first element of the array, find and output its minimum, etc. Since all operations
with the queue are performed in constant time on average, the complexity of the
whole algorithm will be O(n).

7.1.6 Practice Problems
• Queries with Fixed Length
• Binary Land

https://www.hackerrank.com/challenges/queries-with-fixed-length/problem
https://www.codechef.com/MAY20A/problems/BINLAND
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7.2 Sparse Table
Sparse Table is a data structure, that allows answering range queries. It can
answer most range queries in O(logn), but its true power is answering range
minimum queries (or equivalent range maximum queries). For those queries it
can compute the answer in O(1) time.

The only drawback of this data structure is, that it can only be used on
immutable arrays. This means, that the array cannot be changed between two
queries. If any element in the array changes, the complete data structure has to
be recomputed.

7.2.1 Intuition
Any non-negative number can be uniquely represented as a sum of decreasing
powers of two. This is just a variant of the binary representation of a number.
E.g. 13 = (1101)2 = 8 + 4 + 1. For a number x there can be at most dlog2 xe
summands.

By the same reasoning any interval can be uniquely represented as a union
of intervals with lengths that are decreasing powers of two. E.g. [2, 14] =
[2, 9] ∪ [10, 13] ∪ [14, 14], where the complete interval has length 13, and the
individual intervals have the lengths 8, 4 and 1 respectably. And also here the
union consists of at most dlog2(length of interval)e many intervals.

The main idea behind Sparse Tables is to precompute all answers for range
queries with power of two length. Afterwards a different range query can be
answered by splitting the range into ranges with power of two lengths, looking
up the precomputed answers, and combining them to receive a complete answer.

7.2.2 Precomputation
We will use a 2-dimensional array for storing the answers to the precomputed
queries. st[i][j] will store the answer for the range [i, i + 2j − 1] of length 2j .
The size of the 2-dimensional array will be MAXN× (K + 1), where MAXN is
the biggest possible array length. K has to satisfy K ≥ blog2 MAXNc, because
2blog2 MAXNc is the biggest power of two range, that we have to support. For
arrays with reasonable length (≤ 107 elements), K = 25 is a good value.

int st[MAXN][K + 1];

Because the range [i, i + 2j − 1] of length 2j splits nicely into the ranges
[i, i+ 2j−1 − 1] and [i+ 2j−1, i+ 2j − 1], both of length 2j−1, we can generate
the table efficiently using dynamic programming:

for (int i = 0; i < N; i++)
st[i][0] = f(array[i]);

for (int j = 1; j <= K; j++)
for (int i = 0; i + (1 << j) <= N; i++)

st[i][j] = f(st[i][j-1], st[i + (1 << (j - 1))][j - 1]);
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The function f will depend on the type of query. For range sum queries it
will compute the sum, for range minimum queries it will compute the minimum.

The time complexity of the precomputation is O(N logN).

7.2.3 Range Sum Queries
For this type of queries, we want to find the sum of all values in a range. Therefore
the natural definition of the function f is f(x, y) = x+ y. We can construct the
data structure with:

long long st[MAXN][K + 1];

for (int i = 0; i < N; i++)
st[i][0] = array[i];

for (int j = 1; j <= K; j++)
for (int i = 0; i + (1 << j) <= N; i++)

st[i][j] = st[i][j-1] + st[i + (1 << (j - 1))][j - 1];

To answer the sum query for the range [L,R], we iterate over all powers of
two, starting from the biggest one. As soon as a power of two 2j is smaller or
equal to the length of the range (= R− L+ 1), we process the first the first part
of range [L,L+ 2j − 1], and continue with the remaining range [L+ 2j , R].

long long sum = 0;
for (int j = K; j >= 0; j--) {

if ((1 << j) <= R - L + 1) {
sum += st[L][j];
L += 1 << j;

}
}

Time complexity for a Range Sum Query is O(K) = O(logMAXN).

7.2.4 Range Minimum Queries (RMQ)
These are the queries where the Sparse Table shines. When computing the
minimum of a range, it doesn’t matter if we process a value in the range once or
twice. Therefore instead of splitting a range into multiple ranges, we can also
split the range into only two overlapping ranges with power of two length. E.g.
we can split the range [1, 6] into the ranges [1, 4] and [3, 6]. The range minimum
of [1, 6] is clearly the same as the minimum of the range minimum of [1, 4] and
the range minimum of [3, 6]. So we can compute the minimum of the range [L,R]
with:

min(st[L][j], st[R− 2j + 1][j]) where j = log2(R− L+ 1)

This requires that we are able to compute log2(R − L + 1) fast. You can
accomplish that by precomputing all logarithms:
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int log[MAXN+1];
log[1] = 0;
for (int i = 2; i <= MAXN; i++)

log[i] = log[i/2] + 1;

Afterwards we need to precompute the Sparse Table structure. This time we
define f with f(x, y) = min(x, y).

int st[MAXN][K + 1];

for (int i = 0; i < N; i++)
st[i][0] = array[i];

for (int j = 1; j <= K; j++)
for (int i = 0; i + (1 << j) <= N; i++)

st[i][j] = min(st[i][j-1], st[i + (1 << (j - 1))][j - 1]);

And the minimum of a range [L,R] can be computed with:

int j = log[R - L + 1];
int minimum = min(st[L][j], st[R - (1 << j) + 1][j]);

Time complexity for a Range Minimum Query is O(1).

7.2.5 Similar data structures supporting more types of queries
One of the main weakness of the O(1) approach discussed in the previous section
is, that this approach only supports queries of idempotent functions. I.e. it works
great for range minimum queries, but it is not possible to answer range sum
queries using this approach.

There are similar data structures that can handle any type of associative
functions and answer range queries in O(1). One of them is called is called
Disjoint Sparse Table. Another one would be the Sqrt Tree.

7.2.6 Practice Problems
• SPOJ - RMQSQ
• SPOJ - THRBL
• Codechef - MSTICK
• Codechef - SEAD
• Codeforces - CGCDSSQ
• Codeforces - R2D2 and Droid Army
• Codeforces - Maximum of Maximums of Minimums
• SPOJ - Miraculous
• DevSkills - Multiplication Interval
• Codeforces - Animals and Puzzles
• Codeforces - Trains and Statistics
• SPOJ - Postering
• SPOJ - Negative Score

https://en.wikipedia.org/wiki/Idempotence
https://discuss.codechef.com/questions/117696/tutorial-disjoint-sparse-table
http://www.spoj.com/problems/RMQSQ/
http://www.spoj.com/problems/THRBL/
https://www.codechef.com/problems/MSTICK
https://www.codechef.com/problems/SEAD
http://codeforces.com/contest/475/problem/D
http://codeforces.com/problemset/problem/514/D
http://codeforces.com/problemset/problem/872/B
http://www.spoj.com/problems/TNVFC1M/
https://devskill.com/CodingProblems/ViewProblem/19
http://codeforces.com/contest/713/problem/D
http://codeforces.com/contest/675/problem/E
http://www.spoj.com/problems/POSTERIN/
http://www.spoj.com/problems/RPLN/
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• SPOJ - A Famous City
• SPOJ - Diferencija
• Codeforces - Turn off the TV
• Codeforces - Map
• Codeforces - Awards for Contestants
• Codeforces - Longest Regular Bracket Sequence

http://www.spoj.com/problems/CITY2/
http://www.spoj.com/problems/DIFERENC/
http://codeforces.com/contest/863/problem/E
http://codeforces.com/contest/15/problem/D
http://codeforces.com/contest/873/problem/E
http://codeforces.com/contest/5/problem/C
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Chapter 8

Trees

8.1 Disjoint Set Union
This article discusses the data structure Disjoint Set Union or DSU. Often it
is also called Union Find because of its two main operations.

This data structure provides the following capabilities. We are given several
elements, each of which is a separate set. A DSU will have an operation to
combine any two sets, and it will be able to tell in which set a specific element is.
The classical version also introduces a third operation, it can create a set from a
new element.

Thus the basic interface of this data structure consists of only three operations:

• make_set(v) - creates a new set consisting of the new element v
• union_sets(a, b) - merges the two specified sets (the set in which the

element a is located, and the set in which the element b is located)
• find_set(v) - returns the representative (also called leader) of the set

that contains the element v. This representative is an element of its
corresponding set. It is selected in each set by the data structure itself (and
can change over time, namely after union_sets calls). This representative
can be used to check if two elements are part of the same set or not. a and
b are exactly in the same set, if find_set(a) == find_set(b). Otherwise
they are in different sets.

As described in more detail later, the data structure allows you to do each of
these operations in almost O(1) time on average.

Also in one of the subsections an alternative structure of a DSU is explained,
which achieves a slower average complexity of O(logn), but can be more powerful
than the regular DSU structure.

8.1.1 Build an efficient data structure
We will store the sets in the form of trees: each tree will correspond to one set.
And the root of the tree will be the representative/leader of the set.

In the following image you can see the representation of such trees.
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Figure 8.1: Example-image of the set representation with trees

In the beginning, every element starts as a single set, therefore each vertex
is its own tree. Then we combine the set containing the element 1 and the set
containing the element 2. Then we combine the set containing the element 3
and the set containing the element 4. And in the last step, we combine the set
containing the element 1 and the set containing the element 3.

For the implementation this means that we will have to maintain an array
parent that stores a reference to its immediate ancestor in the tree.

Naive implementation

We can already write the first implementation of the Disjoint Set Union data
structure. It will be pretty inefficient at first, but later we can improve it using
two optimizations, so that it will take nearly constant time for each function call.

As we said, all the information about the sets of elements will be kept in an
array parent.

To create a new set (operation make_set(v)), we simply create a tree with
root in the vertex v, meaning that it is its own ancestor.

To combine two sets (operation union_sets(a, b)), we first find the repre-
sentative of the set in which a is located, and the representative of the set in
which b is located. If the representatives are identical, that we have nothing to
do, the sets are already merged. Otherwise, we can simply specify that one of
the representatives is the parent of the other representative - thereby combining
the two trees.

Finally the implementation of the find representative function (operation
find_set(v)): we simply climb the ancestors of the vertex v until we reach the
root, i.e. a vertex such that the reference to the ancestor leads to itself. This
operation is easily implemented recursively.

void make_set(int v) {
parent[v] = v;

}

int find_set(int v) {
if (v == parent[v])

return v;
return find_set(parent[v]);

}
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void union_sets(int a, int b) {
a = find_set(a);
b = find_set(b);
if (a != b)

parent[b] = a;
}

However this implementation is inefficient. It is easy to construct an example,
so that the trees degenerate into long chains. In that case each call find_set(v)
can take O(n) time.

This is far away from the complexity that we want to have (nearly constant
time). Therefore we will consider two optimizations that will allow to significantly
accelerate the work.

Path compression optimization

This optimization is designed for speeding up find_set.
If we call find_set(v) for some vertex v, we actually find the representative

p for all vertices that we visit on the path between v and the actual representative
p. The trick is to make the paths for all those nodes shorter, by setting the
parent of each visited vertex directly to p.

You can see the operation in the following image. On the left there is a tree,
and on the right side there is the compressed tree after calling find_set(7),
which shortens the paths for the visited nodes 7, 5, 3 and 2.

Figure 8.2: Path compression of call find_set(7)

The new implementation of find_set is as follows:

int find_set(int v) {
if (v == parent[v])

return v;
return parent[v] = find_set(parent[v]);

}
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The simple implementation does what was intended: first find the represen-
tative of the set (root vertex), and then in the process of stack unwinding the
visited nodes are attached directly to the representative.

This simple modification of the operation already achieves the time complexity
O(logn) per call on average (here without proof). There is a second modification,
that will make it even faster.

Union by size / rank

In this optimization we will change the union_set operation. To be precise, we
will change which tree gets attached to the other one. In the naive implementation
the second tree always got attached to the first one. In practice that can lead to
trees containing chains of length O(n). With this optimization we will avoid this
by choosing very carefully which tree gets attached.

There are many possible heuristics that can be used. Most popular are the
following two approaches: In the first approach we use the size of the trees as
rank, and in the second one we use the depth of the tree (more precisely, the
upper bound on the tree depth, because the depth will get smaller when applying
path compression).

In both approaches the essence of the optimization is the same: we attach
the tree with the lower rank to the one with the bigger rank.

Here is the implementation of union by size:

void make_set(int v) {
parent[v] = v;
size[v] = 1;

}

void union_sets(int a, int b) {
a = find_set(a);
b = find_set(b);
if (a != b) {

if (size[a] < size[b])
swap(a, b);

parent[b] = a;
size[a] += size[b];

}
}

And here is the implementation of union by rank based on the depth of the
trees:

void make_set(int v) {
parent[v] = v;
rank[v] = 0;

}

void union_sets(int a, int b) {
a = find_set(a);
b = find_set(b);
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if (a != b) {
if (rank[a] < rank[b])

swap(a, b);
parent[b] = a;
if (rank[a] == rank[b])

rank[a]++;
}

}

Both optimizations are equivalent in terms of time and space complexity. So
in practice you can use any of them.

Time complexity

As mentioned before, if we combine both optimizations - path compression with
union by size / rank - we will reach nearly constant time queries. It turns out,
that the final amortized time complexity is O(α(n)), where α(n) is the inverse
Ackermann function, which grows very slowly. In fact it grows so slowly, that it
doesn’t exceed 4 for all reasonable n (approximately n < 10600).

Amortized complexity is the total time per operation, evaluated over a
sequence of multiple operations. The idea is to guarantee the total time of the
entire sequence, while allowing single operations to be much slower then the
amortized time. E.g. in our case a single call might take O(logn) in the worst
case, but if we do m such calls back to back we will end up with an average time
of O(α(n)).

We will also not present a proof for this time complexity, since it is quite long
and complicated.

Also, it’s worth mentioning that DSU with union by size / rank, but without
path compression works in O(logn) time per query.

Linking by index / coin-flip linking

Both union by rank and union by size require that you store additional data for
each set, and maintain these values during each union operation. There exist also
a randomized algorithm, that simplifies the union operation a little bit: linking
by index.

We assign each set a random value called the index, and we attach the set
with the smaller index to the one with the larger one. It is likely that a bigger set
will have a bigger index than the smaller set, therefore this operation is closely
related to union by size. In fact it can be proven, that this operation has the
same time complexity as union by size. However in practice it is slightly slower
than union by size.

You can find a proof of the complexity and even more union techniques here.

void make_set(int v) {
parent[v] = v;
index[v] = rand();

}

http://www.cis.upenn.edu/~sanjeev/papers/soda14_disjoint_set_union.pdf
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void union_sets(int a, int b) {
a = find_set(a);
b = find_set(b);
if (a != b) {

if (index[a] < index[b])
swap(a, b);

parent[b] = a;
}

}

It’s a common misconception that just flipping a coin, to decide which set we
attach to the other, has the same complexity. However that’s not true. The paper
linked above conjectures that coin-flip linking combined with path compression
has complexity Ω

(
n logn

log logn

)
. And in benchmarks it performs a lot worse than

union by size/rank or linking by index.

void union_sets(int a, int b) {
a = find_set(a);
b = find_set(b);
if (a != b) {

if (rand() % 2)
swap(a, b);

parent[b] = a;
}

}

8.1.2 Applications and various improvements
In this section we consider several applications of the data structure, both the
trivial uses and some improvements to the data structure.

Connected components in a graph

This is one of the obvious applications of DSU.
Formally the problem is defined in the following way: Initially we have an

empty graph. We have to add vertices and undirected edges, and answer queries
of the form (a, b) - “are the vertices a and b in the same connected component of
the graph?”

Here we can directly apply the data structure, and get a solution that handles
an addition of a vertex or an edge and a query in nearly constant time on average.

This application is quite important, because nearly the same problem appears
in Kruskal’s algorithm for finding a minimum spanning tree. Using DSU we can
improve the O(m logn+ n2) complexity to O(m logn).

Search for connected components in an image

One of the applications of DSU is the following task: there is an image of n×m
pixels. Originally all are white, but then a few black pixels are drawn. You want
to determine the size of each white connected component in the final image.
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For the solution we simply iterate over all white pixels in the image, for each
cell iterate over its four neighbors, and if the neighbor is white call union_sets.
Thus we will have a DSU with nm nodes corresponding to image pixels. The
resulting trees in the DSU are the desired connected components.

The problem can also be solved by DFS or BFS, but the method described
here has an advantage: it can process the matrix row by row (i.e. to process a
row we only need the previous and the current row, and only need a DSU built
for the elements of one row) in O(min(n,m)) memory.

Store additional information for each set

DSU allows you to easily store additional information in the sets.
A simple example is the size of the sets: storing the sizes was already

described in the Union by size section (the information was stored by the current
representative of the set).

In the same way - by storing it at the representative nodes - you can also
store any other information about the sets.

Compress jumps along a segment / Painting subarrays offline

One common application of the DSU is the following: There is a set of vertices,
and each vertex has an outgoing edge to another vertex. With DSU you can find
the end point, to which we get after following all edges from a given starting
point, in almost constant time.

A good example of this application is the problem of painting subarrays.
We have a segment of length L, each element initially has the color 0. We have to
repaint the subarray [l, r] with the color c for each query (l, r, c). At the end we
want to find the final color of each cell. We assume that we know all the queries
in advance, i.e. the task is offline.

For the solution we can make a DSU, which for each cell stores a link to the
next unpainted cell. Thus initially each cell points to itself. After painting one
requested repaint of a segment, all cells from that segment will point to the cell
after the segment.

Now to solve this problem, we consider the queries in the reverse order:
from last to first. This way when we execute a query, we only have to paint
exactly the unpainted cells in the subarray [l, r]. All other cells already contain
their final color. To quickly iterate over all unpainted cells, we use the DSU. We
find the left-most unpainted cell inside of a segment, repaint it, and with the
pointer we move to the next empty cell to the right.

Here we can use the DSU with path compression, but we cannot use union
by rank / size (because it is important who becomes the leader after the merge).
Therefore the complexity will be O(logn) per union (which is also quite fast).

Implementation:

for (int i = 0; i <= L; i++) {
make_set(i);

}
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for (int i = m-1; i >= 0; i--) {
int l = query[i].l;
int r = query[i].r;
int c = query[i].c;
for (int v = find_set(l); v <= r; v = find_set(v)) {

answer[v] = c;
parent[v] = v + 1;

}
}

There is one optimization: We can use union by rank, if we store the next
unpainted cell in an additional array end[]. Then we can merge two sets into
one ranked according to their heuristics, and we obtain the solution in O(α(n)).

Support distances up to representative

Sometimes in specific applications of the DSU you need to maintain the distance
between a vertex and the representative of its set (i.e. the path length in the tree
from the current node to the root of the tree).

If we don’t use path compression, the distance is just the number of recursive
calls. But this will be inefficient.

However it is possible to do path compression, if we store the distance to
the parent as additional information for each node.

In the implementation it is convenient to use an array of pairs for parent[]
and the function find_set now returns two numbers: the representative of the
set, and the distance to it.

void make_set(int v) {
parent[v] = make_pair(v, 0);
rank[v] = 0;

}

pair<int, int> find_set(int v) {
if (v != parent[v].first) {

int len = parent[v].second;
parent[v] = find_set(parent[v].first);
parent[v].second += len;

}
return parent[v];

}

void union_sets(int a, int b) {
a = find_set(a).first;
b = find_set(b).first;
if (a != b) {

if (rank[a] < rank[b])
swap(a, b);

parent[b] = make_pair(a, 1);
if (rank[a] == rank[b])

rank[a]++;
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}
}

Support the parity of the path length / Checking bipartiteness online

In the same way as computing the path length to the leader, it is possible to
maintain the parity of the length of the path before him. Why is this application
in a separate paragraph?

The unusual requirement of storing the parity of the path comes up in the
following task: initially we are given an empty graph, it can be added edges, and
we have to answer queries of the form “is the connected component containing
this vertex bipartite?”.

To solve this problem, we make a DSU for storing of the components and
store the parity of the path up to the representative for each vertex. Thus we
can quickly check if adding an edge leads to a violation of the bipartiteness or
not: namely if the ends of the edge lie in the same connected component and
have the same parity length to the leader, then adding this edge will produce a
cycle of odd length, and the component will lose the bipartiteness property.

The only difficulty that we face is to compute the parity in the union_find
method.

If we add an edge (a, b) that connects two connected components into one,
then when you attach one tree to another we need to adjust the parity.

Let’s derive a formula, which computes the parity issued to the leader of the
set that will get attached to another set. Let x be the parity of the path length
from vertex a up to its leader A, and y as the parity of the path length from
vertex b up to its leader B, and t the desired parity that we have to assign to B
after the merge. The path contains the of the three parts: from B to b, from b to
a, which is connected by one edge and therefore has parity 1, and from a to A.
Therefore we receive the formula (⊕ denotes the XOR operation):

t = x⊕ y ⊕ 1
Thus regardless of how many joins we perform, the parity of the edges is

carried from on leader to another.
We give the implementation of the DSU that supports parity. As in the

previous section we use a pair to store the ancestor and the parity. In addition
for each set we store in the array bipartite[] whether it is still bipartite or not.

void make_set(int v) {
parent[v] = make_pair(v, 0);
rank[v] = 0;
bipartite[v] = true;

}

pair<int, int> find_set(int v) {
if (v != parent[v].first) {

int parity = parent[v].second;
parent[v] = find_set(parent[v].first);
parent[v].second ˆ= parity;
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}
return parent[v];

}

void add_edge(int a, int b) {
pair<int, int> pa = find_set(a);
a = pa.first;
int x = pa.second;

pair<int, int> pb = find_set(b);
b = pb.first;
int y = pb.second;

if (a == b) {
if (x == y)

bipartite[a] = false;
} else {

if (rank[a] < rank[b])
swap (a, b);

parent[b] = make_pair(a, xˆyˆ1);
bipartite[a] &= bipartite[b];
if (rank[a] == rank[b])

++rank[a];
}

}

bool is_bipartite(int v) {
return bipartite[find_set(v).first];

}

Offline RMQ (range minimum query) in O(α(n)) on average / Arpa’s
trick

We are given an array a[] and we have to compute some minima in given
segments of the array.

The idea to solve this problem with DSU is the following: We will iterate over
the array and when we are at the ith element we will answer all queries (L, R)
with R == i. To do this efficiently we will keep a DSU using the first i elements
with the following structure: the parent of an element is the next smaller element
to the right of it. Then using this structure the answer to a query will be the
a[find_set(L)], the smallest number to the right of L.

This approach obviously only works offline, i.e. if we know all queries before-
hand.

It is easy to see that we can apply path compression. And we can also use
Union by rank, if we store the actual leader in an separate array.

struct Query {
int L, R, idx;

};
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vector<int> answer;
vector<vector<Query>> container;

container[i] contains all queries with R == i.

stack<int> s;
for (int i = 0; i < n; i++) {

while (!s.empty() && a[s.top()] > a[i]) {
parent[s.top()] = i;
s.pop();

}
s.push(i);
for (Query q : container[i]) {

answer[q.idx] = a[find_set(q.L)];
}

}

Nowadays this algorithm is known as Arpa’s trick. It is named after AmirReza
Poorakhavan, who independently discovered and popularized this technique.
Although this algorithm existed already before his discovery.

Offline LCA (lowest common ancestor in a tree) in O(α(n)) on average

The algorithm for finding the LCA is discussed in the article Lowest Common
Ancestor - Tarjan’s off-line algorithm. This algorithm compares favorable with
other algorithms for finding the LCA due to its simplicity (especially compared
to an optimal algorithm like the one from Farach-Colton and Bender).

Storing the DSU explicitly in a set list / Applications of this idea when
merging various data structures

One of the alternative ways of storing the DSU is the preservation of each set in
the form of an explicitly stored list of its elements. At the same time each
element also stores the reference to the representative of his set.

At first glance this looks like an inefficient data structure: by combining two
sets we will have to add one list to the end of another and have to update the
leadership in all elements of one of the lists.

However it turns out, the use of a weighting heuristic (similar to Union
by size) can significantly reduce the asymptotic complexity: O(m+ n logn) to
perform m queries on the n elements.

Under weighting heuristic we mean, that we will always add the smaller of
the two sets to the bigger set. Adding one set to another is easy to implement
in union_sets and will take time proportional to the size of the added set. And
the search for the leader in find_set will take O(1) with this method of storing.

Let us prove the time complexity O(m + n logn) for the execution of m
queries. We will fix an arbitrary element x and count how often it was touched
in the merge operation union_sets. When the element x gets touched the first
time, the size of the new set will be at least 2. When it gets touched the second
time, the resulting set will have size of at least 4, because the smaller set gets
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added to the bigger one. And so on. This means, that x can only be moved in
at most logn merge operations. Thus the sum over all vertices gives O(n logn)
plus O(1) for each request.

Here is an implementation:

vector<int> lst[MAXN];
int parent[MAXN];

void make_set(int v) {
lst[v] = vector<int>(1, v);
parent[v] = v;

}

int find_set(int v) {
return parent[v];

}

void union_sets(int a, int b) {
a = find_set(a);
b = find_set(b);
if (a != b) {

if (lst[a].size() < lst[b].size())
swap(a, b);

while (!lst[b].empty()) {
int v = lst[b].back();
lst[b].pop_back();
parent[v] = a;
lst[a].push_back (v);

}
}

}

This idea of adding the smaller part to a bigger part can also be used in a lot
of solutions that have nothing to do with DSU.

For example consider the following problem: we are given a tree, each leaf
has a number assigned (same number can appear multiple times on different
leaves). We want to compute the number of different numbers in the subtree for
every node of the tree.

Applying to this task the same idea it is possible to obtain this solution:
we can implement a DFS, which will return a pointer to a set of integers - the
list of numbers in that subtree. Then to get the answer for the current node
(unless of course it is a leaf), we call DFS for all children of that node, and
merge all the received sets together. The size of the resulting set will be the
answer for the current node. To efficiently combine multiple sets we just apply
the above-described recipe: we merge the sets by simply adding smaller ones to
larger. In the end we get a O(n log2 n) solution, because one number will only
added to a set at most O(logn) times.
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Storing the DSU by maintaining a clear tree structure / Online bridge
finding in O(α(n)) on average

One of the most powerful applications of DSU is that it allows you to store
both as compressed and uncompressed trees. The compressed form can be
used for merging of trees and for the verification if two vertices are in the same
tree, and the uncompressed form can be used - for example - to search for paths
between two given vertices, or other traversals of the tree structure.

In the implementation this means that in addition to the compressed ances-
tor array parent[] we will need to keep the array of uncompressed ancestors
real_parent[]. It is trivial that maintaining this additional array will not
worsen the complexity: changes in it only occur when we merge two trees, and
only in one element.

On the other hand when applied in practice, we often need to connect trees
using a specified edge other that using the two root nodes. This means that we
have no other choice but to re-root one of the trees (make the ends of the edge
the new root of the tree).

At first glance it seems that this re-rooting is very costly and will greatly
worsen the time complexity. Indeed, for rooting a tree at vertex v we must go from
the vertex to the old root and change directions in parent[] and real_parent[]
for all nodes on that path.

However in reality it isn’t so bad, we can just re-root the smaller of the two
trees similar to the ideas in the previous sections, and get O(logn) on average.

More details (including proof of the time complexity) can be found in the
article Finding Bridges Online.

8.1.3 Historical retrospective
The data structure DSU has been known for a long time.

This way of storing this structure in the form of a forest of trees was
apparently first described by Galler and Fisher in 1964 (Galler, Fisher, "An
Improved Equivalence Algorithm), however the complete analysis of the time
complexity was conducted much later.

The optimizations path compression and Union by rank has been developed
by McIlroy and Morris, and independently of them also by Tritter.

Hopcroft and Ullman showed in 1973 the time complexity O(log? n) (Hopcroft,
Ullman “Set-merging algorithms”) - here log? is the iterated logarithm (this is
a slow-growing function, but still not as slow as the inverse Ackermann function).

For the first time the evaluation of O(α(n)) was shown in 1975 (Tarjan
“Efficiency of a Good But Not Linear Set Union Algorithm”). Later in 1985 he,
along with Leeuwen, published multiple complexity analyses for several different
rank heuristics and ways of compressing the path (Tarjan, Leeuwen “Worst-case
Analysis of Set Union Algorithms”).

Finally in 1989 Fredman and Sachs proved that in the adopted model of
computation any algorithm for the disjoint set union problem has to work in at
least O(α(n)) time on average (Fredman, Saks, “The cell probe complexity of
dynamic data structures”).
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However it should also be noted, that there are several articles disputing
this provisional valuation and asserting that the DSU with path compression and
Union by rank runs in O(1) time on average (Zhang “The Union-Find Problem
Is Linear”, Wu, Otoo “A Simpler Proof of the Average Case Complexity of
Union-Find with Path Compression”).

8.1.4 Problems
• TIMUS - Anansi’s Cobweb
• Codeforces - Roads not only in Berland
• TIMUS - Parity
• SPOJ - Strange Food Chain
• SPOJ - COLORFUL ARRAY
• SPOJ - Consecutive Letters
• Toph - Unbelievable Array
• HackerEarth - Lexicographically minimal string
• HackerEarth - Fight in Ninja World

http://acm.timus.ru/problem.aspx?space=1&num=1671
http://codeforces.com/contest/25/problem/D
http://acm.timus.ru/problem.aspx?space=1&num=1003
http://www.spoj.com/problems/CHAIN/
https://www.spoj.com/problems/CLFLARR/
https://www.spoj.com/problems/CONSEC/
https://toph.co/p/unbelievable-array
https://www.hackerearth.com/practice/data-structures/disjoint-data-strutures/basics-of-disjoint-data-structures/practice-problems/algorithm/lexicographically-minimal-string-6edc1406/description/
https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/practice-problems/algorithm/containers-of-choclates-1/
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8.2 Fenwick Tree
Let, f be some reversible function and A be an array of integers of length N .

Fenwick tree is a data structure which:

• calculates the value of function f in the given range [l, r] (i.e. f(Al, Al+1, . . . , Ar))
in O(logn) time;

• updates the value of an element of A in O(logn) time;
• requires O(N) memory, or in other words, exactly the same memory required

for A;
• is easy to use and code, especially, in the case of multidimensional arrays.

Fenwick tree is also called Binary Indexed Tree, or just BIT abbreviated.
The most common application of Fenwick tree is calculating the sum of a

range (i.e. f(A1, A2, . . . , Ak) = A1 +A2 + · · ·+Ak).
Fenwick tree was first described in a paper titled “A new data structure for

cumulative frequency tables” (Peter M. Fenwick, 1994).

8.2.1 Description

Overview

For the sake of simplicity, we will assume that function f is just a sum function.
Given an array of integers A[0 . . . N − 1]. A Fenwick tree is just an array

T [0 . . . N − 1], where each of its elements is equal to the sum of elements of A in
some range [g(i), i]:

Ti =
i∑

j=g(i)
Aj ,

where g is some function that satisfies 0 ≤ g(i) ≤ i. We will define the function
in the next few paragraphs.

The data structure is called tree, because there is a nice representation of
the data structure as tree, although we don’t need to model an actual tree with
nodes and edges. We will only need to maintain the array T to handle all queries.

Note: The Fenwick tree presented here uses zero-based indexing. Many people
will actually use a version of the Fenwick tree that uses one-based indexing.
Therefore you will also find an alternative implementation using one-based
indexing in the implementation section. Both versions are equivalent in terms of
time and memory complexity.

Now we can write some pseudo-code for the two operations mentioned above
- get the sum of elements of A in the range [0, r] and update (increase) some
element Ai:

def sum(int r):
res = 0
while (r >= 0):

res += t[r]
r = g(r) - 1
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return res

def increase(int i, int delta):
for all j with g(j) <= i <= j:

t[j] += delta

The function sum works as follows:

1. first, it adds the sum of the range [g(r), r] (i.e. T [r]) to the result
2. then, it “jumps” to the range [g(g(r)− 1), g(r)− 1], and adds this range’s

sum to the result
3. and so on, until it “jumps” from [0, g(g(. . . g(r)−1 · · ·−1)−1)] to [g(−1),−1];

that is where the sum function stops jumping.

The function increase works with the same analogy, but “jumps” in the
direction of increasing indices:

1. sums of the ranges [g(j), j] that satisfy the condition g(j) ≤ i ≤ j are
increased by delta , that is t[j] += delta. Therefore we updated all
elements in T that corresponds to ranges in with Ai lies.

It is obvious that the complexity of both sum and increase depend on the
function g. There are lots of ways to choose the function g, as long as 0 ≤ g(i) ≤ i
for all i. For instance the function g(i) = i works, which results just in T = A,
and therefore summation queries are slow. We can also take the function g(i) = 0.
This will correspond to prefix sum arrays, which means that finding the sum of
the range [0, i] will only take constant time, but updates are slow. The clever
part of the Fenwick algorithm is, that there it uses a special definition of the
function g that can handle both operations in O(logN) time.

Definition of g(i)

The computation of g(i) is defined using the following simple operation: we
replace all trailing 1 bits in the binary representation of i with 0 bits.

In other words, if the least significant digit of i in binary is 0, then g(i) = i.
And otherwise the least significant digit is a 1, and we take this 1 and all other
trailing 1s and flip them.

For instance we get

g(11) = g(10112) = 10002 = 8
g(12) = g(11002) = 11002 = 12
g(13) = g(11012) = 11002 = 12
g(14) = g(11102) = 11102 = 14
g(15) = g(11112) = 00002 = 0
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There exists a simple implementation using bitwise operations for the non-
trivial operation described above:

g(i) = i & (i+ 1),
where & is the bitwise AND operator. It is not hard to convince yourself that
this solution does the same thing as the operation described above.

Now, we just need to find a way to iterate over all j’s, such that g(j) ≤ i ≤ j.
It is easy to see that we can find all such j’s by starting with i and flipping

the last unset bit. We will call this operation h(j). For example, for i = 10 we
have:

10 = 00010102

h(10) = 11 = 00010112

h(11) = 15 = 00011112

h(15) = 31 = 00111112

h(31) = 63 = 01111112
...

Unsurprisingly, there also exists a simple way to perform h using bitwise
operations:

h(j) = j ‖ (j + 1),
where ‖ is the bitwise OR operator.

The following image shows a possible interpretation of the Fenwick tree as
tree. The nodes of the tree show the ranges they cover.

8.2.2 Implementation

Finding sum in one-dimensional array

Here we present an implementation of the Fenwick tree for sum queries and single
updates.
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The normal Fenwick tree can only answer sum queries of the type [0, r]
using sum(int r), however we can also answer other queries of the type [l, r] by
computing two sums [0, r] and [0, l − 1] and subtract them. This is handled in
the sum(int l, int r) method.

Also this implementation supports two constructors. You can create a Fenwick
tree initialized with zeros, or you can convert an existing array into the Fenwick
form.

struct FenwickTree {
vector<int> bit; // binary indexed tree
int n;

FenwickTree(int n) {
this->n = n;
bit.assign(n, 0);

}

FenwickTree(vector<int> a) : FenwickTree(a.size()) {
for (size_t i = 0; i < a.size(); i++)

add(i, a[i]);
}

int sum(int r) {
int ret = 0;
for (; r >= 0; r = (r & (r + 1)) - 1)

ret += bit[r];
return ret;

}

int sum(int l, int r) {
return sum(r) - sum(l - 1);

}

void add(int idx, int delta) {
for (; idx < n; idx = idx | (idx + 1))

bit[idx] += delta;
}

};

Finding minimum of [0, r] in one-dimensional array

It is obvious that there is no easy way of finding minimum of range [l, r] using
Fenwick tree, as Fenwick tree can only answer queries of type [0, r]. Additionally,
each time a value is update’d, the new value has to be smaller than the current
value (because themin function is not reversible). These, of course, are significant
limitations.

struct FenwickTreeMin {
vector<int> bit;
int n;
const int INF = (int)1e9;
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FenwickTreeMin(int n) {
this->n = n;
bit.assign(n, INF);

}

FenwickTreeMin(vector<int> a) : FenwickTreeMin(a.size()) {
for (size_t i = 0; i < a.size(); i++)

update(i, a[i]);
}

int getmin(int r) {
int ret = INF;
for (; r >= 0; r = (r & (r + 1)) - 1)

ret = min(ret, bit[r]);
return ret;

}

void update(int idx, int val) {
for (; idx < n; idx = idx | (idx + 1))

bit[idx] = min(bit[idx], val);
}

};

Note: it is possible to implement a Fenwick tree that can handle arbitrary
minimum range queries and arbitrary updates. The paper Efficient Range Mini-
mum Queries using Binary Indexed Trees describes such an approach. However
with that approach you need to maintain a second binary indexed trees over the
data, with a slightly different structure, since you one tree is not enough to store
the values of all elements in the array. The implementation is also a lot harder
compared to the normal implementation for sums.

Finding sum in two-dimensional array

As claimed before, it is very easy to implement Fenwick Tree for multidimensional
array.

struct FenwickTree2D {
vector<vector<int>> bit;
int n, m;

// init(...) { ... }

int sum(int x, int y) {
int ret = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1)

for (int j = y; j >= 0; j = (j & (j + 1)) - 1)
ret += bit[i][j];

return ret;
}

http://ioinformatics.org/oi/pdf/v9_2015_39_44.pdf
http://ioinformatics.org/oi/pdf/v9_2015_39_44.pdf


Data Structures, Chapter 8. Trees 144

void add(int x, int y, int delta) {
for (int i = x; i < n; i = i | (i + 1))

for (int j = y; j < m; j = j | (j + 1))
bit[i][j] += delta;

}
};

One-based indexing approach

For this approach we change the requirements and definition for T [] and g()
a little bit. We want T [i] to store the sum of [g(i) + 1; i]. This changes the
implementation a little bit, and allows for a similar nice definition for g(i):

def sum(int r):
res = 0
while (r > 0):

res += t[r]
r = g(r)

return res

def increase(int i, int delta):
for all j with g(j) < i <= j:

t[j] += delta

The computation of g(i) is defined as: toggling of the last set 1 bit in the
binary representation of i.

g(7) = g(1112) = 1102 = 6
g(6) = g(1102) = 1002 = 4
g(4) = g(1002) = 0002 = 0

The last set bit can be extracted using i & (−i), so the operation can be
expressed as:

g(i) = i− (i & (−i)).

And it’s not hard to see, that you need to change all values T [j] in the sequence
i, h(i), h(h(i)), . . . when you want to update A[j], where h(i) is defined as:

h(i) = i+ (i & (−i)).

As you can see, the main benefit of this approach is that the binary operations
complement each other very nicely.

The following implementation can be used like the other implementations,
however it uses one-based indexing internally.

struct FenwickTreeOneBasedIndexing {
vector<int> bit; // binary indexed tree
int n;
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FenwickTreeOneBasedIndexing(int n) {
this->n = n + 1;
bit.assign(n + 1, 0);

}

FenwickTreeOneBasedIndexing(vector<int> a)
: FenwickTreeOneBasedIndexing(a.size()) {
for (size_t i = 0; i < a.size(); i++)

add(i, a[i]);
}

int sum(int idx) {
int ret = 0;
for (++idx; idx > 0; idx -= idx & -idx)

ret += bit[idx];
return ret;

}

int sum(int l, int r) {
return sum(r) - sum(l - 1);

}

void add(int idx, int delta) {
for (++idx; idx < n; idx += idx & -idx)

bit[idx] += delta;
}

};

8.2.3 Range operations
A Fenwick tree can support the following range operations:

1. Point Update and Range Query
2. Range Update and Point Query
3. Range Update and Range Query

1. Point Update and Range Query

This is just the ordinary Fenwick tree as explained above.

2. Range Update and Point Query

Using simple tricks we can also do the reverse operations: increasing ranges and
querying for single values.

Let the Fenwick tree be initialized with zeros. Suppose that we want to
increment the interval [l, r] by x. We make two point update operations on
Fenwick tree which are add(l, x) and add(r+1, -x).

If we want to get the value of A[i], we just need to take the prefix sum using
the ordinary range sum method. To see why this is true, we can just focus on
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the previous increment operation again. If i < l, then the two update operations
have no effect on the query and we get the sum 0. If i ∈ [l, r], then we get the
answer x because of the first update operation. And if i > r, then the second
update operation will cancel the effect of first one.

The following implementation uses one-based indexing.

void add(int idx, int val) {
for (++idx; idx < n; idx += idx & -idx)

bit[idx] += val;
}

void range_add(int l, int r, int val) {
add(l, val);
add(r + 1, -val);

}

int point_query(int idx) {
int ret = 0;
for (++idx; idx > 0; idx -= idx & -idx)

ret += bit[idx];
return ret;

}

Note: of course it is also possible to increase a single point A[i] with
range_add(i, i, val).

3. Range Updates and Range Queries

To support both range updates and range queries we will use two BITs namely
B1[] and B2[], initialized with zeros.

Suppose that we want to increment the interval [l, r] by the value x. Similarly
as in the previous method, we perform two point updates on B1: add(B1, l, x)
and add(B1, r+1, -x). And we also update B2. The details will be explained
later.

def range_add(l, r, x):
add(B1, l, x)
add(B1, r+1, -x)
add(B2, l, x*(l-1))
add(B2, r+1, -x*r))

After the range update (l, r, x) the range sum query should return the following
values:

sum[0, i] =


0 i < l

x · (i− (l − 1)) l ≤ i ≤ r
x · (r − l + 1) i > r

We can write the range sum as difference of two terms, where we use B1 for
first term and B2 for second term. The difference of the queries will give us prefix
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sum over [0, i].

sum[0, i] = sum(B1, i) · i− sum(B2, i)

=


0 · i− 0 i < l

x · i− x · (l − 1) l ≤ i ≤ r
0 · i− (x · (l − 1)− x · r) i > r

The last expression is exactly equal to the required terms. Thus we can use
B2 for shaving off extra terms when we multiply B1[i]× i.

We can find arbitrary range sums by computing the prefix sums for l− 1 and
r and taking the difference of them again.

def add(b, idx, x):
while idx <= N:

b[idx] += x
idx += idx & -idx

def range_add(l,r,x):
add(B1, l, x)
add(B1, r+1, -x)
add(B2, l, x*(l-1))
add(B2, r+1, -x*r)

def sum(b, idx):
total = 0
while idx > 0:

total += b[idx]
idx -= idx & -idx

return total

def prefix_sum(idx):
return sum(B1, idx)*idx - sum(B2, idx)

def range_sum(l, r):
return prefix_sum(r) - prefix_sum(l-1)

8.2.4 Practice Problems
• UVA 12086 - Potentiometers
• LOJ 1112 - Curious Robin Hood
• LOJ 1266 - Points in Rectangle
• Codechef - SPREAD
• SPOJ - CTRICK
• SPOJ - MATSUM
• SPOJ - DQUERY
• SPOJ - NKTEAM
• SPOJ - YODANESS
• SRM 310 - FloatingMedian
• SPOJ - Ada and Behives

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=3238
http://www.lightoj.com/volume_showproblem.php?problem=1112
http://www.lightoj.com/volume_showproblem.php?problem=1266
http://www.codechef.com/problems/SPREAD
http://www.spoj.com/problems/CTRICK/
http://www.spoj.com/problems/MATSUM/
http://www.spoj.com/problems/DQUERY/
http://www.spoj.com/problems/NKTEAM/
http://www.spoj.com/problems/YODANESS/
https://community.topcoder.com/stat?c=problem_statement&pm=6551&rd=9990
http://www.spoj.com/problems/ADABEHIVE/
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• Hackerearth - Counting in Byteland
• DevSkills - Shan and String
• Codeforces - Little Artem and Time Machine
• Codeforces - Hanoi Factory
• SPOJ - Tulip and Numbers
• SPOJ - SUMSUM
• SPOJ - Sabir and Gifts
• SPOJ - The Permutation Game Again
• SPOJ - Zig when you Zag
• SPOJ - Cryon
• SPOJ - Weird Points
• SPOJ - Its a Murder
• SPOJ - Bored of Suffixes and Prefixes
• SPOJ - Mega Inversions
• Codeforces - Subsequences
• Codeforces - Ball
• GYM - The Kamphaeng Phet’s Chedis
• Codeforces - Garlands
• Codeforces - Inversions after Shuffle
• GYM - Cairo Market
• Codeforces - Goodbye Souvenir
• SPOJ - Ada and Species
• Codeforces - Thor
• Latin American Regionals 2017 - Fundraising

Other sources

• Fenwick tree on Wikipedia
• Binary indexed trees tutorial on TopCoder
• Range updates and queries

https://www.hackerearth.com/practice/data-structures/advanced-data-structures/fenwick-binary-indexed-trees/practice-problems/algorithm/counting-in-byteland/
https://devskill.com/CodingProblems/ViewProblem/300
http://codeforces.com/contest/669/problem/E
http://codeforces.com/contest/777/problem/E
http://www.spoj.com/problems/TULIPNUM/
http://www.spoj.com/problems/SUMSUM/
http://www.spoj.com/problems/SGIFT/
http://www.spoj.com/problems/TPGA/
http://www.spoj.com/problems/ZIGZAG2/
http://www.spoj.com/problems/CRAYON/
http://www.spoj.com/problems/DCEPC705/
http://www.spoj.com/problems/DCEPC206/
http://www.spoj.com/problems/KOPC12G/
http://www.spoj.com/problems/TRIPINV/
http://codeforces.com/contest/597/problem/C
http://codeforces.com/contest/12/problem/D
http://codeforces.com/gym/101047/problem/J
http://codeforces.com/contest/707/problem/E
http://codeforces.com/contest/749/problem/E
http://codeforces.com/problemset/gymProblem/101055/D
http://codeforces.com/contest/849/problem/E
http://www.spoj.com/problems/ADACABAA/
https://codeforces.com/problemset/problem/704/A
http://matcomgrader.com/problem/9346/fundraising/
http://en.wikipedia.org/wiki/Fenwick_tree
https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/
https://programmingcontests.quora.com/Tutorial-Range-Updates-in-Fenwick-Tree
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8.3 Sqrt Decomposition
Sqrt Decomposition is a method (or a data structure) that allows you to perform
some common operations (finding sum of the elements of the sub-array, finding
the minimal/maximal element, etc.) in O(

√
n) operations, which is much faster

than O(n) for the trivial algorithm.
First we describe the data structure for one of the simplest applications of

this idea, then show how to generalize it to solve some other problems, and finally
look at a slightly different use of this idea: splitting the input requests into sqrt
blocks.

8.3.1 Sqrt-decomposition based data structure
Given an array a[0 . . . n− 1], implement a data structure that allows to find the
sum of the elements a[l . . . r] for arbitrary l and r in O(

√
n) operations.

Description

The basic idea of sqrt decomposition is preprocessing. We’ll divide the array a
into blocks of length approximately

√
n, and for each block i we’ll precalculate

the sum of elements in it b[i].
We can assume that both the size of the block and the number of blocks are

equal to
√
n rounded up:

s = d
√
ne

Then the array a is divided into blocks in the following way:

a[0], a[1], . . . , a[s− 1]︸ ︷︷ ︸
b[0]

, a[s], . . . , a[2s− 1]︸ ︷︷ ︸
b[1]

, . . . , a[(s− 1) · s], . . . , a[n− 1]︸ ︷︷ ︸
b[s-1]

The last block may have fewer elements than the others (if n not a multiple
of s), it is not important to the discussion (as it can be handled easily). Thus,
for each block k, we know the sum of elements on it b[k]:

b[k] =
min (n−1,(k+1)·s−1)∑

i=k·s
a[i]

So, we have calculated the values of b[k] (this required O(n) operations). How
can they help us to answer each query [l, r] ? Notice that if the interval [l, r] is
long enough, it will contain several whole blocks, and for those blocks we can
find the sum of elements in them in a single operation. As a result, the interval
[l, r] will contain parts of only two blocks, and we’ll have to calculate the sum of
elements in these parts trivially.

Thus, in order to calculate the sum of elements on the interval [l, r] we only
need to sum the elements of the two “tails”: [l . . . (k + 1) · s− 1] and [p · s . . . r] ,
and sum the values b[i] in all the blocks from k + 1 to p− 1:
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r∑
i=l

a[i] =
(k+1)·s−1∑

i=l
a[i] +

p−1∑
i=k+1

b[i] +
r∑

i=p·s
a[i]

Note: When k = p, i.e. l and r belong to the same block, the formula can’t be
applied, and the sum should be calculated trivially.

This approach allows us to significantly reduce the number of operations.
Indeed, the size of each “tail” does not exceed the block length s, and the number
of blocks in the sum does not exceed s. Since we have chosen s ≈

√
n, the total

number of operations required to find the sum of elements on the interval [l, r] is
O(
√
n).

Implementation

Let’s start with the simplest implementation:

// input data
int n;
vector<int> a (n);

// preprocessing
int len = (int) sqrt (n + .0) + 1; // size of the block and the number of blocks
vector<int> b (len);
for (int i=0; i<n; ++i)

b[i / len] += a[i];

// answering the queries
for (;;) {

int l, r;
// read input data for the next query
int sum = 0;
for (int i=l; i<=r; )

if (i % len == 0 && i + len - 1 <= r) {
// if the whole block starting at i belongs to [l, r]
sum += b[i / len];
i += len;

}
else {

sum += a[i];
++i;

}
}

This implementation has unreasonably many division operations (which are
much slower than other arithmetical operations). Instead, we can calculate the
indices of the blocks cl and cr which contain indices l and r, and loop through
blocks cl + 1 . . . cr − 1 with separate processing of the “tails” in blocks cl and cr.
This approach corresponds to the last formula in the description, and makes the
case cl = cr a special case.
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int sum = 0;
int c_l = l / len, c_r = r / len;
if (c_l == c_r)

for (int i=l; i<=r; ++i)
sum += a[i];

else {
for (int i=l, end=(c_l+1)*len-1; i<=end; ++i)

sum += a[i];
for (int i=c_l+1; i<=c_r-1; ++i)

sum += b[i];
for (int i=c_r*len; i<=r; ++i)

sum += a[i];
}

8.3.2 Other problems
So far we were discussing the problem of finding the sum of elements of a contin-
uous subarray. This problem can be extended to allow to update individual
array elements. If an element a[i] changes, it’s sufficient to update the value of
b[k] for the block to which this element belongs (k = i/s) in one operation:

b[k]+ = anew[i]− aold[i]

On the other hand, the task of finding the sum of elements can be replaced
with the task of finding minimal/maximal element of a subarray. If this problem
has to address individual elements’ updates as well, updating the value of b[k]
is also possible, but it will require iterating through all values of block k in
O(s) = O(

√
n) operations.

Sqrt decomposition can be applied in a similar way to a whole class of other
problems: finding the number of zero elements, finding the first non-zero element,
counting elements which satisfy a certain property etc.

Another class of problems appears when we need to update array elements
on intervals: increment existing elements or replace them with a given value.

For example, let’s say we can do two types of operations on an array: add a
given value δ to all array elements on interval [l, r] or query the value of element
a[i]. Let’s store the value which has to be added to all elements of block k in b[k]
(initially all b[k] = 0). During each “add” operation we need to add δ to b[k] for
all blocks which belong to interval [l, r] and to add δ to a[i] for all elements which
belong to the “tails” of the interval. The answer a query i is simply a[i] + b[i/s].
This way “add” operation has O(

√
n) complexity, and answering a query has

O(1) complexity.
Finally, those two classes of problems can be combined if the task requires

doing both element updates on an interval and queries on an interval. Both
operations can be done with O(

√
n) complexity. This will require two block

arrays b and c: one to keep track of element updates and another to keep track
of answers to the query.

There exist other problems which can be solved using sqrt decomposition,
for example, a problem about maintaining a set of numbers which would allow
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adding/deleting numbers, checking whether a number belongs to the set and
finding k-th largest number. To solve it one has to store numbers in increasing
order, split into several blocks with

√
n numbers in each. Every time a number

is added/deleted, the blocks have to be rebalanced by moving numbers between
beginnings and ends of adjacent blocks.

8.3.3 Mo’s algorithm
A similar idea, based on sqrt decomposition, can be used to answer range queries
(Q) offline in O((N+Q)

√
N). This might sound like a lot worse than the methods

in the previous section, since this is a slightly worse complexity than we had
earlier and cannot update values between two queries. But in a lot of situations
this method has advantages. During a normal sqrt decomposition, we have to
precompute the answers for each block, and merge them during answering queries.
In some problems this merging step can be quite problematic. E.g. when each
queries asks to find the mode of its range (the number that appears the most
often). For this each block would have to store the count of each number in it in
some sort of data structure, and we cannot longer perform the merge step fast
enough any more. Mo’s algorithm uses a completely different approach, that
can answer these kind of queries fast, because it only keeps track of one data
structure, and the only operations with it are easy and fast.

The idea is to answer the queries in a special order based on the indices. We
will first answer all queries which have the left index in block 0, then answer all
queries which have left index in block 1 and so on. And also we will have to
answer the queries of a block is a special order, namely sorted by the right index
of the queries.

As already said we will use a single data structure. This data structure will
store information about the range. At the beginning this range will be empty.
When we want to answer the next query (in the special order), we simply extend
or reduce the range, by adding/removing elements on both sides of the current
range, until we transformed it into the query range. This way, we only need
to add or remove a single element once at a time, which should be pretty easy
operations in our data structure.

Since we change the order of answering the queries, this is only possible when
we are allowed to answer the queries in offline mode.

Implementation

In Mo’s algorithm we use two functions for adding an index and for removing an
index from the range which we are currently maintaining.

void remove(idx); // TODO: remove value at idx from data structure
void add(idx); // TODO: add value at idx from data structure
int get_answer(); // TODO: extract the current answer of the data structure

int block_size;

struct Query {
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int l, r, idx;
bool operator<(Query other) const
{

return make_pair(l / block_size, r) <
make_pair(other.l / block_size, other.r);

}
};

vector<int> mo_s_algorithm(vector<Query> queries) {
vector<int> answers(queries.size());
sort(queries.begin(), queries.end());

// TODO: initialize data structure

int cur_l = 0;
int cur_r = -1;
// invariant: data structure will always reflect the range [cur_l, cur_r]
for (Query q : queries) {

while (cur_l > q.l) {
cur_l--;
add(cur_l);

}
while (cur_r < q.r) {

cur_r++;
add(cur_r);

}
while (cur_l < q.l) {

remove(cur_l);
cur_l++;

}
while (cur_r > q.r) {

remove(cur_r);
cur_r--;

}
answers[q.idx] = get_answer();

}
return answers;

}

Based on the problem we can use a different data structure and modify the
add/remove/get_answer functions accordingly. For example if we are asked to
find range sum queries then we use a simple integer as data structure, which is 0
at the beginning. The add function will simply add the value of the position and
subsequently update the answer variable. On the other hand remove function
will subtract the value at position and subsequently update the answer variable.
And get_answer just returns the integer.

For answering mode-queries, we can use a binary search tree (e.g. map<int,
int>) for storing how often each number appears in the current range, and a
second binary search tree (e.g. set<pair<int, int>>) for keeping counts of the
numbers (e.g. as count-number pairs) in order. The add method removes the
current number from the second BST, increases the count in the first one, and
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inserts the number back into the second one. remove does the same thing, it
only decreases the count. And get_answer just looks at second tree and returns
the best value in O(1).

Complexity

Sorting all queries will take O(Q logQ).
How about the other operations? How many times will the add and remove

be called?
Let’s say the block size is S.
If we only look at all queries having the left index in the same block, the

queries are sorted by the right index. Therefore we will call add(cur_r) and
remove(cur_r) only O(N) times for all these queries combined. This gives
O(NSN) calls for all blocks.

The value of cur_l can change by at most O(S) during between two queries.
Therefore we have an additional O(SQ) calls of add(cur_l) and remove(cur_l).

For S ≈
√
N this gives O((N + Q)

√
N) operations in total. Thus the

complexity is O((N +Q)F
√
N) where O(F ) is the complexity of add and remove

function.

Tips for improving runtime

• Block size of precisely
√
N doesn’t always offer the best runtime. For

example, if
√
N = 750 then it may happen that block size of 700 or 800

may run better. More importantly, don’t compute the block size at runtime
- make it const. Division by constants is well optimized by compilers.

• In odd blocks sort the right index in ascending order and in even blocks sort
it in descending order. This will minimize the movement of right pointer,
as the normal sorting will move the right pointer from the end back to
the beginning at the start of every block. With the improved version this
resetting is no more necessary.

bool cmp(pair<int, int> p, pair<int, int> q) {
if (p.first / BLOCK_SIZE != q.first / BLOCK_SIZE)

return p < q;
return (p.first / BLOCK_SIZE & 1) ? (p.second < q.second) : (p.second > q.second);

}

You can read about even faster sorting approach here.

8.3.4 Practice Problems
• UVA - 12003 - Array Transformer
• UVA - 11990 Dynamic Inversion
• SPOJ - Give Away
• Codeforces - Till I Collapse
• Codeforces - Destiny
• Codeforces - Holes

https://codeforces.com/blog/entry/61203
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3154
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3141
http://www.spoj.com/problems/GIVEAWAY/
http://codeforces.com/contest/786/problem/C
http://codeforces.com/contest/840/problem/D
http://codeforces.com/contest/13/problem/E
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• Codeforces - XOR and Favorite Number
• Codeforces - Powerful array
• SPOJ - DQUERY

https://codeforces.com/problemset/problem/617/E
http://codeforces.com/problemset/problem/86/D
https://www.spoj.com/problems/DQUERY
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8.4 Segment Tree
A Segment Tree is a data structure that allows answering range queries over an
array effectively, while still being flexible enough to allow modifying the array.
This includes finding the sum of consecutive array elements a[l . . . r], or finding
the minimum element in a such a range in O(logn) time. Between answering such
queries the Segment Tree allows modifying the array by replacing one element,
or even change the elements of a whole subsegment (e.g. assigning all elements
a[l . . . r] to any value, or adding a value to all element in the subsegment).

In general a Segment Tree is a very flexible data structure, and a huge number
of problems can be solved with it. Additionally it is also possible to apply more
complex operations and answer more complex queries (see Advanced versions
of Segment Trees). In particular the Segment Tree can be easily generalized
to larger dimensions. For instance with a two-dimensional Segment Tree you
can answer sum or minimum queries over some subrectangle of a given matrix.
However only in O(log2 n) time.

One important property of Segment Trees is, that they require only a linear
amount of memory. The standard Segment Tree requires 4n vertices for working
on an array of size n.

8.4.1 Simplest form of a Segment Tree
To start easy, we consider the simplest form of a Segment Tree. We want to
answer sum queries efficiently. The formal definition of our task is: We have
an array a[0 . . . n − 1], and the Segment Tree must be able to find the sum of
elements between the indices l and r (i.e. computing the sum ∑r

i=l a[i]), and also
handle changing values of the elements in the array (i.e. perform assignments of
the form a[i] = x). The Segment Tree should be able to process both queries in
O(logn) time.

Structure of the Segment Tree

So, what is a Segment Tree?
We compute and store the sum of the elements of the whole array, i.e. the sum

of the segment a[0 . . . n− 1]. We then split the array into two halves a[0 . . . n/2]
and a[n/2 + 1 . . . n − 1] and compute the sum of each halve and store them.
Each of these two halves in turn also split in half, their sums are computed and
stored. And this process repeats until all segments reach size 1. In other words
we start with the segment a[0 . . . n− 1], split the current segment in half (if it
has not yet become a segment containing a single element), and then calling the
same procedure for both halves. For each such segment we store the sum of the
numbers on it.

We can say, that these segments form a binary tree: the root of this tree is the
segment a[0 . . . n− 1], and each vertex (except leaf vertices) has exactly two child
vertices. This is why the data structure is called “Segment Tree”, even though in
most implementations the tree is not constructed explicitly (see Implementation).
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Here is a visual representation of such a Segment Tree over the array a =
[1, 3,−2, 8,−7]:

Figure 8.3: “Sum Segment Tree”

From this short description of the data structure, we can already conclude
that a Segment Tree only requires a linear number of vertices. The first level
of the tree contains a single node (the root), the second level will contain two
vertices, in the third it will contain four vertices, until the number of vertices
reaches n. Thus the number of vertices in the worst case can be estimated by
the sum 1 + 2 + 4 + · · ·+ 2dlog2 ne = 2dlog2 ne+1 < 4n.

It is worth noting that whenever n is not a power of two, not all levels of the
Segment Tree will be completely filled. We can see that behavior in the image.
For now we can forget about this fact, but it will become important later during
the implementation.

The height of the Segment Tree is O(logn), because when going down from
the root to the leaves the size of the segments decreases approximately by half.

Construction

Before constructing the segment tree, we need to decide:

1. the value that gets stored at each node of the segment tree. For example,
in a sum segment tree, a node would store the sum of the elements in its
range [l, r].

2. the merge operation that merges two siblings in a segment tree. For example,
in a sum segment tree, the two nodes corresponding to the ranges a[l1 . . . r1]
and a[l2 . . . r2] would be merged into a node corresponding to the range
a[l1 . . . r2] by adding the values of the two nodes.
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Note that a vertex is a “leaf vertex”, if its corresponding segment covers only
one value in the original array. It is present at the lowermost level of a segment
tree. Its value would be equal to the (corresponding) element a[i].

Now, for construction of the segment tree, we start at the bottom level (the
leaf vertices) and assign them their respective values. On the basis of these values,
we can compute the values of the previous level, using the merge function. And
on the basis of those, we can compute the values of the previous, and repeat the
procedure until we reach the root vertex.

It is convenient to describe this operation recursively in the other direction,
i.e., from the root vertex to the leaf vertices. The construction procedure, if
called on a non-leaf vertex, does the following:

1. recursively construct the values of the two child vertices
2. merge the computed values of these children.

We start the construction at the root vertex, and hence, we are able to
compute the entire segment tree.

The time complexity of this construction is O(n), assuming that the merge
operation is constant time (the merge operation gets called n times, which is
equal to the number of internal nodes in the segment tree).

Sum queries

For now we are going to answer sum queries. As an input we receive two integers
l and r, and we have to compute the sum of the segment a[l . . . r] in O(logn)
time.

To do this, we will traverse the Segment Tree and use the precomputed sums
of the segments. Let’s assume that we are currently at the vertex that covers the
segment a[tl . . . tr]. There are three possible cases.

The easiest case is when the segment a[l . . . r] is equal to the corresponding
segment of the current vertex (i.e. a[l . . . r] = a[tl . . . tr]), then we are finished
and can return the precomputed sum that is stored in the vertex.

Alternatively the segment of the query can fall completely into the domain of
either the left or the right child. Recall that the left child covers the segment
a[tl . . . tm] and the right vertex covers the segment a[tm + 1 . . . tr] with tm =
(tl+ tr)/2. In this case we can simply go to the child vertex, which corresponding
segment covers the query segment, and execute the algorithm described here
with that vertex.

And then there is the last case, the query segment intersects with both
children. In this case we have no other option as to make two recursive calls,
one for each child. First we go to the left child, compute a partial answer for
this vertex (i.e. the sum of values of the intersection between the segment of the
query and the segment of the left child), then go to the right child, compute
the partial answer using that vertex, and then combine the answers by adding
them. In other words, since the left child represents the segment a[tl . . . tm] and
the right child the segment a[tm+ 1 . . . tr], we compute the sum query a[l . . . tm]
using the left child, and the sum query a[tm+ 1 . . . r] using the right child.
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So processing a sum query is a function that recursively calls itself once with
either the left or the right child (without changing the query boundaries), or
twice, once for the left and once for the right child (by splitting the query into
two subqueries). And the recursion ends, whenever the boundaries of the current
query segment coincides with the boundaries of the segment of the current vertex.
In that case the answer will be the precomputed value of the sum of this segment,
which is stored in the tree.

In other words, the calculation of the query is a traversal of the tree, which
spreads through all necessary branches of the tree, and uses the precomputed
sum values of the segments in the tree.

Obviously we will start the traversal from the root vertex of the Segment
Tree.

The procedure is illustrated in the following image. Again the array a =
[1, 3,−2, 8,−7] is used, and here we want to compute the sum ∑4

i=2 a[i]. The
colored vertices will be visited, and we will use the precomputed values of the
green vertices. This gives us the result −2 + 1 = −1.

Figure 8.4: “Sum Segment Tree Query”

Why is the complexity of this algorithm O(logn)? To show this complexity
we look at each level of the tree. It turns out, that for each level we only visit not
more than four vertices. And since the height of the tree is O(logn), we receive
the desired running time.

We can show that this proposition (at most four vertices each level) is true
by induction. At the first level, we only visit one vertex, the root vertex, so here
we visit less than four vertices. Now let’s look at an arbitrary level. By induction
hypothesis, we visit at most four vertices. If we only visit at most two vertices,
the next level has at most four vertices. That trivial, because each vertex can
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only cause at most two recursive calls. So let’s assume that we visit three or four
vertices in the current level. From those vertices, we will analyze the vertices in
the middle more carefully. Since the sum query asks for the sum of a continuous
subarray, we know that segments corresponding to the visited vertices in the
middle will be completely covered by the segment of the sum query. Therefore
these vertices will not make any recursive calls. So only the most left, and the
most right vertex will have the potential to make recursive calls. And those will
only create at most four recursive calls, so also the next level will satisfy the
assertion. We can say that one branch approaches the left boundary of the query,
and the second branch approaches the right one.

Therefore we visit at most 4 logn vertices in total, and that is equal to a
running time of O(logn).

In conclusion the query works by dividing the input segment into several
sub-segments for which all the sums are already precomputed and stored in the
tree. And if we stop partitioning whenever the query segment coincides with
the vertex segment, then we only need O(logn) such segments, which gives the
effectiveness of the Segment Tree.

Update queries

Now we want to modify a specific element in the array, let’s say we want to do
the assignment a[i] = x. And we have to rebuild the Segment Tree, such that it
correspond to the new, modified array.

This query is easier than the sum query. Each level of a Segment Tree forms a
partition of the array. Therefore an element a[i] only contributes to one segment
from each level. Thus only O(logn) vertices need to be updated.

It is easy to see, that the update request can be implemented using a recursive
function. The function gets passed the current tree vertex, and it recursively
calls itself with one of the two child vertices (the one that contains a[i] in its
segment), and after that recomputes its sum value, similar how it is done in the
build method (that is as the sum of its two children).

Again here is a visualization using the same array. Here we perform the
update a[2] = 3. The green vertices are the vertices that we visit and update.
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Figure 8.5: “Sum Segment Tree Update”

Implementation

The main consideration is how to store the Segment Tree. Of course we can define
a Vertex struct and create objects, that store the boundaries of the segment, its
sum and additionally also pointers to its child vertices. However this requires
storing a lot of redundant information. We will use a simple trick, to make this
a lot more efficient. We only store the sums in an array. The sum of the root
vertex at index 1, the sums of its two child vertices at indices 2 and 3, the sums
of the children of those two vertices at indices 4 to 7, and so on. It is easy to see,
that the left child of a vertex at index i is stored at index 2i, and the right one
at index 2i+ 1.

This simplifies the implementation a lot. We don’t need to store the structure
of the tree in memory. It is defined implicitly. We only need one array which
contains the sums of all segments.

As noted before, we need to store at most 4n vertices. It might be less, but for
convenience we always allocate an array of size 4n. There will be some elements
in the sum array, that will not correspond to any vertices in the actual tree, but
this doesn’t complicate the implementation.

So, we store the Segment Tree simply as an array t[] with a size of four times
the input size n:

int n, t[4*MAXN];

The procedure for constructing the Segment Tree from a given array a[] looks
like this: it is a recursive function with the parameters a[] (the input array), v
(the index of the current vertex), and the boundaries tl and tr of the current
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segment. In the main program this function will be called with the parameters
of the root vertex: v = 1, tl = 0, and tr = n− 1.

void build(int a[], int v, int tl, int tr) {
if (tl == tr) {

t[v] = a[tl];
} else {

int tm = (tl + tr) / 2;
build(a, v*2, tl, tm);
build(a, v*2+1, tm+1, tr);
t[v] = t[v*2] + t[v*2+1];

}
}

Further the function for answering sum queries is also a recursive function,
which receives as parameters information about the current vertex/segment
(i.e. the index v and the boundaries tl and tr) and also the information about
the boundaries of the query, l and r. In order to simplify the code, this function
always does two recursive calls, even if only one is necessary - in that case the
superfluous recursive call will have l > r, and this can easily be caught using an
additional check at the beginning of the function.

int sum(int v, int tl, int tr, int l, int r) {
if (l > r)

return 0;
if (l == tl && r == tr) {

return t[v];
}
int tm = (tl + tr) / 2;
return sum(v*2, tl, tm, l, min(r, tm))

+ sum(v*2+1, tm+1, tr, max(l, tm+1), r);
}

Finally the update query. The function will also receive information about
the current vertex/segment, and additionally also the parameter of the update
query (i.e. the position of the element and its new value).

void update(int v, int tl, int tr, int pos, int new_val) {
if (tl == tr) {

t[v] = new_val;
} else {

int tm = (tl + tr) / 2;
if (pos <= tm)

update(v*2, tl, tm, pos, new_val);
else

update(v*2+1, tm+1, tr, pos, new_val);
t[v] = t[v*2] + t[v*2+1];

}
}
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Memory efficient implementation

Most people use the implementation from the previous section. If you look at
the array t you can see that it follows the numbering of the tree nodes in the
order of a BFS traversal (level-order traversal). Using this traversal the children
of vertex v are 2v and 2v + 1 respectively. However if n is not a power of two,
this method will skip some indices and leave some parts of the array t unused.
The memory consumption is limited by 4n, even though a Segment Tree of an
array of n elements requires only 2n− 1 vertices.

However it can be reduced. We renumber the vertices of the tree in the order
of an Euler tour traversal (pre-order traversal), and we write all these vertices
next to each other.

Lets look at a vertex at index v, and let him be responsible for the segment
[l, r], and let mid = l + r

2 . It is obvious that the left child will have the index
v + 1. The left child is responsible for the segment [l,mid], i.e. in total there will
be 2 ∗ (mid− l + 1)− 1 vertices in the left child’s subtree. Thus we can compute
the index of the right child of v. The index will be v + 2 ∗ (mid− l + 1). By this
numbering we achieve a reduction of the necessary memory to 2n.

8.4.2 Advanced versions of Segment Trees
A Segment Tree is a very flexible data structure, and allows variations and
extensions in many different directions. Let’s try to categorize them below.

More complex queries

It can be quite easy to change the Segment Tree in a direction, such that it
computes different queries (e.g. computing the minimum / maximum instead of
the sum), but it also can be very nontrivial.

Finding the maximum Let us slightly change the condition of the problem
described above: instead of querying the sum, we will now make maximum
queries.

The tree will have exactly the same structure as the tree described above. We
only need to change the way t[v] is computed in the build and update functions.
t[v] will now store the maximum of the corresponding segment. And we also need
to change the calculation of the returned value of the sum function (replacing
the summation by the maximum).

Of course this problem can be easily changed into computing the minimum
instead of the maximum.

Instead of showing an implementation to this problem, the implementation
will be given to a more complex version of this problem in the next section.

Finding the maximum and the number of times it appears This task is
very similar to the previous one. In addition of finding the maximum, we also
have to find the number of occurrences of the maximum.
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To solve this problem, we store a pair of numbers at each vertex in the tree:
In addition to the maximum we also store the number of occurrences of it in the
corresponding segment. Determining the correct pair to store at t[v] can still
be done in constant time using the information of the pairs stored at the child
vertices. Combining two such pairs should be done in a separate function, since
this will be an operation that we will do while building the tree, while answering
maximum queries and while performing modifications.

pair<int, int> t[4*MAXN];

pair<int, int> combine(pair<int, int> a, pair<int, int> b) {
if (a.first > b.first)

return a;
if (b.first > a.first)

return b;
return make_pair(a.first, a.second + b.second);

}

void build(int a[], int v, int tl, int tr) {
if (tl == tr) {

t[v] = make_pair(a[tl], 1);
} else {

int tm = (tl + tr) / 2;
build(a, v*2, tl, tm);
build(a, v*2+1, tm+1, tr);
t[v] = combine(t[v*2], t[v*2+1]);

}
}

pair<int, int> get_max(int v, int tl, int tr, int l, int r) {
if (l > r)

return make_pair(-INF, 0);
if (l == tl && r == tr)

return t[v];
int tm = (tl + tr) / 2;
return combine(get_max(v*2, tl, tm, l, min(r, tm)),

get_max(v*2+1, tm+1, tr, max(l, tm+1), r));
}

void update(int v, int tl, int tr, int pos, int new_val) {
if (tl == tr) {

t[v] = make_pair(new_val, 1);
} else {

int tm = (tl + tr) / 2;
if (pos <= tm)

update(v*2, tl, tm, pos, new_val);
else

update(v*2+1, tm+1, tr, pos, new_val);
t[v] = combine(t[v*2], t[v*2+1]);

}
}
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Compute the greatest common divisor / least common multiple In
this problem we want to compute the GCD / LCM of all numbers of given ranges
of the array.

This interesting variation of the Segment Tree can be solved in exactly the
same way as the Segment Trees we derived for sum / minimum / maximum
queries: it is enough to store the GCD / LCM of the corresponding vertex in
each vertex of the tree. Combining two vertices can be done by computing the
GCM / LCM of both vertices.

Counting the number of zeros, searching for the k-th zero In this
problem we want to find the number of zeros in a given range, and additionally
find the index of the k-th zero using a second function.

Again we have to change the store values of the tree a bit: This time we
will store the number of zeros in each segment in t[]. It is pretty clear, how to
implement the build, update and count_zero functions, we can simply use the
ideas from the sum query problem. Thus we solved the first part of the problem.

Now we learn how to solve the problem of finding the k-th zero in the array
a[]. To do this task, we will descend the Segment Tree, starting at the root
vertex, and moving each time to either the left or the right child, depending
on which segment contains the k-th zero. In order to decide to which child we
need to go, it is enough to look at the number of zeros appearing in the segment
corresponding to the left vertex. If this precomputed count is greater or equal to
k, it is necessary to descend to the left child, and otherwise descent to the right
child. Notice, if we chose the right child, we have to subtract the number of zeros
of the left child from k.

In the implementation we can handle the special case, a[] containing less than
k zeros, by returning -1.

int find_kth(int v, int tl, int tr, int k) {
if (k > t[v])

return -1;
if (tl == tr)

return tl;
int tm = (tl + tr) / 2;
if (t[v*2] >= k)

return find_kth(v*2, tl, tm, k);
else

return find_kth(v*2+1, tm+1, tr, k - t[v*2]);
}

Searching for an array prefix with a given amount The task is as follows:
for a given value x we have to quickly find smallest index i such that the sum of
the first i elements of the array a[] is greater or equal to x (assuming that the
array a[] only contains non-negative values).

This task can be solved using binary search, computing the sum of the prefixes
with the Segment Tree. However this will lead to a O(log2 n) solution.
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Instead we can use the same idea as in the previous section, and find the
position by descending the tree: by moving each time to the left or the right,
depending on the sum of the left child. Thus finding the answer in O(logn) time.

Searching for the first element greater than a given amount The task
is as follows: for a given value x and a range a[l . . . r] find the smallest i in the
range a[l . . . r], such that a[i] is greater than x.

This task can be solved using binary search over max prefix queries with the
Segment Tree. However, this will lead to a O(log2 n) solution.

Instead, we can use the same idea as in the previous sections, and find the
position by descending the tree: by moving each time to the left or the right,
depending on the maximum value of the left child. Thus finding the answer in
O(logn) time.

int get_first(int v, int lv, int rv, int l, int r, int x) {
if(lv > r || rv < l) return -1;
if(l <= lv && rv <= r) {

if(t[v] <= x) return -1;
while(lv != rv) {

int mid = lv + (rv-lv)/2;
if(t[2*v] > x) {

v = 2*v;
rv = mid;

}else {
v = 2*v+1;
lv = mid+1;

}
}
return lv;

}

int mid = lv + (rv-lv)/2;
int rs = get_first(2*v, lv, mid, l, r, x);
if(rs != -1) return rs;
return get_first(2*v+1, mid+1, rv, l ,r, x);

}

Finding subsegments with the maximal sum Here again we receive a
range a[l . . . r] for each query, this time we have to find a subsegment a[l′ . . . r′]
such that l ≤ l′ and r′ ≤ r and the sum of the elements of this segment is maximal.
As before we also want to be able to modify individual elements of the array.
The elements of the array can be negative, and the optimal subsegment can be
empty (e.g. if all elements are negative).

This problem is a non-trivial usage of a Segment Tree. This time we will store
four values for each vertex: the sum of the segment, the maximum prefix sum,
the maximum suffix sum, and the sum of the maximal subsegment in it. In other
words for each segment of the Segment Tree the answer is already precomputed
as well as the answers for segments touching the left and the right boundaries of
the segment.
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How to build a tree with such data? Again we compute it in a recursive
fashion: we first compute all four values for the left and the right child, and then
combine those to archive the four values for the current vertex. Note the answer
for the current vertex is either:

• the answer of the left child, which means that the optimal subsegment is
entirely placed in the segment of the left child

• the answer of the right child, which means that the optimal subsegment is
entirely placed in the segment of the right child

• the sum of the maximum suffix sum of the left child and the maximum
prefix sum of the right child, which means that the optimal subsegment
intersects with both children.

Hence the answer to the current vertex is the maximum of these three
values. Computing the maximum prefix / suffix sum is even easier. Here is the
implementation of the combine function, which receives only data from the left
and right child, and returns the data of the current vertex.

struct data {
int sum, pref, suff, ans;

};

data combine(data l, data r) {
data res;
res.sum = l.sum + r.sum;
res.pref = max(l.pref, l.sum + r.pref);
res.suff = max(r.suff, r.sum + l.suff);
res.ans = max(max(l.ans, r.ans), l.suff + r.pref);
return res;

}

Using the combine function it is easy to build the Segment Tree. We can
implement it in exactly the same way as in the previous implementations. To
initialize the leaf vertices, we additionally create the auxiliary function make_data,
which will return a data object holding the information of a single value.

data make_data(int val) {
data res;
res.sum = val;
res.pref = res.suff = res.ans = max(0, val);
return res;

}

void build(int a[], int v, int tl, int tr) {
if (tl == tr) {

t[v] = make_data(a[tl]);
} else {

int tm = (tl + tr) / 2;
build(a, v*2, tl, tm);
build(a, v*2+1, tm+1, tr);
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t[v] = combine(t[v*2], t[v*2+1]);
}

}

void update(int v, int tl, int tr, int pos, int new_val) {
if (tl == tr) {

t[v] = make_data(new_val);
} else {

int tm = (tl + tr) / 2;
if (pos <= tm)

update(v*2, tl, tm, pos, new_val);
else

update(v*2+1, tm+1, tr, pos, new_val);
t[v] = combine(t[v*2], t[v*2+1]);

}
}

It only remains, how to compute the answer to a query. To answer it, we
go down the tree as before, breaking the query into several subsegments that
coincide with the segments of the Segment Tree, and combine the answers in
them into a single answer for the query. Then it should be clear, that the work
is exactly the same as in the simple Segment Tree, but instead of summing /
minimizing / maximizing the values, we use the combine function.

data query(int v, int tl, int tr, int l, int r) {
if (l > r)

return make_data(0);
if (l == tl && r == tr)

return t[v];
int tm = (tl + tr) / 2;
return combine(query(v*2, tl, tm, l, min(r, tm)),

query(v*2+1, tm+1, tr, max(l, tm+1), r));
}

Saving the entire subarrays in each vertex

This is a separate subsection that stands apart from the others, because at each
vertex of the Segment Tree we don’t store information about the corresponding
segment in compressed form (sum, minimum, maximum, . . . ), but store all
elements of the segment. Thus the root of the Segment Tree will store all
elements of the array, the left child vertex will store the first half of the array,
the right vertex the second half, and so on.

In its simplest application of this technique we store the elements in sorted
order. In more complex versions the elements are not stored in lists, but more
advanced data structures (sets, maps, . . . ). But all these methods have the
common factor, that each vertex requires linear memory (i.e. proportional to the
length of the corresponding segment).

The first natural question, when considering these Segment Trees, is about
memory consumption. Intuitively this might look like O(n2) memory, but it
turns out that the complete tree will only need O(n logn) memory. Why is this
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so? Quite simply, because each element of the array falls into O(logn) segments
(remember the height of the tree is O(logn)).

So in spite of the apparent extravagance of such a Segment Tree, it consumes
only slightly more memory than the usual Segment Tree.

Several typical applications of this data structure are described below. It is
worth noting the similarity of these Segment Trees with 2D data structures (in
fact this is a 2D data structure, but with rather limited capabilities).

Find the smallest number greater or equal to a specified number. No
modification queries. We want to answer queries of the following form: for
three given numbers (l, r, x) we have to find the minimal number in the segment
a[l . . . r] which is greater than or equal to x.

We construct a Segment Tree. In each vertex we store a sorted list of all
numbers occurring in the corresponding segment, like described above. How to
build such a Segment Tree as effectively as possible? As always we approach
this problem recursively: let the lists of the left and right children already be
constructed, and we want to build the list for the current vertex. From this view
the operation is now trivial and can be accomplished in linear time: We only
need to combine the two sorted lists into one, which can be done by iterating
over them using two pointers. The C++ STL already has an implementation of
this algorithm.

Because this structure of the Segment Tree and the similarities to the merge
sort algorithm, the data structure is also often called “Merge Sort Tree”.

vector<int> t[4*MAXN];

void build(int a[], int v, int tl, int tr) {
if (tl == tr) {

t[v] = vector<int>(1, a[tl]);
} else {

int tm = (tl + tr) / 2;
build(a, v*2, tl, tm);
build(a, v*2+1, tm+1, tr);
merge(t[v*2].begin(), t[v*2].end(), t[v*2+1].begin(), t[v*2+1].end(),

back_inserter(t[v]));
}

}

We already know that the Segment Tree constructed in this way will require
O(n logn) memory. And thanks to this implementation its construction also
takes O(n logn) time, after all each list is constructed in linear time in respect
to its size.

Now consider the answer to the query. We will go down the tree, like in the
regular Segment Tree, breaking our segment a[l . . . r] into several subsegments
(into at most O(logn) pieces). It is clear that the answer of the whole answer
is the minimum of each of the subqueries. So now we only need to understand,
how to respond to a query on one such subsegment that corresponds with some
vertex of the tree.
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We are at some vertex of the Segment Tree and we want to compute the
answer to the query, i.e. find the minimum number greater that or equal to a
given number x. Since the vertex contains the list of elements in sorted order,
we can simply perform a binary search on this list and return the first number,
greater than or equal to x.

Thus the answer to the query in one segment of the tree takes O(logn) time,
and the entire query is processed in O(log2 n).

int query(int v, int tl, int tr, int l, int r, int x) {
if (l > r)

return INF;
if (l == tl && r == tr) {

vector<int>::iterator pos = lower_bound(t[v].begin(), t[v].end(), x);
if (pos != t[v].end())

return *pos;
return INF;

}
int tm = (tl + tr) / 2;
return min(query(v*2, tl, tm, l, min(r, tm), x),

query(v*2+1, tm+1, tr, max(l, tm+1), r, x));
}

The constant INF is equal to some large number that is bigger than all
numbers in the array. Its usage means, that there is no number greater than or
equal to x in the segment. It has the meaning of “there is no answer in the given
interval”.

Find the smallest number greater or equal to a specified number.
With modification queries. This task is similar to the previous. The last
approach has a disadvantage, it was not possible to modify the array between
answering queries. Now we want to do exactly this: a modification query will do
the assignment a[i] = y.

The solution is similar to the solution of the previous problem, but instead of
lists at each vertex of the Segment Tree, we will store a balanced list that allows
you to quickly search for numbers, delete numbers, and insert new numbers.
Since the array can contain a number repeated, the optimal choice is the data
structure multiset.

The construction of such a Segment Tree is done in pretty much the same way
as in the previous problem, only now we need to combine multisets and not sorted
lists. This leads to a construction time of O(n log2 n) (in general merging two
red-black trees can be done in linear time, but the C++ STL doesn’t guarantee
this time complexity).

The query function is also almost equivalent, only now the lower_bound
function of the multiset function should be called instead (std::lower_bound only
works in O(logn) time if used with random-access iterators).

Finally the modification request. To process it, we must go down the tree, and
modify all multiset from the corresponding segments that contain the effected
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element. We simply delete the old value of this element (but only one occurrence),
and insert the new value.

void update(int v, int tl, int tr, int pos, int new_val) {
t[v].erase(t[v].find(a[pos]));
t[v].insert(new_val);
if (tl != tr) {

int tm = (tl + tr) / 2;
if (pos <= tm)

update(v*2, tl, tm, pos, new_val);
else

update(v*2+1, tm+1, tr, pos, new_val);
} else {

a[pos] = new_val;
}

}

Processing of this modification query also takes O(log2 n) time.

Find the smallest number greater or equal to a specified number.
Acceleration with “fractional cascading”. We have the same problem
statement, we want to find the minimal number greater than or equal to x in a
segment, but this time in O(logn) time. We will improve the time complexity
using the technique “fractional cascading”.

Fractional cascading is a simple technique that allows you to improve the
running time of multiple binary searches, which are conducted at the same
time. Our previous approach to the search query was, that we divide the task
into several subtasks, each of which is solved with a binary search. Fractional
cascading allows you to replace all of these binary searches with a single one.

The simplest and most obvious example of fractional cascading is the following
problem: there are k sorted lists of numbers, and we must find in each list the
first number greater than or equal to the given number.

Instead of performing a binary search for each list, we could merge all lists
into one big sorted list. Additionally for each element y we store a list of results
of searching for y in each of the k lists. Therefore if we want to find the smallest
number greater than or equal to x, we just need to perform one single binary
search, and from the list of indices we can determine the smallest number in each
list. This approach however requires O(n · k) (n is the length of the combined
lists), which can be quite inefficient.

Fractional cascading reduces this memory complexity to O(n) memory, by
creating from the k input lists k new lists, in which each list contains the
corresponding list and additionally also every second element of the following new
list. Using this structure it is only necessary to store two indices, the index of
the element in the original list, and the index of the element in the following new
list. So this approach only uses O(n) memory, and still can answer the queries
using a single binary search.

But for our application we do not need the full power of fractional cascading.
In our Segment Tree a vertex will contain the sorted list of all elements that occur
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in either the left or the right subtrees (like in the Merge Sort Tree). Additionally
to this sorted list, we store two positions for each element. For an element y we
store the smallest index i, such that the ith element in the sorted list of the left
child is greater or equal to y. And we store the smallest index j, such that the
jth element in the sorted list of the right child is greater or equal to y. These
values can be computed in parallel to the merging step when we build the tree.

How does this speed up the queries?
Remember, in the normal solution we did a binary search in ever node. But

with this modification, we can avoid all except one.
To answer a query, we simply to a binary search in the root node. This gives

as the smallest element y ≥ x in the complete array, but it also gives us two
positions. The index of the smallest element greater or equal x in the left subtree,
and the index of the smallest element y in the right subtree. Notice that ≥ y is
the same as ≥ x, since our array doesn’t contain any elements between x and
y. In the normal Merge Sort Tree solution we would compute these indices via
binary search, but with the help of the precomputed values we can just look
them up in O(1). And we can repeat that until we visited all nodes that cover
our query interval.

To summarize, as usual we touch O(logn) nodes during a query. In the root
node we do a binary search, and in all other nodes we only do constant work.
This means the complexity for answering a query is O(logn).

But notice, that this uses three times more memory than a normal Merge
Sort Tree, which already uses a lot of memory (O(n logn)).

It is straightforward to apply this technique to a problem, that doesn’t require
any modification queries. The two positions are just integers and can easily be
computed by counting when merging the two sorted sequences.

It it still possible to also allow modification queries, but that complicates the
entire code. Instead of integers, you need to store the sorted array as multiset,
and instead of indices you need to store iterators. And you need to work very
carefully, so that you increment or decrement the correct iterators during a
modification query.

Other possible variations This technique implies a whole new class of possible
applications. Instead of storing a vector or a multiset in each vertex, other
data structures can be used: other Segment Trees (somewhat discussed in
Generalization to higher dimensions), Fenwick Trees, Cartesian trees, etc.

Range updates (Lazy Propagation)

All problems in the above sections discussed modification queries that only
effected a single element of the array each. However the Segment Tree allows
applying modification queries to an entire segment of contiguous elements, and
perform the query in the same time O(logn).

Addition on segments We begin by considering problems of the simplest form:
the modification query should add a number x to all numbers in the segment
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a[l . . . r]. The second query, that we are supposed to answer, asked simply for
the value of a[i].

To make the addition query efficient, we store at each vertex in the Segment
Tree how many we should add to all numbers in the corresponding segment. For
example, if the query “add 3 to the whole array a[0 . . . n− 1]” comes, then we
place the number 3 in the root of the tree. In general we have to place this number
multiple to multiple segments, which form a partition of the query segment. Thus
we don’t have to change all O(n) values, but only O(logn) many.

If now there comes a query that asks the current value of a particular array
entry, it is enough to go down the tree and add up all values found along the way.

void build(int a[], int v, int tl, int tr) {
if (tl == tr) {

t[v] = a[tl];
} else {

int tm = (tl + tr) / 2;
build(a, v*2, tl, tm);
build(a, v*2+1, tm+1, tr);
t[v] = 0;

}
}

void update(int v, int tl, int tr, int l, int r, int add) {
if (l > r)

return;
if (l == tl && r == tr) {

t[v] += add;
} else {

int tm = (tl + tr) / 2;
update(v*2, tl, tm, l, min(r, tm), add);
update(v*2+1, tm+1, tr, max(l, tm+1), r, add);

}
}

int get(int v, int tl, int tr, int pos) {
if (tl == tr)

return t[v];
int tm = (tl + tr) / 2;
if (pos <= tm)

return t[v] + get(v*2, tl, tm, pos);
else

return t[v] + get(v*2+1, tm+1, tr, pos);
}

Assignment on segments Suppose now that the modification query asks to
assign each element of a certain segment a[l . . . r] to some value p. As a second
query we will again consider reading the value of the array a[i].

To perform this modification query on a whole segment, you have to store at
each vertex of the Segment Tree whether the corresponding segment is covered
entirely with the same value or not. This allows us to make a “lazy” update:
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instead of changing all segments in the tree that cover the query segment, we only
change some, and leave others unchanged. A marked vertex will mean, that every
element of the corresponding segment is assigned to that value, and actually also
the complete subtree should only contain this value. In a sense we are lazy and
delay writing the new value to all those vertices. We can do this tedious task
later, if this is necessary.

So after the modification query is executed, some parts of the tree become
irrelevant - some modifications remain unfulfilled in it.

For example if a modification query “assign a number to the whole array
a[0 . . . n− 1]” gets executed, in the Segment Tree only a single change is made -
the number is placed in the root of the tree and this vertex gets marked. The
remaining segments remain unchanged, although in fact the number should be
placed in the whole tree.

Suppose now that the second modification query says, that the first half of
the array a[0 . . . n/2] should be assigned with some other number. To process
this query we must assign each element in the whole left child of the root vertex
with that number. But before we do this, we must first sort out the root vertex
first. The subtlety here is that the right half of the array should still be assigned
to the value of the first query, and at the moment there is no information for the
right half stored.

The way to solve this is to push the information of the root to its children,
i.e. if the root of the tree was assigned with any number, then we assign the left
and the right child vertices with this number and remove the mark of the root.
After that, we can assign the left child with the new value, without loosing any
necessary information.

Summarizing we get: for any queries (a modification or reading query) during
the descent along the tree we should always push information from the current
vertex into both of its children. We can understand this in such a way, that
when we descent the tree we apply delayed modifications, but exactly as much as
necessary (so not to degrade the complexity of O(logn).

For the implementation we need to make a push function, which will receive
the current vertex, and it will push the information for its vertex to both its
children. We will call this function at the beginning of the query functions (but
we will not call it from the leaves, because there is no need to push information
from them any further).

void push(int v) {
if (marked[v]) {

t[v*2] = t[v*2+1] = t[v];
marked[v*2] = marked[v*2+1] = true;
marked[v] = false;

}
}

void update(int v, int tl, int tr, int l, int r, int new_val) {
if (l > r)

return;
if (l == tl && tr == r) {
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t[v] = new_val;
marked[v] = true;

} else {
push(v);
int tm = (tl + tr) / 2;
update(v*2, tl, tm, l, min(r, tm), new_val);
update(v*2+1, tm+1, tr, max(l, tm+1), r, new_val);

}
}

int get(int v, int tl, int tr, int pos) {
if (tl == tr) {

return t[v];
}
push(v);
int tm = (tl + tr) / 2;
if (pos <= tm)

return get(v*2, tl, tm, pos);
else

return get(v*2+1, tm+1, tr, pos);
}

Notice: the function get can also be implemented in a different way: do not
make delayed updates, but immediately return the value t[v] if marked[v] is true.

Adding on segments, querying for maximum Now the modification query
is to add a number to all elements in a range, and the reading query is to find
the maximum in a range.

So for each vertex of the Segment Tree we have to store the maximum of
the corresponding subsegment. The interesting part is how to recompute these
values during a modification request.

For this purpose we keep store an additional value for each vertex. In this
value we store the addends we haven’t propagated to the child vertices. Before
traversing to a child vertex, we call push and propagate the value to both children.
We have to do this in both the update function and the query function.

void push(int v) {
t[v*2] += lazy[v];
lazy[v*2] += lazy[v];
t[v*2+1] += lazy[v];
lazy[v*2+1] += lazy[v];
lazy[v] = 0;

}

void update(int v, int tl, int tr, int l, int r, int addend) {
if (l > r)

return;
if (l == tl && tr == r) {

t[v] += addend;
lazy[v] += addend;
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} else {
push(v);
int tm = (tl + tr) / 2;
update(v*2, tl, tm, l, min(r, tm), addend);
update(v*2+1, tm+1, tr, max(l, tm+1), r, addend);
t[v] = max(t[v*2], t[v*2+1]);

}
}

int query(int v, int tl, int tr, int l, int r) {
if (l > r)

return -INF;
if (l <= tl && tr <= r)

return t[v];
push(v);
int tm = (tl + tr) / 2;
return max(query(v*2, tl, tm, l, min(r, tm)),

query(v*2+1, tm+1, tr, max(l, tm+1), r));
}

Generalization to higher dimensions

A Segment Tree can be generalized quite natural to higher dimensions. If in the
one-dimensional case we split the indices of the array into segments, then in the
two-dimensional we make an ordinary Segment Tree with respect to the first
indices, and for each segment we build an ordinary Segment Tree with respect to
the second indices.

Simple 2D Segment Tree A matrix a[0 . . . n − 1, 0 . . .m − 1] is given,
and we have to find the sum (or minimum/maximum) on some submatrix
a[x1 . . . x2, y1 . . . y2], as well as perform modifications of individual matrix
elements (i.e. queries of the form a[x][y] = p).

So we build a 2D Segment Tree: first the Segment Tree using the first
coordinate (x), then the second (y).

To make the construction process more understandable, you can forget for
a while that the matrix is two-dimensional, and only leave the first coordinate.
We will construct an ordinary one-dimensional Segment Tree using only the first
coordinate. But instead of storing a number in a segment, be store an entire
Segment Tree: i.e. at this moment we remember that we also have a second
coordinate; but because at this moment the first coordinate is already fixed to
some interval [l . . . r], we actually work with such a strip a[l . . . r, 0 . . .m− 1] and
for it we build a Segment Tree.

Here is the implementation of the construction of a 2D Segment Tree. It
actually represents two separate blocks: the construction of a Segment Tree along
the x coordinate (buildx), and the y coordinate (buildy). For the leaf nodes
in buildy we have to separate two cases: when the current segment of the first
coordinate [tlx . . . trx] has length 1, and when it has a length greater than one.
In the first case, we just take the corresponding value from the matrix, and in
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the second case we can combine the values of two Segment Trees from the left
and the right son in the coordinate x.

void build_y(int vx, int lx, int rx, int vy, int ly, int ry) {
if (ly == ry) {

if (lx == rx)
t[vx][vy] = a[lx][ly];

else
t[vx][vy] = t[vx*2][vy] + t[vx*2+1][vy];

} else {
int my = (ly + ry) / 2;
build_y(vx, lx, rx, vy*2, ly, my);
build_y(vx, lx, rx, vy*2+1, my+1, ry);
t[vx][vy] = t[vx][vy*2] + t[vx][vy*2+1];

}
}

void build_x(int vx, int lx, int rx) {
if (lx != rx) {

int mx = (lx + rx) / 2;
build_x(vx*2, lx, mx);
build_x(vx*2+1, mx+1, rx);

}
build_y(vx, lx, rx, 1, 0, m-1);

}

Such a Segment Tree still uses a linear amount of memory, but with a larger
constant: 16nm. It is clear that the described procedure buildx also works in
linear time.

Now we turn to processing of queries. We will answer to the two-dimensional
query using the same principle: first break the query on the first coordinate, and
then for every reached vertex, we call the corresponding Segment Tree of the
second coordinate.

int sum_y(int vx, int vy, int tly, int try_, int ly, int ry) {
if (ly > ry)

return 0;
if (ly == tly && try_ == ry)

return t[vx][vy];
int tmy = (tly + try_) / 2;
return sum_y(vx, vy*2, tly, tmy, ly, min(ry, tmy))

+ sum_y(vx, vy*2+1, tmy+1, try_, max(ly, tmy+1), ry);
}

int sum_x(int vx, int tlx, int trx, int lx, int rx, int ly, int ry) {
if (lx > rx)

return 0;
if (lx == tlx && trx == rx)

return sum_y(vx, 1, 0, m-1, ly, ry);
int tmx = (tlx + trx) / 2;
return sum_x(vx*2, tlx, tmx, lx, min(rx, tmx), ly, ry)
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+ sum_x(vx*2+1, tmx+1, trx, max(lx, tmx+1), rx, ly, ry);
}

This function works in O(logn logm) time, since it first descends the free in
the first coordinate, and for each traversed vertex in the tree it makes a query in
the corresponding Segment Tree along the second coordinate.

Finally we consider the modification query. We want to learn how to modify
the Segment Tree in accordance with the change in the value of some element
a[x][y] = p. It is clear, that the changes will occur only in those vertices of the
first Segment Tree that cover the coordinate x (and such will be O(logn)), and
for Segment Trees corresponding to them the changes will only occurs at those
vertices that covers the coordinate y (and such will be O(logm)). Therefore the
implementation will be not very different form the one-dimensional case, only
now we first descend the first coordinate, and then the second.

void update_y(int vx, int lx, int rx, int vy, int ly, int ry, int x, int y, int new_val) {
if (ly == ry) {

if (lx == rx)
t[vx][vy] = new_val;

else
t[vx][vy] = t[vx*2][vy] + t[vx*2+1][vy];

} else {
int my = (ly + ry) / 2;
if (y <= my)

update_y(vx, lx, rx, vy*2, ly, my, x, y, new_val);
else

update_y(vx, lx, rx, vy*2+1, my+1, ry, x, y, new_val);
t[vx][vy] = t[vx][vy*2] + t[vx][vy*2+1];

}
}

void update_x(int vx, int lx, int rx, int x, int y, int new_val) {
if (lx != rx) {

int mx = (lx + rx) / 2;
if (x <= mx)

update_x(vx*2, lx, mx, x, y, new_val);
else

update_x(vx*2+1, mx+1, rx, x, y, new_val);
}
update_y(vx, lx, rx, 1, 0, m-1, x, y, new_val);

}

Compression of 2D Segment Tree Let the problem be the following: there
are n points on the plane given by their coordinates (xi, yi) and queries of the
form “count the number of points lying in the rectangle ((x1, y1), (x2, y2))”. It
is clear that in the case of such a problem it becomes unreasonably wasteful
to construct a two-dimensional Segment Tree with O(n2) elements. Most on
this memory will be wasted, since each single point can only get into O(logn)
segments of the tree along the first coordinate, and therefore the total “useful”
size of all tree segments on the second coordinate is O(n logn).
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So we proceed as follows: at each vertex of the Segment Tree with respect to
the first coordinate we store a Segment Tree constructed only by those second
coordinates that occur in the current segment of the first coordinates. In other
words, when constructing a Segment Tree inside some vertex with index vx and
the boundaries tlx and trx, we only consider those points that fall into this
interval x ∈ [tlx, trx], and build a Segment Tree just using them.

Thus we will achieve that each Segment Tree on the second coordinate will
occupy exactly as much memory as it should. As a result, the total amount of
memory will decrease to O(n logn). We still can answer the queries in O(log2 n)
time, we just have to make a binary search on the second coordinate, but this
will not worsen the complexity.

But modification queries will be impossible with this structure: in fact if a
new point appears, we have to add a new element in the middle of some Segment
Tree along the second coordinate, which cannot be effectively done.

In conclusion we note that the two-dimensional Segment Tree contracted
in the described way becomes practically equivalent to the modification of the
one-dimensional Segment Tree (see Saving the entire subarrays in each vertex).
In particular the two-dimensional Segment Tree is just a special case of storing
a subarray in each vertex of the tree. It follows, that if you gave to abandon a
two-dimensional Segment Tree due to the impossibility of executing a query, it
makes sense to try to replace the nested Segment Tree with some more powerful
data structure, for example a Cartesian tree.

Preserving the history of its values (Persistent Segment Tree)

A persistent data structure is a data structure that remembers it previous state
for each modification. This allows to access any version of this data structure
that interest us and execute a query on it.

Segment Tree is a data structure that can be turned into a persistent data
structure efficiently (both in time and memory consumption). We want to avoid
copying the complete tree before each modification, and we don’t want to loose
the O(logn) time behavior for answering range queries.

In fact, any change request in the Segment Tree leads to a change in the data
of only O(logn) vertices along the path starting from the root. So if we store
the Segment Tree using pointers (i.e. a vertex stores pointers to the left and the
right child vertices), then when performing the modification query, we simply
need to create new vertices instead of changing the available vertices. Vertices
that are not affected by the modification query can still be used by pointing the
pointers to the old vertices. Thus for a modification query O(logn) new vertices
will be created, including a new root vertex of the Segment Tree, and the entire
previous version of the tree rooted at the old root vertex will remain unchanged.

Let’s give an example implementation for the simplest Segment Tree: when
there is only a query asking for sums, and modification queries of single elements.

struct Vertex {
Vertex *l, *r;
int sum;
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Vertex(int val) : l(nullptr), r(nullptr), sum(val) {}
Vertex(Vertex *l, Vertex *r) : l(l), r(r), sum(0) {

if (l) sum += l->sum;
if (r) sum += r->sum;

}
};

Vertex* build(int a[], int tl, int tr) {
if (tl == tr)

return new Vertex(a[tl]);
int tm = (tl + tr) / 2;
return new Vertex(build(a, tl, tm), build(a, tm+1, tr));

}

int get_sum(Vertex* v, int tl, int tr, int l, int r) {
if (l > r)

return 0;
if (l == tl && tr == r)

return v->sum;
int tm = (tl + tr) / 2;
return get_sum(v->l, tl, tm, l, min(r, tm))

+ get_sum(v->r, tm+1, tr, max(l, tm+1), r);
}

Vertex* update(Vertex* v, int tl, int tr, int pos, int new_val) {
if (tl == tr)

return new Vertex(new_val);
int tm = (tl + tr) / 2;
if (pos <= tm)

return new Vertex(update(v->l, tl, tm, pos, new_val), v->r);
else

return new Vertex(v->l, update(v->r, tm+1, tr, pos, new_val));
}

For each modification of the Segment Tree we will receive a new root vertex.
To quickly jump between two different versions of the Segment Tree, we need
to store this roots in an array. To use a specific version of the Segment Tree we
simply call the query using the appropriate root vertex.

With the approach described above almost any Segment Tree can be turned
into a persistent data structure.

Finding the k-th smallest number in a range This time we have to answer
queries of the form "What is the k-th smallest element in the range a[l . . . r]. This
query can be answered using a binary search and a Merge Sort Tree, but the
time complexity for a single query would be O(log3 n). We will accomplish the
same task using a persistent Segment Tree in O(logn).

First we will discuss a solution for a simpler problem: We will only consider
arrays in which the elements are bound by 0 ≤ a[i] < n. And we only want to
find the k-th smallest element in some prefix of the array a. It will be very easy
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to extent the developed ideas later for not restricted arrays and not restricted
range queries. Note that we will be using 1 based indexing for a.

We will use a Segment Tree that counts all appearing numbers, i.e. in the
Segment Tree we will store the histogram of the array. So the leaf vertices will
store how often the values 0, 1, . . ., n− 1 will appear in the array, and the other
vertices store how many numbers in some range are in the array. In other words
we create a regular Segment Tree with sum queries over the histogram of the
array. But instead of creating all n Segment Trees for every possible prefix, we
will create one persistent one, that will contain the same information. We will
start with an empty Segment Tree (all counts will be 0) pointed to by root0, and
add the elements a[1], a[2], . . ., a[n] one after another. For each modification we
will receive a new root vertex, let’s call rooti the root of the Segment Tree after
inserting the first i elements of the array a. The Segment Tree rooted at rooti
will contain the histogram of the prefix a[1 . . . i]. Using this Segment Tree we can
find in O(logn) time the position of the k-th element using the same technique
discussed in Counting the number of zeros, searching for the k-th zero.

Now to the not-restricted version of the problem.
First for the restriction on the queries: Instead of only performing these

queries over a prefix of a, we want to use any arbitrary segments a[l . . . r]. Here
we need a Segment Tree that represents the histogram of the elements in the
range a[l . . . r]. It is easy to see that such a Segment Tree is just the difference
between the Segment Tree rooted at rootr and the Segment Tree rooted at rootl−1,
i.e. every vertex in the [l . . . r] Segment Tree can be computed with the vertex of
the rootr tree minus the vertex of the rootl−1 tree.

In the implementation of the find_kth function this can be handled by
passing two vertex pointer and computing the count/sum of the current segment
as difference of the two counts/sums of the vertices.

Here are the modified build, update and find_kth functions

Vertex* build(int tl, int tr) {
if (tl == tr)

return new Vertex(0);
int tm = (tl + tr) / 2;
return new Vertex(build(tl, tm), build(tm+1, tr));

}

Vertex* update(Vertex* v, int tl, int tr, int pos) {
if (tl == tr)

return new Vertex(v->sum+1);
int tm = (tl + tr) / 2;
if (pos <= tm)

return new Vertex(update(v->l, tl, tm, pos), v->r);
else

return new Vertex(v->l, update(v->r, tm+1, tr, pos));
}

int find_kth(Vertex* vl, Vertex *vr, int tl, int tr, int k) {
if (tl == tr)

return tl;
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int tm = (tl + tr) / 2, left_count = vr->l->sum - vl->l->sum;
if (left_count >= k)

return find_kth(vl->l, vr->l, tl, tm, k);
return find_kth(vl->r, vr->r, tm+1, tr, k-left_count);

}

As already written above, we need to store the root of the initial Segment Tree,
and also all the roots after each update. Here is the code for building a persistent
Segment Tree over an vector a with elements in the range [0, MAX_VALUE].

int tl = 0, tr = MAX_VALUE + 1;
std::vector<Vertex*> roots;
roots.push_back(build(tl, tr));
for (int i = 0; i < a.size(); i++) {

roots.push_back(update(roots.back(), tl, tr, a[i]));
}

// find the 5th smallest number from the subarray [a[2], a[3], ..., a[19]]
int result = find_kth(roots[2], roots[20], tl, tr, 5);

Now to the restrictions on the array elements: We can actually transform any
array to such an array by index compression. The smallest element in the array
will gets assigned the value 0, the second smallest the value 1, and so forth. It is
easy to generate lookup tables (e.g. using map), that convert a value to its index
and vice versa in O(logn) time.

Implicit segment tree

Previously, we considered cases when we have the ability to build the original
segment tree. But what to do if the original size is filled with some default
element, but its size does not allow you to completely build up to it in advance?

We can solve this problem by not explicitly creating a segment tree. Initially,
we will create only the root, and we will create the other vertexes only when
we need them. In this case, we will use the implementation on pointers(before
going to the vertex children, check whether they are created, and if not, create
them). Each query has still only the complexity O(logn), which is small enough
for most use-cases (e.g. log2 109 ≈ 30).

In this implementation we have two queries, adding a value to a position
(initially all values are 0), and computing the sum of all values in a range.
Vertex(0, n) will be the root vertex of the implicit tree.

struct Vertex {
int left, right;
int sum = 0;
Vertex *left_child = nullptr, *right_child = nullptr;

Vertex(int lb, int rb) {
left = lb;
right = rb;

}
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void extend() {
if (!left_child && left + 1 < right) {

int t = (left + right) / 2;
left_child = new Vertex(left, t);
right_child = new Vertex(t, right);

}
}

void add(int k, int x) {
extend();
sum += x;
if (left_child) {

if (k < left_child->right)
left_child->add(k, x);

else
right_child->add(k, x);

}
}

int get_sum(int lq, int rq) {
if (lq <= left && right <= rq)

return sum;
if (max(left, lq) >= min(right, rq))

return 0;
extend();
return left_child->get_sum(lq, rq) + right_child->get_sum(lq, rq);

}
};

Obviously this idea can be extended in lots of different ways. E.g. by adding
support for range updates via lazy propagation.

8.4.3 Practice Problems
• SPOJ - KQUERY [Persistent segment tree / Merge sort tree]
• Codeforces - Xenia and Bit Operations
• UVA 11402 - Ahoy, Pirates!
• SPOJ - GSS3
• Codeforces - Distinct Characters Queries
• Codeforces - Knight Tournament [For beginners]
• Codeforces - Ant colony
• Codeforces - Drazil and Park
• Codeforces - Circular RMQ
• Codeforces - Lucky Array
• Codeforces - The Child and Sequence
• Codeforces - DZY Loves Fibonacci Numbers [Lazy propagation]
• Codeforces - Alphabet Permutations
• Codeforces - Eyes Closed
• Codeforces - Kefa and Watch

http://www.spoj.com/problems/KQUERY/
https://codeforces.com/problemset/problem/339/D
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2397
http://www.spoj.com/problems/GSS3/
https://codeforces.com/problemset/problem/1234/D
https://codeforces.com/contest/356/problem/A
https://codeforces.com/contest/474/problem/F
https://codeforces.com/contest/515/problem/E
https://codeforces.com/problemset/problem/52/C
https://codeforces.com/contest/121/problem/E
https://codeforces.com/contest/438/problem/D
https://codeforces.com/contest/446/problem/C
https://codeforces.com/problemset/problem/610/E
https://codeforces.com/problemset/problem/895/E
https://codeforces.com/problemset/problem/580/E
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• Codeforces - A Simple Task
• Codeforces - SUM and REPLACE
• COCI - Deda [Last element smaller or equal to x / Binary search]
• Codeforces - The Untended Antiquity [2D]
• CSES - Hotel Queries
• CSES - Polynomial Queries
• CSES - Range Updates and Sums

https://codeforces.com/problemset/problem/558/E
https://codeforces.com/problemset/problem/920/F
https://oj.uz/problem/view/COCI17_deda
https://codeforces.com/problemset/problem/869/E
https://cses.fi/problemset/task/1143
https://cses.fi/problemset/task/1736
https://cses.fi/problemset/task/1735
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8.5 Treap (Cartesian tree)
Treap is a data structure which combines binary tree and binary heap (hence the
name: tree + heap ⇒ Treap).

More specifically, treap is a data structure that stores pairs (X, Y) in a binary
tree in such a way that it is a binary search tree by X and a binary heap by
Y. Assuming that all X and all Y are different, we can see that if some node of
the tree contains values (X0, Y0), all nodes in the left subtree have X < X0, all
nodes in the right subtree have X > X0, and all nodes in both left and right
subtrees have Y < Y0.

Treaps have been proposed by Siedel and Aragon in 1989.

8.5.1 Advantages of such data organisation
In such implementation X values are the keys (and at same time the values
stored in the treap), and Y values are called priorities. Without priorities, the
treap would be a regular binary search tree by X, and one set of X values could
correspond to a lot of different trees, some of them degenerate (for example, in
the form of a linked list), and therefore extremely slow (the main operations
would have O(N) complexity).

At the same time, priorities allow to uniquely specify the tree that will
be constructed (of course, it does not depend on the order in which values are
added), which can be proven using corresponding theorem. Obviously, if you
choose the priorities randomly, you will get non-degenerate trees on average,
which will ensure O(logN) complexity for the main operations. Hence another
name of this data structure - randomized binary search tree.

8.5.2 Operations
A treap provides the following operations:

• Insert (X,Y) in O(logN).
Adds a new node to the tree. One possible variant is to pass only X and
generate Y randomly inside the operation (while ensuring that it’s different
from all other priorities in the tree).

• Search (X) in O(logN).
Looks for a node with the specified key value X. The implementation is the
same as for an ordinary binary search tree.

• Erase (X) in O(logN).
Looks for a node with the specified key value X and removes it from the
tree.

• Build (X1, . . . , XN) in O(N).
Builds a tree from a list of values. This can be done in linear time (assuming
thatX1, ..., XN are sorted), but we will not discuss this implementation here.
We will just use N serial calls of Insert operation, which has O(N logN)
complexity.
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• Union (T1, T2) in O(M log(N/M)).
Merges two trees, assuming that all the elements are different. It is possible
to achieve the same complexity if duplicate elements should be removed
during merge.

• Intersect (T1, T2) in O(M log(N/M)).
Finds the intersection of two trees (i.e. their common elements). We will
not consider the implementation of this operation here.

In addition, due to the fact that a treap is a binary search tree, it can
implement other operations, such as finding the K-th largest element or finding
the index of an element.

8.5.3 Implementation Description
In terms of implementation, each node contains X, Y and pointers to the left (L)
and right (R) children.

We will implement all the required operations using just two auxiliary opera-
tions: Split and Merge.

Split (T, X) separates tree T in 2 subtrees L and R trees (which are the
return values of split) so that L contains all elements with key XL ≤ X, and R
contains all elements with key XR > X. This operation has O(logN) complexity
and is implemented using a clean recursion:

1. If the value of the root node (R) is ≤ X, then L would at least consist of
R->L and R. We then call split on R->R, and note its split result as L' and
R'. Finally, L would also contain L', whereas R = R'.

2. If the value of the root node (R) is > X, then R would at least consist of R
and R->R. We then call split on R->L, and note its split result as L' and
R'. Finally, L=L', whereas R would also contain R'.

Note the method is to 1. decide which subtree the root node would belong to
(left or right) 2. recursively call split on one of its children 3. create the final
result by reusing the recursive split call.

Merge (T1, T2) combines two subtrees T1 and T2 and returns the new tree.
This operation also has O(logN) complexity. It works under the assumption
that T1 and T2 are ordered (all keys X in T1 are smaller than keys in T2). Thus,
we need to combine these trees without violating the order of priorities Y. To do
this, we choose as the root the tree which has higher priority Y in the root node,
and recursively call Merge for the other tree and the corresponding subtree of
the selected root node.

Now implementation of Insert (X, Y) becomes obvious. First we descend
in the tree (as in a regular binary search tree by X), and stop at the first node in
which the priority value is less than Y. We have found the place where we will
insert the new element. Next, we call Split (T, X) on the subtree starting at
the found node, and use returned subtrees L and R as left and right children of
the new node.
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Implementation of Erase (X) is also clear. First we descend in the tree (as
in a regular binary search tree by X), looking for the element we want to delete.
Once the node is found, we call Merge on it children and put the return value
of the operation in the place of the element we’re deleting.

We implement Build operation with O(N logN) complexity using N Insert
calls.

Union (T1, T2) has theoretical complexity O(M log(N/M)), but in practice
it works very well, probably with a very small hidden constant. Let’s assume
without loss of generality that T1 → Y > T2 → Y , i. e. root of T1 will be the
root of the result. To get the result, we need to merge trees T1 → L, T1 → R
and T2 in two trees which could be children of T1 root. To do this, we call Split
(T2, T1 → X), thus splitting T2 in two parts L and R, which we then recursively
combine with children of T1: Union (T1 → L, L) and Union (T1 → R, R), thus
getting left and right subtrees of the result.

8.5.4 Implementation
struct item {

int key, prior;
item *l, *r;
item () { }
item (int key) : key(key), prior(rand()), l(NULL), r(NULL) { }

};
typedef item* pitem;

This is our item defintion. Note there are two child pointers, and an integer
key (for the BST) and an integer priority (for the heap). The priority is assigned
using a random number generator.

void split (pitem t, int key, pitem & l, pitem & r) {
if (!t)

l = r = NULL;
else if (t->key <= key)

split (t->r, key, t->r, r), l = t;
else

split (t->l, key, l, t->l), r = t;
}

t is the treap to split, and key is the BST value by which to split. Note that
we do not return the result values anywhere, instead, we just use them like so:

pitem l = nullptr, r = nullptr;
split(t, 5, l, r);
if (l) cout << "Left subtree size: " << (l->size) << endl;
if (r) cout << "Right subtree size: " << (r->size) << endl;

This split function can be tricky to understand, as it has both pointers
(pitem) as well as reference to those pointers (pitem &l). Let us understand
in words what the function call split(t, k, l, r) intends: “split treap t by
value k into two treaps, and store the left treaps in l and right treap in r”. Great!
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Now, let us apply this definition to the two recursive calls, using the case work
we analyzed in the previous section: (The first if condition is a trivial base case
for an empty treap)

1. When the root node value is ≤ key, we call split (t->r, key, t->r, r),
which means: “split treap t->r (right subtree of t) by value key and store
the left subtree in t->r and right subtree in r”. After that, we set l = t.
Note now that the l result value contains t->l, t as well as t->r (which is
the result of the recursive call we made) all already merged in the correct
order! You should pause to ensure that this result of l and r corresponds
exactly with what we discussed earlier in Implementation Description.

2. When the root node value is greater than key, we call split (t->l, key,
l, t->l), which means: “split treap t->l (left subtree of t) by value key
and store the left subtree in l and right subtree in t->l”. After that, we
set r = t. Note now that the r result value contains t->l (which is the
result of the recursive call we made), t as well as t->r, all already merged
in the correct order! You should pause to ensure that this result of l and
r corresponds exactly with what we discussed earlier in Implementation
Description.

If you’re still having trouble understanding the implementation, you should
look at it inductively, that is: do not try to break down the recursive calls over
and over again. Assume the split implementation works correct on empty treap,
then try to run it for a single node treap, then a two node treap, and so on, each
time reusing your knowledge that split on smaller treaps works.

void insert (pitem & t, pitem it) {
if (!t)

t = it;
else if (it->prior > t->prior)

split (t, it->key, it->l, it->r), t = it;
else

insert (t->key <= it->key ? t->r : t->l, it);
}

void merge (pitem & t, pitem l, pitem r) {
if (!l || !r)

t = l ? l : r;
else if (l->prior > r->prior)

merge (l->r, l->r, r), t = l;
else

merge (r->l, l, r->l), t = r;
}

void erase (pitem & t, int key) {
if (t->key == key) {

pitem th = t;
merge (t, t->l, t->r);
delete th;

}
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else
erase (key < t->key ? t->l : t->r, key);

}

pitem unite (pitem l, pitem r) {
if (!l || !r) return l ? l : r;
if (l->prior < r->prior) swap (l, r);
pitem lt, rt;
split (r, l->key, lt, rt);
l->l = unite (l->l, lt);
l->r = unite (l->r, rt);
return l;

}

8.5.5 Maintaining the sizes of subtrees
To extend the functionality of the treap, it is often necessary to store the number
of nodes in subtree of each node - field int cnt in the item structure. For
example, it can be used to find K-th largest element of tree in O(logN), or to
find the index of the element in the sorted list with the same complexity. The
implementation of these operations will be the same as for the regular binary
search tree.

When a tree changes (nodes are added or removed etc.), cnt of some nodes
should be updated accordingly. We’ll create two functions: cnt() will return
the current value of cnt or 0 if the node does not exist, and upd_cnt() will
update the value of cnt for this node assuming that for its children L and R the
values of cnt have already been updated. Evidently it’s sufficient to add calls
of upd_cnt() to the end of insert, erase, split and merge to keep cnt values
up-to-date.

int cnt (pitem t) {
return t ? t->cnt : 0;

}

void upd_cnt (pitem t) {
if (t)

t->cnt = 1 + cnt(t->l) + cnt (t->r);
}

8.5.6 Building a Treap in O(N) in offline mode
Given a sorted list of keys, it is possible to construct a treap faster than by
inserting the keys one at a time which takes O(N logN). Since the keys are
sorted, a balanced binary search tree can be easily constructed in linear time. The
heap values Y are initialized randomly and then can be heapified independent of
the keys X to build the heap in O(N).

void heapify (pitem t) {
if (!t) return;
pitem max = t;

https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap
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if (t->l != NULL && t->l->prior > max->prior)
max = t->l;

if (t->r != NULL && t->r->prior > max->prior)
max = t->r;

if (max != t) {
swap (t->prior, max->prior);
heapify (max);

}
}

pitem build (int * a, int n) {
// Construct a treap on values {a[0], a[1], ..., a[n - 1]}
if (n == 0) return NULL;
int mid = n / 2;
pitem t = new item (a[mid], rand ());
t->l = build (a, mid);
t->r = build (a + mid + 1, n - mid - 1);
heapify (t);
upd_cnt(t)
return t;

}

Note: calling upd_cnt(t) is only necessary if you need the subtree sizes.

8.5.7 Implicit Treaps
Implicit treap is a simple modification of the regular treap which is a very powerful
data structure. In fact, implicit treap can be considered as an array with the
following procedures implemented (all in O(logN) in the online mode):

• Inserting an element in the array in any location
• Removal of an arbitrary element
• Finding sum, minimum / maximum element etc. on an arbitrary interval
• Addition, painting on an arbitrary interval
• Reversing elements on an arbitrary interval

The idea is that the keys should be indices of the elements in the array. But
we will not store these values explicitly (otherwise, for example, inserting an
element would cause changes of the key in O(N) nodes of the tree).

Note that the key of a node is the number of nodes less than it (such nodes
can be present not only in its left subtree but also in left subtrees of its ancestors).
More specifically, the implicit key for some node T is the number of vertices
cnt(T → L) in the left subtree of this node plus similar values cnt(P → L) + 1
for each ancestor P of the node T, if T is in the right subtree of P.

Now it’s clear how to calculate the implicit key of current node quickly. Since
in all operations we arrive to any node by descending in the tree, we can just
accumulate this sum and pass it to the function. If we go to the left subtree, the
accumulated sum does not change, if we go to the right subtree it increases by
cnt(T → L) + 1.

Here are the new implementations of Split and Merge:
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void merge (pitem & t, pitem l, pitem r) {
if (!l || !r)

t = l ? l : r;
else if (l->prior > r->prior)

merge (l->r, l->r, r), t = l;
else

merge (r->l, l, r->l), t = r;
upd_cnt (t);

}

void split (pitem t, pitem & l, pitem & r, int key, int add = 0) {
if (!t)

return void( l = r = 0 );
int cur_key = add + cnt(t->l); //implicit key
if (key <= cur_key)

split (t->l, l, t->l, key, add), r = t;
else

split (t->r, t->r, r, key, add + 1 + cnt(t->l)), l = t;
upd_cnt (t);

}

Now let’s consider the implementation of various operations on implicit treaps:

• Insert element.
Suppose we need to insert an element at position pos. We divide the treap
into two parts, which correspond to arrays [0..pos-1] and [pos..sz]; to
do this we call split (T, T1, T2, pos). Then we can combine tree T1 with
the new vertex by calling merge (T1, T1, new_item) (it is easy to see that
all preconditions are met). Finally, we combine trees T1 and T2 back into
T by calling merge (T, T1, T2).

• Delete element.
This operation is even easier: find the element to be deleted T, perform
merge of its children L and R, and replace the element T with the result of
merge. In fact, element deletion in the implicit treap is exactly the same as
in the regular treap.

• Find sum / minimum, etc. on the interval.
First, create an additional field F in the item structure to store the value
of the target function for this node’s subtree. This field is easy to maintain
similarly to maintaining sizes of subtrees: create a function which calculates
this value for a node based on values for its children and add calls of this
function in the end of all functions which modify the tree.
Second, we need to know how to process a query for an arbitrary interval
[A; B].
To get a part of tree which corresponds to the interval [A; B], we need to
call split (T, T1, T2, A), and then split (T2, T2, T3, B - A + 1): after
this T2 will consist of all the elements in the interval [A; B], and only of
them. Therefore, the response to the query will be stored in the field F of
the root of T2. After the query is answered, the tree has to be restored by
calling merge (T, T1, T2) and merge (T , T , T3).
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• Addition / painting on the interval.
We act similarly to the previous paragraph, but instead of the field F we
will store a field add which will contain the added value for the subtree (or
the value to which the subtree is painted). Before performing any operation
we have to “push” this value correctly - i.e. change T → L → add and
T → R→ add, and to clean up add in the parent node. This way after any
changes to the tree the information will not be lost.

• Reverse on the interval.
This is again similar to the previous operation: we have to add boolean
flag ‘rev’ and set it to true when the subtree of the current node has to be
reversed. “Pushing” this value is a bit complicated - we swap children of
this node and set this flag to true for them.

Here is an example implementation of the implicit treap with reverse on the
interval. For each node we store field called value which is the actual value of
the array element at current position. We also provide implementation of the
function output(), which outputs an array that corresponds to the current state
of the implicit treap.

typedef struct item * pitem;
struct item {

int prior, value, cnt;
bool rev;
pitem l, r;

};

int cnt (pitem it) {
return it ? it->cnt : 0;

}

void upd_cnt (pitem it) {
if (it)

it->cnt = cnt(it->l) + cnt(it->r) + 1;
}

void push (pitem it) {
if (it && it->rev) {

it->rev = false;
swap (it->l, it->r);
if (it->l) it->l->rev ˆ= true;
if (it->r) it->r->rev ˆ= true;

}
}

void merge (pitem & t, pitem l, pitem r) {
push (l);
push (r);
if (!l || !r)

t = l ? l : r;
else if (l->prior > r->prior)
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merge (l->r, l->r, r), t = l;
else

merge (r->l, l, r->l), t = r;
upd_cnt (t);

}

void split (pitem t, pitem & l, pitem & r, int key, int add = 0) {
if (!t)

return void( l = r = 0 );
push (t);
int cur_key = add + cnt(t->l);
if (key <= cur_key)

split (t->l, l, t->l, key, add), r = t;
else

split (t->r, t->r, r, key, add + 1 + cnt(t->l)), l = t;
upd_cnt (t);

}

void reverse (pitem t, int l, int r) {
pitem t1, t2, t3;
split (t, t1, t2, l);
split (t2, t2, t3, r-l+1);
t2->rev ˆ= true;
merge (t, t1, t2);
merge (t, t, t3);

}

void output (pitem t) {
if (!t) return;
push (t);
output (t->l);
printf ("%d ", t->value);
output (t->r);

}

8.5.8 Literature
• Blelloch, Reid-Miller “Fast Set Operations Using Treaps”

8.5.9 Practice Problems
• SPOJ - Ada and Aphids
• SPOJ - Ada and Harvest
• Codeforces - Radio Stations
• SPOJ - Ghost Town
• SPOJ - Arrangement Validity
• SPOJ - All in One
• Codeforces - Dog Show
• Codeforces - Yet Another Array Queries Problem
• SPOJ - Mean of Array
• SPOJ - TWIST

https://www.cs.cmu.edu/~scandal/papers/treaps-spaa98.pdf
http://www.spoj.com/problems/ADAAPHID/
http://www.spoj.com/problems/ADACROP/
http://codeforces.com/contest/762/problem/E
http://www.spoj.com/problems/COUNT1IT/
http://www.spoj.com/problems/IITWPC4D/
http://www.spoj.com/problems/ALLIN1/
http://codeforces.com/contest/847/problem/D
http://codeforces.com/contest/863/problem/D
http://www.spoj.com/problems/MEANARR/
http://www.spoj.com/problems/TWIST/
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• SPOJ - KOILINE
• CodeChef - The Prestige
• Codeforces - T-Shirts
• Codeforces - Wizards and Roads
• Codeforces - Yaroslav and Points

http://www.spoj.com/problems/KOILINE/
https://www.codechef.com/problems/PRESTIGE
https://codeforces.com/contest/702/problem/F
https://codeforces.com/problemset/problem/167/D
https://codeforces.com/contest/295/problem/E
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8.6 Sqrt Tree
Given an array a that contains n elements and the operation ◦ that satisfies
associative property: (x ◦ y) ◦ z = x ◦ (y ◦ z) is true for any x, y, z.

So, such operations as gcd, min, max, +, and, or, xor, etc. satisfy these
conditions.

Also we have some queries q(l, r). For each query, we need to compute
al ◦ al+1 ◦ · · · ◦ ar.

Sqrt Tree can process such queries in O(1) time with O(n · log logn) prepro-
cessing time and O(n · log logn) memory.

8.6.1 Description

Building sqrt decomposition

Let’s make a sqrt decomposition. We divide our array in
√
n blocks, each block

has size
√
n. For each block, we compute:

1. Answers to the queries that lie in the block and begin at the beginning of
the block (prefixOp)

2. Answers to the queries that lie in the block and end at the end of the block
(suffixOp)

And we’ll compute an additional array:

3. betweeni,j (for i ≤ j) - answer to the query that begins at the start of block
i and ends at the end of block j. Note that we have

√
n blocks, so the size

of this array will be O(
√
n

2) = O(n).

Let’s see the example.
Let ◦ be + (we calculate sum on a segment) and we have the following array

a:
{1, 2, 3, 4, 5, 6, 7, 8, 9}
It will be divided onto three blocks: {1, 2, 3}, {4, 5, 6} and {7, 8, 9}.
For first block prefixOp is {1, 3, 6} and suffixOp is {6, 5, 3}.
For second block prefixOp is {4, 9, 15} and suffixOp is {15, 11, 6}.
For third block prefixOp is {7, 15, 24} and suffixOp is {24, 17, 9}.
between array is:

{
{6, 21, 45},
{0, 15, 39},
{0, 0, 24}

}

(we assume that invalid elements where i > j are filled with zeroes)
It’s obvious to see that these arrays can be easily calculated in O(n) time

and memory.



Data Structures, Chapter 8. Trees 196

We already can answer some queries using these arrays. If the query doesn’t
fit into one block, we can divide it onto three parts: suffix of a block, then some
segment of contiguous blocks and then prefix of some block. We can answer a
query by dividing it into three parts and taking our operation of some value from
suffixOp, then some value from between, then some value from prefixOp.

But if we have queries that entirely fit into one block, we cannot process them
using these three arrays. So, we need to do something.

Making a tree

We cannot answer only the queries that entirely fit in one block. But what if
we build the same structure as described above for each block? Yes,
we can do it. And we do it recursively, until we reach the block size of 1 or 2.
Answers for such blocks can be calculated easily in O(1).

So, we get a tree. Each node of the tree represents some segment of the
array. Node that represents array segment with size k has

√
k children – for each

block. Also each node contains the three arrays described above for the segment
it contains. The root of the tree represents the entire array. Nodes with segment
lengths 1 or 2 are leaves.

Also it’s obvious that the height of this tree is O(log logn), because if some
vertex of the tree represents an array with length k, then its children have length√
k. log(

√
k) = log k

2 , so log k decreases two times every layer of the tree and
so its height is O(log logn). The time for building and memory usage will be
O(n · log logn), because every element of the array appears exactly once on each
layer of the tree.

Now we can answer the queries in O(log logn). We can go down on the tree
until we meet a segment with length 1 or 2 (answer for it can be calculated in
O(1) time) or meet the first segment in which our query doesn’t fit entirely into
one block. See the first section on how to answer the query in this case.

OK, now we can do O(log logn) per query. Can it be done faster?

Optimizing the query complexity

One of the most obvious optimization is to binary search the tree node we need.
Using binary search, we can reach the O(log log logn) complexity per query. Can
we do it even faster?

The answer is yes. Let’s assume the following two things:

1. Each block size is a power of two.
2. All the blocks are equal on each layer.

To reach this, we can add some zero elements to our array so that its size
becomes a power of two.

When we use this, some block sizes may become twice larger to be a power
of two, but it still be O(

√
k) in size and we keep linear complexity for building

the arrays in a segment.



8.6. Sqrt Tree 197

Now, we can easily check if the query fits entirely into a block with size 2k.
Let’s write the ranges of the query, l and r (we use 0-indexation) in binary form.
For instance, let’s assume k = 4, l = 39, r = 46. The binary representation of l
and r is:

l = 3910 = 1001112
r = 4610 = 1011102
Remember that one layer contains segments of the equal size, and the block on

one layer have also equal size (in our case, their size is 2k = 24 = 16. The blocks
cover the array entirely, so the first block covers elements (0− 15) ((0000002 −
0011112) in binary), the second one covers elements (16−31) ((0100002−0111112)
in binary) and so on. We see that the indices of the positions covered by one
block may differ only in k (in our case, 4) last bits. In our case l and r have
equal bits except four lowest, so they lie in one block.

So, we need to check if nothing more that k smallest bits differ (or l xor r
doesn’t exceed 2k − 1).

Using this observation, we can find a layer that is suitable to answer the
query quickly. How to do this:

1. For each i that doesn’t exceed the array size, we find the highest bit that
is equal to 1. To do this quickly, we use DP and a precalculated array.

2. Now, for each q(l, r) we find the highest bit of l xor r and, using this
information, it’s easy to choose the layer on which we can process the query
easily. We can also use a precalculated array here.

For more details, see the code below.
So, using this, we can answer the queries in O(1) each. Hooray! :)

8.6.2 Updating elements
We can also update elements in Sqrt Tree. Both single element updates and
updates on a segment are supported.

Updating a single element

Consider a query update(x, val) that does the assignment ax = val. We need to
perform this query fast enough.

Naive approach First, let’s take a look of what is changed in the tree when
a single element changes. Consider a tree node with length l and its arrays:
prefixOp, suffixOp and between. It is easy to see that only O(

√
l) elements from

prefixOp and suffixOp change (only inside the block with the changed element).
O(l) elements are changed in between. Therefore, O(l) elements in the tree node
are updated.

We remember that any element x is present in exactly one tree node at each
layer. Root node (layer 0) has length O(n), nodes on layer 1 have length O(

√
n),
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nodes on layer 2 have length O(
√√

n), etc. So the time complexity per update

is O(n+
√
n+

√√
n+ . . . ) = O(n).

But it’s too slow. Can it be done faster?

An sqrt-tree inside the sqrt-tree Note that the bottleneck of updating is
rebuilding between of the root node. To optimize the tree, let’s get rid of this
array! Instead of between array, we store another sqrt-tree for the root node.
Let’s call it index. It plays the same role as between— answers the queries on
segments of blocks. Note that the rest of the tree nodes don’t have index, they
keep their between arrays.

A sqrt-tree is indexed, if its root node has index. A sqrt-tree with between
array in its root node is unindexed. Note that index is unindexed itself.

So, we have the following algorithm for updating an indexed tree:

• Update prefixOp and suffixOp in O(
√
n).

• Update index. It has length O(
√
n) and we need to update only one item

in it (that represents the changed block). So, the time complexity for this
step is O(

√
n). We can use the algorithm described in the beginning of this

section (the “slow” one) to do it.

• Go into the child node that represents the changed block and update it in
O(
√
n) with the “slow” algorithm.

Note that the query complexity is still O(1): we need to use index in query
no more than once, and this will take O(1) time.

So, total time complexity for updating a single element is O(
√
n). Hooray! :)

Updating a segment

Sqrt-tree also can do things like assigning an element on a segment.
massUpdate(x, l, r) means ai = x for all l ≤ i ≤ r.

There are two approaches to do this: one of them does massUpdate in
O(
√
n · log logn), keeping O(1) per query. The second one does massUpdate in

O(
√
n), but the query complexity becomes O(log logn).
We will do lazy propagation in the same way as it is done in segment trees:

we mark some nodes as lazy, meaning that we’ll push them when it’s necessary.
But one thing is different from segment trees: pushing a node is expensive, so it
cannot be done in queries. On the layer 0, pushing a node takes O(

√
n) time.

So, we don’t push nodes inside queries, we only look if the current node or its
parent are lazy, and just take it into account while performing queries.

First approach In the first approach, we say that only nodes on layer 1 (with
length O(

√
n) can be lazy. When pushing such node, it updates all its subtree

including itself in O(
√
n · log logn). The massUpdate process is done as follows:

• Consider the nodes on layer 1 and blocks corresponding to them.
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• Some blocks are entirely covered by massUpdate. Mark them as lazy in
O(
√
n).

• Some blocks are partially covered. Note there are no more than two blocks
of this kind. Rebuild them in O(

√
n · log logn). If they were lazy, take it

into account.

• Update prefixOp and suffixOp for partially covered blocks in O(
√
n) (be-

cause there are only two such blocks).

• Rebuild the index in O(
√
n · log logn).

So we can do massUpdate fast. But how lazy propagation affects queries?
They will have the following modifications:

• If our query entirely lies in a lazy block, calculate it and take lazy into
account. O(1).

• If our query consists of many blocks, some of which are lazy, we need to
take care of lazy only on the leftmost and the rightmost block. The rest of
the blocks are calculated using index, which already knows the answer on
lazy block (because it’s rebuilt after each modification). O(1).

The query complexity still remains O(1).

Second approach In this approach, each node can be lazy (except root). Even
nodes in index can be lazy. So, while processing a query, we have to look for lazy
tags in all the parent nodes, i. e. query complexity will be O(log logn).

But massUpdate becomes faster. It looks in the following way:

• Some blocks are fully covered with massUpdate. So, lazy tags are added to
them. It is O(

√
n).

• Update prefixOp and suffixOp for partially covered blocks in O(
√
n) (be-

cause there are only two such blocks).

• Do not forget to update the index. It is O(
√
n) (we use the same

massUpdate algorithm).

• Update between array for unindexed subtrees.

• Go into the nodes representing partially covered blocks and call massUpdate
recursively.

Note that when we do the recursive call, we do prefix or suffix massUpdate.
But for prefix and suffix updates we can have no more than one partially covered
child. So, we visit one node on layer 1, two nodes on layer 2 and two nodes on
any deeper level. So, the time complexity is O(

√
n+

√√
n+ . . . ) = O(

√
n). The

approach here is similar to the segment tree mass update.
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8.6.3 Implementation
The following implementation of Sqrt Tree can perform the following operations:
build in O(n · log logn), answer queries in O(1) and update an element in O(

√
n).

SqrtTreeItem op(const SqrtTreeItem &a, const SqrtTreeItem &b);

inline int log2Up(int n) {
int res = 0;
while ((1 << res) < n) {

res++;
}
return res;

}

class SqrtTree {
private:

int n, lg, indexSz;
vector<SqrtTreeItem> v;
vector<int> clz, layers, onLayer;
vector< vector<SqrtTreeItem> > pref, suf, between;

inline void buildBlock(int layer, int l, int r) {
pref[layer][l] = v[l];
for (int i = l+1; i < r; i++) {

pref[layer][i] = op(pref[layer][i-1], v[i]);
}
suf[layer][r-1] = v[r-1];
for (int i = r-2; i >= l; i--) {

suf[layer][i] = op(v[i], suf[layer][i+1]);
}

}

inline void buildBetween(int layer, int lBound, int rBound, int betweenOffs) {
int bSzLog = (layers[layer]+1) >> 1;
int bCntLog = layers[layer] >> 1;
int bSz = 1 << bSzLog;
int bCnt = (rBound - lBound + bSz - 1) >> bSzLog;
for (int i = 0; i < bCnt; i++) {

SqrtTreeItem ans;
for (int j = i; j < bCnt; j++) {

SqrtTreeItem add = suf[layer][lBound + (j << bSzLog)];
ans = (i == j) ? add : op(ans, add);
between[layer-1][betweenOffs + lBound + (i << bCntLog) + j] = ans;

}
}

}

inline void buildBetweenZero() {
int bSzLog = (lg+1) >> 1;
for (int i = 0; i < indexSz; i++) {

v[n+i] = suf[0][i << bSzLog];
}
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build(1, n, n + indexSz, (1 << lg) - n);
}

inline void updateBetweenZero(int bid) {
int bSzLog = (lg+1) >> 1;
v[n+bid] = suf[0][bid << bSzLog];
update(1, n, n + indexSz, (1 << lg) - n, n+bid);

}

void build(int layer, int lBound, int rBound, int betweenOffs) {
if (layer >= (int)layers.size()) {

return;
}
int bSz = 1 << ((layers[layer]+1) >> 1);
for (int l = lBound; l < rBound; l += bSz) {

int r = min(l + bSz, rBound);
buildBlock(layer, l, r);
build(layer+1, l, r, betweenOffs);

}
if (layer == 0) {

buildBetweenZero();
} else {

buildBetween(layer, lBound, rBound, betweenOffs);
}

}

void update(int layer, int lBound, int rBound, int betweenOffs, int x) {
if (layer >= (int)layers.size()) {

return;
}
int bSzLog = (layers[layer]+1) >> 1;
int bSz = 1 << bSzLog;
int blockIdx = (x - lBound) >> bSzLog;
int l = lBound + (blockIdx << bSzLog);
int r = min(l + bSz, rBound);
buildBlock(layer, l, r);
if (layer == 0) {

updateBetweenZero(blockIdx);
} else {

buildBetween(layer, lBound, rBound, betweenOffs);
}
update(layer+1, l, r, betweenOffs, x);

}

inline SqrtTreeItem query(int l, int r, int betweenOffs, int base) {
if (l == r) {

return v[l];
}
if (l + 1 == r) {

return op(v[l], v[r]);
}
int layer = onLayer[clz[(l - base) ˆ (r - base)]];
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int bSzLog = (layers[layer]+1) >> 1;
int bCntLog = layers[layer] >> 1;
int lBound = (((l - base) >> layers[layer]) << layers[layer]) + base;
int lBlock = ((l - lBound) >> bSzLog) + 1;
int rBlock = ((r - lBound) >> bSzLog) - 1;
SqrtTreeItem ans = suf[layer][l];
if (lBlock <= rBlock) {

SqrtTreeItem add = (layer == 0) ? (
query(n + lBlock, n + rBlock, (1 << lg) - n, n)

) : (
between[layer-1][betweenOffs + lBound + (lBlock << bCntLog) + rBlock]

);
ans = op(ans, add);

}
ans = op(ans, pref[layer][r]);
return ans;

}
public:

inline SqrtTreeItem query(int l, int r) {
return query(l, r, 0, 0);

}

inline void update(int x, const SqrtTreeItem &item) {
v[x] = item;
update(0, 0, n, 0, x);

}

SqrtTree(const vector<SqrtTreeItem>& a)
: n((int)a.size()), lg(log2Up(n)), v(a), clz(1 << lg), onLayer(lg+1) {
clz[0] = 0;
for (int i = 1; i < (int)clz.size(); i++) {

clz[i] = clz[i >> 1] + 1;
}
int tlg = lg;
while (tlg > 1) {

onLayer[tlg] = (int)layers.size();
layers.push_back(tlg);
tlg = (tlg+1) >> 1;

}
for (int i = lg-1; i >= 0; i--) {

onLayer[i] = max(onLayer[i], onLayer[i+1]);
}
int betweenLayers = max(0, (int)layers.size() - 1);
int bSzLog = (lg+1) >> 1;
int bSz = 1 << bSzLog;
indexSz = (n + bSz - 1) >> bSzLog;
v.resize(n + indexSz);
pref.assign(layers.size(), vector<SqrtTreeItem>(n + indexSz));
suf.assign(layers.size(), vector<SqrtTreeItem>(n + indexSz));
between.assign(betweenLayers, vector<SqrtTreeItem>((1 << lg) + bSz));
build(0, 0, n, 0);

}
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};

8.6.4 Problems
CodeChef - SEGPROD

https://www.codechef.com/NOV17/problems/SEGPROD
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8.7 Randomized Heap
A randomized heap is a heap that, through using randomization, allows to perform
all operations in expected logarithmic time.

A min heap is a binary tree in which the value of each vertex is less than or
equal to the values of its children. Thus the minimum of the tree is always in the
root vertex.

A max heap can be defined in a similar way: by replacing less with greater.
The default operations of a heap are:

• Adding a value
• Extracting the minimum
• Removing the minimum
• Merging two heaps (without deleting duplicates)
• Removing an arbitrary element (if its position in the tree is known)

A randomized heap can perform all these operations in expected O(logn)
time with a very simple implementation.

8.7.1 Data structure
We can immediately describe the structure of the binary heap:

struct Tree {
int value;
Tree * l = nullptr;
Tree * r = nullptr;

};

In the vertex we store a value. In addition we have pointers to the left and
right children, which are point to null if the corresponding child doesn’t exist.

8.7.2 Operations
It is not difficult to see, that all operations can be reduced to a single one:
merging two heaps into one. Indeed, adding a new value to the heap is equivalent
to merging the heap with a heap consisting of a single vertex with that value.
Finding a minimum doesn’t require any operation at all - the minimum is simply
the value at the root. Removing the minimum is equivalent to the result of
merging the left and right children of the root vertex. And removing an arbitrary
element is similar. We merge the children of the vertex and replace the vertex
with the result of the merge.

So we actually only need to implement the operation of merging two heaps.
All other operations are trivially reduced to this operation.

Let two heaps T1 and T2 be given. It is clear that the root of each of these
heaps contains its minimum. So the root of the resulting heap will be the
minimum of these two values. So we compare both values, and use the smaller
one as the new root. Now we have to combine the children of the selected vertex
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with the remaining heap. For this we select one of the children, and merge it with
the remaining heap. Thus we again have the operation of merging two heaps.
Sooner of later this process will end (the number of such steps is limited by the
sum of the heights of the two heaps)

To achieve logarithmic complexity on average, we need to specify a method
for choosing one of the two children so that the average path length is logarithmic.
It is not difficult to guess, that we will make this decision randomly. Thus the
implementation of the merging operation is as follows:

Tree* merge(Tree* t1, Tree* t2) {
if (!t1 || !t2)

return t1 ? t1 : t2;
if (t2->value < t1->value)

swap(t1, t2);
if (rand() & 1)

swap(t1->l, t1->r);
t1->l = merge(t1->l, t2);
return t1;

}

Here first we check if one of the heaps is empty, then we don’t need to perform
any merge action at all. Otherwise we make the heap t1 the one with the smaller
value (by swapping t1 and t2 if necessary). We want to merge the left child of
t1 with t2, therefore we randomly swap the children of t1, and then perform
the merge.

8.7.3 Complexity
We introduce the random variable h(T ) which will denote the length of the
random path from the root to the leaf (the length in the number of edges). It
is clear that the algorithm merge performs O(h(T1) + h(T2)) steps. Therefore
to understand the complexity of the operations, we must look into the random
variable h(T ).

Expected value

We assume that the expectation h(T ) can be estimated from above by the
logarithm of the number of vertices in the heap:

Eh(T ) ≤ log(n+ 1)

This can be easily proven by induction. Let L and R be the left and the
right subtrees of the root T , and nL and nR the number of vertices in them
(n = nL + nR + 1).

The following shows the induction step:
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Eh(T ) = 1 + Eh(L) + Eh(R)
2 ≤ 1 + log(nL + 1) log(nR + 1)

2
= 1 + log

√
(nL + 1)(nR + 1) = log 2

√
(nL + 1)(nR + 1)

≤ log 2 ((nL + 1) + (nR + 1))
2 = log(nL + nR + 2) = log(n+ 1)

Exceeding the expected value

Of course we are still not happy. The expected value of h(T ) doesn’t say anything
about the worst case. It is still possible that the paths from the root to the
vertices is on average much greater than log(n+ 1) for a specific tree.

Let us prove that exceeding the expected value is indeed very small:

P{h(T > (c+ 1) logn} < 1
nc

for any positive constant c.
Here we denote by P the set of paths from the root of the heap to the leaves

where the length exceeds (c+ 1) logn. Note that for any path p of length |p| the
probability that it will be chosen as random path is 2−|p|. Therefore we get:

P{h(T > (c+ 1) logn} =
∑
p∈P

2−|p| <
∑
p∈P

2−(c+1) logn = |P |n−(c+1) ≤ n−c

Complexity of the algorithm

Thus the algorithm merge, and hence all other operations expressed with it, can
be performed in O(logn) on average.

Moreover for any positive constant ε there is a positive constant c, such that
the probability that the operation will require more than c logn steps is less than
n−ε (in some sense this describes the worst case behavior of the algorithm).
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Chapter 9

Advanced

9.1 Deleting from a data structure in O(T (n) log n)

Suppose you have a data structure which allows adding elements in true O(T (n)).
This article will describe a technique that allows deletion in O(T (n) logn) offline.

9.1.1 Algorithm
Each element lives in the data structure for some segments of time between
additions and deletions. Let’s build a segment tree over the queries. Each
segment when some element is alive splits into O(logn) nodes of the tree. Let’s
put each query when we want to know something about the structure into the
corresponding leaf. Now to process all queries we will run a DFS on the segment
tree. When entering the node we will add all the elements that are inside this
node. Then we will go further to the children of this node or answer the queries
(if the node is a leaf). When leaving the node, we must undo the additions.
Note that if we change the structure in O(T (n)) we can roll back the changes
in O(T (n)) by keeping a stack of changes. Note that rollbacks break amortized
complexity.

9.1.2 Notes
The idea of creating a segment tree over segments when something is alive may
be used not only for data structure problems. See some problems below.

9.1.3 Implementation
This implementation is for the dynamic connectivity problem. It can add edges,
remove edges and count the number of connected components.

struct dsu_save {
int v, rnkv, u, rnku;

dsu_save() {}

dsu_save(int _v, int _rnkv, int _u, int _rnku)

https://en.wikipedia.org/wiki/Dynamic_connectivity
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: v(_v), rnkv(_rnkv), u(_u), rnku(_rnku) {}
};

struct dsu_with_rollbacks {
vector<int> p, rnk;
int comps;
stack<dsu_save> op;

dsu_with_rollbacks() {}

dsu_with_rollbacks(int n) {
p.resize(n);
rnk.resize(n);
for (int i = 0; i < n; i++) {

p[i] = i;
rnk[i] = 0;

}
comps = n;

}

int find_set(int v) {
return (v == p[v]) ? v : find_set(p[v]);

}

bool unite(int v, int u) {
v = find_set(v);
u = find_set(u);
if (v == u)

return false;
comps--;
if (rnk[v] > rnk[u])

swap(v, u);
op.push(dsu_save(v, rnk[v], u, rnk[u]));
p[v] = u;
if (rnk[u] == rnk[v])

rnk[u]++;
return true;

}

void rollback() {
if (op.empty())

return;
dsu_save x = op.top();
op.pop();
comps++;
p[x.v] = x.v;
rnk[x.v] = x.rnkv;
p[x.u] = x.u;
rnk[x.u] = x.rnku;

}
};
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struct query {
int v, u;
bool united;
query(int _v, int _u) : v(_v), u(_u) {
}

};

struct QueryTree {
vector<vector<query>> t;
dsu_with_rollbacks dsu;
int T;

QueryTree() {}

QueryTree(int _T, int n) : T(_T) {
dsu = dsu_with_rollbacks(n);
t.resize(4 * T + 4);

}

void add_to_tree(int v, int l, int r, int ul, int ur, query& q) {
if (ul > ur)

return;
if (l == ul && r == ur) {

t[v].push_back(q);
return;

}
int mid = (l + r) / 2;
add_to_tree(2 * v, l, mid, ul, min(ur, mid), q);
add_to_tree(2 * v + 1, mid + 1, r, max(ul, mid + 1), ur, q);

}

void add_query(query q, int l, int r) {
add_to_tree(1, 0, T - 1, l, r, q);

}

void dfs(int v, int l, int r, vector<int>& ans) {
for (query& q : t[v]) {

q.united = dsu.unite(q.v, q.u);
}
if (l == r)

ans[l] = dsu.comps;
else {

int mid = (l + r) / 2;
dfs(2 * v, l, mid, ans);
dfs(2 * v + 1, mid + 1, r, ans);

}
for (query q : t[v]) {

if (q.united)
dsu.rollback();

}
}
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vector<int> solve() {
vector<int> ans(T);
dfs(1, 0, T - 1, ans);
return ans;

}
};

9.1.4 Problems
• Codeforces - Connect and Disconnect
• Codeforces - Addition on Segments
• Codeforces - Extending Set of Points

https://codeforces.com/gym/100551/problem/A
https://codeforces.com/contest/981/problem/E
https://codeforces.com/contest/1140/problem/F
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Part III

Dynamic Programming
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Chapter 10

DP optimizations

10.1 Divide and Conquer DP
Divide and Conquer is a dynamic programming optimization.

Preconditions

Some dynamic programming problems have a recurrence of this form:

dp(i, j) = min
0≤k≤j

{dp(i− 1, k − 1) + C(k, j)}

Where C(k, j) is a cost function and dp(i, j) = 0 when j < 0.
Say 0 ≤ i < m and 0 ≤ j < n, and evaluating C takes O(1) time. Then the

straightforward evaluation of the above recurrence is O(mn2). There are m× n
states, and n transitions for each state.

Let opt(i, j) be the value of k that minimizes the above expression. If
opt(i, j) ≤ opt(i, j+1) for all i, j, then we can apply divide-and-conquer DP. This
is known as the monotonicity condition. The optimal “splitting point” for a fixed
i increases as j increases.

This lets us solve for all states more efficiently. Say we compute opt(i, j) for
some fixed i and j. Then for any j′ < j we know that opt(i, j′) ≤ opt(i, j). This
means when computing opt(i, j′), we don’t have to consider as many splitting
points!

To minimize the runtime, we apply the idea behind divide and conquer. First,
compute opt(i, n/2). Then, compute opt(i, n/4), knowing that it is less than or
equal to opt(i, n/2) and opt(i, 3n/4) knowing that it is greater than or equal to
opt(i, n/2). By recursively keeping track of the lower and upper bounds on opt,
we reach a O(mn logn) runtime. Each possible value of opt(i, j) only appears in
logn different nodes.

Note that it doesn’t matter how “balanced” opt(i, j) is. Across a fixed level,
each value of k is used at most twice, and there are at most logn levels.
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10.1.1 Generic implementation
Even though implementation varies based on problem, here’s a fairly generic
template. The function compute computes one row i of states dp_cur, given the
previous row i − 1 of states dp_before. It has to be called with compute(0,
n-1, 0, n-1). The function solve computes m rows and returns the result.

int m, n;
vector<long long> dp_before(n), dp_cur(n);

long long C(int i, int j);

// compute dp_cur[l], ... dp_cur[r] (inclusive)
void compute(int l, int r, int optl, int optr) {

if (l > r)
return;

int mid = (l + r) >> 1;
pair<long long, int> best = {LLONG_MAX, -1};

for (int k = optl; k <= min(mid, optr); k++) {
best = min(best, {(k ? dp_before[k - 1] : 0) + C(k, mid), k});

}

dp_cur[mid] = best.first;
int opt = best.second;

compute(l, mid - 1, optl, opt);
compute(mid + 1, r, opt, optr);

}

int solve() {
for (int i = 0; i < n; i++)

dp_before[i] = C(0, i);

for (int i = 1; i < m; i++) {
compute(0, n - 1, 0, n - 1);
dp_before = dp_cur;

}

return dp_before[n - 1];
}

Things to look out for

The greatest difficulty with Divide and Conquer DP problems is proving the
monotonicity of opt. Many Divide and Conquer DP problems can also be solved
with the Convex Hull trick or vice-versa. It is useful to know and understand
both!
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10.1.2 Practice Problems
• AtCoder - Yakiniku Restaurants
• CodeForces - Ciel and Gondolas (Be careful with I/O!)
• CodeForces - Levels And Regions
• CodeForces - Partition Game
• CodeForces - The Bakery
• CodeForces - Yet Another Minimization Problem
• Codechef - CHEFAOR
• Dunjudge - GUARDS (This is the exact problem in this article.)
• Hackerrank - Guardians of the Lunatics
• Hackerrank - Mining
• Kattis - Money (ACM ICPC World Finals 2017)
• SPOJ - ADAMOLD
• SPOJ - LARMY
• SPOJ - NKLEAVES
• Timus - Bicolored Horses
• USACO - Circular Barn
• UVA - Arranging Heaps
• UVA - Naming Babies

10.1.3 References
• Quora Answer by Michael Levin
• Video Tutorial by “Sothe” the Algorithm Wolf

https://atcoder.jp/contests/arc067/tasks/arc067_d
https://codeforces.com/contest/321/problem/E
https://codeforces.com/problemset/problem/673/E
https://codeforces.com/contest/1527/problem/E
https://codeforces.com/problemset/problem/834/D
https://codeforces.com/contest/868/problem/F
https://www.codechef.com/problems/CHEFAOR
https://dunjudge.me/analysis/problems/894/
https://www.hackerrank.com/contests/ioi-2014-practice-contest-2/challenges/guardians-lunatics-ioi14
https://www.hackerrank.com/contests/world-codesprint-5/challenges/mining
https://open.kattis.com/problems/money
https://www.spoj.com/problems/ADAMOLD/
https://www.spoj.com/problems/LARMY/
https://www.spoj.com/problems/NKLEAVES/
https://acm.timus.ru/problem.aspx?space=1&num=1167
http://www.usaco.org/index.php?page=viewproblem2&cpid=616
https://onlinejudge.org/external/125/12524.pdf
https://onlinejudge.org/external/125/12594.pdf
https://www.quora.com/What-is-divide-and-conquer-optimization-in-dynamic-programming
https://www.youtube.com/watch?v=wLXEWuDWnzI
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Chapter 11

Tasks

11.1 Dynamic Programming on Broken Profile. Prob-
lem “Parquet”

Common problems solved using DP on broken profile include:

• finding number of ways to fully fill an area (e.g. chessboard/grid) with some
figures (e.g. dominoes)

• finding a way to fill an area with minimum number of figures
• finding a partial fill with minimum number of unfilled space (or cells, in

case of grid)
• finding a partial fill with the minimum number of figures, such that no

more figures can be added

11.1.1 Problem “Parquet”
Problem description. Given a grid of size N ×M . Find number of ways to
fill the grid with figures of size 2× 1 (no cell should be left unfilled, and figures
should not overlap each other).

Let the DP state be: dp[i,mask], where i = 1, . . . N and mask = 0, . . . 2M −1.
i represents number of rows in the current grid, and mask is the state of last

row of current grid. If j-th bit of mask is 0 then the corresponding cell is filled,
otherwise it is unfilled.

Clearly, the answer to the problem will be dp[N, 0].
We will be building the DP state by iterating over each i = 1, · · ·N and each

mask = 0, . . . 2M − 1, and for each mask we will be only transitioning forward,
that is, we will be adding figures to the current grid.

Implementation

int n, m;
vector < vector<long long> > dp;

void calc (int x = 0, int y = 0, int mask = 0, int next_mask = 0)
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{
if (x == n)

return;
if (y >= m)

dp[x+1][next_mask] += dp[x][mask];
else
{

int my_mask = 1 << y;
if (mask & my_mask)

calc (x, y+1, mask, next_mask);
else
{

calc (x, y+1, mask, next_mask | my_mask);
if (y+1 < m && ! (mask & my_mask) && ! (mask & (my_mask << 1)))

calc (x, y+2, mask, next_mask);
}

}
}

int main()
{

cin >> n >> m;

dp.resize (n+1, vector<long long> (1<<m));
dp[0][0] = 1;
for (int x=0; x<n; ++x)

for (int mask=0; mask<(1<<m); ++mask)
calc (x, 0, mask, 0);

cout << dp[n][0];

}

11.1.2 Practice Problems
• UVA 10359 - Tiling
• UVA 10918 - Tri Tiling
• SPOJ GNY07H (Four Tiling)
• SPOJ M5TILE (Five Tiling)
• SPOJ MNTILE (MxN Tiling)
• SPOJ DOJ1
• SPOJ DOJ2
• SPOJ BTCODE_J
• SPOJ PBOARD
• ACM HDU 4285 - Circuits
• LiveArchive 4608 - Mosaic
• Timus 1519 - Formula 1
• Codeforces Parquet

https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1300
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1859
https://www.spoj.com/problems/GNY07H/
https://www.spoj.com/problems/M5TILE/
https://www.spoj.com/problems/MNTILE/
https://www.spoj.com/problems/DOJ1/
https://www.spoj.com/problems/DOJ2/
https://www.spoj.com/problems/BTCODE_J/
https://www.spoj.com/problems/PBOARD/
http://acm.hdu.edu.cn/showproblem.php?pid=4285
https://icpcarchive.ecs.baylor.edu/index.php?option=onlinejudge&page=show_problem&problem=2609
https://acm.timus.ru/problem.aspx?space=1&num=1519
https://codeforces.com/problemset/problem/26/C
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11.1.3 References
• Blog by EvilBunny
• TopCoder Recipe by “syg96”
• Blogpost by sk765

https://web.archive.org/web/20180712171735/https://blog.evilbuggy.com/2018/05/broken-profile-dynamic-programming.html
https://apps.topcoder.com/forums/?module=Thread&start=0&threadID=697369
http://sk765.blogspot.com/2012/02/dynamic-programming-with-profile.html
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11.2 Finding the largest zero submatrix
You are given a matrix with n rows and m columns. Find the largest submatrix
consisting of only zeros (a submatrix is a rectangular area of the matrix).

11.2.1 Algorithm
Elements of the matrix will be a[i][j], where i = 0...n - 1, j = 0... m -
1. For simplicity, we will consider all non-zero elements equal to 1.

Step 1: Auxiliary dynamic

First, we calculate the following auxiliary matrix: d[i][j], nearest row that has
a 1 above a[i][j]. Formally speaking, d[i][j] is the largest row number (from
0 to i - 1), in which there is a element equal to 1 in the j-th column. While
iterating from top-left to bottom-right, when we stand in row i, we know the
values from the previous row, so, it is enough to update just the elements with
value 1. We can save the values in a simple array d[i], i = 1...m - 1, because
in the further algorithm we will process the matrix one row at a time and only
need the values of the current row.

vector<int> d(m, -1);
for (int i = 0; i < n; ++i) {

for (int j = 0; j < m; ++j) {
if (a[i][j] == 1) {

d[j] = i;
}

}
}

Step 2: Problem solving

We can solve the problem in O(nm2) iterating through rows, considering every
possible left and right columns for a submatrix. The bottom of the rectangle will
be the current row, and using d[i][j] we can find the top row. However, it is
possible to go further and significantly improve the complexity of the solution.

It is clear that the desired zero submatrix is bounded on all four sides by
some ones, which prevent it from increasing in size and improving the answer.
Therefore, we will not miss the answer if we act as follows: for every cell j in
row i (the bottom row of a potential zero submatrix) we will have d[i][j] as
the top row of the current zero submatrix. It now remains to determine the
optimal left and right boundaries of the zero submatrix, i.e. maximally push this
submatrix to the left and right of the j-th column.

What does it mean to push the maximum to the left? It means to find an
index k1 for which d[i][k1] > d[i][j], and at the same time k1 - the closest
one to the left of the index j. It is clear that then k1 + 1 gives the number
of the left column of the required zero submatrix. If there is no such index at
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all, then put k1 = -1(this means that we were able to extend the current zero
submatrix to the left all the way to the border of matrix a).

Symmetrically, you can define an index k2 for the right border: this is the
closest index to the right of j such that d[i][k2] > d[i][j] (or m, if there is
no such index).

So, the indices k1 and k2, if we learn to search for them effectively, will give
us all the necessary information about the current zero submatrix. In particular,
its area will be equal to (i - d[i][j]) * (k2 - k1 - 1).

How to look for these indexes k1 and k2 effectively with fixed i and j? We
can do that in O(1) on average.

To achieve such complexity, you can use the stack as follows. Let’s first learn
how to search for an index k1, and save its value for each index j within the
current row i in matrix d1[i][j]. To do this, we will look through all the
columns j from left to right, and we will store in the stack only those columns
that have d[][] strictly greater than d[i][j]. It is clear that when moving from
a column j to the next column, it is necessary to update the content of the stack.
When there is an inappropriate element at the top of the stack (i.e. d[][] <=
d[i][j]) pop it. It is easy to understand that it is enough to remove from the
stack only from its top, and from none of its other places (because the stack will
contain an increasing d sequence of columns).

The value d1[i][j] for each j will be equal to the value lying at that moment
on top of the stack.

The dynamics d2[i][j] for finding the indices k2 is considered similar, only
you need to view the columns from right to left.

It is clear that since there are exactly m pieces added to the stack on each
line, there could not be more deletions either, the sum of complexities will be
linear, so the final complexity of the algorithm is O(nm).

It should also be noted that this algorithm consumes O(m) memory (not
counting the input data - the matrix a[][]).

Implementation

int zero_matrix(vector<vector<int>> a) {
int n = a.size();
int m = a[0].size();

int ans = 0;
vector<int> d(m, -1), d1(m), d2(m);
stack<int> st;
for (int i = 0; i < n; ++i) {

for (int j = 0; j < m; ++j) {
if (a[i][j] == 1)

d[j] = i;
}

for (int j = 0; j < m; ++j) {
while (!st.empty() && d[st.top()] <= d[j])

st.pop();



Dynamic Programming, Chapter 11. Tasks 220

d1[j] = st.empty() ? -1 : st.top();
st.push(j);

}
while (!st.empty())

st.pop();

for (int j = m - 1; j >= 0; --j) {
while (!st.empty() && d[st.top()] <= d[j])

st.pop();
d2[j] = st.empty() ? m : st.top();
st.push(j);

}
while (!st.empty())

st.pop();

for (int j = 0; j < m; ++j)
ans = max(ans, (i - d[j]) * (d2[j] - d1[j] - 1));

}
return ans;

}
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Part IV

String Processing
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Chapter 12

Fundamentals

12.1 String Hashing
Hashing algorithms are helpful in solving a lot of problems.

We want to solve the problem of comparing strings efficiently. The brute
force way of doing so is just to compare the letters of both strings, which has a
time complexity of O(min(n1, n2)) if n1 and n2 are the sizes of the two strings.
We want to do better. The idea behind strings is the following: we convert each
string into an integer and compare those instead of the strings. Comparing two
strings is then an O(1) operation.

For the conversion, we need a so-called hash function. The goal of it is to
convert a string into an integer, the so-called hash of the string. The following
condition has to hold: if two strings s and t are equal (s = t), then also their
hashes have to be equal (hash(s) = hash(t)). Otherwise, we will not be able to
compare strings.

Notice, the opposite direction doesn’t have to hold. If the hashes are equal
(hash(s) = hash(t)), then the strings do not necessarily have to be equal. E.g.
a valid hash function would be simply hash(s) = 0 for each s. Now, this is
just a stupid example, because this function will be completely useless, but it
is a valid hash function. The reason why the opposite direction doesn’t have to
hold, is because there are exponentially many strings. If we only want this hash
function to distinguish between all strings consisting of lowercase characters of
length smaller than 15, then already the hash wouldn’t fit into a 64-bit integer
(e.g. unsigned long long) any more, because there are so many of them. And of
course, we don’t want to compare arbitrary long integers, because this will also
have the complexity O(n).

So usually we want the hash function to map strings onto numbers of a fixed
range [0,m), then comparing strings is just a comparison of two integers with a
fixed length. And of course, we want hash(s) 6= hash(t) to be very likely if s 6= t.

That’s the important part that you have to keep in mind. Using hashing will
not be 100% deterministically correct, because two complete different strings
might have the same hash (the hashes collide). However, in a wide majority of
tasks, this can be safely ignored as the probability of the hashes of two different
strings colliding is still very small. And we will discuss some techniques in this
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article how to keep the probability of collisions very low.

12.1.1 Calculation of the hash of a string
The good and widely used way to define the hash of a string s of length n is

hash(s) = s[0] + s[1] · p+ s[2] · p2 + ...+ s[n− 1] · pn−1 mod m

=
n−1∑
i=0

s[i] · pi mod m,

where p and m are some chosen, positive numbers. It is called a polynomial
rolling hash function.

It is reasonable to make p a prime number roughly equal to the number of
characters in the input alphabet. For example, if the input is composed of only
lowercase letters of the English alphabet, p = 31 is a good choice. If the input
may contain both uppercase and lowercase letters, then p = 53 is a possible
choice. The code in this article will use p = 31.

Obviously m should be a large number since the probability of two random
strings colliding is about ≈ 1

m . Sometimes m = 264 is chosen, since then
the integer overflows of 64-bit integers work exactly like the modulo operation.
However, there exists a method, which generates colliding strings (which work
independently from the choice of p). So in practice, m = 264 is not recommended.
A good choice for m is some large prime number. The code in this article will
just use m = 109 + 9. This is a large number, but still small enough so that we
can perform multiplication of two values using 64-bit integers.

Here is an example of calculating the hash of a string s, which contains only
lowercase letters. We convert each character of s to an integer. Here we use the
conversion a → 1, b → 2, . . ., z → 26. Converting a → 0 is not a good idea,
because then the hashes of the strings a, aa, aaa, . . . all evaluate to 0.

long long compute_hash(string const& s) {
const int p = 31;
const int m = 1e9 + 9;
long long hash_value = 0;
long long p_pow = 1;
for (char c : s) {

hash_value = (hash_value + (c - 'a' + 1) * p_pow) % m;
p_pow = (p_pow * p) % m;

}
return hash_value;

}

Precomputing the powers of p might give a performance boost.

12.1.2 Example tasks

Search for duplicate strings in an array of strings

Problem: Given a list of n strings si, each no longer than m characters, find all
the duplicate strings and divide them into groups.
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From the obvious algorithm involving sorting the strings, we would get a time
complexity of O(nm logn) where the sorting requires O(n logn) comparisons
and each comparison take O(m) time. However, by using hashes, we reduce the
comparison time to O(1), giving us an algorithm that runs in O(nm+ n logn)
time.

We calculate the hash for each string, sort the hashes together with the
indices, and then group the indices by identical hashes.

vector<vector<int>> group_identical_strings(vector<string> const& s) {
int n = s.size();
vector<pair<long long, int>> hashes(n);
for (int i = 0; i < n; i++)

hashes[i] = {compute_hash(s[i]), i};

sort(hashes.begin(), hashes.end());

vector<vector<int>> groups;
for (int i = 0; i < n; i++) {

if (i == 0 || hashes[i].first != hashes[i-1].first)
groups.emplace_back();

groups.back().push_back(hashes[i].second);
}
return groups;

}

Fast hash calculation of substrings of given string

Problem: Given a string s and indices i and j, find the hash of the substring
s[i . . . j].

By definition, we have:

hash(s[i . . . j]) =
j∑
k=i

s[k] · pk−i mod m

Multiplying by pi gives:

hash(s[i . . . j]) · pi =
j∑
k=i

s[k] · pk mod m

= hash(s[0 . . . j])− hash(s[0 . . . i− 1]) mod m

So by knowing the hash value of each prefix of the string s, we can compute the
hash of any substring directly using this formula. The only problem that we face in
calculating it is that we must be able to divide hash(s[0 . . . j])−hash(s[0 . . . i−1])
by pi. Therefore we need to find the modular multiplicative inverse of pi and
then perform multiplication with this inverse. We can precompute the inverse of
every pi, which allows computing the hash of any substring of s in O(1) time.

However, there does exist an easier way. In most cases, rather than calculating
the hashes of substring exactly, it is enough to compute the hash multiplied by
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some power of p. Suppose we have two hashes of two substrings, one multiplied
by pi and the other by pj . If i < j then we multiply the first hash by pj−i,
otherwise, we multiply the second hash by pi−j . By doing this, we get both the
hashes multiplied by the same power of p (which is the maximum of i and j) and
now these hashes can be compared easily with no need for any division.

12.1.3 Applications of Hashing
Here are some typical applications of Hashing:

• Rabin-Karp algorithm for pattern matching in a string in O(n) time
• Calculating the number of different substrings of a string in O(n2 logn)

(see below)
• Calculating the number of palindromic substrings in a string.

Determine the number of different substrings in a string

Problem: Given a string s of length n, consisting only of lowercase English letters,
find the number of different substrings in this string.

To solve this problem, we iterate over all substring lengths l = 1 . . . n. For
every substring length l we construct an array of hashes of all substrings of length
l multiplied by the same power of p. The number of different elements in the
array is equal to the number of distinct substrings of length l in the string. This
number is added to the final answer.

For convenience, we will use h[i] as the hash of the prefix with i characters,
and define h[0] = 0.

int count_unique_substrings(string const& s) {
int n = s.size();

const int p = 31;
const int m = 1e9 + 9;
vector<long long> p_pow(n);
p_pow[0] = 1;
for (int i = 1; i < n; i++)

p_pow[i] = (p_pow[i-1] * p) % m;

vector<long long> h(n + 1, 0);
for (int i = 0; i < n; i++)

h[i+1] = (h[i] + (s[i] - 'a' + 1) * p_pow[i]) % m;

int cnt = 0;
for (int l = 1; l <= n; l++) {

set<long long> hs;
for (int i = 0; i <= n - l; i++) {

long long cur_h = (h[i + l] + m - h[i]) % m;
cur_h = (cur_h * p_pow[n-i-1]) % m;
hs.insert(cur_h);

}
cnt += hs.size();
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}
return cnt;

}

12.1.4 Improve no-collision probability
Quite often the above mentioned polynomial hash is good enough, and no collisions
will happen during tests. Remember, the probability that collision happens is
only ≈ 1

m . For m = 109 + 9 the probability is ≈ 10−9 which is quite low. But
notice, that we only did one comparison. What if we compared a string s with
106 different strings. The probability that at least one collision happens is now
≈ 10−3. And if we want to compare 106 different strings with each other (e.g. by
counting how many unique strings exists), then the probability of at least one
collision happening is already ≈ 1. It is pretty much guaranteed that this task
will end with a collision and returns the wrong result.

There is a really easy trick to get better probabilities. We can just compute
two different hashes for each string (by using two different p, and/or different
m, and compare these pairs instead. If m is about 109 for each of the two hash
functions than this is more or less equivalent as having one hash function with
m ≈ 1018. When comparing 106 strings with each other, the probability that at
least one collision happens is now reduced to ≈ 10−6.

12.1.5 Practice Problems
• A Needle in the Haystack - SPOJ
• Double Profiles - Codeforces
• Password - Codeforces
• SUB_PROB - SPOJ
• INSQ15_A
• SPOJ - Ada and Spring Cleaning
• GYM - Text Editor
• 12012 - Detection of Extraterrestrial
• Codeforces - Games on a CD
• UVA 11855 - Buzzwords
• Codeforces - Santa Claus and a Palindrome
• Codeforces - String Compression
• Codeforces - Palindromic Characteristics
• SPOJ - Test
• Codeforces - Palindrome Degree
• Codeforces - Deletion of Repeats
• HackerRank - Gift Boxes

http://www.spoj.com/problems/NHAY/
http://codeforces.com/problemset/problem/154/C
http://codeforces.com/problemset/problem/126/B
http://www.spoj.com/problems/SUB_PROB/
https://www.codechef.com/problems/INSQ15_A
http://www.spoj.com/problems/ADACLEAN/
http://codeforces.com/gym/101466/problem/E
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=3163
http://codeforces.com/contest/727/problem/E
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2955
http://codeforces.com/contest/752/problem/D
http://codeforces.com/contest/825/problem/F
http://codeforces.com/contest/835/problem/D
http://www.spoj.com/problems/CF25E/
http://codeforces.com/contest/7/problem/D
http://codeforces.com/contest/19/problem/C
https://www.hackerrank.com/contests/womens-codesprint-5/challenges/gift-boxes
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12.2 Rabin-Karp Algorithm for string matching
This algorithm is based on the concept of hashing, so if you are not familiar with
string hashing, refer to the string hashing article.

This algorithm was authored by Rabin and Karp in 1987.
Problem: Given two strings - a pattern s and a text t, determine if the pattern

appears in the text and if it does, enumerate all its occurrences in O(|s| + |t|)
time.

Algorithm: Calculate the hash for the pattern s. Calculate hash values for
all the prefixes of the text t. Now, we can compare a substring of length |s| with
s in constant time using the calculated hashes. So, compare each substring of
length |s| with the pattern. This will take a total of O(|t|) time. Hence the final
complexity of the algorithm is O(|t|+ |s|): O(|s|) is required for calculating the
hash of the pattern and O(|t|) for comparing each substring of length |s| with
the pattern.

12.2.1 Implementation
vector<int> rabin_karp(string const& s, string const& t) {

const int p = 31;
const int m = 1e9 + 9;
int S = s.size(), T = t.size();

vector<long long> p_pow(max(S, T));
p_pow[0] = 1;
for (int i = 1; i < (int)p_pow.size(); i++)

p_pow[i] = (p_pow[i-1] * p) % m;

vector<long long> h(T + 1, 0);
for (int i = 0; i < T; i++)

h[i+1] = (h[i] + (t[i] - 'a' + 1) * p_pow[i]) % m;
long long h_s = 0;
for (int i = 0; i < S; i++)

h_s = (h_s + (s[i] - 'a' + 1) * p_pow[i]) % m;

vector<int> occurences;
for (int i = 0; i + S - 1 < T; i++) {

long long cur_h = (h[i+S] + m - h[i]) % m;
if (cur_h == h_s * p_pow[i] % m)

occurences.push_back(i);
}
return occurences;

}

12.2.2 Practice Problems
• SPOJ - Pattern Find
• Codeforces - Good Substrings
• Codeforces - Palindromic characteristics

http://www.spoj.com/problems/NAJPF/
http://codeforces.com/problemset/problem/271/D
https://codeforces.com/problemset/problem/835/D
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12.3 Prefix function. Knuth–Morris–Pratt algorithm

12.3.1 Prefix function definition
You are given a string s of length n. The prefix function for this string is
defined as an array π of length n, where π[i] is the length of the longest proper
prefix of the substring s[0 . . . i] which is also a suffix of this substring. A proper
prefix of a string is a prefix that is not equal to the string itself. By definition,
π[0] = 0.

Mathematically the definition of the prefix function can be written as follows:

π[i] = max
k=0...i

{k : s[0 . . . k − 1] = s[i− (k − 1) . . . i]}

For example, prefix function of string “abcabcd” is [0, 0, 0, 1, 2, 3, 0], and prefix
function of string “aabaaab” is [0, 1, 0, 1, 2, 2, 3].

12.3.2 Trivial Algorithm
An algorithm which follows the definition of prefix function exactly is the following:

vector<int> prefix_function(string s) {
int n = (int)s.length();
vector<int> pi(n);
for (int i = 0; i < n; i++)

for (int k = 0; k <= i; k++)
if (s.substr(0, k) == s.substr(i-k+1, k))

pi[i] = k;
return pi;

}

It is easy to see that its complexity is O(n3), which has room for improvement.

12.3.3 Efficient Algorithm
This algorithm was proposed by Knuth and Pratt and independently from them
by Morris in 1977. It was used as the main function of a substring search
algorithm.

First optimization

The first important observation is, that the values of the prefix function can only
increase by at most one.

Indeed, otherwise, if π[i+ 1] > π[i] + 1, then we can take this suffix ending in
position i+ 1 with the length π[i+ 1] and remove the last character from it. We
end up with a suffix ending in position i with the length π[i+ 1]− 1, which is
better than π[i], i.e. we get a contradiction.

The following illustration shows this contradiction. The longest proper suffix
at position i that also is a prefix is of length 2, and at position i+ 1 it is of length
4. Therefore the string s0 s1 s2 s3 is equal to the string si−2 si−1 si si+1, which
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means that also the strings s0 s1 s2 and si−2 si−1 si are equal, therefore π[i] has
to be 3.

π[i]=2︷ ︸︸ ︷
s0 s1 s2 s3︸ ︷︷ ︸
π[i+1]=4

. . . si−2

π[i]=2︷ ︸︸ ︷
si−1 si si+1︸ ︷︷ ︸
π[i+1]=4

Thus when moving to the next position, the value of the prefix function can
either increase by one, stay the same, or decrease by some amount. This fact
already allows us to reduce the complexity of the algorithm to O(n2), because
in one step the prefix function can grow at most by one. In total the function
can grow at most n steps, and therefore also only can decrease a total of n steps.
This means we only have to perform O(n) string comparisons, and reach the
complexity O(n2).

Second optimization

Let’s go further, we want to get rid of the string comparisons. To accomplish
this, we have to use all the information computed in the previous steps.

So let us compute the value of the prefix function π for i+1. If s[i+1] = s[π[i]],
then we can say with certainty that π[i+ 1] = π[i] + 1, since we already know
that the suffix at position i of length π[i] is equal to the prefix of length π[i].
This is illustrated again with an example.

π[i]︷ ︸︸ ︷
s0 s1 s2

s3=si+1︷︸︸︷
s3︸ ︷︷ ︸

π[i+1]=π[i]+1

. . .

π[i]︷ ︸︸ ︷
si−2 si−1 si

s3=si+1︷︸︸︷
si+1︸ ︷︷ ︸

π[i+1]=π[i]+1

If this is not the case, s[i + 1] 6= s[π[i]], then we need to try a shorter
string. In order to speed things up, we would like to immediately move to the
longest length j < π[i], such that the prefix property in the position i holds,
i.e. s[0 . . . j − 1] = s[i− j + 1 . . . i]:

π[i]︷ ︸︸ ︷
s0 s1︸ ︷︷ ︸_j s2 s3 . . .

π[i]︷ ︸︸ ︷
si−3 si−2 si−1 si︸ ︷︷ ︸_j si+1

Indeed, if we find such a length j, then we again only need to compare the
characters s[i+ 1] and s[j]. If they are equal, then we can assign π[i+ 1] = j + 1.
Otherwise we will need to find the largest value smaller than j, for which the
prefix property holds, and so on. It can happen that this goes until j = 0. If
then s[i+ 1] = s[0], we assign π[i+ 1] = 1, and π[i+ 1] = 0 otherwise.

So we already have a general scheme of the algorithm. The only question left is
how do we effectively find the lengths for j. Let’s recap: for the current length j at
the position i for which the prefix property holds, i.e. s[0 . . . j−1] = s[i−j+1 . . . i],
we want to find the greatest k < j, for which the prefix property holds.

j︷ ︸︸ ︷
s0 s1︸ ︷︷ ︸_k s2 s3 . . .

j︷ ︸︸ ︷
si−3 si−2 si−1 si︸ ︷︷ ︸_k si+1

The illustration shows, that this has to be the value of π[j − 1], which we
already calculated earlier.
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Final algorithm

So we finally can build an algorithm that doesn’t perform any string comparisons
and only performs O(n) actions.

Here is the final procedure:

• We compute the prefix values π[i] in a loop by iterating from i = 1 to
i = n− 1 (π[0] just gets assigned with 0).

• To calculate the current value π[i] we set the variable j denoting the length
of the best suffix for i− 1. Initially j = π[i− 1].

• Test if the suffix of length j + 1 is also a prefix by comparing s[j] and s[i].
If they are equal then we assign π[i] = j + 1, otherwise we reduce j to
π[j − 1] and repeat this step.

• If we have reached the length j = 0 and still don’t have a match, then we
assign π[i] = 0 and go to the next index i+ 1.

Implementation

The implementation ends up being surprisingly short and expressive.

vector<int> prefix_function(string s) {
int n = (int)s.length();
vector<int> pi(n);
for (int i = 1; i < n; i++) {

int j = pi[i-1];
while (j > 0 && s[i] != s[j])

j = pi[j-1];
if (s[i] == s[j])

j++;
pi[i] = j;

}
return pi;

}

This is an online algorithm, i.e. it processes the data as it arrives - for example,
you can read the string characters one by one and process them immediately,
finding the value of prefix function for each next character. The algorithm still
requires storing the string itself and the previously calculated values of prefix
function, but if we know beforehand the maximum value M the prefix function
can take on the string, we can store only M + 1 first characters of the string and
the same number of values of the prefix function.

12.3.4 Applications

Search for a substring in a string. The Knuth-Morris-Pratt algorithm

The task is the classical application of the prefix function.
Given a text t and a string s, we want to find and display the positions of all

occurrences of the string s in the text t.
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For convenience we denote with n the length of the string s and with m the
length of the text t.

We generate the string s+ # + t, where # is a separator that appears neither
in s nor in t. Let us calculate the prefix function for this string. Now think
about the meaning of the values of the prefix function, except for the first n+ 1
entries (which belong to the string s and the separator). By definition the value
π[i] shows the longest length of a substring ending in position i that coincides
with the prefix. But in our case this is nothing more than the largest block that
coincides with s and ends at position i. This length cannot be bigger than n due
to the separator. But if equality π[i] = n is achieved, then it means that the
string s appears completely in at this position, i.e. it ends at position i. Just do
not forget that the positions are indexed in the string s+ # + t.

Thus if at some position i we have π[i] = n, then at the position i− (n+ 1)−
n+ 1 = i− 2n in the string t the string s appears.

As already mentioned in the description of the prefix function computation,
if we know that the prefix values never exceed a certain value, then we do not
need to store the entire string and the entire function, but only its beginning. In
our case this means that we only need to store the string s+ # and the values of
the prefix function for it. We can read one character at a time of the string t
and calculate the current value of the prefix function.

Thus the Knuth-Morris-Pratt algorithm solves the problem in O(n+m) time
and O(n) memory.

Counting the number of occurrences of each prefix

Here we discuss two problems at once. Given a string s of length n. In the first
variation of the problem we want to count the number of appearances of each
prefix s[0 . . . i] in the same string. In the second variation of the problem another
string t is given and we want to count the number of appearances of each prefix
s[0 . . . i] in t.

First we solve the first problem. Consider the value of the prefix function π[i]
at a position i. By definition it means that in position i the prefix of length π[i]
of the string s appears and ends at position i, and there doesn’t exists a longer
prefix that follows this definition. At the same time shorter prefixes can end at
this position. It is not difficult to see, that we have the same question that we
already answered when we computed the prefix function itself: Given a prefix of
length j that is a suffix ending at position i, what is the next smaller prefix < j
that is also a suffix ending at position i. Thus at the position i ends the prefix of
length π[i], the prefix of length π[π[i]− 1], the prefix π[π[π[i]− 1]− 1], and so on,
until the index becomes zero. Thus we can compute the answer in the following
way.

vector<int> ans(n + 1);
for (int i = 0; i < n; i++)

ans[pi[i]]++;
for (int i = n-1; i > 0; i--)

ans[pi[i-1]] += ans[i];
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for (int i = 0; i <= n; i++)
ans[i]++;

Here for each value of the prefix function we first count how many times it
occurs in the array π, and then compute the final answers: if we know that the
length prefix i appears exactly ans[i] times, then this number must be added to
the number of occurrences of its longest suffix that is also a prefix. At the end
we need to add 1 to each result, since we also need to count the original prefixes
also.

Now let us consider the second problem. We apply the trick from Knuth-
Morris-Pratt: we create the string s + # + t and compute its prefix function.
The only differences to the first task is, that we are only interested in the prefix
values that relate to the string t, i.e. π[i] for i ≥ n+ 1. With those values we can
perform the exact same computations as in the first task.

The number of different substring in a string

Given a string s of length n. We want to compute the number of different
substrings appearing in it.

We will solve this problem iteratively. Namely we will learn, knowing the
current number of different substrings, how to recompute this count by adding a
character to the end.

So let k be the current number of different substrings in s, and we add the
character c to the end of s. Obviously some new substrings ending in c will
appear. We want to count these new substrings that didn’t appear before.

We take the string t = s+ c and reverse it. Now the task is transformed into
computing how many prefixes there are that don’t appear anywhere else. If we
compute the maximal value of the prefix function πmax of the reversed string t,
then the longest prefix that appears in s is πmax long. Clearly also all prefixes of
smaller length appear in it.

Therefore the number of new substrings appearing when we add a new
character c is |s|+ 1− πmax.

So for each character appended we can compute the number of new substrings
in O(n) times, which gives a time complexity of O(n2) in total.

It is worth noting, that we can also compute the number of different substrings
by appending the characters at the beginning, or by deleting characters from the
beginning or the end.

Compressing a string

Given a string s of length n. We want to find the shortest “compressed” repre-
sentation of the string, i.e. we want to find a string t of smallest length such that
s can be represented as a concatenation of one or more copies of t.

It is clear, that we only need to find the length of t. Knowing the length, the
answer to the problem will be the prefix of s with this length.

Let us compute the prefix function for s. Using the last value of it we define
the value k = n− π[n− 1]. We will show, that if k divides n, then k will be the
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answer, otherwise there doesn’t exists an effective compression and the answer is
n.

Let n be divisible by k. Then the string can be partitioned into blocks of the
length k. By definition of the prefix function, the prefix of length n− k will be
equal with its suffix. But this means that the last block is equal to the block
before. And the block before has to be equal to the block before it. And so on.
As a result, it turns out that all blocks are equal, therefore we can compress the
string s to length k.

Of course we still need to show that this is actually the optimum. Indeed,
if there was a smaller compression than k, than the prefix function at the end
would be greater than n− k. Therefore k is really the answer.

Now let us assume that n is not divisible by k. We show that this implies
that the length of the answer is n. We prove it by contradiction. Assuming
there exists an answer, and the compression has length p (p divides n). Then
the last value of the prefix function has to be greater than n− p, i.e. the suffix
will partially cover the first block. Now consider the second block of the string.
Since the prefix is equal with the suffix, and both the prefix and the suffix cover
this block and their displacement relative to each other k does not divide the
block length p (otherwise k divides n), then all the characters of the block have
to be identical. But then the string consists of only one character repeated over
and over, hence we can compress it to a string of size 1, which gives k = 1, and k
divides n. Contradiction.

p︷ ︸︸ ︷
s0 s1 s2 s3

p︷ ︸︸ ︷
s4 s5 s6 s7

s0 s1 s2

p︷ ︸︸ ︷
s3 s4 s5 s6 s7︸ ︷︷ ︸

π[7]=5

s4 = s3, s5 = s4, s6 = s5, s7 = s6 ⇒ s0 = s1 = s2 = s3

Building an automaton according to the prefix function

Let’s return to the concatenation to the two strings through a separator, i.e. for
the strings s and t we compute the prefix function for the string s + # + t.
Obviously, since # is a separator, the value of the prefix function will never
exceed |s|. It follows, that it is sufficient to only store the string s+ # and the
values of the prefix function for it, and we can compute the prefix function for
all subsequent character on the fly:

s0 s1 . . . sn−1 #︸ ︷︷ ︸
need to store

t0 t1 . . . tm−1︸ ︷︷ ︸
do not need to store

Indeed, in such a situation, knowing the next character c ∈ t and the value of
the prefix function of the previous position is enough information to compute
the next value of the prefix function, without using any previous characters of
the string t and the value of the prefix function in them.
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In other words, we can construct an automaton (a finite state machine):
the state in it is the current value of the prefix function, and the transition from
one state to another will be performed via the next character.

Thus, even without having the string t, we can construct such a transition table
(old_π, c)→ new_π using the same algorithm as for calculating the transition
table:

void compute_automaton(string s, vector<vector<int>>& aut) {
s += '#';
int n = s.size();
vector<int> pi = prefix_function(s);
aut.assign(n, vector<int>(26));
for (int i = 0; i < n; i++) {

for (int c = 0; c < 26; c++) {
int j = i;
while (j > 0 && 'a' + c != s[j])

j = pi[j-1];
if ('a' + c == s[j])

j++;
aut[i][c] = j;

}
}

}

However in this form the algorithm runs in O(n226) time for the lowercase
letters of the alphabet. Note that we can apply dynamic programming and use
the already calculated parts of the table. Whenever we go from the value j to the
value π[j − 1], we actually mean that the transition (j, c) leads to the same state
as the transition as (π[j − 1], c), and this answer is already accurately computed.

void compute_automaton(string s, vector<vector<int>>& aut) {
s += '#';
int n = s.size();
vector<int> pi = prefix_function(s);
aut.assign(n, vector<int>(26));
for (int i = 0; i < n; i++) {

for (int c = 0; c < 26; c++) {
if (i > 0 && 'a' + c != s[i])

aut[i][c] = aut[pi[i-1]][c];
else

aut[i][c] = i + ('a' + c == s[i]);
}

}
}

As a result we construct the automaton in O(n26) time.
When is such a automaton useful? To begin with, remember that we use the

prefix function for the string s+ # + t and its values mostly for a single purpose:
find all occurrences of the string s in the string t.

Therefore the most obvious benefit of this automaton is the acceleration
of calculating the prefix function for the string s+ # + t. By building the
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automaton for s+ #, we no longer need to store the string s or the values of the
prefix function in it. All transitions are already computed in the table.

But there is a second, less obvious, application. We can use the automaton
when the string t is a gigantic string constructed using some rules. This
can for instance be the Gray strings, or a string formed by a recursive combination
of several short strings from the input.

For completeness we will solve such a problem: given a number k ≤ 105 and a
string s of length ≤ 105. We have to compute the number of occurrences of s in
the k-th Gray string. Recall that Gray’s strings are define in the following way:

g1 = ”a”
g2 = ”aba”
g3 = ”abacaba”
g4 = ”abacabadabacaba”

In such cases even constructing the string t will be impossible, because of its
astronomical length. The k-th Gray string is 2k − 1 characters long. However we
can calculate the value of the prefix function at the end of the string effectively,
by only knowing the value of the prefix function at the start.

In addition to the automaton itself, we also compute values G[i][j] - the value
of the automaton after processing the string gi starting with the state j. And
additionally we compute values K[i][j] - the number of occurrences of s in gi,
before during the processing of gi starting with the state j. Actually K[i][j] is
the number of times that the prefix function took the value |s| while performing
the operations. The answer to the problem will then be K[k][0].

How can we compute these values? First the basic values are G[0][j] = j
and K[0][j] = 0. And all subsequent values can be calculated from the previous
values and using the automaton. To calculate the value for some i we remember
that the string gi consists of gi−1, the i character of the alphabet, and gi−1. Thus
the automaton will go into the state:

mid = aut[G[i− 1][j]][i]

G[i][j] = G[i− 1][mid]

The values for K[i][j] can also be easily counted.

K[i][j] = K[i− 1][j] + (mid == |s|) +K[i− 1][mid]

So we can solve the problem for Gray strings, and similarly also a huge number
of other similar problems. For example the exact same method also solves the
following problem: we are given a string s and some patterns ti, each of which is
specified as follows: it is a string of ordinary characters, and there might be some
recursive insertions of the previous strings of the form tcntk , which means that at
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this place we have to insert the string tk cnt times. An example of such patterns:

t1 = ”abdeca”
t2 = ”abc” + t30

1 + ”abd”
t3 = t50

2 + t100
1

t4 = t10
2 + t100

3

The recursive substitutions blow the string up, so that their lengths can reach
the order of 100100.

We have to find the number of times the string s appears in each of the
strings.

The problem can be solved in the same way by constructing the automaton
of the prefix function, and then we calculate the transitions in for each pattern
by using the previous results.

12.3.5 Practice Problems
• UVA # 455 “Periodic Strings”
• UVA # 11022 “String Factoring”
• UVA # 11452 “Dancing the Cheeky-Cheeky”
• UVA 12604 - Caesar Cipher
• UVA 12467 - Secret Word
• UVA 11019 - Matrix Matcher
• SPOJ - Pattern Find
• Codeforces - Anthem of Berland
• Codeforces - MUH and Cube Walls
• Codeforces - Prefixes and Suffixes

http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=396
http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1963
http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=2447
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4282
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3911
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1960
http://www.spoj.com/problems/NAJPF/
http://codeforces.com/contest/808/problem/G
http://codeforces.com/problemset/problem/471/D
https://codeforces.com/contest/432/problem/D
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12.4 Z-function and its calculation
Suppose we are given a string s of length n. The Z-function for this string is
an array of length n where the i-th element is equal to the greatest number of
characters starting from the position i that coincide with the first characters of s.

In other words, z[i] is the length of the longest common prefix between s and
the suffix of s starting at i.

Note. In this article, to avoid ambiguity, we assume 0-based indexes; that is:
the first character of s has index 0 and the last one has index n− 1.

The first element of Z-function, z[0], is generally not well defined. In this
article we will assume it is zero (although it doesn’t change anything in the
algorithm implementation).

This article presents an algorithm for calculating the Z-function in O(n) time,
as well as various of its applications.

12.4.1 Examples
For example, here are the values of the Z-function computed for different strings:

• “aaaaa” - [0, 4, 3, 2, 1]
• “aaabaab” - [0, 2, 1, 0, 2, 1, 0]
• “abacaba” - [0, 0, 1, 0, 3, 0, 1]

12.4.2 Trivial algorithm
Formal definition can be represented in the following elementary O(n2) imple-
mentation.

vector<int> z_function_trivial(string s) {
int n = (int) s.length();
vector<int> z(n);
for (int i = 1; i < n; ++i)

while (i + z[i] < n && s[z[i]] == s[i + z[i]])
++z[i];

return z;
}

We just iterate through every position i and update z[i] for each one of them,
starting from z[i] = 0 and incrementing it as long as we don’t find a mismatch
(and as long as we don’t reach the end of the line).

Of course, this is not an efficient implementation. We will now show the
construction of an efficient implementation.

12.4.3 Efficient algorithm to compute the Z-function
To obtain an efficient algorithm we will compute the values of z[i] in turn from
i = 1 to n− 1 but at the same time, when computing a new value, we’ll try to
make the best use possible of the previously computed values.
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For the sake of brevity, let’s call segment matches those substrings that
coincide with a prefix of s. For example, the value of the desired Z-function z[i] is
the length of the segment match starting at position i (and that ends at position
i+ z[i]− 1).

To do this, we will keep the [l, r] indices of the rightmost segment
match. That is, among all detected segments we will keep the one that ends
rightmost. In a way, the index r can be seen as the “boundary” to which our
string s has been scanned by the algorithm; everything beyond that point is not
yet known.

Then, if the current index (for which we have to compute the next value of
the Z-function) is i, we have one of two options:

• i > r – the current position is outside of what we have already processed.
We will then compute z[i] with the trivial algorithm (that is, just com-
paring values one by one). Note that in the end, if z[i] > 0, we’ll have to
update the indices of the rightmost segment, because it’s guaranteed that
the new r = i+ z[i]− 1 is better than the previous r.

• i ≤ r – the current position is inside the current segment match [l, r].
Then we can use the already calculated Z-values to “initialize” the value of
z[i] to something (it sure is better than “starting from zero”), maybe even
some big number.
For this, we observe that the substrings s[l . . . r] and s[0 . . . r − l] match.
This means that as an initial approximation for z[i] we can take the value
already computed for the corresponding segment s[0 . . . r − l], and that is
z[i− l].
However, the value z[i− l] could be too large: when applied to position i
it could exceed the index r. This is not allowed because we know nothing
about the characters to the right of r: they may differ from those required.
Here is an example of a similar scenario:

s = ”aaaabaa”

When we get to the last position (i = 6), the current match segment will
be [5, 6]. Position 6 will then match position 6− 5 = 1, for which the value
of the Z-function is z[1] = 3. Obviously, we cannot initialize z[6] to 3, it
would be completely incorrect. The maximum value we could initialize it
to is 1 – because it’s the largest value that doesn’t bring us beyond the
index r of the match segment [l, r].
Thus, as an initial approximation for z[i] we can safely take:

z0[i] = min(r − i+ 1, z[i− l])

After having z[i] initialized to z0[i], we try to increment z[i] by running
the trivial algorithm – because in general, after the border r, we cannot
know if the segment will continue to match or not.
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Thus, the whole algorithm is split in two cases, which differ only in the
initial value of z[i]: in the first case it’s assumed to be zero, in the second case
it is determined by the previously computed values (using the above formula).
After that, both branches of this algorithm can be reduced to the implementation
of the trivial algorithm, which starts immediately after we specify the initial
value.

The algorithm turns out to be very simple. Despite the fact that on each
iteration the trivial algorithm is run, we have made significant progress, having
an algorithm that runs in linear time. Later on we will prove that the running
time is linear.

12.4.4 Implementation
Implementation turns out to be rather laconic:

vector<int> z_function(string s) {
int n = (int) s.length();
vector<int> z(n);
for (int i = 1, l = 0, r = 0; i < n; ++i) {

if (i <= r)
z[i] = min (r - i + 1, z[i - l]);

while (i + z[i] < n && s[z[i]] == s[i + z[i]])
++z[i];

if (i + z[i] - 1 > r)
l = i, r = i + z[i] - 1;

}
return z;

}

Comments on this implementation

The whole solution is given as a function which returns an array of length n –
the Z-function of s.

Array z is initially filled with zeros. The current rightmost match segment is
assumed to be [0; 0] (that is, a deliberately small segment which doesn’t contain
any i).

Inside the loop for i = 1 . . . n− 1 we first determine the initial value z[i] – it
will either remain zero or be computed using the above formula.

Thereafter, the trivial algorithm attempts to increase the value of z[i] as much
as possible.

In the end, if it’s required (that is, if i+z[i]−1 > r), we update the rightmost
match segment [l, r].

12.4.5 Asymptotic behavior of the algorithm
We will prove that the above algorithm has a running time that is linear in the
length of the string – thus, it’s O(n).

The proof is very simple.



String Processing, Chapter 12. Fundamentals 240

We are interested in the nested while loop, since everything else is just a
bunch of constant operations which sums up to O(n).

We will show that each iteration of the while loop will increase the right
border r of the match segment.

To do that, we will consider both branches of the algorithm:

• i > r

In this case, either the while loop won’t make any iteration (if s[0] 6= s[i]),
or it will take a few iterations, starting at position i, each time moving one
character to the right. After that, the right border r will necessarily be
updated.
So we have found that, when i > r, each iteration of the while loop
increases the value of the new r index.

• i ≤ r
In this case, we initialize z[i] to a certain value z0 given by the above
formula. Let’s compare this initial value z0 to the value r − i+ 1. We will
have three cases:

– z0 < r − i+ 1
We prove that in this case no iteration of the while loop will take
place.
It’s easy to prove, for example, by contradiction: if the while loop
made at least one iteration, it would mean that initial approximation
z[i] = z0 was inaccurate (less than the match’s actual length). But
since s[l . . . r] and s[0 . . . r − l] are the same, this would imply that
z[i− l] holds the wrong value (less than it should be).
Thus, since z[i − l] is correct and it is less than r − i + 1, it follows
that this value coincides with the required value z[i].

– z0 = r − i+ 1
In this case, the while loop can make a few iterations, but each of
them will lead to an increase in the value of the r index because we
will start comparing from s[r + 1], which will climb beyond the [l, r]
interval.

– z0 > r − i+ 1
This option is impossible, by definition of z0.

So, we have proved that each iteration of the inner loop make the r pointer
advance to the right. Since r can’t be more than n− 1, this means that the inner
loop won’t make more than n− 1 iterations.

As the rest of the algorithm obviously works in O(n), we have proved that
the whole algorithm for computing Z-functions runs in linear time.

12.4.6 Applications
We will now consider some uses of Z-functions for specific tasks.

These applications will be largely similar to applications of prefix function.
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Search the substring

To avoid confusion, we call t the string of text, and p the pattern. The problem
is: find all occurrences of the pattern p inside the text t.

To solve this problem, we create a new string s = p+ �+ t, that is, we apply
string concatenation to p and t but we also put a separator character � in the
middle (we’ll choose � so that it will certainly not be present anywhere in the
strings p or t).

Compute the Z-function for s. Then, for any i in the interval [0; length(t)−1],
we will consider the corresponding value k = z[i+ length(p) + 1]. If k is equal
to length(p) then we know there is one occurrence of p in the i-th position of t,
otherwise there is no occurrence of p in the i-th position of t.

The running time (and memory consumption) is O(length(t) + length(p)).

Number of distinct substrings in a string

Given a string s of length n, count the number of distinct substrings of s.
We’ll solve this problem iteratively. That is: knowing the current number

of different substrings, recalculate this amount after adding to the end of s one
character.

So, let k be the current number of distinct substrings of s. We append a new
character c to s. Obviously, there can be some new substrings ending in this
new character c (namely, all those strings that end with this symbol and that we
haven’t encountered yet).

Take a string t = s+ c and invert it (write its characters in reverse order).
Our task is now to count how many prefixes of t are not found anywhere else in t.
Let’s compute the Z-function of t and find its maximum value zmax. Obviously,
t’s prefix of length zmax occurs also somewhere in the middle of t. Clearly, shorter
prefixes also occur.

So, we have found that the number of new substrings that appear when
symbol c is appended to s is equal to length(t)− zmax.

Consequently, the running time of this solution is O(n2) for a string of length
n.

It’s worth noting that in exactly the same way we can recalculate, still in
O(n) time, the number of distinct substrings when appending a character in
the beginning of the string, as well as when removing it (from the end or the
beginning).

String compression

Given a string s of length n. Find its shortest “compressed” representation,
that is: find a string t of shortest length such that s can be represented as a
concatenation of one or more copies of t.

A solution is: compute the Z-function of s, loop through all i such that i
divides n. Stop at the first i such that i+ z[i] = n. Then, the string s can be
compressed to the length i.
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The proof for this fact is the same as the solution which uses the prefix
function.

12.4.7 Practice Problems
• Codeforces - Password [Difficulty: Easy]
• UVA # 455 “Periodic Strings” [Difficulty: Medium]
• UVA # 11022 “String Factoring” [Difficulty: Medium]
• UVa 11475 - Extend to Palindrome
• LA 6439 - Pasti Pas!
• Codechef - Chef and Strings
• Codeforces - Prefixes and Suffixes

http://codeforces.com/problemset/problem/126/B
http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=396
http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1963
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=2470
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=588&page=show_problem&problem=4450
https://www.codechef.com/problems/CHSTR
http://codeforces.com/problemset/problem/432/D
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12.5 Suffix Array

12.5.1 Definition
Let s be a string of length n. The i-th suffix of s is the substring s[i . . . n− 1].

A suffix array will contain integers that represent the starting indexes of
the all the suffixes of a given string, after the aforementioned suffixes are sorted.

As an example look at the string s = abaab. All suffixes are as follows
0. abaab
1. baab
2. aab
3. ab
4. b

After sorting these strings:
2. aab
3. ab
0. abaab
4. b
1. baab

Therefore the suffix array for s will be (2, 3, 0, 4, 1).
As a data structure it is widely used in areas such as data compression,

bioinformatics and, in general, in any area that deals with strings and string
matching problems.

12.5.2 Construction

O(n2 logn) approach

This is the most naive approach. Get all the suffixes and sort them using
quicksort or mergesort and simultaneously retain their original indices. Sorting
uses O(n logn) comparisons, and since comparing two strings will additionally
take O(n) time, we get the final complexity of O(n2 logn).

O(n logn) approach

Strictly speaking the following algorithm will not sort the suffixes, but rather
the cyclic shifts of a string. However we can very easily derive an algorithm for
sorting suffixes from it: it is enough to append an arbitrary character to the end
of the string which is smaller than any character from the string. It is common
to use the symbol $. Then the order of the sorted cyclic shifts is equivalent to
the order of the sorted suffixes, as demonstrated here with the string dabbb.

1. abbb$d abbb
4. b$dabb b
3. bb$dab bb
2. bbb$da bbb
0. dabbb$ dabbb
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Since we are going to sort cyclic shifts, we will consider cyclic substrings.
We will use the notation s[i . . . j] for the substring of s even if i > j. In this case
we actually mean the string s[i . . . n− 1] + s[0 . . . j]. In addition we will take all
indices modulo the length of s, and will omit the modulo operation for simplicity.

The algorithm we discuss will perform dlogne + 1 iterations. In the k-th
iteration (k = 0 . . . dlogne) we sort the n cyclic substrings of s of length 2k. After
the dlogne-th iteration the substrings of length 2dlogne ≥ n will be sorted, so this
is equivalent to sorting the cyclic shifts altogether.

In each iteration of the algorithm, in addition to the permutation p[0 . . . n−1],
where p[i] is the index of the i-th substring (starting at i and with length 2k) in the
sorted order, we will also maintain an array c[0 . . . n− 1], where c[i] corresponds
to the equivalence class to which the substring belongs. Because some of the
substrings will be identical, and the algorithm needs to treat them equally. For
convenience the classes will be labeled by numbers started from zero. In addition
the numbers c[i] will be assigned in such a way that they preserve information
about the order: if one substring is smaller than the other, then it should also
have a smaller class label. The number of equivalence classes will be stored in a
variable classes.

Let’s look at an example. Consider the string s = aaba. The cyclic substrings
and the corresponding arrays p[] and c[] are given for each iteration:

0 : (a, a, b, a) p = (0, 1, 3, 2) c = (0, 0, 1, 0)
1 : (aa, ab, ba, aa) p = (0, 3, 1, 2) c = (0, 1, 2, 0)
2 : (aaba, abaa, baaa, aaab) p = (3, 0, 1, 2) c = (1, 2, 3, 0)

It is worth noting that the values of p[] can be different. For example in the 0-th
iteration the array could also be p = (3, 1, 0, 2) or p = (3, 0, 1, 2). All these
options permutation the substrings into a sorted order. So they are all valid. At
the same time the array c[] is fixed, there can be no ambiguities.

Let us now focus on the implementation of the algorithm. We will write a
function that takes a string s and returns the permutations of the sorted cyclic
shifts.

vector<int> sort_cyclic_shifts(string const& s) {
int n = s.size();
const int alphabet = 256;

At the beginning (in the 0-th iteration) we must sort the cyclic substrings
of length 1, that is we have to sort all characters of the string and divide them
into equivalence classes (same symbols get assigned to the same class). This can
be done trivially, for example, by using counting sort. For each character we
count how many times it appears in the string, and then use this information to
create the array p[]. After that we go through the array p[] and construct c[] by
comparing adjacent characters.

vector<int> p(n), c(n), cnt(max(alphabet, n), 0);
for (int i = 0; i < n; i++)

cnt[s[i]]++;
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for (int i = 1; i < alphabet; i++)
cnt[i] += cnt[i-1];

for (int i = 0; i < n; i++)
p[--cnt[s[i]]] = i;

c[p[0]] = 0;
int classes = 1;
for (int i = 1; i < n; i++) {

if (s[p[i]] != s[p[i-1]])
classes++;

c[p[i]] = classes - 1;
}

Now we have to talk about the iteration step. Let’s assume we have already
performed the k − 1-th step and computed the values of the arrays p[] and c[]
for it. We want to compute the values for the k-th step in O(n) time. Since
we perform this step O(logn) times, the complete algorithm will have a time
complexity of O(n logn).

To do this, note that the cyclic substrings of length 2k consists of two
substrings of length 2k−1 which we can compare with each other in O(1) using
the information from the previous phase - the values of the equivalence classes c[].
Thus, for two substrings of length 2k starting at position i and j, all necessary
information to compare them is contained in the pairs (c[i], c[i + 2k−1]) and
(c[j], c[j + 2k−1]).

. . .

length=2k︷ ︸︸ ︷
si . . . si+2k−1−1︸ ︷︷ ︸

length=2k−1, class=c[i]

si+2k−1 . . . si+2k−1︸ ︷︷ ︸
length=2k−1, class=c[i+2k−1]

. . .

length=2k︷ ︸︸ ︷
sj . . . sj+2k−1−1︸ ︷︷ ︸

length=2k−1, class=c[j]

sj+2k−1 . . . sj+2k−1︸ ︷︷ ︸
length=2k−1, class=c[j+2k−1]

. . .

This gives us a very simple solution: sort the substrings of length 2k by
these pairs of numbers. This will give us the required order p[]. However a
normal sort runs in O(n logn) time, with which we are not satisfied. This will
only give us an algorithm for constructing a suffix array in O(n log2 n) times.

How do we quickly perform such a sorting of the pairs? Since the elements of
the pairs do not exceed n, we can use counting sort again. However sorting pairs
with counting sort is not the most efficient. To achieve a better hidden constant
in the complexity, we will use another trick.

We use here the technique on which radix sort is based: to sort the pairs we
first sort them by the second element, and then by the first element (with a stable
sort, i.e. sorting without breaking the relative order of equal elements). However
the second elements were already sorted in the previous iteration. Thus, in order
to sort the pairs by the second elements, we just need to subtract 2k−1 from the
indices in p[] (e.g. if the smallest substring of length 2k−1 starts at position i,
then the substring of length 2k with the smallest second half starts at i− 2k−1).

So only by simple subtractions we can sort the second elements of the pairs
in p[]. Now we need to perform a stable sort by the first elements. As already
mentioned, this can be accomplished with counting sort.

The only thing left is to compute the equivalence classes c[], but as before this
can be done by simply iterating over the sorted permutation p[] and comparing
neighboring pairs.
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Here is the remaining implementation. We use temporary arrays pn[] and
cn[] to store the permutation by the second elements and the new equivalent
class indices.

vector<int> pn(n), cn(n);
for (int h = 0; (1 << h) < n; ++h) {

for (int i = 0; i < n; i++) {
pn[i] = p[i] - (1 << h);
if (pn[i] < 0)

pn[i] += n;
}
fill(cnt.begin(), cnt.begin() + classes, 0);
for (int i = 0; i < n; i++)

cnt[c[pn[i]]]++;
for (int i = 1; i < classes; i++)

cnt[i] += cnt[i-1];
for (int i = n-1; i >= 0; i--)

p[--cnt[c[pn[i]]]] = pn[i];
cn[p[0]] = 0;
classes = 1;
for (int i = 1; i < n; i++) {

pair<int, int> cur = {c[p[i]], c[(p[i] + (1 << h)) % n]};
pair<int, int> prev = {c[p[i-1]], c[(p[i-1] + (1 << h)) % n]};
if (cur != prev)

++classes;
cn[p[i]] = classes - 1;

}
c.swap(cn);

}
return p;

}

The algorithm requires O(n logn) time and O(n) memory. However if we
take the size of the alphabet k into account, then it uses O((n+ k) logn) time
and O(n+ k) memory.

For simplicity we used the complete ASCII range as alphabet. If we know
that the string only contains a subset of characters, e.g. only lowercase letters,
then this implementation can obviously be optimized. However not by much,
since the alphabet size only appears with a factor of O(logn) in the complexity.

Also note, that this algorithm only sorts the cycle shifts. As mentioned at
the beginning of this section we can generate the sorted order of the suffixes by
appending a character that is smaller than all other characters of the string, and
sorting this resulting string by cycle shifts, e.g. by sorting the cycle shifts of s+ $.
This will obviously give the suffix array of s, however prepended with |s|.

vector<int> suffix_array_construction(string s) {
s += "$";
vector<int> sorted_shifts = sort_cyclic_shifts(s);
sorted_shifts.erase(sorted_shifts.begin());
return sorted_shifts;

}
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12.5.3 Applications

Finding the smallest cyclic shift

The algorithm above sorts all cyclic shifts (without appending a character to the
string), and therefore p[0] gives the position of the smallest cyclic shift.

Finding a substring in a string

The task is to find a string s inside some text t online - we know the text t
beforehand, but not the string s. We can create the suffix array for the text t
in O(|t| log |t|) time. Now we can look for the substring s in the following way.
The occurrence of s must be a prefix of some suffix from t. Since we sorted all
the suffixes we can perform a binary search for s in p. Comparing the current
suffix and the substring s within the binary search can be done in O(|s|) time,
therefore the complexity for finding the substring is O(|s| log |t|). Also notice
that if the substring occurs multiple times in t, then all occurrences will be next
to each other in p. Therefore the number of occurrences can be found with a
second binary search, and all occurrences can be printed easily.

Comparing two substrings of a string

We want to be able to compare two substrings of the same length of a given string
s in O(1) time, i.e. checking if the first substring is smaller than the second one.

For this we construct the suffix array in O(|s| log |s|) time and store all the
intermediate results of the equivalence classes c[].

Using this information we can compare any two substring whose length is
equal to a power of two in O(1): for this it is sufficient to compare the equivalence
classes of both substrings. Now we want to generalize this method to substrings
of arbitrary length.

Let’s compare two substrings of length l with the starting indices i and j.
We find the largest length of a block that is placed inside a substring of this
length: the greatest k such that 2k ≤ l. Then comparing the two substrings can
be replaced by comparing two overlapping blocks of length 2k: first you need to
compare the two blocks starting at i and j, and if these are equal then compare
the two blocks ending in positions i+ l − 1 and j + l − 1:

. . .

first︷ ︸︸ ︷
si . . . si+l−2k . . . si+2k−1︸ ︷︷ ︸

2k

. . . si+l−1 . . .

second︷ ︸︸ ︷
sj . . . sj+l−2k . . . sj+2k−1︸ ︷︷ ︸

2k

. . . sj+l−1 . . .

. . .

first︷ ︸︸ ︷
si . . . si+l−2k . . . si+2k−1 . . . si+l−1︸ ︷︷ ︸

2k

. . .

second︷ ︸︸ ︷
sj . . . sj+l−2k . . . sj+2k−1 . . . sj+l−1︸ ︷︷ ︸

2k

. . .

Here is the implementation of the comparison. Note that it is assumed
that the function gets called with the already calculated k. k can be computed
with blog lc, but it is more efficient to precompute all k values for every l. See
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for instance the article about the Sparse Table, which uses a similar idea and
computes all log values.

int compare(int i, int j, int l, int k) {
pair<int, int> a = {c[k][i], c[k][(i+l-(1 << k))%n]};
pair<int, int> b = {c[k][j], c[k][(j+l-(1 << k))%n]};
return a == b ? 0 : a < b ? -1 : 1;

}

Longest common prefix of two substrings with additional memory

For a given string s we want to compute the longest common prefix (LCP) of
two arbitrary suffixes with position i and j.

The method described here usesO(|s| log |s|) additional memory. A completely
different approach that will only use a linear amount of memory is described in
the next section.

We construct the suffix array in O(|s| log |s|) time, and remember the inter-
mediate results of the arrays c[] from each iteration.

Let’s compute the LCP for two suffixes starting at i and j. We can compare
any two substrings with a length equal to a power of two in O(1). To do this,
we compare the strings by power of twos (from highest to lowest power) and if
the substrings of this length are the same, then we add the equal length to the
answer and continue checking for the LCP to the right of the equal part, i.e. i
and j get added by the current power of two.

int lcp(int i, int j) {
int ans = 0;
for (int k = log_n; k >= 0; k--) {

if (c[k][i] == c[k][j]) {
ans += 1 << k;
i += 1 << k;
j += 1 << k;

}
}
return ans;

}

Here log_n denotes a constant that is equal to the logarithm of n in base 2
rounded down.

Longest common prefix of two substrings without additional memory

We have the same task as in the previous section. We have compute the longest
common prefix (LCP) for two suffixes of a string s.

Unlike the previous method this one will only use O(|s|) memory. The result
of the preprocessing will be an array (which itself is an important source of
information about the string, and therefore also used to solve other tasks). LCP
queries can be answered by performing RMQ queries (range minimum queries)
in this array, so for different implementations it is possible to achieve logarithmic
and even constant query time.
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The basis for this algorithm is the following idea: we will compute the longest
common prefix for each pair of adjacent suffixes in the sorted order. In other
words we construct an array lcp[0 . . . n− 2], where lcp[i] is equal to the length of
the longest common prefix of the suffixes starting at p[i] and p[i+ 1]. This array
will give us an answer for any two adjacent suffixes of the string. Then the answer
for arbitrary two suffixes, not necessarily neighboring ones, can be obtained from
this array. In fact, let the request be to compute the LCP of the suffixes p[i] and
p[j]. Then the answer to this query will be min(lcp[i], lcp[i+ 1], . . . , lcp[j − 1]).

Thus if we have such an array lcp, then the problem is reduced to the RMQ,
which has many wide number of different solutions with different complexities.

So the main task is to build this array lcp. We will use Kasai’s algorithm,
which can compute this array in O(n) time.

Let’s look at two adjacent suffixes in the sorted order (order of the suffix
array). Let their starting positions be i and j and their lcp equal to k > 0. If we
remove the first letter of both suffixes - i.e. we take the suffixes i+ 1 and j + 1 -
then it should be obvious that the lcp of these two is k − 1. However we cannot
use this value and write it in the lcp array, because these two suffixes might not
be next to each other in the sorted order. The suffix i+1 will of course be smaller
than the suffix j + 1, but there might be some suffixes between them. However,
since we know that the LCP between two suffixes is the minimum value of all
transitions, we also know that the LCP between any two pairs in that interval
has to be at least k − 1, especially also between i+ 1 and the next suffix. And
possibly it can be bigger.

Now we already can implement the algorithm. We will iterate over the suffixes
in order of their length. This way we can reuse the last value k, since going from
suffix i to the suffix i+ 1 is exactly the same as removing the first letter. We will
need an additional array rank, which will give us the position of a suffix in the
sorted list of suffixes.

vector<int> lcp_construction(string const& s, vector<int> const& p) {
int n = s.size();
vector<int> rank(n, 0);
for (int i = 0; i < n; i++)

rank[p[i]] = i;

int k = 0;
vector<int> lcp(n-1, 0);
for (int i = 0; i < n; i++) {

if (rank[i] == n - 1) {
k = 0;
continue;

}
int j = p[rank[i] + 1];
while (i + k < n && j + k < n && s[i+k] == s[j+k])

k++;
lcp[rank[i]] = k;
if (k)

k--;
}
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return lcp;
}

It is easy to see, that we decrease k at most O(n) times (each iteration at
most once, except for rank[i] == n − 1, where we directly reset it to 0), and
the LCP between two strings is at most n− 1, we will also increase k only O(n)
times. Therefore the algorithm runs in O(n) time.

Number of different substrings

We preprocess the string s by computing the suffix array and the LCP array.
Using this information we can compute the number of different substrings in the
string.

To do this, we will think about which new substrings begin at position p[0],
then at p[1], etc. In fact we take the suffixes in sorted order and see what prefixes
give new substrings. Thus we will not overlook any by accident.

Because the suffixes are sorted, it is clear that the current suffix p[i] will give
new substrings for all its prefixes, except for the prefixes that coincide with the
suffix p[i − 1]. Thus, all its prefixes except the first lcp[i − 1] one. Since the
length of the current suffix is n− p[i], n− p[i]− lcp[i− 1] new suffixes start at
p[i]. Summing over all the suffixes, we get the final answer:

n−1∑
i=0

(n− p[i])−
n−2∑
i=0

lcp[i] = n2 + n

2 −
n−2∑
i=0

lcp[i]

12.5.4 Practice Problems
• Uva 760 - DNA Sequencing
• Uva 1223 - Editor
• Codechef - Tandem
• Codechef - Substrings and Repetitions
• Codechef - Entangled Strings
• Codeforces - Martian Strings
• Codeforces - Little Elephant and Strings
• SPOJ - Ada and Terramorphing
• SPOJ - Ada and Substring
• UVA - 1227 - The longest constant gene
• SPOJ - Longest Common Substring
• UVA 11512 - GATTACA
• LA 7502 - Suffixes and Palindromes
• GYM - Por Costel and the Censorship Committee
• UVA 1254 - Top 10
• UVA 12191 - File Recover
• UVA 12206 - Stammering Aliens
• Codechef - Jarvis and LCP
• LA 3943 - Liking’s Letter
• UVA 11107 - Life Forms

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=701
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=3664
https://www.codechef.com/problems/TANDEM
https://www.codechef.com/problems/ANUSAR
https://www.codechef.com/problems/TANGLED
http://codeforces.com/problemset/problem/149/E
http://codeforces.com/problemset/problem/204/E
http://www.spoj.com/problems/ADAPHOTO/
http://www.spoj.com/problems/ADASTRNG/
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=3668
http://www.spoj.com/problems/LCS/en/
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2507
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=720&page=show_problem&problem=5524
http://codeforces.com/gym/100923/problem/D
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3695
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3343
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=3358
https://www.codechef.com/problems/INSQ16F
https://icpcarchive.ecs.baylor.edu/index.php?option=onlinejudge&Itemid=8&page=show_problem&problem=1944
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2048
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• UVA 12974 - Exquisite Strings
• UVA 10526 - Intellectual Property
• UVA 12338 - Anti-Rhyme Pairs
• DevSkills Reconstructing Blue Print of Life
• UVA 12191 - File Recover
• SPOJ - Suffix Array
• LA 4513 - Stammering Aliens
• SPOJ - LCS2
• Codeforces - Fake News (hard)
• SPOJ - Longest Commong Substring
• SPOJ - Lexicographical Substring Search
• Codeforces - Forbidden Indices
• Codeforces - Tricky and Clever Password
• LA 6856 - Circle of digits

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=862&page=show_problem&problem=4853
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1467
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=3760
https://devskill.com/CodingProblems/ViewProblem/328
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3343
http://www.spoj.com/problems/SARRAY/
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2514
http://www.spoj.com/problems/LCS2/
http://codeforces.com/contest/802/problem/I
http://www.spoj.com/problems/LONGCS/
http://www.spoj.com/problems/SUBLEX/
http://codeforces.com/contest/873/problem/F
http://codeforces.com/contest/30/problem/E
https://icpcarchive.ecs.baylor.edu/index.php?option=onlinejudge&page=show_problem&problem=4868
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12.6 Aho-Corasick algorithm
Let there be a set of strings with the total length m (sum of all lengths). The
Aho-Corasick algorithm constructs a data structure similar to a trie with some
additional links, and then constructs a finite state machine (automaton) in O(mk)
time, where k is the size of the used alphabet.

The algorithm was proposed by Alfred Aho and Margaret Corasick in 1975.

12.6.1 Construction of the trie
Formally a trie is a rooted tree, where each edge of the tree is labeled by some
letter. All outgoing edge from one vertex must have different labels.

Consider any path in the trie from the root to any vertex. If we write out the
labels of all edges on the path, we get a string that corresponds to this path. For
any vertex in the trie we will associate the string from the root to the vertex.

Each vertex will also have a flag leaf which will be true, if any string from
the given set corresponds to this vertex.

Accordingly to build a trie for a set of strings means to build a trie such that
each leaf vertex will correspond to one string from the set, and conversely that
each string of the set corresponds to one leaf vertex.

We now describe how to construct a trie for a given set of strings in linear
time with respect to their total length.

We introduce a structure for the vertices of the tree.

const int K = 26;

struct Vertex {
int next[K];
bool leaf = false;

Vertex() {
fill(begin(next), end(next), -1);

}
};

vector<Vertex> trie(1);

Here we store the trie as an array of Vertex. Each Vertex contains the flag
leaf, and the edges in the form of ans array next[], where next[i] is the index to
the vertex that we reach by following the character i, or −1, if there is no such
edge. Initially the trie consists of only one vertex - the root - with the index 0.

Now we implement a function that will add a string s to the trie. The
implementation is extremely simple: we start at the root node, and as long as
there are edges corresponding to the characters of s we follow them. If there is
no edge for one character, we simply generate a new vertex and connect it via an
edge. At the end of the process we mark the last vertex with flag leaf.

void add_string(string const& s) {
int v = 0;
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for (char ch : s) {
int c = ch - 'a';
if (trie[v].next[c] == -1) {

trie[v].next[c] = trie.size();
trie.emplace_back();

}
v = trie[v].next[c];

}
trie[v].leaf = true;

}

The implementation obviously runs in linear time. And since every vertex
store k links, it will use O(mk) memory.

It is possible to decrease the memory consumption to O(m) by using a map
instead of an array in each vertex. However this will increase the complexity to
O(n log k).

12.6.2 Construction of an automaton
Suppose we have built a trie for the given set of strings. Now let’s look at it
from a different side. If we look at any vertex. The string that corresponds to it
is a prefix of one or more strings in the set, thus each vertex of the trie can be
interpreted as a position in one or more strings from the set.

In fact the trie vertices can be interpreted as states in a finite deterministic
automaton. From any state we can transition - using some input letter - to
other states, i.e. to another position in the set of strings. For example, if there is
only one string in the trie abc, and we are standing at vertex 2 (which corresponds
to the string ab), then using the letter c we can transition to the state 3.

Thus we can understand the edges of the trie as transitions in an automaton
according to the corresponding letter. However for an automaton we cannot
restrict the possible transitions for each state. If we try to perform a transition
using a letter, and there is no corresponding edge in the trie, then we nevertheless
must go into some state.

More strictly, let us be in a state p corresponding to the string t, and we
want to transition to a different state with the character c. If there is an edge
labeled with this letter c, then we can simply go over this edge, and get the vertex
corresponding to t + c. If there is no such edge, then we must find the state
corresponding to the longest proper suffix of the string t (the longest available in
the trie), and try to perform a transition via c from there.

For example let the trie be constructed by the strings ab and bc, and we are
currently at the vertex corresponding to ab, which is a leaf. For a transition with
the letter c, we are forced to go to the state corresponding to the string b, and
from there follow the edge with the letter c.

A suffix link for a vertex p is a edge that points to the longest proper suffix
of the string corresponding to the vertex p. The only special case is the root of
the trie, the suffix link will point to itself. Now we can reformulate the statement
about the transitions in the automaton like this: while from the current vertex
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of the trie there is no transition using the current letter (or until we reach the
root), we follow the suffix link.

Thus we reduced the problem of constructing an automaton to the problem
of finding suffix links for all vertices of the trie. However we will build these suffix
links, oddly enough, using the transitions constructed in the automaton.

Note that if we want to find a suffix link for some vertex v, then we firstly
have the base case that the root vertex has its suffix link as itself, and all nodes
that are immediate children of the root vertex (i.e the vertices associated with
prefixes of length one) also have their suffix links as the root vertex. Moreover,
the suffix links of all deeper vertices can be evaluated as follows: we can go to
the ancestor p of this current vertex (let c be the letter of the edge from p to v),
then follow its suffix link, and perform the transition with the letter c from there.

Thus the problem of finding the transitions has been reduced to the problem
of finding suffix links, and the problem of finding suffix links has been reduced to
the problem of finding a suffix link and a transition, except for vertices closer to
the root. So we have a recursive dependence that we can resolve in linear time.

Let’s move to the implementation. Note that we now will store the ancestor
p and the character pch of the edge from p to v for each vertex v. Also at each
vertex we will store the suffix link link (or −1 if it hasn’t been calculated yet),
and in the array go[k] the transitions in the machine for each symbol (again −1
if it hasn’t been calculated yet).

const int K = 26;

struct Vertex {
int next[K];
bool leaf = false;
int p = -1;
char pch;
int link = -1;
int go[K];

Vertex(int p=-1, char ch='$') : p(p), pch(ch) {
fill(begin(next), end(next), -1);
fill(begin(go), end(go), -1);

}
};

vector<Vertex> t(1);

void add_string(string const& s) {
int v = 0;
for (char ch : s) {

int c = ch - 'a';
if (t[v].next[c] == -1) {

t[v].next[c] = t.size();
t.emplace_back(v, ch);

}
v = t[v].next[c];

}
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t[v].leaf = true;
}

int go(int v, char ch);

int get_link(int v) {
if (t[v].link == -1) {

if (v == 0 || t[v].p == 0)
t[v].link = 0;

else
t[v].link = go(get_link(t[v].p), t[v].pch);

}
return t[v].link;

}

int go(int v, char ch) {
int c = ch - 'a';
if (t[v].go[c] == -1) {

if (t[v].next[c] != -1)
t[v].go[c] = t[v].next[c];

else
t[v].go[c] = v == 0 ? 0 : go(get_link(v), ch);

}
return t[v].go[c];

}

It is easy to see, that due to the memoization of the found suffix links and
transitions the total time for finding all suffix links and transitions will be linear.

12.6.3 Applications

Find all strings from a given set in a text

Given a set of strings and a text. We have to print all occurrences of all strings
from the set in the given text in O(len + ans), where len is the length of the text
and ans is the size of the answer.

We construct an automaton for this set of strings. We will now process the
text letter by letter, transitioning during the different states. Initially we are at
the root of the trie. If we are at any time at state v, and the next letter is c, then
we transition to the next state with go(v, c), thereby either increasing the length
of the current match substring by 1, or decreasing it by following a suffix link.

How can we find out for a state v, if there are any matches with strings
for the set? First, it is clear that if we stand on a leaf vertex, then the string
corresponding to the vertex ends at this position in the text. However this is
by no means the only possible case of achieving a match: if we can reach one
or more leaf vertices by moving along the suffix links, then there will be also a
match corresponding to each found leaf vertex. A simple example demonstrating
this situation can be creating using the set of strings {dabce, abc, bc} and the text
dabc.
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Thus if we store in each leaf vertex the index of the string corresponding to
it (or the list of indices if duplicate strings appear in the set), then we can find
in O(n) time the indices of all strings which match the current state, by simply
following the suffix links from the current vertex to the root. However this is
not the most efficient solution, since this gives us O(n len) complexity in total.
However this can be optimized by computing and storing the nearest leaf vertex
that is reachable using suffix links (this is sometimes called the exit link). This
value we can compute lazily in linear time. Thus for each vertex we can advance
in O(1) time to the next marked vertex in the suffix link path, i.e. to the next
match. Thus for each match we spend O(1) time, and therefore we reach the
complexity O(len + ans).

If you only want to count the occurrences and not find the indices themselves,
you can calculate the number of marked vertices in the suffix link path for each
vertex v. This can be calculated in O(n) time in total. Thus we can sum up all
matches in O(len).

Finding the lexicographical smallest string of a given length that
doesn’t match any given strings

A set of strings and a length L is given. We have to find a string of length L,
which does not contain any of the string, and derive the lexicographical smallest
of such strings.

We can construct the automaton for the set of strings. Let’s remember, that
the vertices from which we can reach a leaf vertex are the states, at which we
have a match with a string from the set. Since in this task we have to avoid
matches, we are not allowed to enter such states. On the other hand we can enter
all other vertices. Thus we delete all “bad” vertices from the machine, and in the
remaining graph of the automaton we find the lexicographical smallest path of
length L. This task can be solved in O(L) for example by depth first search.

Finding the shortest string containing all given strings

Here we use the same ideas. For each vertex we store a mask that denotes the
strings which match at this state. Then the problem can be reformulated as
follows: initially being in the state (v = root, mask = 0), we want to reach the
state (v, mask = 2n − 1), where n is the number of strings in the set. When
we transition from one state to another using a letter, we update the mask
accordingly. By running a breadth first search we can find a path to the state
(v, mask = 2n − 1) with the smallest length.

Finding the lexicographical smallest string of length L containing k
strings

As in the previous problem, we calculate for each vertex the number of matches
that correspond to it (that is the number of marked vertices reachable using
suffix links). We reformulate the problem: the current state is determined by a
triple of numbers (v, len, cnt), and we want to reach from the state (root, 0, 0)
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the state (v, L, k), where v can be any vertex. Thus we can find such a path
using depth first search (and if the search looks at the edges in their natural
order, then the found path will automatically be the lexicographical smallest).

12.6.4 Problems
• UVA #11590 - Prefix Lookup
• UVA #11171 - SMS
• UVA #10679 - I Love Strings!!
• Codeforces - x-prime Substrings
• Codeforces - Frequency of String
• CodeChef - TWOSTRS

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2637
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2112
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1620
https://codeforces.com/problemset/problem/1400/F
http://codeforces.com/problemset/problem/963/D
https://www.codechef.com/MAY20A/problems/TWOSTRS
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Chapter 13

Advanced

13.1 Suffix Tree. Ukkonen’s Algorithm
This article is a stub and doesn’t contain any descriptions. For a description of
the algorithm, refer to other sources, such as Algorithms on Strings, Trees, and
Sequences by Dan Gusfield.

This algorithm builds a suffix tree for a given string s of length n in
O(n log(k))) time, where k is the size of the alphabet (if k is considered to
be a constant, the asymptotic behavior is linear).

The input to the algorithm are the string s and its length n, which are passed
as global variables.

The main function build_tree builds a suffix tree. It is stored as an array
of structures node, where node[0] is the root of the tree.

In order to simplify the code, the edges are stored in the same structures: for
each vertex its structure node stores the information about the edge between it
and its parent. Overall each node stores the following information:

• (l, r) - left and right boundaries of the substring s[l..r-1] which corre-
spond to the edge to this node,

• par - the parent node,
• link - the suffix link,
• next - the list of edges going out from this node.

string s;
int n;

struct node {
int l, r, par, link;
map<char,int> next;

node (int l=0, int r=0, int par=-1)
: l(l), r(r), par(par), link(-1) {}

int len() { return r - l; }
int &get (char c) {

if (!next.count(c)) next[c] = -1;
return next[c];

http://web.stanford.edu/~mjkay/gusfield.pdf
http://web.stanford.edu/~mjkay/gusfield.pdf
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}
};
node t[MAXN];
int sz;

struct state {
int v, pos;
state (int v, int pos) : v(v), pos(pos) {}

};
state ptr (0, 0);

state go (state st, int l, int r) {
while (l < r)

if (st.pos == t[st.v].len()) {
st = state (t[st.v].get( s[l] ), 0);
if (st.v == -1) return st;

}
else {

if (s[ t[st.v].l + st.pos ] != s[l])
return state (-1, -1);

if (r-l < t[st.v].len() - st.pos)
return state (st.v, st.pos + r-l);

l += t[st.v].len() - st.pos;
st.pos = t[st.v].len();

}
return st;

}

int split (state st) {
if (st.pos == t[st.v].len())

return st.v;
if (st.pos == 0)

return t[st.v].par;
node v = t[st.v];
int id = sz++;
t[id] = node (v.l, v.l+st.pos, v.par);
t[v.par].get( s[v.l] ) = id;
t[id].get( s[v.l+st.pos] ) = st.v;
t[st.v].par = id;
t[st.v].l += st.pos;
return id;

}

int get_link (int v) {
if (t[v].link != -1) return t[v].link;
if (t[v].par == -1) return 0;
int to = get_link (t[v].par);
return t[v].link = split (go (state(to,t[to].len()), t[v].l + (t[v].par==0), t[v].r));

}

void tree_extend (int pos) {
for(;;) {
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state nptr = go (ptr, pos, pos+1);
if (nptr.v != -1) {

ptr = nptr;
return;

}

int mid = split (ptr);
int leaf = sz++;
t[leaf] = node (pos, n, mid);
t[mid].get( s[pos] ) = leaf;

ptr.v = get_link (mid);
ptr.pos = t[ptr.v].len();
if (!mid) break;

}
}

void build_tree() {
sz = 1;
for (int i=0; i<n; ++i)

tree_extend (i);
}

13.1.1 Compressed Implementation
This compressed implementation was proposed by freopen.

const int N=1000000,INF=1000000000;
string a;
int t[N][26],l[N],r[N],p[N],s[N],tv,tp,ts,la;

void ukkadd (int c) {
suff:;
if (r[tv]<tp) {

if (t[tv][c]==-1) { t[tv][c]=ts; l[ts]=la;
p[ts++]=tv; tv=s[tv]; tp=r[tv]+1; goto suff; }

tv=t[tv][c]; tp=l[tv];
}
if (tp==-1 || c==a[tp]-'a') tp++; else {

l[ts+1]=la; p[ts+1]=ts;
l[ts]=l[tv]; r[ts]=tp-1; p[ts]=p[tv]; t[ts][c]=ts+1; t[ts][a[tp]-'a']=tv;
l[tv]=tp; p[tv]=ts; t[p[ts]][a[l[ts]]-'a']=ts; ts+=2;
tv=s[p[ts-2]]; tp=l[ts-2];
while (tp<=r[ts-2]) { tv=t[tv][a[tp]-'a']; tp+=r[tv]-l[tv]+1;}
if (tp==r[ts-2]+1) s[ts-2]=tv; else s[ts-2]=ts;
tp=r[tv]-(tp-r[ts-2])+2; goto suff;

}
}

void build() {
ts=2;
tv=0;

http://codeforces.com/profile/freopen
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tp=0;
fill(r,r+N,(int)a.size()-1);
s[0]=1;
l[0]=-1;
r[0]=-1;
l[1]=-1;
r[1]=-1;
memset (t, -1, sizeof t);
fill(t[1],t[1]+26,0);
for (la=0; la<(int)a.size(); ++la)

ukkadd (a[la]-'a');
}

Same code with comments:

const int N=1000000, // maximum possible number of nodes in suffix tree
INF=1000000000; // infinity constant

string a; // input string for which the suffix tree is being built
int t[N][26], // array of transitions (state, letter)

l[N], // left...
r[N], // ...and right boundaries of the substring of a which correspond to incoming edge
p[N], // parent of the node
s[N], // suffix link
tv, // the node of the current suffix (if we're mid-edge, the lower node of the edge)
tp, // position in the string which corresponds to the position on the edge (between l[tv] and r[tv], inclusive)
ts, // the number of nodes
la; // the current character in the string

void ukkadd(int c) { // add character s to the tree
suff:; // we'll return here after each transition to the suffix (and will add character again)
if (r[tv]<tp) { // check whether we're still within the boundaries of the current edge

// if we're not, find the next edge. If it doesn't exist, create a leaf and add it to the tree
if (t[tv][c]==-1) {t[tv][c]=ts;l[ts]=la;p[ts++]=tv;tv=s[tv];tp=r[tv]+1;goto suff;}
tv=t[tv][c];tp=l[tv];

} // otherwise just proceed to the next edge
if (tp==-1 || c==a[tp]-'a')

tp++; // if the letter on the edge equal c, go down that edge
else {

// otherwise split the edge in two with middle in node ts
l[ts]=l[tv];r[ts]=tp-1;p[ts]=p[tv];t[ts][a[tp]-'a']=tv;
// add leaf ts+1. It corresponds to transition through c.
t[ts][c]=ts+1;l[ts+1]=la;p[ts+1]=ts;
// update info for the current node - remember to mark ts as parent of tv
l[tv]=tp;p[tv]=ts;t[p[ts]][a[l[ts]]-'a']=ts;ts+=2;
// prepare for descent
// tp will mark where are we in the current suffix
tv=s[p[ts-2]];tp=l[ts-2];
// while the current suffix is not over, descend
while (tp<=r[ts-2]) {tv=t[tv][a[tp]-'a'];tp+=r[tv]-l[tv]+1;}
// if we're in a node, add a suffix link to it, otherwise add the link to ts
// (we'll create ts on next iteration).
if (tp==r[ts-2]+1) s[ts-2]=tv; else s[ts-2]=ts;
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// add tp to the new edge and return to add letter to suffix
tp=r[tv]-(tp-r[ts-2])+2;goto suff;

}
}

void build() {
ts=2;
tv=0;
tp=0;
fill(r,r+N,(int)a.size()-1);
// initialize data for the root of the tree
s[0]=1;
l[0]=-1;
r[0]=-1;
l[1]=-1;
r[1]=-1;
memset (t, -1, sizeof t);
fill(t[1],t[1]+26,0);
// add the text to the tree, letter by letter
for (la=0; la<(int)a.size(); ++la)

ukkadd (a[la]-'a');
}

13.1.2 Practice Problems
• UVA 10679 - I Love Strings!!!

http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1620
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13.2 Suffix Automaton
A suffix automaton is a powerful data structure that allows solving many
string-related problems.

For example, you can search for all occurrences of one string in another, or
count the amount of different substrings of a given string. Both tasks can be
solved in linear time with the help of a suffix automaton.

Intuitively a suffix automaton can be understood as a compressed form of all
substrings of a given string. An impressive fact is, that the suffix automaton
contains all this information in a highly compressed form. For a string of length
n it only requires O(n) memory. Moreover, it can also be built in O(n) time (if
we consider the size k of the alphabet as a constant), otherwise both the memory
and the time complexity will be O(n log k).

The linearity of the size of the suffix automaton was first discovered in 1983
by Blumer et al., and in 1985 the first linear algorithms for the construction was
presented by Crochemore and Blumer.

13.2.1 Definition of a suffix automaton
A suffix automaton for a given string s is a minimal DFA (deterministic finite
automaton / deterministic finite state machine) that accepts all the suffixes of
the string s.

In other words:

• A suffix automaton is an oriented acyclic graph. The vertices are called
states, and the edges are called transitions between states.

• One of the states t0 is the initial state, and it must be the source of the
graph (all other states are reachable from t0).

• Each transition is labeled with some character. All transitions originating
from a state must have different labels.

• One or multiple states are marked as terminal states. If we start from
the initial state t0 and move along transitions to a terminal state, then the
labels of the passed transitions must spell one of the suffixes of the string
s. Each of the suffixes of s must be spellable using a path from t0 to a
terminal state.

• The suffix automaton contains the minimum number of vertices among all
automata satisfying the conditions described above.

Substring property

The simplest and most important property of a suffix automaton is, that it
contains information about all substrings of the string s. Any path starting at the
initial state t0, if we write down the labels of the transitions, forms a substring
of s. And conversely every substring of s corresponds to a certain path starting
at t0.

In order to simplify the explanations, we will say that the substring corre-
sponds to that path (starting at t0 and the labels spell the substring). And
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conversely we say that any path corresponds to the string spelled by its labels.
One or multiple paths can lead to a state. Thus, we will say that a state

corresponds to the set of strings, which correspond to these paths.

Examples of constructed suffix automata

Here we will show some examples of suffix automata for several simple strings.
We will denote the initial state with blue and the terminal states with green.
For the string s = ””:

Figure 13.1: Suffix automaton for ""

For the string s = ”a”:

Figure 13.2: Suffix automaton for “a”

For the string s = ”aa”:

Figure 13.3: Suffix automaton for “aa”

For the string s = ”ab”:
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Figure 13.4: Suffix automaton for “ab”

For the string s = ”aba”:

Figure 13.5: Suffix automaton for “aba”

For the string s = ”abb”:

Figure 13.6: Suffix automaton for “abb”

For the string s = ”abbb”:
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Figure 13.7: Suffix automaton for “abbb”

13.2.2 Construction in linear time
Before we describe the algorithm to construct a suffix automaton in linear time,
we need to introduce several new concepts and simple proofs, which will be very
important in understanding the construction.

End positions endpos

Consider any non-empty substring t of the string s. We will denote with endpos(t)
the set of all positions in the string s, in which the occurrences of t end. For
instance, we have endpos(”bc”) = {2, 4} for the string ”abcbc”.

We will call two substrings t1 and t2 endpos-equivalent, if their ending sets
coincide: endpos(t1) = endpos(t2). Thus all non-empty substrings of the string
s can be decomposed into several equivalence classes according to their sets
endpos.

It turns out, that in a suffix machine endpos-equivalent substrings corre-
spond to the same state. In other words the number of states in a suffix
automaton is equal to the number of equivalence classes among all substrings,
plus the initial state. Each state of a suffix automaton corresponds to one or
more substrings having the same value endpos.

We will later describe the construction algorithm using this assumption. We
will then see, that all the required properties of a suffix automaton, except for
the minimality, are fulfilled. And the minimality follows from Nerode’s theorem
(which will not be proven in this article).

We can make some important observations concerning the values endpos:
Lemma 1: Two non-empty substrings u and w (with length(u) ≤ length(w))

are endpos-equivalent, if and only if the string u occurs in s only in the form of
a suffix of w.

The proof is obvious. If u and w have the same endpos values, then u is a
suffix of w and appears only in the form of a suffix of w in s. And if u is a suffix
of w and appears only in the form as a suffix in s, then the values endpos are
equal by definition.

Lemma 2: Consider two non-empty substrings u and w (with length(u) ≤
length(w)). Then their sets endpos either don’t intersect at all, or endpos(w) is
a subset of endpos(u). And it depends on if u is a suffix of w or not.
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{
endpos(w) ⊆ endpos(u) if u is a suffix of w
endpos(w) ∩ endpos(u) = ∅ otherwise

Proof: If the sets endpos(u) and endpos(w) have at least one common element,
then the strings u and w both end in that position, i.e. u is a suffix of w. But
then at every occurrence of w also appears the substring u, which means that
endpos(w) is a subset of endpos(u).

Lemma 3: Consider an endpos-equivalence class. Sort all the substrings in
this class by decreasing length. Then in the resulting sequence each substring will
be one shorter than the previous one, and at the same time will be a suffix of the
previous one. In other words, in a same equivalence class, the shorter substrings
are actually suffixes of the longer substrings, and they take all possible lengths in
a certain interval [x; y].

Proof: Fix some endpos-equivalence class. If it only contains one string, then
the lemma is obviously true. Now let’s say that the number of strings in the class
is greater than one.

According to Lemma 1, two different endpos-equivalent strings are always in
such a way, that the shorter one is a proper suffix of the longer one. Consequently,
there cannot be two strings of the same length in the equivalence class.

Let’s denote by w the longest, and through u the shortest string in the equiva-
lence class. According to Lemma 1, the string u is a proper suffix of the string w.
Consider now any suffix of w with a length in the interval [length(u); length(w)].
It is easy to see, that this suffix is also contained in the same equivalence class.
Because this suffix can only appear in the form of a suffix of w in the string
s (since also the shorter suffix u occurs in s only in the form of a suffix of w).
Consequently, according to Lemma 1, this suffix is endpos-equivalent to the string
w.

Suffix links link

Consider some state v 6= t0 in the automaton. As we know, the state v corresponds
to the class of strings with the same endpos values. And if we denote by w the
longest of these strings, then all the other strings are suffixes of w.

We also know the first few suffixes of a string w (if we consider suffixes in
descending order of their length) are all contained in this equivalence class, and
all other suffixes (at least one other - the empty suffix) are in some other classes.
We denote by t the biggest such suffix, and make a suffix link to it.

In other words, a suffix link link(v) leads to the state that corresponds to
the longest suffix of w that is in another endpos-equivalence class.

Here we assume that the initial state t0 corresponds to its own equivalence
class (containing only the empty string), and for convenience we set endpos(t0) =
{−1, 0, . . . , length(s)− 1}.

Lemma 4: Suffix links form a tree with the root t0.
Proof: Consider an arbitrary state v 6= t0. A suffix link link(v) leads to a

state corresponding to strings with strictly smaller length (this follows from the
definition of the suffix links and from Lemma 3). Therefore, by moving along the
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suffix links, we will sooner or later come to the initial state t0, which corresponds
to the empty string.

Lemma 5: If we construct a tree using the sets endpos (by the rule that
the set of a parent node contains the sets of all children as subsets), then the
structure will coincide with the tree of suffix links.

Proof: The fact that we can construct a tree using the sets endpos follows
directly from Lemma 2 (that any two sets either do not intersect or one is
contained in the other).

Let us now consider an arbitrary state v 6= t0, and its suffix link link(v).
From the definition of the suffix link and from Lemma 2 it follows that

endpos(v) ⊆ endpos(link(v)),

which together with the previous lemma proves the assertion: the tree of suffix
links is essentially a tree of sets endpos.

Here is an example of a tree of suffix links in the suffix automaton build for
the string ”abcbc”. The nodes are labeled with the longest substring from the
corresponding equivalence class.

Figure 13.8: Suffix automaton for “abcbc” with suffix links

Recap

Before proceeding to the algorithm itself, we recap the accumulated knowledge,
and introduce a few auxiliary notations.

• The substrings of the string s can be decomposed into equivalence classes
according to their end positions endpos.

• The suffix automaton consists of the initial state t0, as well as of one state
for each endpos-equivalence class.
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• For each state v one or multiple substrings match. We denote by longest(v)
the longest such string, and through len(v) its length. We denote by
shortest(v) the shortest such substring, and its length with minlen(v).
Then all the strings corresponding to this state are different suffixes
of the string longest(v) and have all possible lengths in the interval
[minlength(v); len(v)].

• For each state v 6= t0 a suffix link is defined as a link, that leads to
a state that corresponds to the suffix of the string longest(v) of length
minlen(v) − 1. The suffix links form a tree with the root in t0, and at
the same time this tree forms an inclusion relationship between the sets
endpos.

• We can express minlen(v) for v 6= t0 using the suffix link link(v) as:

minlen(v) = len(link(v)) + 1

• If we start from an arbitrary state v0 and follow the suffix links, then sooner
or later we will reach the initial state t0. In this case we obtain a sequence of
disjoint intervals [minlen(vi); len(vi)], which in union forms the continuous
interval [0; len(v0)].

Algorithm

Now we can proceed to the algorithm itself. The algorithm will be online, i.e. we
will add the characters of the string one by one, and modify the automaton
accordingly in each step.

To achieve linear memory consumption, we will only store the values len,
link and a list of transitions in each state. We will not label terminal states
(but we will later show how to arrange these labels after constructing the suffix
automaton).

Initially the automaton consists of a single state t0, which will be the index 0
(the remaining states will receive the indices 1, 2, . . .). We assign it len = 0 and
link = −1 for convenience (−1 will be a fictional, non-existing state).

Now the whole task boils down to implementing the process of adding one
character c to the end of the current string. Let us describe this process:

• Let last be the state corresponding to the entire string before adding the
character c. (Initially we set last = 0, and we will change last in the last
step of the algorithm accordingly.)

• Create a new state cur, and assign it with len(cur) = len(last) + 1. The
value link(cur) is not known at the time.

• Now we to the following procedure: We start at the state last. While
there isn’t a transition through the letter c, we will add a transition to the
state cur, and follow the suffix link. If at some point there already exists
a transition through the letter c, then we will stop and denote this state
with p.
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• If it haven’t found such a state p, then we reached the fictitious state −1,
then we can just assign link(cur) = 0 and leave.

• Suppose now that we have found a state p, from which there exists a
transition through the letter c. We will denote the state, to which the
transition leads, with q.

• Now we have two cases. Either len(p) + 1 = len(q), or not.

• If len(p) + 1 = len(q), then we can simply assign link(cur) = q and leave.

• Otherwise it is a bit more complicated. It is necessary to clone the state
q: we create a new state clone, copy all the data from q (suffix link and
transition) except the value len. We will assign len(clone) = len(p) + 1.
After cloning we direct the suffix link from cur to clone, and also from q to
clone.
Finally we need to walk from the state p back using suffix links as long as
there is a transition through c to the state q, and redirect all those to the
state clone.

• In any of the three cases, after completing the procedure, we update the
value last with the state cur.

If we also want to know which states are terminal and which are not, the
we can find all terminal states after constructing the complete suffix automaton
for the entire string s. To do this, we take the state corresponding to the entire
string (stored in the variable last), and follow its suffix links until we reach the
initial state. We will mark all visited states as terminal. It is easy to understand
that by doing so we will mark exactly the states corresponding to all the suffixes
of the string s, which are exactly the terminal states.

In the next section we will look in detail at each step and show its correctness.
Here we only note that, since we only create one or two new states for each

character of s, the suffix automaton contains a linear number of states.
The linearity of the number of transitions, and in general the linearity of the

runtime of the algorithm is less clear, and they will be proven after we proved
the correctness.

Correctness

• We will call a transition (p, q) continuous if len(p)+1 = len(q). Otherwise,
i.e. when len(p) + 1 < len(q), the transition will be called non-continuous.
As we can see from the description of the algorithm, continuous and
non-continuous transitions will lead to different cases of the algorithm.
Continuous transitions are fixed, and will never change again. In contrast
non-continuous transition may change, when new letters are added to the
string (the end of the transition edge may change).
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• To avoid ambiguity we will denote the string, for which the suffix automaton
was built before adding the current character c, with s.

• The algorithm begins with creating a new state cur, which will correspond
to the entire string s + c. It is clear why we have to create a new state.
Together with the new character a new equivalence class is created.

• After creating a new state we traverse by suffix links starting from the
state corresponding to the entire string s. For each state we try to add
a transition with the character c to the new state cur. Thus we append
to each suffix of s the character c. However we can only add these new
transitions, if they don’t conflict with an already existing one. Therefore
as soon as we find an already existing transition with c we have to stop.

• In the simplest case we reached the fictitious state −1. This means we
added the transition with c to all suffixes of s. This also means, that the
character c hasn’t been part of the string s before. Therefore the suffix link
of cur has to lead to the state 0.

• In the second case we came across an existing transition (p, q). This means
that we tried to add a string x+ c (where x is a suffix of s) to the machine
that already exists in the machine (the string x+ c already appears as
a substring of s). Since we assume that the automaton for the string s is
build correctly, we should not add a new transition here.
However there is a difficulty. To which state should the suffix link from the
state cur lead? We have to make a suffix link to a state, in which the longest
string is exactly x+c, i.e. the len of this state should be len(p)+1. However
it is possible, that such a state doesn’t yet exists, i.e. len(q) > len(p) + 1.
In this case we have to create such a state, by splitting the state q.

• If the transition (p, q) turns out to be continuous, then len(q) = len(p) + 1.
In this case everything is simple. We direct the suffix link from cur to the
state q.

• Otherwise the transition is non-continuous, i.e. len(q) > len(p) + 1. This
means that the state q corresponds to not only the suffix of s + c with
length len(p) + 1, but also to longer substrings of s. We can do nothing
other than splitting the state q into two sub-states, so that the first one
has length len(p) + 1.
How can we split a state? We clone the state q, which gives us the state
clone, and we set len(clone) = len(p) + 1. We copy all the transitions
from q to clone, because we don’t want to change the paths that traverse
through q. Also we set the suffix link from clone to the target of the suffix
link of q, and set the suffix link of q to clone.
And after splitting the state, we set the suffix link from cur to clone.
In the last step we change some of the transitions to q, we redirect them to
clone. Which transitions do we have to change? It is enough to redirect
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only the transitions corresponding to all the suffixes of the string w + c
(where w is the longest string of p), i.e. we need to continue to move along
the suffix links, starting from the vertex p until we reach the fictitious state
−1 or a transition that leads to a different state than q.

Linear number of operations

First we immediately make the assumption that the size of the alphabet is
constant. If this is not the case, then it will not be possible to talk about the
linear time complexity. The list of transitions from one vertex will be stored
in a balanced tree, which allows you to quickly perform key search operations
and adding keys. Therefore if we denote with k the size of the alphabet, then
the asymptotic behavior of the algorithm will be O(n log k) with O(n) memory.
However if the alphabet is small enough, then you can sacrifice memory by
avoiding balanced trees, and store the transitions at each vertex as an array of
length k (for quick searching by key) and a dynamic list (to quickly traverse all
available keys). Thus we reach the O(n) time complexity for the algorithm, but
at a cost of O(nk) memory complexity.

So we will consider the size of the alphabet to be constant, i.e. each operation
of searching for a transition on a character, adding a transition, searching for the
next transition - all these operations can be done in O(1).

If we consider all parts of the algorithm, then it contains three places in the
algorithm in which the linear complexity is not obvious:

• The first place is the traversal through the suffix links from the state last,
adding transitions with the character c.

• The second place is the copying of transitions when the state q is cloned
into a new state clone.

• Third place is changing the transition leading to q, redirecting them to
clone.

We use the fact that the size of the suffix automaton (both in number of
states and in the number of transitions) is linear. (The proof of the linearity
of the number of states is the algorithm itself, and the proof of linearity of the
number of states is given below, after the implementation of the algorithm).

Thus the total complexity of the first and second places is obvious, after
all each operation adds only one amortized new transition to the automaton.

It remains to estimate the total complexity of the third place, in which
we redirect transitions, that pointed originally to q, to clone. We denote v =
longest(p). This is a suffix of the string s, and with each iteration its length
decreases - and therefore the position v as the suffix of the string s increases
monotonically with each iteration. In this case, if before the first iteration of
the loop, the corresponding string v was at the depth k (k ≥ 2) from last (by
counting the depth as the number of suffix links), then after the last iteration the
string v + c will be a 2-th suffix link on the path from cur (which will become
the new value last).
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Thus, each iteration of this loop leads to the fact that the position of the
string longest(link(link(last)) as suffix of the current string will monotonically
increase. Therefore this cycle cannot be executed more than n iterations, which
was required to prove.

Implementation

First we describe a data structure that will store all information about a specific
transition (len, link and the list of transitions). If necessary you can add
a terminal flag here, as well as other information. We will store the list of
transitions in the form of a map, which allows us to achieve total O(n) memory
and O(n log k) time for processing the entire string.

struct state {
int len, link;
map<char, int> next;

};

The suffix automaton itself will be stored in an array of these structures state.
We store the current size sz and also the variable last, the state corresponding
to the entire string at the moment.

const int MAXLEN = 100000;
state st[MAXLEN * 2];
int sz, last;

We give a function that initializes a suffix automaton (creating a suffix
automaton with a single state).

void sa_init() {
st[0].len = 0;
st[0].link = -1;
sz++;
last = 0;

}

And finally we give the implementation of the main function - which adds the
next character to the end of the current line, rebuilding the machine accordingly.

void sa_extend(char c) {
int cur = sz++;
st[cur].len = st[last].len + 1;
int p = last;
while (p != -1 && !st[p].next.count(c)) {

st[p].next[c] = cur;
p = st[p].link;

}
if (p == -1) {

st[cur].link = 0;
} else {

int q = st[p].next[c];
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if (st[p].len + 1 == st[q].len) {
st[cur].link = q;

} else {
int clone = sz++;
st[clone].len = st[p].len + 1;
st[clone].next = st[q].next;
st[clone].link = st[q].link;
while (p != -1 && st[p].next[c] == q) {

st[p].next[c] = clone;
p = st[p].link;

}
st[q].link = st[cur].link = clone;

}
}
last = cur;

}

As mentioned above, if you sacrifice memory (O(nk), where k is the size of
the alphabet), then you can achieve the build time of the machine in O(n), even
for any alphabet size k. But for this you will have to store an array of size k in
each state (for quickly jumping to the transition of the letter), and additional a
list of all transitions (to quickly iterate over the transitions them).

13.2.3 Additional properties

Number of states

The number of states in a suffix automaton of the string s of length n doesn’t
exceed 2n− 1 (for n ≥ 2).

The proof is the construction algorithm itself, since initially the automaton
consists of one state, and in the first and second iteration only a single state will
be created, and in the remaining n − 2 steps at most 2 states will be created
each.

However we can also show this estimation without knowing the algorithm.
Let us recall that the number of states is equal to the number of different sets
endpos. In addition theses sets endpos form a tree (a parent vertex contains all
children sets in his set). Consider this tree and transform it a little bit: as long
as it has an internal vertex with only one child (which means that the set of the
child misses at least one position from the parent set), we create a new child with
the set of the missing positions. In the end we have a tree in which each inner
vertex has a degree greater than one, and the number of leaves does not exceed
n. Therefore there are no more than 2n− 1 vertices in such a tree.

This bound of the number of states can actually be achieved for each n. A
possible string is:

”abbb . . . bbb”

In each iteration, starting at the third one, the algorithm will split a state,
resulting in exactly 2n− 1 states.
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Number of transitions

The number of transitions in a suffix automaton of a string s of length n doesn’t
exceed 3n− 4 (for n ≥ 3).

Let us prove this:
Let us first estimate the number of continuous transitions. Consider a spanning

tree of the longest paths in the automaton starting in the state t0. This skeleton
will consist of only the continuous edges, and therefore their number is less than
the number of states, i.e. it does not exceed 2n− 2.

Now let us estimate the number of non-continuous transitions. Let the
current non-continuous transition be (p, q) with the character c. We take the
correspondent string u + c + w, where the string u corresponds to the longest
path from the initial state to p, and w to the longest path from q to any terminal
state. On one hand, each such string u+ c+w for each incomplete strings will be
different (since the strings u and w are formed only by complete transitions). On
the other hand each such string u+ c+w, by the definition of the terminal states,
will be a suffix of the entire string s. Since there are only n non-empty suffixes
of s, and non of the strings u+ c+ w can contain s (because the entire string
only contains complete transitions), the total number of incomplete transitions
does not exceed n− 1.

Combining these two estimates gives us the bound 3n− 3. However, since the
maximum number of states can only be achieved with the test case ”abbb . . . bbb”
and this case has clearly less than 3n− 3 transitions, we get the tighter bound of
3n− 4 for the number of transitions in a suffix automaton.

This bound can also be achieved with the string:

”abbb . . . bbbc”

13.2.4 Applications
Here we look at some tasks that can be solved using the suffix automaton. For
the simplicity we assume that the alphabet size k is constant, which allows us to
consider the complexity of appending a character and the traversal as constant.

Check for occurrence

Given a text T , and multiple patters P . We have to check whether or not the
strings P appear as a substring of T .

We build a suffix automaton of the text T in O(length(T )) time. To check if
a pattern P appears in T , we follow the transitions, starting from t0, according
to the characters of P . If at some point there doesn’t exists a transition, then
the pattern P doesn’t appear as a substring of T . If we can process the entire
string P this way, then the string appears in T .

It is clear that this will take O(length(P )) time for each string P . Moreover
the algorithm actually finds the length of the longest prefix of P that appears in
the text.
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Number of different substrings

Given a string S. You want to compute the number of different substrings.
Let us build a suffix automaton for the string S.
Each substring of S corresponds to some path in the automaton. Therefore

the number of different substrings is equal to the number of different paths in
the automaton starting at t0.

Given that the suffix automaton is a directed acyclic graph, the number of
different ways can be computed using dynamic programming.

Namely, let d[v] be the number of ways, starting at the state v (including the
path of length zero). Then we have the recursion:

d[v] = 1 +
∑

w:(v,w,c)∈DAWG

d[w]

I.e. d[v] can be expressed as the sum of answers for all ends of the transitions of
v.

The number of different substrings is the value d[t0]− 1 (since we don’t count
the empty substring).

Total time complexity: O(length(S))

Total length of all different substrings

Given a string S. We want to compute the total length of all its various substrings.
The solution is similar to the previous one, only now it is necessary to

consider two quantities for the dynamic programming part: the number of
different substrings d[v] and their total length ans[v].

We already described how to compute d[v] in the previous task. The value
ans[v] can be computed using the recursion:

ans[v] =
∑

w:(v,w,c)∈DAWG

d[w] + ans[w]

We take the answer of each adjacent vertex w, and add to it d[w] (since every
substrings is one character longer when starting from the state v).

Again this task can be computed in O(length(S)) time.

Lexicographically k-th substring

Given a string S. We have to answer multiple queries. For each given number
Ki we have to find the Ki-th string in the lexicographically ordered list of all
substrings.

The solution of this problem is based on the idea of the previous two problems.
The lexicographically k-th substring corresponds to the lexicographically k-th
path in the suffix automaton. Therefore after counting the number of paths from
each state, we can easily search for the k-th path starting from the root of the
automaton.

This takes O(length(S)) time for preprocessing and then O(length(ans) · k)
for each query (where ans is the answer for the query and k is the size of the
alphabet).
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Smallest cyclic shift

Given a string S. We want to find the lexicographically smallest cyclic shift.
We construct a suffix automaton for the string S + S. Then the automaton

will contain in itself as paths all the cyclic shifts of the string S.
Consequently the problem is reduced to finding the lexicographically smallest

path of length length(S), which can be done in a trivial way: we start in the
initial state and greedily pass through the transitions with the minimal character.

Total time complexity is O(length(S)).

Number of occurrences

For a given text T . We have to answer multiple queries. For each given pattern
P we have to find out how many times the string P appears in the string T as
substring.

We construct the suffix automaton for the text T .
Next we do the following preprocessing: for each state v in the automaton

we calculate the number cnt[v] that is equal to the size of the set endpos(v). In
fact all strings corresponding to the same state v appear in the text T an equal
amount of times, which is equal to the number of positions in the set endpos.

However we cannot construct the sets endpos explicitly, therefore we only
consider their sizes cnt.

To compute them we proceed as follows. For each state, if it was not created
by cloning (and if it is not the initial state t0), we initialize it with cnt = 1. Then
we will go through all states in decreasing order of their length len, and add the
current value cnt[v] to the suffix links:

cnt[link(v)] += cnt[v]

This gives the correct value for each state.
Why is this correct? The total stats obtained not obtained by cloning are

exactly length(T ), and the first i of them appeared when we added the first i
characters. Consequently for each of these states we count the corresponding
position at which it was processed. Therefore initially we have cnt = 1 for each
such state, and cnt = 0 for all other.

Then we apply the following operation for each v: cnt[link(v)] += cnt[v].
The meaning behind this is, that if a string v appears cnt[v] times, then also all
its suffixes appear at the exact same end positions, therefore also cnt[v] times.

Why don’t we overcount in this procedure (i.e. don’t count some position
twice)? Because we add the positions of a state to only one other state, so it
can not happen that one state directs its positions to another state twice in two
different ways.

Thus we can compute the quantities cnt for all states in the automaton in
O(length(T )) time.

After that answering a query by just looking up the value cnt[t], where t is
the state corresponding to the pattern, if such a state exists. Otherwise answer
with 0. Answering a query takes O(length(P )) time.
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First occurrence position

Given a text T and multiple queries. For each query string P we want to find the
position of the first occurrence of P in the string T (the position of the beginning
of P ).

We again construct a suffix automaton. Additionally we precompute the
position firstpos for all states in the automaton, i.e. for each state v we want to
find the position firstpos[v] of the end of the first occurrence. In other words, we
want to find in advance the minimal element of each set endpos (since obviously
cannot maintain all sets endpos explicitly).

To maintain these positions firstpos we extend the function sa_extend().
When we create a new state cur, we set:

firstpos(cur) = len(cur)− 1

And when we clone a vertex q as clone, we set:

firstpos(clone) = firstpos(q)

(since the only other option for a value would be firstpos(cur) which is definitely
too big)

Thus the answer for a query is simply firstpos(t)− length(P ) + 1, where t
is the state corresponding to the string P . Answering a query again takes only
O(length(P )) time.

All occurrence positions

This time we have to display all positions of the occurrences in the string T .
Again we construct a suffix automaton for the text T . Similar as in the

previous task we compute the position firstpos for all states.
Clearly firstpos(t) is part of the answer, if t is the state corresponding to a

query string P . So we took into account the state of the automaton containing P .
What other states do we need to take into account? All states that correspond
to strings for which P is a suffix. In other words we need to find all the states
that can reach the state t via suffix links.

Therefore to solve the problem we need to save for each state a list of suffix
references leading to it. The answer to the query then will then contain all
firstpos for each state that we can find on a DFS / BFS starting from the state
t using only the suffix references.

This workaround will work in time O(answer(P )), because we will not visit
a state twice (because only one suffix link leaves each state, so there cannot be
two different paths leading to the same state).

We only must take into account that two different states can have the same
firstpos value. This happens if one state was obtained by cloning another.
However, this doesn’t ruin the complexity, since each state can only have at most
one clone.

Moreover, we can also get rid of the duplicate positions, if we don’t output
the positions from the cloned states. In fact a state, that a cloned state can
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reach, is also reachable from the original state. Thus if we remember the flag
is_cloned for each state, we can simply ignore the cloned states and only output
firstpos for all other states.

Here are some implementation sketches:

struct state {
...
bool is_clone;
int first_pos;
vector<int> inv_link;

};

// after constructing the automaton
for (int v = 1; v < sz; v++) {

st[st[v].link].inv_link.push_back(v);
}

// output all positions of occurrences
void output_all_occurrences(int v, int P_length) {

if (!st[v].is_clone)
cout << st[v].first_pos - P_length + 1 << endl;

for (int u : st[v].inv_link)
output_all_occurrences(u, P_length);

}

Shortest non-appearing string

Given a string S and a certain alphabet. We have to find a string of smallest
length, that doesn’t appear in S.

We will apply dynamic programming on the suffix automaton built for the
string S.

Let d[v] be the answer for the node v, i.e. we already processed part of the
substring, are currently in the state v, and want to find the smallest number of
characters that have to be added to find a non-existent transition. Computing
d[v] is very simple. If there is not transition using at least one character of the
alphabet, then d[v] = 1. Otherwise one character is not enough, and so we need
to take the minimum of all answers of all transitions:

d[v] = 1 + min
w:(v,w,c)∈SA

d[w].

The answer to the problem will be d[t0], and the actual string can be restored
using the computed array d[].

Longest common substring of two strings

Given two strings S and T . We have to find the longest common substring,
i.e. such a string X that appears as substring in S and also in T .

We construct a suffix automaton for the string S.
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We will now take the string T , and for each prefix look for the longest suffix
of this prefix in S. In other words, for each position in the string T , we want to
find the longest common substring of S and T ending in that position.

For this we will use two variables, the current state v, and the current
length l. These two variables will describe the current matching part: its length
and the state that corresponds to it.

Initially v = t0 and l = 0, i.e. the match is empty.
Now let us describe how we can add a character T [i] and recalculate the

answer for it.

• If there is a transition from v with the character T [i], then we simply follow
the transition and increase l by one.

• If there is no such transition, we have to shorten the current matching part,
which means that we need to follow the suffix link:

v = link(v)

At the same time, the current length has to be shortened. Obviously we
need to assign l = len(v), since after passing through the suffix link we end
up in state whose corresponding longest string is a substring.

• If there is still no transition using the required character, we repeat and
again go through the suffix link and decrease l, until we find a transition or
we reach the fictional state −1 (which means that the symbol T [i] doesn’t
appear at all in S, so we assign v = l = 0).

The answer to the task will be the maximum of all the values l.
The complexity of this part is O(length(T )), since in one move we can either

increase l by one, or make several passes through the suffix links, each one ends
up reducing the value l.

Implementation:

string lcs (string S, string T) {
sa_init();
for (int i = 0; i < S.size(); i++)

sa_extend(S[i]);

int v = 0, l = 0, best = 0, bestpos = 0;
for (int i = 0; i < T.size(); i++) {

while (v && !st[v].next.count(T[i])) {
v = st[v].link ;
l = st[v].length ;

}
if (st[v].next.count(T[i])) {

v = st [v].next[T[i]];
l++;

}
if (l > best) {

best = l;
bestpos = i;
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}
}
return t.substr(bestpos - best + 1, best);

}

Largest common substring of multiple strings

There are k strings Si given. We have to find the longest common substring,
i.e. such a string X that appears as substring in each string Si.

We join all strings into one large string T , separating the strings by a special
characters Di (one for each string):

T = S1 +D1 + S2 +D2 + · · ·+ Sk +Dk.

Then we construct the suffix automaton for the string T .
Now we need to find a string in the machine, which is contained in all the

strings Si, and this can be done by using the special added characters. Note that
if a substring is included in some string Sj , then in the suffix automaton exists a
path starting from this substring containing the character Dj and not containing
the other characters D1, . . . , Dj−1, Dj+1, . . . , Dk.

Thus we need to calculate the attainability, which tells us for each state of
the machine and each symbol Di if there exists such a path. This can easily be
computed by DFS or BFS and dynamic programming. After that, the answer to
the problem will be the string longest(v) for the state v, from which the paths
were exists for all special characters.

13.2.5 Practice Problems
• AtCoder - K-th Substring
• SPOJ - SUBLEX
• Codeforces - Cyclical Quest
• Codeforces - String

https://atcoder.jp/contests/abc097/tasks/arc097_a
https://www.spoj.com/problems/SUBLEX/
https://codeforces.com/problemset/problem/235/C
https://codeforces.com/contest/128/problem/B
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13.3 Lyndon factorization

13.3.1 Lyndon factorization
First let us define the notion of the Lyndon factorization.

A string is called simple (or a Lyndon word), if it is strictly smaller than
any of its own nontrivial suffixes. Examples of simple strings are: a, b, ab, aab,
abb, ababb, abcd. It can be shown that a string is simple, if and only if it is
strictly smaller than all its nontrivial cyclic shifts.

Next, let there be a given string s. The Lyndon factorization of the string
s is a factorization s = w1w2 . . . wk, where all strings wi are simple, and they are
in non-increasing order w1 ≥ w2 ≥ · · · ≥ wk.

It can be shown, that for any string such a factorization exists and that it is
unique.

13.3.2 Duval algorithm
The Duval algorithm constructs the Lyndon factorization in O(n) time using
O(1) additional memory.

First let us introduce another notion: a string t is called pre-simple, if it
has the form t = ww . . . ww, where w is a simple string and w is a prefix of w
(possibly empty). A simple string is also pre-simple.

The Duval algorithm is greedy. At any point during its execution, the string
s will actually be divided into three strings s = s1s2s3, where the Lyndon
factorization for s1 is already found and finalized, the string s2 is pre-simple (and
we know the length of the simple string in it), and s3 is completely untouched. In
each iteration the Duval algorithm takes the first character of the string s3 and
tries to append it to the string s2. It s2 is no longer pre-simple, then the Lyndon
factorization for some part of s2 becomes known, and this part goes to s1.

Let’s describe the algorithm in more detail. The pointer i will always point
to the beginning of the string s2. The outer loop will be executed as long as
i < n. Inside the loop we use two additional pointers, j which points to the
beginning of s3, and k which points to the current character that we are currently
comparing to. We want to add the character s[j] to the string s2, which requires
a comparison with the character s[k]. There can be three different cases:

• s[j] = s[k]: if this is the case, then adding the symbol s[j] to s2 doesn’t
violate its pre-simplicity. So we simply increment the pointers j and k.

• s[j] > s[k]: here, the string s2 + s[j] becomes simple. We can increment j
and reset k back to the beginning of s2, so that the next character can be
compared with the beginning of the simple word.

• s[j] < s[k]: the string s2 + s[j] is no longer pre-simple. Therefore we will
split the pre-simple string s2 into its simple strings and the remainder,
possibly empty. The simple string will have the length j − k. In the next
iteration we start again with the remaining s2.
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Implementation

Here we present the implementation of the Duval algorithm, which will return
the desired Lyndon factorization of a given string s.

vector<string> duval(string const& s) {
int n = s.size();
int i = 0;
vector<string> factorization;
while (i < n) {

int j = i + 1, k = i;
while (j < n && s[k] <= s[j]) {

if (s[k] < s[j])
k = i;

else
k++;

j++;
}
while (i <= k) {

factorization.push_back(s.substr(i, j - k));
i += j - k;

}
}
return factorization;

}

Complexity

Let us estimate the running time of this algorithm.
The outer while loop does not exceed n iterations, since at the end of each

iteration i increases. Also the second inner while loop runs in O(n), since is only
outputs the final factorization.

So we are only interested in the first inner while loop. How many iterations
does it perform in the worst case? It’s easy to see that the simple words that
we identify in each iteration of the outer loop are longer than the remainder
that we additionally compared. Therefore also the sum of the remainders will be
smaller than n, which means that we only perform at most O(n) iterations of
the first inner while loop. In fact the total number of character comparisons will
not exceed 4n− 3.

13.3.3 Finding the smallest cyclic shift
Let there be a string s. We construct the Lyndon factorization for the string
s+ s (in O(n) time). We will look for a simple string in the factorization, which
starts at a position less than n (i.e. it starts in the first instance of s), and ends
in a position greater than or equal to n (i.e. in the second instance) of s). It is
stated, that the position of the start of this simple string will be the beginning of
the desired smallest cyclic shift. This can be easily verified using the definition
of the Lyndon decomposition.
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The beginning of the simple block can be found easily - just remember the
pointer i at the beginning of each iteration of the outer loop, which indicated the
beginning of the current pre-simple string.

So we get the following implementation:

string min_cyclic_string(string s) {
s += s;
int n = s.size();
int i = 0, ans = 0;
while (i < n / 2) {

ans = i;
int j = i + 1, k = i;
while (j < n && s[k] <= s[j]) {

if (s[k] < s[j])
k = i;

else
k++;

j++;
}
while (i <= k)

i += j - k;
}
return s.substr(ans, n / 2);

}

13.3.4 Problems
• UVA #719 - Glass Beads

https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=660
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Chapter 14

Tasks

14.1 Expression parsing
A string containing a mathematical expression containing numbers and various
operators is given. We have to compute the value of it in O(n), where n is the
length of the string.

The algorithm discussed here translates an expression into the so-called
reverse Polish notation (explicitly or implicitly), and evaluates this expression.

14.1.1 Reverse Polish notation
The reverse Polish notation is a form of writing mathematical expressions, in
which the operators are located after their operands. For example the following
expression

a+ b ∗ c ∗ d+ (e− f) ∗ (g ∗ h+ i)

can be written in reverse Polish notation in the following way:

abc ∗ d ∗+ef − gh ∗ i+ ∗+

The reverse Polish notation was developed by the Australian philosopher and
computer science specialist Charles Hamblin in the mid 1950s on the basis of the
Polish notation, which was proposed in 1920 by the Polish mathematician Jan
Łukasiewicz.

The convenience of the reverse Polish notation is, that expressions in this
form are very easy to evaluate in linear time. We use a stack, which is initially
empty. We will iterate over the operands and operators of the expression in
reverse Polish notation. If the current element is a number, then we put the
value on top of the stack, if the current element is an operator, then we get the
top two elements from the stack, perform the operation, and put the result back
on top of the stack. In the end there will be exactly one element left in the stack,
which will be the value of the expression.

Obviously this simple evaluation runs in O(n) time.
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14.1.2 Parsing of simple expressions
For the time being we only consider a simplified problem: we assume that all
operators are binary (i.e. they take two arguments), and all are left-associative
(if the priorities are equal, they get executed from left to right). Parentheses are
allowed.

We will set up two stacks: one for numbers, and one for operators and
parentheses. Initially both stacks are empty. For the second stack we will
maintain the condition that all operations are ordered by strict descending
priority. If there are parenthesis on the stack, than each block of operators
(corresponding to one pair of parenthesis) is ordered, and the entire stack is not
necessarily ordered.

We will iterate over the characters of the expression from left to right. If the
current character is a digit, then we put the value of this number on the stack.
If the current character is an opening parenthesis, then we put it on the stack.
If the current character is a closing parenthesis, the we execute all operators
on the stack until we reach the opening bracket (in other words we perform all
operations inside the parenthesis). Finally if the current character is an operator,
then while the top of the stack has an operator with the same or higher priority,
we will execute this operation, and put the new operation on the stack.

After we processed the entire string, some operators might still be in the
stack, so we execute them.

Here is the implementation of this method for the four operators + − ∗ /:

bool delim(char c) {
return c == ' ';

}

bool is_op(char c) {
return c == '+' || c == '-' || c == '*' || c == '/';

}

int priority (char op) {
if (op == '+' || op == '-')

return 1;
if (op == '*' || op == '/')

return 2;
return -1;

}

void process_op(stack<int>& st, char op) {
int r = st.top(); st.pop();
int l = st.top(); st.pop();
switch (op) {

case '+': st.push(l + r); break;
case '-': st.push(l - r); break;
case '*': st.push(l * r); break;
case '/': st.push(l / r); break;

}
}
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int evaluate(string& s) {
stack<int> st;
stack<char> op;
for (int i = 0; i < (int)s.size(); i++) {

if (delim(s[i]))
continue;

if (s[i] == '(') {
op.push('(');

} else if (s[i] == ')') {
while (op.top() != '(') {

process_op(st, op.top());
op.pop();

}
op.pop();

} else if (is_op(s[i])) {
char cur_op = s[i];
while (!op.empty() && priority(op.top()) >= priority(cur_op)) {

process_op(st, op.top());
op.pop();

}
op.push(cur_op);

} else {
int number = 0;
while (i < (int)s.size() && isalnum(s[i]))

number = number * 10 + s[i++] - '0';
--i;
st.push(number);

}
}

while (!op.empty()) {
process_op(st, op.top());
op.pop();

}
return st.top();

}

Thus we learned how to calculate the value of an expression in O(n), at the
same time we implicitly used the reverse Polish notation. By slightly modifying
the above implementation it is also possible to obtain the expression in reverse
Polish notation in an explicit form.

14.1.3 Unary operators
Now suppose that the expression also contains unary operators (operators that
take one argument). The unary plus and unary minus are common examples of
such operators.

One of the differences in this case, is that we need to determine whether the
current operator is a unary or a binary one.
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You can notice, that before an unary operator, there always is another operator
or an opening parenthesis, or nothing at all (if it is at the very beginning of the
expression). On the contrary before a binary operator there will always be an
operand (number) or a closing parenthesis. Thus it is easy to flag whether the
next operator can be unary or not.

Additionally we need to execute a unary and a binary operator differently.
And we need to chose the priority of a unary operator higher than all of the
binary operators.

In addition it should be noted, that some unary operators (e.g. unary plus
and unary minus) are actually right-associative.

14.1.4 Right-associativity
Right-associative means, that whenever the priorities are equal, the operators
must be evaluated from right to left.

As noted above, unary operators are usually right-associative. Another
example for an right-associative operator is the exponentiation operator (a∧ b∧ c
is usually perceived as abc and not as (ab)c).

What difference do we need to make in order to correctly handle right-
associative operators? It turns out that the changes are very minimal. The only
difference will be, if the priorities are equal we will postpone the execution of the
right-associative operation.

The only line that needs to be replaced is

while (!op.empty() && priority(op.top()) >= priority(cur_op))

with

while (!op.empty() && (
(left_assoc(cur_op) && priority(op.top()) >= priority(cur_op)) ||
(!left_assoc(cur_op) && priority(op.top()) > priority(cur_op))

))

where left_assoc is a function that decides if an operator is left_associative
or not.

Here is an implementation for the binary operators + − ∗ / and the unary
operators + and −.

bool delim(char c) {
return c == ' ';

}

bool is_op(char c) {
return c == '+' || c == '-' || c == '*' || c == '/';

}

bool is_unary(char c) {
return c == '+' || c=='-';

}
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int priority (char op) {
if (op < 0) // unary operator

return 3;
if (op == '+' || op == '-')

return 1;
if (op == '*' || op == '/')

return 2;
return -1;

}

void process_op(stack<int>& st, char op) {
if (op < 0) {

int l = st.top(); st.pop();
switch (-op) {

case '+': st.push(l); break;
case '-': st.push(-l); break;

}
} else {

int r = st.top(); st.pop();
int l = st.top(); st.pop();
switch (op) {

case '+': st.push(l + r); break;
case '-': st.push(l - r); break;
case '*': st.push(l * r); break;
case '/': st.push(l / r); break;

}
}

}

int evaluate(string& s) {
stack<int> st;
stack<char> op;
bool may_be_unary = true;
for (int i = 0; i < (int)s.size(); i++) {

if (delim(s[i]))
continue;

if (s[i] == '(') {
op.push('(');
may_be_unary = true;

} else if (s[i] == ')') {
while (op.top() != '(') {

process_op(st, op.top());
op.pop();

}
op.pop();
may_be_unary = false;

} else if (is_op(s[i])) {
char cur_op = s[i];
if (may_be_unary && is_unary(cur_op))

cur_op = -cur_op;
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while (!op.empty() && (
(cur_op >= 0 && priority(op.top()) >= priority(cur_op)) ||
(cur_op < 0 && priority(op.top()) > priority(cur_op))

)) {
process_op(st, op.top());
op.pop();

}
op.push(cur_op);
may_be_unary = true;

} else {
int number = 0;
while (i < (int)s.size() && isalnum(s[i]))

number = number * 10 + s[i++] - '0';
--i;
st.push(number);
may_be_unary = false;

}
}

while (!op.empty()) {
process_op(st, op.top());
op.pop();

}
return st.top();

}
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14.2 Manacher’s Algorithm - Finding all sub-
palindromes in O(N)

14.2.1 Statement
Given string s with length n. Find all the pairs (i, j) such that substring s[i . . . j]
is a palindrome. String t is a palindrome when t = trev (trev is a reversed string
for t).

14.2.2 More precise statement
It’s clear that in the worst case we can have O(n2) palindrome strings, and at
the first glance it seems that there is no linear algorithm for this problem.

But the information about the palindromes can be kept in a more compact
way: for each position i = 0 . . . n−1 we’ll find the values d1[i] and d2[i], denoting
the number of palindromes accordingly with odd and even lengths with centers
in the position i.

For instance, string s = abababc has three palindromes with odd length with
centers in the position s[3] = b, i. e. d1[3] = 3:

a

d1[3]=3︷ ︸︸ ︷
b a b︸︷︷︸

s3

a b c

And string s = cbaabd has two palindromes with even length with centers in
the position s[3] = a, i. e. d2[3] = 2:

c

d2[3]=2︷ ︸︸ ︷
b a a︸︷︷︸

s3

b d

So the idea is that if we have a sub-palindrome with length l with center
in some position i, we also have sub-palindromes with lengths l − 2, l − 4 etc.
with centers in i. So these two arrays d1[i] and d2[i] are enough to keep the
information about all the sub-palindromes in the string.

It’s a surprising fact that there is an algorithm, which is simple enough, that
calculates these “palindromity arrays” d1[] and d2[] in linear time. The algorithm
is described in this article.

14.2.3 Solution
In general, this problem has many solutions: with String Hashing it can be solved
in O(n · logn), and with Suffix Trees and fast LCA this problem can be solved in
O(n).

But the method described here is sufficiently simpler and has less hidden
constant in time and memory complexity. This algorithm was discovered by
Glenn K. Manacher in 1975.



String Processing, Chapter 14. Tasks 292

14.2.4 Trivial algorithm
To avoid ambiguities in the further description we denote what “trivial algorithm”
is.

It’s the algorithm that does the following. For each center position i it tries to
increase the answer by one until it’s possible, comparing a pair of corresponding
characters each time.

Such an algorithm is slow, it can calculate the answer only in O(n2).
The implementation of the trivial algorithm is:

vector<int> d1(n), d2(n);
for (int i = 0; i < n; i++) {

d1[i] = 1;
while (0 <= i - d1[i] && i + d1[i] < n && s[i - d1[i]] == s[i + d1[i]]) {

d1[i]++;
}

d2[i] = 0;
while (0 <= i - d2[i] - 1 && i + d2[i] < n && s[i - d2[i] - 1] == s[i + d2[i]]) {

d2[i]++;
}

}

14.2.5 Manacher’s algorithm
We describe the algorithm to find all the sub-palindromes with odd length, i.
e. to calculate d1[]. The solution for all the sub-palindromes with even length
(i.e. calculating the array d2[]) will be a minor modification for this one.

For fast calculation we’ll maintain the borders (l, r) of the rightmost found
sub-palindrome (i. e. the palindrome with maximal r). Initially we set l = 0, r =
−1.

So, we want to calculate d1[i] for the next i, and all the previous values in
d1[] have been already calculated. We do the following:

• If i is outside the current sub-palindrome, i. e. i > r, we’ll just launch the
trivial algorithm.
So we’ll increase d1[i] consecutively and check each time if the current
rightmost substring [i−d1[i] . . . i+d1[i]] is a palindrome. When we find the
first mismatch or meet the boundaries of s, we’ll stop. In this case we’ve
finally calculated d1[i]. After this, we must not forget to update (l, r). r
should be updated in such a way that it represents the last index of the
current rightmost sub-palindrome.

• Now consider the case when i ≤ r. We’ll try to extract some information
from the already calculated values in d1[]. So, let’s find the “mirror” position
of i in the sub-palindrome (l, r), i.e. we’ll get the position j = l+(r− i), and
we check the value of d1[j]. Because j is the position symmetrical to i, we’ll
almost always can assign d1[i] = d1[j]. Illustration of this (palindrome
around j is actually “copied” into the palindrome around i):
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. . .

palindrome︷ ︸︸ ︷
s_l . . . sj−d1[j]+1 . . . sj . . . sj+d1[j]−1︸ ︷︷ ︸

palindrome

. . . si−d1[j]+1 . . . si . . . si+d1[j]−1︸ ︷︷ ︸
palindrome

. . . sr . . .

But there is a tricky case to be handled correctly: when the “inner”
palindrome reaches the borders of the “outer” one, i. e. j − d1[j] + 1 ≤ l
(or, which is the same, i+ d1[j]− 1 ≥ r). Because the symmetry outside
the “outer” palindrome is not guaranteed, just assigning d1[i] = d1[j] will
be incorrect: we do not have enough data to state that the palindrome in
the position i has the same length.
Actually, we should restrict the length of our palindrome for now, i. e.
assign d1[i] = r − i+ 1, to handle such situations correctly. After this we’ll
run the trivial algorithm which will try to increase d1[i] while it’s possible.
Illustration of this case (the palindrome with center j is restricted to fit
the “outer” palindrome):

. . .

palindrome︷ ︸︸ ︷
sl . . . sj . . . sj+(j−l)︸ ︷︷ ︸

palindrome

. . . si−(r−i) . . . si . . . sr︸ ︷︷ ︸
palindrome

. . . . . . . . . . . . . . .︸ ︷︷ ︸
try moving here

It is shown in the illustration that though the palindrome with center j
could be larger and go outside the “outer” palindrome, but with i as the
center we can use only the part that entirely fits into the “outer” palindrome.
But the answer for the position i (d1[i]) can be much bigger than this part,
so next we’ll run our trivial algorithm that will try to grow it outside our
“outer” palindrome, i. e. to the region “try moving here”.

Again, we should not forget to update the values (l, r) after calculating each
d1[i].

Also we’ll repeat that the algorithm was described to calculate the array for
odd palindromes d1[], the algorithm is similar for the array of even palindromes
d2[]. The required modifications can be seen in the code below.

14.2.6 Complexity of Manacher’s algorithm
At the first glance it’s not obvious that this algorithm has linear time complexity,
because we often run the naive algorithm while searching the answer for a
particular position.

However, a more careful analysis shows that the algorithm is linear. In fact,
Z-function building algorithm, which looks similar to this algorithm, also works
in linear time.

We can notice that every iteration of trivial algorithm increases r by one.
Also r cannot be decreased during the algorithm. So, trivial algorithm will make
O(n) iterations in total.
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Also, other parts of Manacher’s algorithm work obviously in linear time. Thus,
we get O(n) time complexity.

14.2.7 Implementation of Manacher’s algorithm
For calculating d1[], we get the following code. Things to note:

• i is the index of the center letter of the current palindrome.
• d1[] stores the odd palindromes. So, if i exceeds r, k is initialized to 1, as a

single letter is a palindrome in itself. For d2[], k will be initialized to 0.
• If i does not exceed r, k is either initialized to the d1[j], where j is the

mirror position of i in (l, r), or k is restricted to the size of the “outer”
palindrome.

• The while loop denotes the trivial algorithm. We launch it irrespective of
the value of k.

• If the size of palindrome centered at i is x, then d1[i] stores (x+ 1)/2.

vector<int> d1(n);
for (int i = 0, l = 0, r = -1; i < n; i++) {

int k = (i > r) ? 1 : min(d1[l + r - i], r - i + 1);
while (0 <= i - k && i + k < n && s[i - k] == s[i + k]) {

k++;
}
d1[i] = k--;
if (i + k > r) {

l = i - k;
r = i + k;

}
}

For calculating d2[], the code looks similar, but with minor changes in arith-
metical expressions. Things to note:

• Since an even palidrome will have two centers, i is the latter of the two
center indices.

• if i exceeds r, k is initialized to 0, as a single letter is not an even
palindrome.

• If the size of palindrome centered at i is x, then d2[i] stores x/2

vector<int> d2(n);
for (int i = 0, l = 0, r = -1; i < n; i++) {

int k = (i > r) ? 0 : min(d2[l + r - i + 1], r - i + 1);
while (0 <= i - k - 1 && i + k < n && s[i - k - 1] == s[i + k]) {

k++;
}
d2[i] = k--;
if (i + k > r) {

l = i - k - 1;
r = i + k ;

}
}
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14.2.8 Problems
• UVA 11475 - Extend to Palindrome
• GYM - (Q) QueryreuQ

https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=26&page=show_problem&problem=2470
https://codeforces.com/gym/101806/problem/Q


String Processing, Chapter 14. Tasks 296

14.3 Finding repetitions
Given a string s of length n.

A repetition is two occurrences of a string in a row. In other words a
repetition can be described by a pair of indices i < j such that the substring
s[i . . . j] consists of two identical strings written after each other.

The challenge is to find all repetitions in a given string s. Or a simplified
task: find any repetition or find the longest repetition.

The algorithm described here was published in 1982 by Main and Lorentz.

14.3.1 Example
Consider the repetitions in the following example string:

acababaee

The string contains the following three repetitions:

• s[2 . . . 5] = abab
• s[3 . . . 6] = baba
• s[7 . . . 7] = ee

Another example:
abaaba

Here there are only two repetitions

• s[0 . . . 5] = abaaba
• s[2 . . . 3] = aa

14.3.2 Number of repetitions
In general there can be up to O(n2) repetitions in a string of length n. An
obvious example is a string consisting of n times the same letter, in this case any
substring of even length is a repetition. In general any periodic string with a
short period will contain a lot of repetitions.

On the other hand this fact does not prevent computing the number of
repetitions in O(n logn) time, because the algorithm can give the repetitions in
compressed form, in groups of several pieces at once.

There is even the concept, that describes groups of periodic substrings with
tuples of size four. It has been proven that we the number of such groups is at
most linear with respect to the string length.

Also, here are some more interesting results related to the number of repeti-
tions:

• The number of primitive repetitions (those whose halves are not repetitions)
is at most O(n logn).
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• If we encode repetitions with tuples of numbers (called Crochemore triples)
(i, p, r) (where i is the position of the beginning, p the length of the
repeating substring, and r the number of repetitions), then all repetitions
can be described with O(n logn) such triples.

• Fibonacci strings, defined as

t0 = a,

t1 = b,

ti = ti−1 + ti−2,

are “strongly” periodic. The number of repetitions in the Fibonacci string
fi, even in the compressed with Crochemore triples, is O(fn log fn). The
number of primitive repetitions is also O(fn log fn).

14.3.3 Main-Lorentz algorithm
The idea behind the Main-Lorentz algorithm is divide-and-conquer.

It splits the initial string into halves, and computes the number of repetitions
that lie completely in each halve by two recursive calls. Then comes the difficult
part. The algorithm finds all repetitions starting in the first half and ending in
the second half (which we will call crossing repetitions). This is the essential
part of the Main-Lorentz algorithm, and we will discuss it in detail here.

The complexity of divide-and-conquer algorithms is well researched. The
master theorem says, that we will end up with an O(n logn) algorithm, if we can
compute the crossing repetitions in O(n) time.

Search for crossing repetitions

So we want to find all such repetitions that start in the first half of the string,
let’s call it u, and end in the second half, let’s call it v:

s = u+ v

Their lengths are approximately equal to the length of s divided by two.
Consider an arbitrary repetition and look at the middle character (more

precisely the first character of the second half of the repetition). I.e. if the
repetition is a substring s[i . . . j], then the middle character is (i+ j + 1)/2.

We call a repetition left or right depending on which string this character is
located - in the string u or in the string v. In other words a string is called left,
if the majority of it lies in u, otherwise we call it right.

We will now discuss how to find all left repetitions. Finding all right
repetitions can be done in the same way.

Let us denote the length of the left repetition by 2l (i.e. each half of the
repetition has length l). Consider the first character of the repetition falling into
the string v (it is at position |u| in the string s). It coincides with the character l
positions before it, let’s denote this position cntr.

We will fixate this position cntr, and look for all repetitions at this
position cntr.
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For example:
c a
cntr

c | a d a

The vertical lines divides the two halves. Here we fixated the position cntr = 1,
and at this position we find the repetition caca.

It is clear, that if we fixate the position cntr, we simultaneously fixate the
length of the possible repetitions: l = |u|− cntr. Once we know how to find these
repetitions, we will iterate over all possible values for cntr from 0 to |u| − 1, and
find all left crossover repetitions of length l = |u|, |u| − 1, . . . , 1.

Criterion for left crossing repetitions

Now, how can we find all such repetitions for a fixated cntr? Keep in mind that
there still can be multiple such repetitions.

Let’s again look at a visualization, this time for the repetition abcabc:

l1︷︸︸︷
a

l2︷ ︸︸ ︷
b

cntr
c

l1︷︸︸︷
a |

l2︷︸︸︷
b c

Here we denoted the lengths of the two pieces of the repetition with l1 and l2: l1
is the length of the repetition up to the position cntr − 1, and l2 is the length
of the repetition from cntr to the end of the half of the repetition. We have
2l = l1 + l2 + l1 + l2 as the total length of the repetition.

Let us generate necessary and sufficient conditions for such a repetition
at position cntr of length 2l = 2(l1 + l2) = 2(|u| − cntr):

• Let k1 be the largest number such that the first k1 characters before the
position cntr coincide with the last k1 characters in the string u:

u[cntr − k1 . . . cntr − 1] = u[|u| − k1 . . . |u| − 1]

• Let k2 be the largest number such that the k2 characters starting at position
cntr coincide with the first k2 characters in the string v:

u[cntr . . . cntr + k2 − 1] = v[0 . . . k2 − 1]

• Then we have a repetition exactly for any pair (l1, l2) with

l1 ≤ k1,

l2 ≤ k2.

To summarize:

• We fixate a specific position cntr.
• All repetition which we will find now have length 2l = 2(|u| − cntr). There

might be multiple such repetitions, they depend on the lengths l1 and
l2 = l − l1.
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• We find k1 and k2 as described above.
• Then all suitable repetitions are the ones for which the lengths of the pieces
l1 and l2 satisfy the conditions:

l1 + l2 = l = |u| − cntr
l1 ≤ k1,

l2 ≤ k2.

Therefore the only remaining part is how we can compute the values k1 and
k2 quickly for every position cntr. Luckily we can compute them in O(1) using
the Z-function:

• To can find the value k1 for each position by calculating the Z-function for
the string u (i.e. the reversed string u). Then the value k1 for a particular
cntr will be equal to the corresponding value of the array of the Z-function.

• To precompute all values k2, we calculate the Z-function for the string
v + # + u (i.e. the string u concatenated with the separator character #
and the string v). Again we just need to look up the corresponding value
in the Z-function to get the k2 value.

So this is enough to find all left crossing repetitions.

Right crossing repetitions

For computing the right crossing repetitions we act similarly: we define the center
cntr as the character corresponding to the last character in the string u.

Then the length k1 will be defined as the largest number of characters before
the position cntr (inclusive) that coincide with the last characters of the string u.
And the length k2 will be defined as the largest number of characters starting at
cntr + 1 that coincide with the characters of the string v.

Thus we can find the values k1 and k2 by computing the Z-function for the
strings u+ # + v and v.

After that we can find the repetitions by looking at all positions cntr, and
use the same criterion as we had for left crossing repetitions.

Implementation

The implementation of the Main-Lorentz algorithm finds all repetitions in form
of peculiar tuples of size four: (cntr, l, k1, k2) in O(n logn) time. If you only
want to find the number of repetitions in a string, or only want to find the longest
repetition in a string, this information is enough and the runtime will still be
O(n logn).

Notice that if you want to expand these tuples to get the starting and end
position of each repetition, then the runtime will be the runtime will be O(n2)
(remember that there can be O(n2) repetitions). In this implementation we will
do so, and store all found repetition in a vector of pairs of start and end indices.



String Processing, Chapter 14. Tasks 300

vector<int> z_function(string const& s) {
int n = s.size();
vector<int> z(n);
for (int i = 1, l = 0, r = 0; i < n; i++) {

if (i <= r)
z[i] = min(r-i+1, z[i-l]);

while (i + z[i] < n && s[z[i]] == s[i+z[i]])
z[i]++;

if (i + z[i] - 1 > r) {
l = i;
r = i + z[i] - 1;

}
}
return z;

}

int get_z(vector<int> const& z, int i) {
if (0 <= i && i < (int)z.size())

return z[i];
else

return 0;
}

vector<pair<int, int>> repetitions;

void convert_to_repetitions(int shift, bool left, int cntr, int l, int k1, int k2) {
for (int l1 = max(1, l - k2); l1 <= min(l, k1); l1++) {

if (left && l1 == l) break;
int l2 = l - l1;
int pos = shift + (left ? cntr - l1 : cntr - l - l1 + 1);
repetitions.emplace_back(pos, pos + 2*l - 1);

}
}

void find_repetitions(string s, int shift = 0) {
int n = s.size();
if (n == 1)

return;

int nu = n / 2;
int nv = n - nu;
string u = s.substr(0, nu);
string v = s.substr(nu);
string ru(u.rbegin(), u.rend());
string rv(v.rbegin(), v.rend());

find_repetitions(u, shift);
find_repetitions(v, shift + nu);

vector<int> z1 = z_function(ru);
vector<int> z2 = z_function(v + '#' + u);
vector<int> z3 = z_function(ru + '#' + rv);
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vector<int> z4 = z_function(v);

for (int cntr = 0; cntr < n; cntr++) {
int l, k1, k2;
if (cntr < nu) {

l = nu - cntr;
k1 = get_z(z1, nu - cntr);
k2 = get_z(z2, nv + 1 + cntr);

} else {
l = cntr - nu + 1;
k1 = get_z(z3, nu + 1 + nv - 1 - (cntr - nu));
k2 = get_z(z4, (cntr - nu) + 1);

}
if (k1 + k2 >= l)

convert_to_repetitions(shift, cntr < nu, cntr, l, k1, k2);
}

}
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Part V

Linear Algebra
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Chapter 15

Matrices

15.1 Gauss method for solving system of linear equa-
tions

Given a system of n linear algebraic equations (SLAE) with m unknowns. You
are asked to solve the system: to determine if it has no solution, exactly one
solution or infinite number of solutions. And in case it has at least one solution,
find any of them.

Formally, the problem is formulated as follows: solve the system:

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2

. . .

an1x1 + an2x2 + · · ·+ anmxm = bn

where the coefficients aij (for i from 1 to n, j from 1 to m) and bi (i from 1
to n are known and variables xi (i from 1 to m) are unknowns.

This problem also has a simple matrix representation:

Ax = b

, where A is a matrix of size n×m of coefficients aij and b is the column vector
of size n.

It is worth noting that the method presented in this article can also be used
to solve the equation modulo any number p, i.e.:

a11x1 + a12x2 + · · ·+ a1mxm ≡ b1 (mod p)

a21x1 + a22x2 + · · ·+ a2mxm ≡ b2 (mod p)

. . .

an1x1 + an2x2 + · · ·+ anmxm ≡ bn (mod p)
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15.1.1 Gauss
Strictly speaking, the method described below should be called “Gauss-Jordan”,
or Gauss-Jordan elimination, because it is a variation of the Gauss method,
described by Jordan in 1887.

15.1.2 Overview
The algorithm is a sequential elimination of the variables in each equation,
until each equation will have only one remaining variable. If n = m, you can think
of it as transforming the matrix A to identity matrix, and solve the equation in
this obvious case, where solution is unique and is equal to coefficient bi.

Gaussian elimination is based on two simple transformation:

• It is possible to exchange two equations
• Any equation can be replaced by a linear combination of that row (with

non-zero coefficient), and some other rows (with arbitrary coefficients).

In the first step, Gauss-Jordan algorithm divides the first row by a11. Then,
the algorithm adds the first row to the remaining rows such that the coefficients
in the first column becomes all zeros. To achieve this, on the i-th row, we must
add the first row multiplied by −ai1. Note that, this operation must also be
performed on vector b. In a sense, it behaves as if vector b was the m + 1-th
column of matrix A.

As a result, after the first step, the first column of matrix A will consists of 1
on the first row, and 0 in other rows.

Similarly, we perform the second step of the algorithm, where we consider
the second column of second row. First, the row is divided by a22, then it is
subtracted from other rows so that all the second column becomes 0 (except for
the second row).

We continue this process for all columns of matrix A. If n = m, then A will
become identity matrix.

15.1.3 Search for the pivoting element
The described scheme left out many details. At the ith step, if aii is zero, we
cannot apply directly the described method. Instead, we must first select a
pivoting row: find one row of the matrix where the ith column is non-zero, and
then swap the two rows.

Note that, here we swap rows but not columns. This is because if you swap
columns, then when you find a solution, you must remember to swap back to
correct places. Thus, swapping rows is much easier to do.

In many implementations, when aii 6= 0, you can see people still swap the ith
row with some pivoting row, using some heuristics such as choosing the pivoting
row with maximum absolute value of aji. This heuristic is used to reduce the
value range of the matrix in later steps. Without this heuristic, even for matrices
of size about 20, the error will be too big and can cause overflow for floating
points data types of C++.
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15.1.4 Degenerate cases
In the case where m = n and the system is non-degenerate (i.e. it has non-
zero determinant, and has unique solution), the algorithm described above will
transform A into identity matrix.

Now we consider the general case, where n and m are not necessarily equal,
and the system can be degenerate. In these cases, the pivoting element in ith
step may not be found. This means that on the ith column, starting from the
current line, all contains zeros. In this case, either there is no possible value of
variable xi (meaning the SLAE has no solution), or xi is an independent variable
and can take arbitrary value. When implementing Gauss-Jordan, you should
continue the work for subsequent variables and just skip the ith column (this is
equivalent to removing the ith column of the matrix).

So, some of the variables in the process can be found to be independent.
When the number of variables, m is greater than the number of equations, n,
then at least m− n independent variables will be found.

In general, if you find at least one independent variable, it can take any
arbitrary value, while the other (dependent) variables are expressed through it.
This means that when we work in the field of real numbers, the system potentially
has infinitely many solutions. But you should remember that when there are
independent variables, SLAE can have no solution at all. This happens when the
remaining untreated equations have at least one non-zero constant term. You
can check this by assigning zeros to all independent variables, calculate other
variables, and then plug in to the original SLAE to check if they satisfy it.

15.1.5 Implementation
Following is an implementation of Gauss-Jordan. Choosing the pivot row is done
with heuristic: choosing maximum value in the current column.

The input to the function gauss is the system matrix a. The last column of
this matrix is vector b.

The function returns the number of solutions of the system (0, 1, or ∞). If at
least one solution exists, then it is returned in the vector ans.

const double EPS = 1e-9;
const int INF = 2; // it doesn't actually have to be infinity or a big number

int gauss (vector < vector<double> > a, vector<double> & ans) {
int n = (int) a.size();
int m = (int) a[0].size() - 1;

vector<int> where (m, -1);
for (int col=0, row=0; col<m && row<n; ++col) {

int sel = row;
for (int i=row; i<n; ++i)

if (abs (a[i][col]) > abs (a[sel][col]))
sel = i;

if (abs (a[sel][col]) < EPS)
continue;
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for (int i=col; i<=m; ++i)
swap (a[sel][i], a[row][i]);

where[col] = row;

for (int i=0; i<n; ++i)
if (i != row) {

double c = a[i][col] / a[row][col];
for (int j=col; j<=m; ++j)

a[i][j] -= a[row][j] * c;
}

++row;
}

ans.assign (m, 0);
for (int i=0; i<m; ++i)

if (where[i] != -1)
ans[i] = a[where[i]][m] / a[where[i]][i];

for (int i=0; i<n; ++i) {
double sum = 0;
for (int j=0; j<m; ++j)

sum += ans[j] * a[i][j];
if (abs (sum - a[i][m]) > EPS)

return 0;
}

for (int i=0; i<m; ++i)
if (where[i] == -1)

return INF;
return 1;

}

Implementation notes:

• The function uses two pointers - the current column col and the current
row row.

• For each variable xi, the value where(i) is the line where this column is
not zero. This vector is needed because some variables can be independent.

• In this implementation, the current ith line is not divided by aii as described
above, so in the end the matrix is not identity matrix (though apparently
dividing the ith line can help reducing errors).

• After finding a solution, it is inserted back into the matrix - to check
whether the system has at least one solution or not. If the test solution is
successful, then the function returns 1 or inf, depending on whether there
is at least one independent variable.

15.1.6 Complexity
Now we should estimate the complexity of this algorithm. The algorithm consists
of m phases, in each phase:
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• Search and reshuffle the pivoting row. This takes O(n + m) when using
heuristic mentioned above.

• If the pivot element in the current column is found - then we must add this
equation to all other equations, which takes time O(nm).

So, the final complexity of the algorithm is O(min(n,m).nm). In case n = m,
the complexity is simply O(n3).

Note that when the SLAE is not on real numbers, but is in the modulo two,
then the system can be solved much faster, which is described below.

15.1.7 Acceleration of the algorithm
The previous implementation can be sped up by two times, by dividing the
algorithm into two phases: forward and reverse:

• Forward phase: Similar to the previous implementation, but the current
row is only added to the rows after it. As a result, we obtain a triangular
matrix instead of diagonal.

• Reverse phase: When the matrix is triangular, we first calculate the value
of the last variable. Then plug this value to find the value of next variable.
Then plug these two values to find the next variables. . .

Reverse phase only takes O(nm), which is much faster than forward phase.
In forward phase, we reduce the number of operations by half, thus reducing the
running time of the implementation.

15.1.8 Solving modular SLAE
For solving SLAE in some module, we can still use the described algorithm.
However, in case the module is equal to two, we can perform Gauss-Jordan
elimination much more effectively using bitwise operations and C++ bitset data
types:

int gauss (vector < bitset<N> > a, int n, int m, bitset<N> & ans) {
vector<int> where (m, -1);
for (int col=0, row=0; col<m && row<n; ++col) {

for (int i=row; i<n; ++i)
if (a[i][col]) {

swap (a[i], a[row]);
break;

}
if (! a[row][col])

continue;
where[col] = row;

for (int i=0; i<n; ++i)
if (i != row && a[i][col])

a[i] ˆ= a[row];
++row;
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}
// The rest of implementation is the same as above

}

Since we use bit compress, the implementation is not only shorter, but also
32 times faster.

15.1.9 A little note about different heuristics of choosing pivoting
row

There is no general rule for what heuristics to use.
The heuristics used in previous implementation works quite well in practice.

It also turns out to give almost the same answers as “full pivoting” - where the
pivoting row is search amongst all elements of the whose submatrix (from the
current row and current column).

Though, you should note that both heuristics is dependent on how much the
original equations was scaled. For example, if one of the equation was multiplied
by 106, then this equation is almost certain to be chosen as pivot in first step.
This seems rather strange, so it seems logical to change to a more complicated
heuristics, called implicit pivoting.

Implicit pivoting compares elements as if both lines were normalized, so that
the maximum element would be unity. To implement this technique, one need to
maintain maximum in each row (or maintain each line so that maximum is unity,
but this can lead to increase in the accumulated error).

15.1.10 Improve the solution
Despite various heuristics, Gauss-Jordan algorithm can still lead to large errors
in special matrices even of size 50− 100.

Therefore, the resulting Gauss-Jordan solution must sometimes be improved
by applying a simple numerical method - for example, the method of simple
iteration.

Thus, the solution turns into two-step: First, Gauss-Jordan algorithm is
applied, and then a numerical method taking initial solution as solution in the
first step.

15.1.11 Practice Problems
• Spoj - Xor Maximization
• Codechef - Knight Moving
• Lightoj - Graph Coloring
• UVA 12910 - Snakes and Ladders
• TIMUS1042 Central Heating
• TIMUS1766 Humpty Dumpty
• TIMUS1266 Kirchhoff’s Law

http://www.spoj.com/problems/XMAX/
https://www.codechef.com/SEP12/problems/KNGHTMOV
http://lightoj.com/volume_showproblem.php?problem=1279
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4775
http://acm.timus.ru/problem.aspx?space=1&num=1042
http://acm.timus.ru/problem.aspx?space=1&num=1766
http://acm.timus.ru/problem.aspx?space=1&num=1266
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15.2 Calculating the determinant of a matrix by
Gauss

Problem: Given a matrix A of size NxN . Compute its determinant.

15.2.1 Algorithm
We use the ideas of Gauss method for solving systems of linear equations

We will perform the same steps as in the solution of systems of linear equations,
excluding only the division of the current line to aij . These operations will not
change the absolute value of the determinant of the matrix. When we exchange
two lines of the matrix, however, the sign of the determinant can change.

After applying Gauss on the matrix, we receive a diagonal matrix, whose
determinant is just the product of the elements on the diagonal. The sign, as
previously mentioned, can be determined by the number of exchanged rows (if
odd, then the sign of the determinant should be reversed). Thus, we can use the
Gauss algorithm to compute the determinant of the matrix in complexity O(N3).

It should be noted that if at some point, we do not find non-zero cell in
current column, the algorithm should stop and returns 0.

15.2.2 Implementation
const double EPS = 1E-9;
int n;
vector < vector<double> > a (n, vector<double> (n));

double det = 1;
for (int i=0; i<n; ++i) {

int k = i;
for (int j=i+1; j<n; ++j)

if (abs (a[j][i]) > abs (a[k][i]))
k = j;

if (abs (a[k][i]) < EPS) {
det = 0;
break;

}
swap (a[i], a[k]);
if (i != k)

det = -det;
det *= a[i][i];
for (int j=i+1; j<n; ++j)

a[i][j] /= a[i][i];
for (int j=0; j<n; ++j)

if (j != i && abs (a[j][i]) > EPS)
for (int k=i+1; k<n; ++k)

a[j][k] -= a[i][k] * a[j][i];
}

cout << det;
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15.2.3 Practice Problems
• Codeforces - Wizards and Bets

http://codeforces.com/contest/167/problem/E
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15.3 Calculating the determinant using Kraut method
in O(N 3)

In this article, we’ll describe how to find the determinant of the matrix using
Kraut method, which works in O(N3).

The Kraut algorithm finds decomposition of matrix A as A = LU where L is
lower triangular and U is upper triangular matrix. Without loss of generality, we
can assume that all the diagonal elements of L are equal to 1. Once we know
these matrices, it is easy to calculate the determinant of A: it is equal to the
product of all the elements on the main diagonal of the matrix U .

There is a theorem stating that any invertible matrix has a LU-decomposition,
and it is unique, if and only if all its principle minors are non-zero. We consider
only such decomposition in which the diagonal of matrix L consists of ones.

Let A be the matrix and N - its size. We will find the elements of the matrices
L and U using the following steps:

1. Let Lii = 1 for i = 1, 2, ..., N .
2. For each j = 1, 2, ..., N perform:

• For i = 1, 2, ..., j find values

Uij = Aij −
i−1∑
k=1

Lik · Ukj

• Next, for i = j + 1, j + 2, ..., N find values

Lij = 1
Ujj

Aij − j−1∑
k=1

Lik · Ukj


.

15.3.1 Implementation
static BigInteger det (BigDecimal a [][], int n) {

try {

for (int i=0; i<n; i++) {
boolean nonzero = false;
for (int j=0; j<n; j++)

if (a[i][j].compareTo (new BigDecimal (BigInteger.ZERO)) > 0)
nonzero = true;

if (!nonzero)
return BigInteger.ZERO;

}

BigDecimal scaling [] = new BigDecimal [n];
for (int i=0; i<n; i++) {

BigDecimal big = new BigDecimal (BigInteger.ZERO);
for (int j=0; j<n; j++)
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if (a[i][j].abs().compareTo (big) > 0)
big = a[i][j].abs();

scaling[i] = (new BigDecimal (BigInteger.ONE)) .divide
(big, 100, BigDecimal.ROUND_HALF_EVEN);

}

int sign = 1;

for (int j=0; j<n; j++) {
for (int i=0; i<j; i++) {

BigDecimal sum = a[i][j];
for (int k=0; k<i; k++)

sum = sum.subtract (a[i][k].multiply (a[k][j]));
a[i][j] = sum;

}

BigDecimal big = new BigDecimal (BigInteger.ZERO);
int imax = -1;
for (int i=j; i<n; i++) {

BigDecimal sum = a[i][j];
for (int k=0; k<j; k++)

sum = sum.subtract (a[i][k].multiply (a[k][j]));
a[i][j] = sum;
BigDecimal cur = sum.abs();
cur = cur.multiply (scaling[i]);
if (cur.compareTo (big) >= 0) {

big = cur;
imax = i;

}
}

if (j != imax) {
for (int k=0; k<n; k++) {

BigDecimal t = a[j][k];
a[j][k] = a[imax][k];
a[imax][k] = t;

}

BigDecimal t = scaling[imax];
scaling[imax] = scaling[j];
scaling[j] = t;

sign = -sign;
}

if (j != n-1)
for (int i=j+1; i<n; i++)

a[i][j] = a[i][j].divide
(a[j][j], 100, BigDecimal.ROUND_HALF_EVEN);

}
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BigDecimal result = new BigDecimal (1);
if (sign == -1)

result = result.negate();
for (int i=0; i<n; i++)

result = result.multiply (a[i][i]);

return result.divide
(BigDecimal.valueOf(1), 0, BigDecimal.ROUND_HALF_EVEN).toBigInteger();

}
catch (Exception e) {

return BigInteger.ZERO;
}

}
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15.4 Finding the rank of a matrix
The rank of a matrix is the largest number of linearly independent
rows/columns of the matrix. The rank is not only defined for square matrices.

The rank of a matrix can also be defined as the largest order of any non-zero
minor in the matrix.

Let the matrix be rectangular and have size N ×M . Note that if the matrix
is square and its determinant is non-zero, then the rank is N (= M); otherwise
it will be less. Generally, the rank of a matrix does not exceed min(N,M).

15.4.1 Algorithm
You can search for the rank using Gaussian elimination. We will perform the
same operations as when solving the system or finding its determinant. But if at
any step in the i-th column there are no rows with an non-empty entry among
those that we didn’t selected already, then we skip this step. Otherwise, if we
have found a row with a non-zero element in the i-th column during the i-th step,
then we mark this row as a selected one, increase the rank by one (initially the
rank is set equal to 0), and perform the usual operations of taking this row away
from the rest.

15.4.2 Complexity
This algorithm runs in O(n3).

15.4.3 Implementation
const double EPS = 1E-9;

int compute_rank(vector<vector<double>> A) {
int n = A.size();
int m = A[0].size();

int rank = 0;
vector<bool> row_selected(n, false);
for (int i = 0; i < m; ++i) {

int j;
for (j = 0; j < n; ++j) {

if (!row_selected[j] && abs(A[j][i]) > EPS)
break;

}

if (j != n) {
++rank;
row_selected[j] = true;
for (int p = i + 1; p < m; ++p)

A[j][p] /= A[j][i];
for (int k = 0; k < n; ++k) {

if (k != j && abs(A[k][i]) > EPS) {
for (int p = i + 1; p < m; ++p)
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A[k][p] -= A[j][p] * A[k][i];
}

}
}

}
return rank;

}

15.4.4 Problems
• TIMUS1041 Nikifor

http://acm.timus.ru/problem.aspx?space=1&num=1041
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Part VI

Combinatorics
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Chapter 16

Fundamentals

16.1 Finding Power of Factorial Divisor
You are given two numbers n and k. Find the largest power of k x such that n!
is divisible by kx.

16.1.1 Prime k

Let’s first consider the case of prime k. The explicit expression for factorial

n! = 1 · 2 · 3 . . . (n− 1) · n

Note that every k-th element of the product is divisible by k, i.e. adds +1 to
the answer; the number of such elements is

⌊n
k

⌋
.

Next, every k2-th element is divisible by k2, i.e. adds another +1 to the
answer (the first power of k has already been counted in the previous paragraph).
The number of such elements is

⌊ n
k2

⌋
.

And so on, for every i each ki-th element adds another +1 to the answer, and
there are

⌊ n
ki

⌋
such elements.

The final answer is ⌊n
k

⌋
+
⌊ n
k2

⌋
+ . . .+

⌊ n
ki

⌋
+ . . .

The sum is of course finite, since only approximately the first logk n elements
are not zeros. Thus, the runtime of this algorithm is O(logk n).

Implementation

int fact_pow (int n, int k) {
int res = 0;
while (n) {

n /= k;
res += n;

}
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return res;
}

16.1.2 Composite k

The same idea can’t be applied directly. Instead we can factor k, representing it
as k = kp1

1 · . . . · kpmm . For each ki, we find the number of times it is present in
n! using the algorithm described above - let’s call this value ai. The answer for
composite k will be

min
i=1...m

ai
pi
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16.2 Binomial Coefficients

Binomial coefficients
(n
k

)
are the number of ways to select a set of k elements

from n different elements without taking into account the order of arrangement
of these elements (i.e., the number of unordered sets).

Binomial coefficients are also the coefficients in the expansion of (a + b)n
(so-called binomial theorem):

(a+ b)n =
(
n

0

)
an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + · · ·+

(
n

k

)
an−kbk + · · ·+

(
n

n

)
bn

It is believed that this formula, as well as the triangle which allows efficient
calculation of the coefficients, was discovered by Blaise Pascal in the 17th century.
Nevertheless, it was known to the Chinese mathematician Yang Hui, who lived in
the 13th century. Perhaps it was discovered by a Persian scholar Omar Khayyam.
Moreover, Indian mathematician Pingala, who lived earlier in the 3rd. BC, got
similar results. The merit of the Newton is that he generalized this formula for
exponents that are not natural.

16.2.1 Calculation
Analytic formula for the calculation:(

n

k

)
= n!
k!(n− k)!

This formula can be easily deduced from the problem of ordered arrangement
(number of ways to select k different elements from n different elements). First,
let’s count the number of ordered selections of k elements. There are n ways
to select the first element, n− 1 ways to select the second element, n− 2 ways
to select the third element, and so on. As a result, we get the formula of the
number of ordered arrangements: n(n− 1)(n− 2) · · · (n−k+ 1) = n!

(n−k)! . We can
easily move to unordered arrangements, noting that each unordered arrangement
corresponds to exactly k! ordered arrangements (k! is the number of possible
permutations of k elements). We get the final formula by dividing n!

(n−k)! by k!.
Recurrence formula (which is associated with the famous “Pascal’s Trian-

gle”): (
n

k

)
=
(
n− 1
k − 1

)
+
(
n− 1
k

)
It is easy to deduce this using the analytic formula.
Note that for n < k the value of

(n
k

)
is assumed to be zero.

16.2.2 Properties
Binomial coefficients have many different properties. Here are the simplest of
them:
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• Symmetry rule: (
n

k

)
=
(

n

n− k

)
• Factoring in: (

n

k

)
= n

k

(
n− 1
k − 1

)
• Sum over k:

n∑
k=0

(
n

k

)
= 2n

• Sum over n:
n∑

m=0

(
m

k

)
=
(
n+ 1
k + 1

)
• Sum over n and k:

m∑
k=0

(
n+ k

k

)
=
(
n+m+ 1

m

)

• Sum of the squares:(
n

0

)2

+
(
n

1

)2

+ · · ·+
(
n

n

)2

=
(

2n
n

)

• Weighted sum:

1
(
n

1

)
+ 2

(
n

2

)
+ · · ·+ n

(
n

n

)
= n2n−1

• Connection with the Fibonacci numbers:(
n

0

)
+
(
n− 1

1

)
+ · · ·+

(
n− k
k

)
+ · · ·+

(
0
n

)
= Fn+1

16.2.3 Calculation

Straightforward calculation using analytical formula

The first, straightforward formula is very easy to code, but this method is likely to
overflow even for relatively small values of n and k (even if the answer completely
fit into some datatype, the calculation of the intermediate factorials can lead to
overflow). Therefore, this method often can only be used with long arithmetic:

int C(int n, int k) {
int res = 1;
for (int i = n - k + 1; i <= n; ++i)

res *= i;
for (int i = 2; i <= k; ++i)

res /= i;
return res;

}
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Improved implementation

Note that in the above implementation numerator and denominator have the
same number of factors (k), each of which is greater than or equal to 1. Therefore,
we can replace our fraction with a product k fractions, each of which is real-
valued. However, on each step after multiplying current answer by each of the
next fractions the answer will still be integer (this follows from the property of
factoring in). C++ implementation:

int C(int n, int k) {
double res = 1;
for (int i = 1; i <= k; ++i)

res = res * (n - k + i) / i;
return (int)(res + 0.01);

}

Here we carefully cast the floating point number to an integer, taking into
account that due to the accumulated errors, it may be slightly less than the true
value (for example, 2.99999 instead of 3).

Pascal’s Triangle

By using the recurrence relation we can construct a table of binomial coefficients
(Pascal’s triangle) and take the result from it. The advantage of this method is
that intermediate results never exceed the answer and calculating each new table
element requires only one addition. The flaw is slow execution for large n and
k if you just need a single value and not the whole table (because in order to
calculate

(n
k

)
you will need to build a table of all

(i
j

)
, 1 ≤ i ≤ n, 1 ≤ j ≤ n, or at

least to 1 ≤ j ≤ min(i, 2k)). The time complexity can be considered to be O(n2).
C++ implementation:

const int maxn = ...;
int C[maxn + 1][maxn + 1];
C[0][0] = 1;
for (int n = 1; n <= maxn; ++n) {

C[n][0] = C[n][n] = 1;
for (int k = 1; k < n; ++k)

C[n][k] = C[n - 1][k - 1] + C[n - 1][k];
}

If the entire table of values is not necessary, storing only two last rows of it is
sufficient (current n-th row and the previous n− 1-th).

Calculation in O(1)

Finally, in some situations it is beneficial to precompute all the factorials in order
to produce any necessary binomial coefficient with only two divisions later. This
can be advantageous when using long arithmetic, when the memory does not
allow precomputation of the whole Pascal’s triangle.
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16.2.4 Computing binomial coefficients modulo m.
Quite often you come across the problem of computing binomial coefficients
modulo some m.

Binomial coefficient for small n

The previously discussed approach of Pascal’s triangle can be used to calculate
all values of

(n
k

)
mod m for reasonably small n, since it requires time complexity

O(n2). This approach can handle any modulo, since only addition operations are
used.

Binomial coefficient modulo large prime

The formula for the binomial coefficients is(
n

k

)
= n!
k!(n− k)! ,

so if we want to compute it modulo some prime m > n we get(
n

k

)
≡ n! · (k!)−1 · ((n− k)!)−1 mod m.

First we precompute all factorials modulo m up to MAXN! in O(MAXN)
time.

factorial[0] = 1;
for (int i = 1; i <= MAXN; i++) {

factorial[i] = factorial[i - 1] * i % m;
}

And afterwards we can compute the binomial coefficient in O(logm) time.

long long binomial_coefficient(int n, int k) {
return factorial[n] * inverse(factorial[k] * factorial[n - k] % m) % m;

}

We even can compute the binomial coefficient in O(1) time if we precompute
the inverses of all factorials in O(MAXN logm) using the regular method for
computing the inverse, or even in O(MAXN) time using the congruence (x!)−1 ≡
((x− 1)!)−1 · x−1 and the method for computing all inverses in O(n).

long long binomial_coefficient(int n, int k) {
return factorial[n] * inverse_factorial[k] % m * inverse_factorial[n - k] % m;

}
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Binomial coefficient modulo prime power

Here we want to compute the binomial coefficient modulo some prime power,
i.e. m = pb for some prime p. If p > max(k, n − k), then we can use the same
method as described in the previous section. But if p ≤ max(k, n− k), then at
least one of k! and (n − k)! are not coprime with m, and therefore we cannot
compute the inverses - they don’t exist. Nevertheless we can compute the binomial
coefficient.

The idea is the following: We compute for each x! the biggest exponent c such
that pc divides x!, i.e. pc | x!. Let c(x) be that number. And let g(x) := x!

pc(x) .
Then we can write the binomial coefficient as:(

n

k

)
= g(n)pc(n)

g(k)pc(k)g(n− k)pc(n−k) = g(n)
g(k)g(n− k)p

c(n)−c(k)−c(n−k)

The interesting thing is, that g(x) is now free from the prime divisor p.
Therefore g(x) is coprime to m, and we can compute the modular inverses of g(k)
and g(n− k).

After precomputing all values for g and c, which can be done efficiently
using dynamic programming in O(n), we can compute the binomial coefficient in
O(logm) time. Or precompute all inverses and all powers of p, and then compute
the binomial coefficient in O(1).

Notice, if c(n) − c(k) − c(n − k) ≥ b, than pb | pc(n)−c(k)−c(n−k), and the
binomial coefficient is 0.

Binomial coefficient modulo an arbitrary number

Now we compute the binomial coefficient modulo some arbitrary modulus m.
Let the prime factorization of m be m = pe1

1 p
e2
2 · · · p

eh
h . We can compute the

binomial coefficient modulo peii for every i. This gives us h different congruences.
Since all moduli peii are coprime, we can apply the Chinese Remainder Theorem
to compute the binomial coefficient modulo the product of the moduli, which is
the desired binomial coefficient modulo m.

Binomial coefficient for large n and small modulo

When n is too large, the O(n) algorithms discussed above become impractical.
However, if the modulo m is small there are still ways to calculate

(n
k

)
mod m.

When the modulo m is prime, there are 2 options:

• Lucas’s theorem can be applied which breaks the problem of computing(n
k

)
mod m into logm n problems of the form

(xi
yi

)
mod m where xi, yi < m.

If each reduced coefficient is calculated using precomputed factorials and
inverse factorials, the complexity is O(m+ logm n).

• The method of computing factorial modulo P can be used to get the required
g and c values and use them as described in the section of modulo prime
power. This takes O(m logm n).

https://en.wikipedia.org/wiki/Lucas's_theorem
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When m is not prime but square-free, the prime factors of m can be obtained
and the coefficient modulo each prime factor can be calculated using either of the
above methods, and the overall answer can be obtained by the Chinese Remainder
Theorem.

When m is not square-free, a generalization of Lucas’s theorem for prime
powers can be applied instead of Lucas’s theorem.

16.2.5 Practice Problems
• Codechef - Number of ways
• Codeforces - Curious Array
• LightOj - Necklaces
• HACKEREARTH: Binomial Coefficient
• SPOJ - Ada and Teams
• DevSkill - Drive In Grid
• SPOJ - Greedy Walking
• UVa 13214 - The Robot’s Grid
• SPOJ - Good Predictions
• SPOJ - Card Game
• SPOJ - Topper Rama Rao
• UVa 13184 - Counting Edges and Graphs
• Codeforces - Anton and School 2
• DevSkill - Parandthesis
• Codeforces - Bacterial Melee
• Codeforces - Points, Lines and Ready-made Titles
• SPOJ - The Ultimate Riddle
• CodeChef - Long Sandwich

16.2.6 References
• Blog fishi.devtail.io
• Question on Mathematics StackExchange
• Question on CodeChef Discuss

https://web.archive.org/web/20170202003812/http://www.dms.umontreal.ca/~andrew/PDF/BinCoeff.pdf
https://web.archive.org/web/20170202003812/http://www.dms.umontreal.ca/~andrew/PDF/BinCoeff.pdf
https://www.codechef.com/LTIME24/problems/NWAYS/
http://codeforces.com/problemset/problem/407/C
http://www.lightoj.com/volume_showproblem.php?problem=1419
https://www.hackerearth.com/problem/algorithm/binomial-coefficient-1/description/
http://www.spoj.com/problems/ADATEAMS/
https://devskill.com/CodingProblems/ViewProblem/61
http://www.spoj.com/problems/UCV2013E/
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=5137
http://www.spoj.com/problems/GOODB/
http://www.spoj.com/problems/HC12/
http://www.spoj.com/problems/HLP_RAMS/
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=5095
http://codeforces.com/contest/785/problem/D
https://devskill.com/CodingProblems/ViewProblem/255
http://codeforces.com/contest/760/problem/F
http://codeforces.com/contest/872/problem/E
https://www.spoj.com/problems/DCEPC13D/
https://www.codechef.com/MAY17/problems/SANDWICH/
https://fishi.devtail.io/weblog/2015/06/25/computing-large-binomial-coefficients-modulo-prime-non-prime/
https://math.stackexchange.com/questions/95491/n-choose-k-bmod-m-using-chinese-remainder-theorem
https://discuss.codechef.com/questions/98129/your-approach-to-solve-sandwich
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16.3 Catalan Numbers
Catalan numbers is a number sequence, which is found useful in a number of
combinatorial problems, often involving recursively-defined objects.

This sequence was named after the Belgian mathematician Catalan, who lived
in the 19th century. (In fact it was known before to Euler, who lived a century
before Catalan).

The first few numbers Catalan numbers, Cn (starting from zero):
1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

Application in some combinatorial problems

The Catalan number Cn is the solution for

• Number of correct bracket sequence consisting of n opening and n closing
brackets.

• The number of rooted full binary trees with n+ 1 leaves (vertices are not
numbered). A rooted binary tree is full if every vertex has either two
children or no children.

• The number of ways to completely parenthesize n+ 1 factors.
• The number of triangulations of a convex polygon with n+ 2 sides (i.e. the

number of partitions of polygon into disjoint triangles by using the diago-
nals).

• The number of ways to connect the 2n points on a circle to form n disjoint
chords.

• The number of non-isomorphic full binary trees with n internal nodes
(i.e. nodes having at least one son).

• The number of monotonic lattice paths from point (0, 0) to point (n, n) in
a square lattice of size n× n, which do not pass above the main diagonal
(i.e. connecting (0, 0) to (n, n)).

• Number of permutations of length n that can be stack sorted (i.e. it can be
shown that the rearrangement is stack sorted if and only if there is no such
index i < j < k, such that ak < ai < aj ).

• The number of non-crossing partitions of a set of n elements.
• The number of ways to cover the ladder 1 . . . n using n rectangles (The

ladder consists of n columns, where ith column has a height i).

16.3.1 Calculations
There are two formulas for the Catalan numbers: Recursive and Analytical.
Since, we believe that all the mentioned above problems are equivalent (have the
same solution), for the proof of the formulas below we will choose the task which
it is easiest to do.

Recursive formula

C0 = C1 = 1

https://en.wikipedia.org/wiki/Eug%C3%A8ne_Charles_Catalan
https://en.wikipedia.org/wiki/Graph_isomorphism
https://en.wikipedia.org/wiki/Stack-sortable_permutation
https://en.wikipedia.org/wiki/Noncrossing_partition
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Cn =
n−1∑
k=0

CkCn−1−k, n ≥ 2

The recurrence formula can be easily deduced from the problem of the correct
bracket sequence.

The leftmost opening parenthesis l corresponds to certain closing bracket
r, which divides the sequence into 2 parts which in turn should be a correct
sequence of brackets. Thus formula is also divided into 2 parts. If we denote
k = r − l − 1, then for fixed r, there will be exactly CkCn−1−k such bracket
sequences. Summing this over all admissible k′s, we get the recurrence relation
on Cn.

You can also think it in this manner. By definition, Cn denotes number of
correct bracket sequences. Now, the sequence may be divided into 2 parts of
length k and n− k, each of which should be a correct bracket sequence. Example
:

()(()) can be divided into () and (()), but cannot be divided into ()( and ()).
Again summing over all admissible k′s, we get the recurrence relation on Cn.

C++ implementation

const int MOD = ....
const int MAX = ....
int catalan[MAX];
void init() {

catalan[0] = catalan[1] = 1;
for (int i=2; i<=n; i++) {

catalan[i] = 0;
for (int j=0; j < i; j++) {

catalan[i] += (catalan[j] * catalan[i-j-1]) % MOD;
if (catalan[i] >= MOD) {

catalan[i] -= MOD;
}

}
}

}

Analytical formula

Cn = 1
n+ 1

(
2n
n

)
(here

(n
k

)
denotes the usual binomial coefficient, i.e. number of ways to select

k objects from set of n objects).
The above formula can be easily concluded from the problem of the monotonic

paths in square grid. The total number of monotonic paths in the lattice size of
n× n is given by

(2n
n

)
.

Now we count the number of monotonic paths which cross the main diagonal.
Consider such paths crossing the main diagonal and find the first edge in it which
is above the diagonal. Reflect the path about the diagonal all the way, going after
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this edge. The result is always a monotonic path in the grid (n− 1)× (n+ 1).
On the other hand, any monotonic path in the lattice (n − 1) × (n + 1) must
intersect the diagonal. Hence, we enumerated all monotonic paths crossing the
main diagonal in the lattice n× n.

The number of monotonic paths in the lattice (n − 1) × (n + 1) are
( 2n
n−1

)
. Let us call such paths as “bad” paths. As a result, to obtain the number of
monotonic paths which do not cross the main diagonal, we subtract the above
“bad” paths, obtaining the formula:

Cn =
(

2n
n

)
−
(

2n
n− 1

)
= 1
n+ 1

(
2n
n

)
, n ≥ 0

16.3.2 Reference
• Catalan Number by Tom Davis

16.3.3 Practice Problems
• Codechef - PANSTACK
• Spoj - Skyline
• UVA - Safe Salutations
• Codeforces - How many trees?
• SPOJ - FUNPROB
• LOJ - 1170 - Counting Perfect BST
• UVA - 12887 - The Soldier’s Dilemma

http://www.geometer.org/mathcircles/catalan.pdf
https://www.codechef.com/APRIL12/problems/PANSTACK/
http://www.spoj.com/problems/SKYLINE/
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=932
http://codeforces.com/problemset/problem/9/D
http://www.spoj.com/problems/FUNPROB/
http://lightoj.com/volume_showproblem.php?problem=1170
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4752
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Chapter 17

Techniques

17.1 The Inclusion-Exclusion Principle
The inclusion-exclusion principle is an important combinatorial way to compute
the size of a set or the probability of complex events. It relates the sizes of
individual sets with their union.

17.1.1 Statement

The verbal formula

The inclusion-exclusion principle can be expressed as follows:
To compute the size of a union of multiple sets, it is necessary to sum the sizes

of these sets separately, and then subtract the sizes of all pairwise intersections
of the sets, then add back the size of the intersections of triples of the sets,
subtract the size of quadruples of the sets, and so on, up to the intersection of
all sets.

The formulation in terms of sets

The above definition can be expressed mathematically as follows:

∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1
|Ai|−

∑
1≤i<j≤n

|Ai∩Aj |+
∑

1≤i<j<k≤n
|Ai∩Aj∩Ak|−· · ·+(−1)n−1|A1∩· · ·∩An|

And in a more compact way:∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
∑

∅6=J⊆{1,2,...,n}
(−1)|J |−1

∣∣∣∣∣ ⋂
j∈J

Aj

∣∣∣∣∣
The formulation using Venn diagrams

Let the diagram show three sets A, B and C:
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Figure 17.1: Venn diagram

Then the area of their union A∪B ∪C is equal to the sum of the areas A, B
and C less double-covered areas A ∩B, A ∩ C, B ∩ C, but with the addition of
the area covered by three sets A ∩B ∩ C:

S(A∪B∪C) = S(A)+S(B)+S(C)−S(A∩B)−S(A∩C)−S(B∩C)+S(A∩B∩C)

It can also be generalized for an association of n sets.

The formulation in terms of probability theory

If Ai (i = 1, 2...n) are events and P(Ai) the probability of an event from Ai to
occur, then the probability of their union (i.e. the probability that at least one of
the events occur) is equal to:

P
(

n⋃
i=1

Ai

)
=

n∑
i=1
P(Ai) −

∑
1≤i<j≤n

P(Ai ∩Aj) +

+
∑

1≤i<j<k≤n
P(Ai ∩Aj ∩Ak)− · · ·+ (−1)n−1P(A1 ∩ · · · ∩An)

And in a more compact way:

P
(

n⋃
i=1

Ai

)
=

∑
∅6=J⊆{1,2,...,n}

(−1)|J |−1 P
( ⋂
j∈J

Aj

)

17.1.2 Proof
For the proof it is convenient to use the mathematical formulation in terms of
set theory: ∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
∑

∅6=J⊆{1,2,...,n}
(−1)|J |−1

∣∣∣∣∣ ⋂
j∈J

Aj

∣∣∣∣∣
We want to prove that any element contained in at least one of the sets Ai

will occur in the formula only once (note that elements which are not present in
any of the sets Ai will never be considered on the right part of the formula).
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Consider an element x occurring in k ≥ 1 sets Ai. We will show it is counted
only once in the formula. Note that:

• in terms which |J | = 1, the item x will be counted + k times;
• in terms which |J | = 2, the item x will be counted −

(k
2
)
times - because it

will be counted in those terms that include two of the k sets containing x;
• in terms which |J | = 3, the item x will be counted +

(k
3
)
times;

• · · ·
• in terms which |J | = k, the item x will be counted (−1)k−1 ·

(k
k

)
times;

• in terms which |J | > k, the item x will be counted zero times;

This leads us to the following sum of binomial coefficients:

T =
(
k

1

)
−
(
k

2

)
+
(
k

3

)
− · · ·+ (−1)i−1 ·

(
k

i

)
+ · · ·+ (−1)k−1 ·

(
k

k

)

This expression is very similar to the binomial expansion of (1− x)k:

(1− x)k =
(
k

0

)
−
(
k

1

)
· x+

(
k

2

)
· x2 −

(
k

3

)
· x3 + · · ·+ (−1)k ·

(
k

k

)
· xk

When x = 1, (1 − x)k looks a lot like T . However, the expression has an
additional

(k
0
)

= 1, and it is multiplied by −1. That leads us to (1− 1)k = 1− T .
Therefore T = 1 − (1 − 1)k = 1, what was required to prove. The element is
counted only once.

17.1.3 Generalization for calculating number of elements in ex-
actly r sets

Inclusion-exclusion principle can be rewritten to calculate number of elements
which are present in zero sets:∣∣∣∣∣

n⋂
i=1

Ai

∣∣∣∣∣ =
n∑

m=0
(−1)m

∑
|X|=m

∣∣∣∣∣ ⋂
i∈X

Ai

∣∣∣∣∣
Consider its generalization to calculate number of elements which are present

in exactly r sets:∣∣∣∣∣∣
⋃
|B|=r

⋂
i∈B

Ai ∩
⋂
j 6∈B

Aj

∣∣∣∣∣∣ =
n∑

m=r
(−1)m−r

(
m

r

) ∑
|X|=m

∣∣∣∣∣ ⋂
i∈X

Ai

∣∣∣∣∣
To prove this formula, consider some particular B. Due to basic inclusion-

exclusion principle we can say about it that:∣∣∣∣∣∣
⋂
i∈B

Ai ∩
⋂
j 6∈B

Aj

∣∣∣∣∣∣ =
n∑

m=r
(−1)m−r

∑
|X|=mB⊂X

∣∣∣∣∣ ⋂
i∈X

Ai

∣∣∣∣∣
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The sets on the left side do not intersect for different B, thus we can sum
them up directly. Also one should note that any set X will always have coefficient

(−1)m−r if it occurs and it will occur for exactly
(
m

r

)
sets B.

17.1.4 Usage when solving problems
The inclusion-exclusion principle is hard to understand without studying its
applications.

First, we will look at three simplest tasks “at paper”, illustrating applications
of the principle, and then consider more practical problems which are difficult to
solve without inclusion-exclusion principle.

Tasks asking to “find the number of ways” are worth of note, as they
sometimes lead to polynomial solutions, not necessarily exponential.

A simple task on permutations

Task: count how many permutations of numbers from 0 to 9 exist such that the
first element is greater than 1 and the last one is less than 8.

Let’s count the number of “bad” permutations, that is, permutations in which
the first element is ≤ 1 and/or the last is ≥ 8.

We will denote by X the set of permutations in which the first element is
≤ 1 and Y the set of permutations in which the last element is ≥ 8. Then the
number of “bad” permutations, as on the inclusion-exclusion formula, will be:

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |
After a simple combinatorial calculation, we will get to:

2 · 9! + 2 · 9!− 2 · 2 · 8!
The only thing left is to subtract this number from the total of 10! to get the

number of “good” permutations.

A simple task on (0, 1, 2) sequences

Task: count how many sequences of length n exist consisting only of numbers
0, 1, 2 such that each number occurs at least once.

Again let us turn to the inverse problem, i.e. we calculate the number of
sequences which do not contain at least one of the numbers.

Let’s denote by Ai(i = 0, 1, 2) the set of sequences in which the digit i does
not occur. The formula of inclusion-exclusion on the number of “bad” sequences
will be:

|A0∪A1∪A2| = |A0|+|A1|+|A2|−|A0∩A1|−|A0∩A2|−|A1∩A2|+|A0∩A1∩A2|

• The size of each Ai is 2n, as each sequence can only contain two of the
digits.
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• The size of each pairwise intersection Ai ∩Aj is equal to 1, as there will be
only one digit to build the sequence.

• The size of the intersection of all three sets is equal to 0, as there will be
no digits to build the sequence.

As we solved the inverse problem, we subtract it from the total of 3n sequences:

3n − (3 · 2n − 3 · 1 + 0)

The number of integer solutions to the equation

Consider the following equation:

x1 + x2 + x3 + x4 + x5 + x6 = 20

where 0 ≤ xi ≤ 8(i = 1, 2, . . . 6).
Task: count the number of solutions to the equation.
Forget the restriction on xi for a moment and just count the number of

nonnegative solutions to this equation. This is easily done using binomial
coefficients: we want to break a sequence of 20 units into 6 groups, which is the
same as distributing 5 “walls” over 25 slots:

N0 =
(

25
5

)
We will now calculate the number of “bad” solutions with the inclusion-

exclusion principle. The “bad” solutions will be those in which one or more xi
are greater than 9.

Denote by Ak(k = 1, 2 . . . 6) the set of solutions where xk ≥ 9, and all other
xi ≥ 0(i 6= k) (they may be ≥ 9 or not). To calculate the size of Ak, note
that we have essentially the same combinatorial problem that was solved in the
two paragraphs above, but now 9 of the units are excluded from the slots and
definitely belong to the first group. Thus:

|Ak| =
(

16
5

)
Similarly, the size of the intersection between sets Ak and Ap is equal to:

|Ak ∩Ap| =
(

7
5

)
The size of each intersection of three sets is zero, since 20 units will not be

enough for three or more variables greater than or equal to 9.
Combining all this into the formula of inclusions-exceptions and given that

we solved the inverse problem, we finally get the answer:(
25
5

)
−
((

6
1

)
·
(

16
5

)
−
(

6
2

)
·
(

7
5

))



17.1. The Inclusion-Exclusion Principle 333

The number of relative primes in a given interval

Task: given two numbers n and r, count the number of integers in the interval
[1; r] that are relatively prime to n (their greatest common divisor is 1).

Let’s solve the inverse problem - compute the number of not mutually primes
with n.

We will denote the prime factors of n as pi(i = 1 · · · k).
How many numbers in the interval [1; r] are divisible by pi? The answer to

this question is: ⌊
r

pi

⌋
However, if we simply sum these numbers, some numbers will be summarized

several times (those that share multiple pi as their factors). Therefore, it is
necessary to use the inclusion-exclusion principle.

We will iterate over all 2k subsets of pis, calculate their product and add or
subtract the number of multiples of their product.

Here is a C++ implementation:

int solve (int n, int r) {
vector<int> p;
for (int i=2; i*i<=n; ++i)

if (n % i == 0) {
p.push_back (i);
while (n % i == 0)

n /= i;
}

if (n > 1)
p.push_back (n);

int sum = 0;
for (int msk=1; msk<(1<<p.size()); ++msk) {

int mult = 1,
bits = 0;

for (int i=0; i<(int)p.size(); ++i)
if (msk & (1<<i)) {

++bits;
mult *= p[i];

}

int cur = r / mult;
if (bits % 2 == 1)

sum += cur;
else

sum -= cur;
}

return r - sum;
}

Asymptotics of the solution is O(
√
n).
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The number of integers in a given interval which are multiple of at
least one of the given numbers

Given n numbers ai and number r. You want to count the number of integers in
the interval [1; r] that are multiple of at least one of the ai.

The solution algorithm is almost identical to the one for previous task —
construct the formula of inclusion-exclusion on the numbers ai, i.e. each term in
this formula is the number of numbers divisible by a given subset of numbers ai
(in other words, divisible by their least common multiple).

So we will now iterate over all 2n subsets of integers ai with O(n log r)
operations to find their least common multiple, adding or subtracting the number
of multiples of it in the interval. Asymptotics is O(2n · n · log r).

The number of strings that satisfy a given pattern

Consider n patterns of strings of the same length, consisting only of letters (a...z)
or question marks. You’re also given a number k. A string matches a pattern if it
has the same length as the pattern, and at each position, either the corresponding
characters are equal or the character in the pattern is a question mark. The
task is to count the number of strings that match exactly k of the patterns (first
problem) and at least k of the patterns (second problem).

Notice first that we can easily count the number of strings that satisfy at once
all of the specified patterns. To do this, simply “cross” patterns: iterate though
the positions (“slots”) and look at a position over all patterns. If all patterns
have a question mark in this position, the character can be any letter from a to
z. Otherwise, the character of this position is uniquely defined by the patterns
that do not contain a question mark.

Learn now to solve the first version of the problem: when the string must
satisfy exactly k of the patterns.

To solve it, iterate and fix a specific subset X from the set of patterns
consisting of k patterns. Then we have to count the number of strings that
satisfy this set of patterns, and only matches it, that is, they don’t match any
other pattern. We will use the inclusion-exclusion principle in a slightly different
manner: we sum on all supersets Y (subsets from the original set of strings that
contain X), and either add to the current answer or subtract it from the number
of strings:

ans(X) =
∑
Y⊇X

(−1)|Y |−k · f(Y )

Where f(Y ) is the number of strings that match Y (at least Y ).
(If you have a hard time figuring out this, you can try drawing Venn Diagrams.)
If we sum up on all ans(X), we will get the final answer:

ans =
∑

X : |X|=k
ans(X)

However, asymptotics of this solution is O(3k · k). To improve it, notice that
different ans(X) computations very often share Y sets.
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We will reverse the formula of inclusion-exclusion and sum in terms of Y sets.
Now it becomes clear that the same set Y would be taken into account in the
computation of ans(X) of

(|Y |
k

)
sets with the same sign (−1)|Y |−k.

ans =
∑

Y : |Y |≥k
(−1)|Y |−k ·

(
|Y |
k

)
· f(Y )

Now our solution has asymptotics O(2k · k).
We will now solve the second version of the problem: find the number of

strings that match at least k of the patterns.
Of course, we can just use the solution to the first version of the problem and

add the answers for sets with size greater than k. However, you may notice that
in this problem, a set |Y| is considered in the formula for all sets with size ≥ k
which are contained in Y . That said, we can write the part of the expression
that is being multiplied by f(Y ) as:

(−1)|Y |−k·
(
|Y |
k

)
+(−1)|Y |−k−1·

(
|Y |
k + 1

)
+(−1)|Y |−k−2·

(
|Y |
k + 2

)
+· · ·+(−1)|Y |−|Y |·

(
|Y |
|Y |

)

Looking at Graham’s (Graham, Knuth, Patashnik. “Concrete mathematics”
[1998] ), we see a well-known formula for binomial coefficients:

m∑
k=0

(−1)k ·
(
n

k

)
= (−1)m ·

(
n− 1
m

)
Applying it here, we find that the entire sum of binomial coefficients is

minimized:

(−1)|Y |−k ·
(
|Y | − 1
|Y | − k

)
Thus, for this task, we also obtained a solution with the asymptotics O(2k ·k):

ans =
∑

Y : |Y |≥k
(−1)|Y |−k ·

(
|Y | − 1
|Y | − k

)
· f(Y )

The number of ways of going from a cell to another

There is a field n×m, and k of its cells are impassable walls. A robot is initially at
the cell (1, 1) (bottom left). The robot can only move right or up, and eventually
it needs to get into the cell (n,m), avoiding all obstacles. You need to count the
number of ways he can do it.

Assume that the sizes n and m are very large (say, 109), and the number k is
small (around 100).

For now, sort the obstacles by their coordinate x, and in case of equality —
coordinate y.
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Also just learn how to solve a problem without obstacles: i.e. learn how to
count the number of ways to get from one cell to another. In one axis, we need
to go through x cells, and on the other, y cells. From simple combinatorics, we
get a formula using binomial coefficients:(

x+ y

x

)
Now to count the number of ways to get from one cell to another, avoiding

all obstacles, you can use inclusion-exclusion to solve the inverse problem: count
the number of ways to walk through the board stepping at a subset of obstacles
(and subtract it from the total number of ways).

When iterating over a subset of the obstacles that we’ll step, to count the
number of ways to do this simply multiply the number of all paths from starting
cell to the first of the selected obstacles, a first obstacle to the second, and so on,
and then add or subtract this number from the answer, in accordance with the
standard formula of inclusion-exclusion.

However, this will again be non-polynomial in complexity O(2k · k).
Here goes a polynomial solution:
We will use dynamic programming. For convenience, push (1,1) to the

beginning and (n,m) at the end of the obstacles array. Let’s compute the
numbers d[i] — the number of ways to get from the starting point (0− th) to
i− th, without stepping on any other obstacle (except for i, of course). We will
compute this number for all the obstacle cells, and also for the ending one.

Let’s forget for a second the obstacles and just count the number of paths
from cell 0 to i. We need to consider some “bad” paths, the ones that pass
through the obstacles, and subtract them from the total number of ways of going
from 0 to i.

When considering an obstacle t between 0 and i (0 < t < i), on which we
can step, we see that the number of paths from 0 to i that pass through t which
have t as the first obstacle between start and i. We can compute that as:
d[t] multiplied by the number of arbitrary paths from t to i. We can count the
number of “bad” ways summing this for all t between 0 and i.

We can compute d[i] in O(k) for O(k) obstacles, so this solution has complexity
O(k2).

The number of coprime quadruples

You’re given n numbers: a1, a2, . . . , an. You are required to count the number of
ways to choose four numbers so that their combined greatest common divisor is
equal to one.

We will solve the inverse problem — compute the number of “bad” quadruples,
i.e. quadruples in which all numbers are divisible by a number d > 1.

We will use the inclusion-exclusion principle while summing over all possible
groups of four numbers divisible by a divisor d.
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ans =
∑
d≥2

(−1)deg(d)−1 · f(d)

where deg(d) is the number of primes in the factorization of the number d
and f(d) the number of quadruples divisible by d.

To calculate the function f(d), you just have to count the number of multiples
of d (as mentioned on a previous task) and use binomial coefficients to count the
number of ways to choose four of them.

Thus, using the formula of inclusions-exclusions we sum the number of groups
of four divisible by a prime number, then subtract the number of quadruples
which are divisible by the product of two primes, add quadruples divisible by
three primes, etc.

The number of harmonic triplets

You are given a number n ≤ 106. You are required to count the number of triples
2 ≤ a < b < c ≤ n that satisfy one of the following conditions:

• or gcd(a, b) = gcd(a, c) = gcd(b, c) = 1,
• or gcd(a, b) > 1, gcd(a, c) > 1, gcd(b, c) > 1.

First, go straight to the inverse problem — i.e. count the number of non-
harmonic triples.

Second, note that any non-harmonic triplet is made of a pair of coprimes and
a third number that is not coprime with at least one from the pair.

Thus, the number of non-harmonic triples that contain i is equal the number
of integers from 2 to n that are coprimes with i multiplied by the number of
integers that are not coprime with i.

Either gcd(a, b) = 1 ∧ gcd(a, c) > 1 ∧ gcd(b, c) > 1
or gcd(a, b) = 1 ∧ gcd(a, c) = 1 ∧ gcd(b, c) > 1
In both of these cases, it will be counted twice. The first case will be counted

when i = a and when i = b. The second case will be counted when i = b and
when i = c. Therefore, to compute the number of non-harmonic triples, we sum
this calculation through all i from 2 to n and divide it by 2.

Now all we have left to solve is to learn to count the number of coprimes to
i in the interval [2;n]. Although this problem has already been mentioned, the
above solution is not suitable here — it would require the factorization of each of
the integers from 2 to n, and then iterating through all subsets of these primes.

A faster solution is possible with such modification of the sieve of Eratosthenes:

1. First, we find all numbers in the interval [2;n] such that its simple factor-
ization does not include a prime factor twice. We will also need to know,
for these numbers, how many factors it includes.

• To do this we will maintain an array deg[i] to store the number of
primes in the factorization of i, and an array good[i], to mark either if
i contains each factor at most once (good[i] = 1) or not (good[i] = 0).
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When iterating from 2 to n, if we reach a number that has deg equal
to 0, then it is a prime and its deg is 1.

• During the sieve of Eratosthenes, we will iterate i from 2 to n. When
processing a prime number we go through all of its multiples and
increase their deg[]. If one of these multiples is multiple of the square
of i, then we can put good as false.

2. Second, we need to calculate the answer for all i from 2 to n, i.e., the array
cnt[] — the number of integers not coprime with i.

• To do this, remember how the formula of inclusion-exclusion works
— actually here we implement the same concept, but with inverted
logic: we iterate over a component (a product of primes from the
factorization) and add or subtract its term on the formula of inclusion-
exclusion of each of its multiples.

• So, let’s say we are processing a number i such that good[i] = true,
i.e., it is involved in the formula of inclusion-exclusion. Iterate through
all numbers that are multiples of i, and either add or subtract bN/ic
from their cnt[] (the signal depends on deg[i]: if deg[i] is odd, then we
must add, otherwise subtract).

Here’s a C++ implementation:

int n;
bool good[MAXN];
int deg[MAXN], cnt[MAXN];

long long solve() {
memset (good, 1, sizeof good);
memset (deg, 0, sizeof deg);
memset (cnt, 0, sizeof cnt);

long long ans_bad = 0;
for (int i=2; i<=n; ++i) {

if (good[i]) {
if (deg[i] == 0) deg[i] = 1;
for (int j=1; i*j<=n; ++j) {

if (j > 1 && deg[i] == 1)
if (j % i == 0)

good[i*j] = false;
else

++deg[i*j];
cnt[i*j] += (n / i) * (deg[i]%2==1 ? +1 : -1);

}
}
ans_bad += (cnt[i] - 1) * 1ll * (n-1 - cnt[i]);

}

return (n-1) * 1ll * (n-2) * (n-3) / 6 - ans_bad / 2;
}
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The asymptotics of our solution is O(n logn), as for almost every number up
to n we make n/i iterations on the nested loop.

The number of permutations without fixed points (derangements)

Prove that the number of permutations of length n without fixed points (i.e. no
number i is in position i - also called a derangement) is equal to the following
number:

n!−
(
n

1

)
· (n− 1)! +

(
n

2

)
· (n− 2)!−

(
n

3

)
· (n− 3)! + · · · ±

(
n

n

)
· (n− n)!

and approximately equal to:

n!
e

(if you round this expression to the nearest whole number — you get exactly
the number of permutations without fixed points)

Denote by Ak the set of permutations of length n with a fixed point at position
k (1 ≤ k ≤ n) (i.e. element k is at position k).

We now use the formula of inclusion-exclusion to count the number of permu-
tations with at least one fixed point. For this we need to learn to count sizes of
an intersection of sets Ai, as follows:

|Ap| = (n− 1)! ,
|Ap ∩Aq| = (n− 2)! ,

|Ap ∩Aq ∩Ar| = (n− 3)! ,
· · · ,

because if we know that the number of fixed points is equal x, then we know
the position of x elements of the permutation, and all other (n− x) elements can
be placed anywhere.

Substituting this into the formula of inclusion-exclusion, and given that the
number of ways to choose a subset of size x from the set of n elements is equal to(n
x

)
, we obtain a formula for the number of permutations with at least one fixed

point:

(
n

1

)
· (n− 1)!−

(
n

2

)
· (n− 2)! +

(
n

3

)
· (n− 3)!− · · · ±

(
n

n

)
· (n− n)!

Then the number of permutations without fixed points is equal to:

n!−
(
n

1

)
· (n− 1)! +

(
n

2

)
· (n− 2)!−

(
n

3

)
· (n− 3)! + · · · ±

(
n

n

)
· (n− n)!
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Simplifying this expression, we obtain exact and approximate expressions
for the number of permutations without fixed points:

n!
(

1− 1
1! + 1

2! −
1
3! + · · · ± 1

n!

)
≈ n!

e

(because the sum in brackets are the first n + 1 terms of the expansion in
Taylor series e−1)

It is worth noting that a similar problem can be solved this way: when you
need the fixed points were not among the m first elements of permutations (and
not among all, as we just solved). The formula obtained is as the given above
accurate formula, but it will go up to the sum of k, instead of n.

17.1.5 Practice Problems
A list of tasks that can be solved using the principle of inclusions-exclusions:

• UVA #10325 “The Lottery” [difficulty: low]
• UVA #11806 “Cheerleaders” [difficulty: low]
• TopCoder SRM 477 “CarelessSecretary” [difficulty: low]
• TopCoder TCHS 16 “Divisibility” [difficulty: low]
• SPOJ #6285 NGM2 , “Another Game With Numbers” [difficulty: low]
• TopCoder SRM 382 “CharmingTicketsEasy” [difficulty: medium]
• TopCoder SRM 390 “SetOfPatterns” [difficulty: medium]
• TopCoder SRM 176 “Deranged” [difficulty: medium]
• TopCoder SRM 457 “TheHexagonsDivOne” [difficulty: medium]
• Test»>thebest “HarmonicTriples” (in Russian) [difficulty: medium]
• SPOJ #4191 MSKYCODE “Sky Code” [difficulty: medium]
• SPOJ #4168 SQFREE “Square-free integers” [difficulty: medium]
• CodeChef “Count Relations” [difficulty: medium]
• SPOJ - Almost Prime Numbers Again
• SPOJ - Find number of Pair of Friends
• SPOJ - Balanced Cow Subsets
• SPOJ - EASY MATH [difficulty: medium]
• SPOJ - MOMOS - FEASTOFPIGS [difficulty: easy]
• Atcoder - Grid 2 [difficulty: easy]

http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1266
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2906
http://www.topcoder.com/stat?c=problem_statement&pm=10875
http://community.topcoder.com/stat?c=problem_statement&pm=6658&rd=10068
http://www.spoj.com/problems/NGM2/
http://community.topcoder.com/stat?c=problem_statement&pm=8470
http://www.topcoder.com/stat?c=problem_statement&pm=8307
http://community.topcoder.com/stat?c=problem_statement&pm=2013
http://community.topcoder.com/stat?c=problem_statement&pm=10702&rd=14144&rm=303184&cr=22697599
http://esci.ru/ttb/statement-62.htm
http://www.spoj.com/problems/MSKYCODE/
http://www.spoj.com/problems/SQFREE/
http://www.codechef.com/JAN11/problems/COUNTREL/
http://www.spoj.com/problems/KPRIMESB/
http://www.spoj.com/problems/IITKWPCH/
http://www.spoj.com/problems/SUBSET/
http://www.spoj.com/problems/EASYMATH/
https://www.spoj.com/problems/MOMOS/
https://atcoder.jp/contests/dp/tasks/dp_y/
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17.2 Burnside’s lemma / Pólya enumeration theorem

17.2.1 Burnside’s lemma
Burnside’s lemma was formulated and proven by Burnside in 1897, but
historically it was already discovered in 1887 by Frobenius, and even earlier in
1845 by Cauchy. Therefore it is also sometimes named the Cauchy-Frobenius
lemma.

Burnside’s lemma allows us to count the number of equivalence classes in
sets, based on internal symmetry.

Objects and representations

We have to clearly distinguish between the number of objects and the number of
representations.

Different representations can correspond to the same objects, but of course
any representation corresponds to exactly one object. Consequently the set of
all representations is divided into equivalence classes. Our task is to compute
the number of objects, or equivalently, the number of equivalence classes. The
following example will make the difference between object and representation
clearer.

Example: coloring of binary trees

Suppose we have the following problem. We have to count the number of ways to
color a rooted binary tree with n vertices with two colors, where at each vertex
we do not distinguish between the left and the right children.

Here the set of objects is the set of different colorings of the tree.
We now define the set of representations. A representation of a coloring is a

function f(v), which assigns each vertex a color (here we use the colors 0 and 1).
The set of representations is the set containing all possible functions of this kind,
and its size is obviously equal to 2n.

At the same time we introduce a partition of this set into equivalence classes.
For example, suppose n = 3, and the tree consists of the root 1 and its

two children 2 and 3. Then the following functions f1 and f2 are considered
equivalent.

f1(1) = 0 f2(1) = 0
f1(2) = 1 f2(2) = 0
f1(3) = 0 f2(3) = 1

Invariant permutations

Why do these two function f1 and f2 belong to the same equivalence class?
Intuitively this is understandable - we can rearrange the children of vertex 1,
the vertices 2 and 3, and after such a transformation of the function f1 it will
coincide with f2.
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But formally this means that there exists an invariant permutation π (i.e. a
permutation which does not change the object itself, but only its representation),
such that:

f2π ≡ f1

So starting from the definition of objects, we can find all the invariant
permutations, i.e. all permutations which do not change the object when applying
the permutation to the representation. Then we can check whether two functions
f1 and f2 are equivalent (i.e. if they correspond to the same object) by checking
the condition f2π ≡ f1 for each invariant permutation (or equivalently f1π ≡ f2).
If at least one permutation is found for which the condition is satisfied, then f1
and f2 are equivalent, otherwise they are not equivalent.

Finding all such invariant permutations with respect to the object definition
is a key step for the application of both Burnside’s lemma and the Pólya enu-
meration theorem. It is clear that these invariant permutations depend on the
specific problem, and their finding is a purely heuristic process based on intuitive
considerations. However in most cases it is sufficient to manually find several
“basic” permutations, with which all other permutations can be generated (and
this part of the work can be shifted to a computer).

It is not difficult to understand that invariant permutations form a group,
since the product (composition) of invariant permutations is again an invariant
permutation. We denote the group of invariant permutations by G.

The statement of the lemma

For the formulation of the lemma we need one more definition from algebra.
A fixed point f for a permutation π is an element that is invariant under
this permutation: f ≡ fπ. For example in out example the fixed points are
those functions f , which correspond to colorings that do not change when the
permutation π is applied to them (i.e. they do not change in the formal sense of
the equality of functions). We denote by I(π) the number of fixed points for
the permutation π.

Then Burnside’s lemma goes as follows: the number of equivalence classes
is equal to the sum of the numbers of fixed points with respect to all permutations
from the group G, divided by the size of this group:

|Classes| = 1
|G|

∑
π∈G

I(π)

Although Burnside’s lemma itself is not so convenient to use in practice (it
is unclear how to quickly look for the value I(π), it most clearly reveals the
mathematical essence on which the idea of calculating equivalence classes is
based.

Proof of Burnside’s lemma

The proof of Burnside’s lemma described here is not important for the practical
applications, so it can be skipped on the first reading.
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The proof here is the simplest known, and does not use group theory. The
proof was published by Kenneth P. Bogart in 1991.

We need to prove the following statement:

|Classes| · |G| =
∑
π∈G

I(π)

The value on the right side is nothing more than the number of “invariant
pairs” (f, π), i.e. pairs such that fπ ≡ f . It is obvious that we can change the
order of summation. We let the sum iterate over all elements f and sum over the
values J(f) - the number of permutations for which f is a fixed point.

|Classes| · |G| =
∑
f

J(f)

To prove this formula we will compose a table with columns labeled with
all functions fi and rows labeled with all permutations πj . And we fill the cells
with fiπj . If we look at the columns in this table as sets, then some of them will
coincide, and this means that the corresponding functions f for these columns
are also equivalent. Thus the numbers of different (as sets) columns is equal to
the number of classes. Incidentally, from the standpoint of group theory, the
column labeled with fi is the orbit of this element. For equivalent elements the
orbits coincides, and the number of orbits gives exactly the number of classes.

Thus the columns of the table decompose into equivalence classes. Let us
fix a class, and look at the columns in it. First, note that these columns can
only contain elements fi of the equivalence class (otherwise some permutation πj
moved one of the functions into a different equivalence class, which is impossible
since we only look at invariant permutations). Secondly each element fi will
occur the same number of times in each columns (this also follows from the fact
that the columns correspond to equivalent elements). From this we can conclude,
that all the columns within the same equivalence class coincide with each other
as multisets.

Now fix an arbitrary element f . On the one hand, it occurs in its column
exactly J(f) times (by definition). On the other hand, all columns within the
same equivalence class are the same as multisets. Therefore within each column
of a given equivalence class any element g occurs exactly J(g) times.

Thus if we arbitrarily take one column from each equivalence class, and sum
the number of elements in them, we obtain on one hand |Classes| · |G| (simply by
multiplying the number of columns by the number of rows), and on the other
hand the sum of the quantities J(f) for all f (this follows from all the previous
arguments):

|Classes| · |G| =
∑
f

J(f)

17.2.2 Pólya enumeration theorem
The Pólya enumeration theorem is a generalization of Burnside’s lemma, and
it also provides a more convenient tool for finding the number of equivalence
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classes. It should noted that this theorem was already discovered before Pólya by
Redfield in 1927, but his publication went unnoticed by mathematicians. Pólya
independently came to the same results in 1937, and his publication was more
successful.

Here we discuss only a special case of the Pólya enumeration theorem, which
will turn out very useful in practice. The general formula of the theorem will not
be discussed.

We denote by C(π) the number of cycles in the permutation π. Then the
following formula (a special case of the Pólya enumeration theorem) holds:

|Classes| = 1
|G|

∑
π∈G

kC(π)

k is the number of values that each representation element can take, in the case
of the coloring of a binary tree this would be k = 2.

Evidence

This formula is a direct consequence of Burnside’s lemma. To get it, we just need
to find an explicit expression for I(π), which appears in the lemma. Recall, that
I(π) is the number of fixed points in the permutation π.

Thus we consider a permutation π and some element f . During the application
of π, the elements in f move via the cycles in the permutation. Since the result
should obtain f ≡ fπ, the elements touched by one cycle must all be equal. At
the same time different cycles are independent. Thus for each permutation cycle
π we can choose one value (among k possible) and thus we get the number of
fixed points:

I(π) = kC(π)

17.2.3 Application: Coloring necklaces
The problem “Necklace” is one of the classical combinatorial problems. The task
is to count the number of different necklaces from n beads, each of which can
be painted in one of the k colors. When comparing two necklaces, they can be
rotated, but not reversed (i.e. a cyclic shift is permitted).

In this problem we can immediately find the group of invariant permutations:

π0 = 123 . . . n
π1 = 23 . . . n1
π2 = 3 . . . n12
. . .

πn−1 = n123 . . .

Let us find an explicit formula for calculating C(πi). First we note, that the
permutation πi has at the j-th position the value i+ j (taken modulo n). If we
check the cycle structure for πi. We see that 1 goes to 1 + i, 1 + i goes to 1 + 2i,
which goes to 1 + 3i, etc., until we come to a number of the form 1 + kn. Similar
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statements can be mode for the remaining elements. Hence we see that all cycles
have the same length, namely lcm(i,n)

i = n
gcd(i,n) . Thus the number of cycles in πi

will be equal to gcd(i, n).
Substituting these values into the Pólya enumeration theorem, we obtain the

solution:
1
n

n∑
i=1

kgcd(i,n)

You can leave this formula in this form, or you can simplify it even more.
Let transfer the sum so that it iterates over all divisors of n. In the original
sum there will be many equivalent terms: if i is not a divisor of n, then such a
divisor can be found after computing gcd(i, n). Therefore for each divisor d | n
its term kgcd(d,n) = kd will appear in the sum multiple times, i.e. the answer to
the problem can be rewritten as

1
n

∑
d | n

Cdk
d,

where Cd is the number of such numbers i with gcd(i, n) = d. We can find an
explicit expression for this value. Any such number i has the form i = dj with
gcd(j, n/d) = 1 (otherwise gcd(i, n) > d). So we can count the number of j with
this behavior. Euler’s phi function gives us the result Cd = φ(n/d), and therefore
we get the answer:

1
n

∑
d | n

φ

(
n

d

)
kd

17.2.4 Application: Coloring a torus
Quite often we cannot obtain an explicit formula for the number of equivalence
classes. In many problems the number of permutations in a group can be too
large for manual calculations and it is not possible to compute analytically the
number of cycles in them.

In that case we should manually find several “basic” permutations, so that
they can generate the entire group G. Next we can write a program that will
generate all permutations of the group G, count the number of cycles in them,
and compute the answer with the formula.

Consider the example of the problem for coloring a torus. There is a checkered
sheet of paper n ×m (n < m), some of the cells are black. Then a cylinder is
obtained from this sheet by gluing together the two sides with lengths m. Then
a torus is obtained from the cylinder by gluing together the two circles (top and
bottom) without twisting. The task is to compute the number of different colored
tori, assuming that we cannot see the glued lines, and the torus can be turned
and turned.

We again start with a piece of n×m paper. It is easy to see that the following
types of transformations preserve the equivalence class: a cyclic shift of the rows,
a cyclic shift of the columns, and a rotation of the sheet by 180 degrees. It is also
easy to see, that these transformations can generate the entire group of invariant
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transformations. If we somehow number the cells of the paper, then we can write
three permutations p1, p2, p3 corresponding to these types of transformation.

Next it only remains to generate all permutations obtained as a product. It is
obvious that all such permutations have the form pi11 p

i2
2 p

i3
3 where i1 = 0 . . .m− 1,

i2 = 0 . . . n− 1, i3 = 0 . . . 1.
Thus we can write the implementations to this problem.

using Permutation = vector<int>;

void operator*=(Permutation& p, Permutation const& q) {
Permutation copy = p;
for (int i = 0; i < p.size(); i++)

p[i] = copy[q[i]];
}

int count_cycles(Permutation p) {
int cnt = 0;
for (int i = 0; i < p.size(); i++) {

if (p[i] != -1) {
cnt++;
for (int j = i; p[j] != -1;) {

int next = p[j];
p[j] = -1;
j = next;

}
}

}
return cnt;

}

int solve(int n, int m) {
Permutation p(n*m), p1(n*m), p2(n*m), p3(n*m);
for (int i = 0; i < n*m; i++) {

p[i] = i;
p1[i] = (i % n + 1) % n + i / n * n;
p2[i] = (i / n + 1) % m * n + i % n;
p3[i] = (m - 1 - i / n) * n + (n - 1 - i % n);

}

set<Permutation> s;
for (int i1 = 0; i1 < n; i1++) {

for (int i2 = 0; i2 < m; i2++) {
for (int i3 = 0; i3 < 2; i3++) {

s.insert(p);
p *= p3;

}
p *= p2;

}
p *= p1;

}

int sum = 0;
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for (Permutation const& p : s) {
sum += 1 << count_cycles(p);

}
return sum / s.size();

}
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17.3 Stars and bars
Stars and bars is a mathematical technique for solving certain combinatorial
problems. It occurs whenever you want to count the number of ways to group
identical objects.

17.3.1 Theorem
The number of ways to put n identical objects into k labeled boxes is(

n+ k − 1
n

)
.

The proof involves turning the objects into stars and separating the boxes
using bars (therefore the name). E.g. we can represent with F|FF| |FF the
following situation: in the first box is one object, in the second box are two
objects, the third one is empty and in the last box are two objects. This is one
way of dividing 5 objects into 4 boxes.

It should be pretty obvious, that every partition can be represented using n
stars and k− 1 bars and every stars and bars permutation using n stars and k− 1
bars represents one partition. Therefore the number of ways to divide n identical
objects into k labeled boxes is the same number as there are permutations of n
stars and k − 1 bars. The Binomial Coefficient gives us the desired formula.

17.3.2 Number of non-negative integer sums
This problem is a direct application of the theorem.

You want to count the number of solution of the equation
x1 + x2 + · · ·+ xk = n

with xi ≥ 0.
Again we can represent a solution using stars and bars. E.g. the solution

1 + 3 + 0 = 4 for n = 4, k = 3 can be represented using F|FFF|.
It is easy to see, that this is exactly the stars an bars theorem. Therefore the

solution is
(n+k−1

n

)
.

17.3.3 Number of lower-bound integer sums
This can easily be extended to integer sums with different lower bounds. I.e. we
want to count the number of solutions for the equation

x1 + x2 + · · ·+ xk = n

with xi ≥ ai.
After substituting x′i := xi − ai we receive the modified equation

(x′1 + ai) + (x′2 + ai) + · · ·+ (x′k + ak) = n

⇔ x′1 + x′2 + · · ·+ x′k = n− a1 − a2 − · · · − ak
with x′i ≥ 0. So we have reduced the problem to the simpler case with x′i ≥ 0
and again can apply the stars and bars theorem.
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17.4 Generating all K-combinations
In this article we will discuss the problem of generating all K-combinations.
Given the natural numbers N and K, and considering a set of numbers from 1
to N . The task is to derive all subsets of size K.

17.4.1 Generate next lexicographical K-combination
First we will generate them in lexicographical order. The algorithm for this
is simple. The first combination will be 1, 2, ...,K. Now let’s see how to find
the combination that immediately follows this, lexicographically. To do so, we
consider our current combination, and find the rightmost element that has not
yet reached its highest possible value. Once finding this element, we increment it
by 1, and assign the lowest valid value to all subsequent elements.

bool next_combination(vector<int>& a, int n) {
int k = (int)a.size();
for (int i = k - 1; i >= 0; i--) {

if (a[i] < n - k + i + 1) {
a[i]++;
for (int j = i + 1; j < k; j++)

a[j] = a[j - 1] + 1;
return true;

}
}
return false;

}

17.4.2 Generate all K-combinations such that adjacent combi-
nations differ by one element

This time we want to generate all K-combinations in such an order, that adjacent
combinations differ exactly by one element.

This can be solved using the Gray Code: If we assign a bitmask to each
subset, then by generating and iterating over these bitmasks with Gray codes,
we can obtain our answer.

The task of generating K-combinations can also be solved using Gray Codes
in a different way: Generate Gray Codes for the numbers from 0 to 2N − 1 and
leave only those codes containing K 1s. The surprising fact is that in the resulting
sequence of K set bits, any two neighboring masks (including the first and last
mask - neighboring in a cyclic sense) - will differ exactly by two bits, which is
our objective (remove a number, add a number).

Let us prove this:
For the proof, we recall the fact that the sequence G(N) (representing the

Nth Gray Code) can be obtained as follows:

G(N) = 0G(N − 1) ∪ 1G(N − 1)R
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That is, consider the Gray Code sequence for N − 1, and prefix 0 before every
term. And consider the reversed Gray Code sequence for N − 1 and prefix a 1
before every mask, and concatenate these two sequences.

Now we may produce our proof.
First, we prove that the first and last masks differ exactly in two bits. To

do this, it is sufficient to note that the first mask of the sequence G(N), will
be of the form N −K 0s, followed by K 1s. As the first bit is set as 0, after
which (N −K − 1) 0s follow, after which K set bits follow and the last mask
will be of the form 1, then (N −K) 0s, then K − 1 1s. Applying the principle of
mathematical induction, and using the formula for G(N), concludes the proof.

Now our task is to show that any two adjacent codes also differ exactly in two
bits, we can do this by considering our recursive equation for the generation of
Gray Codes. Let us assume the content of the two halves formed by G(N − 1) is
true. Now we need to prove that the new consecutive pair formed at the junction
(by the concatenation of these two halves) is also valid, i.e. they differ by exactly
two bits.

This can be done, as we know the last mask of the first half and the first mask
of the second half. The last mask of the first half would be 1, then (N−K−1) 0s,
then K−1 1s. And the first mask of the second half would be 0, then (N−K−2)
0s would follow, and then K 1s. Thus, comparing the two masks, we find exactly
two bits that differ.

The following is a naive implementation working by generating all 2n possible
subsets, and finding subsets of size K.
int gray_code (int n) {

return n ˆ (n >> 1);
}

int count_bits (int n) {
int res = 0;
for (; n; n >>= 1)

res += n & 1;
return res;

}

void all_combinations (int n, int k) {
for (int i = 0; i < (1 << n); i++) {

int cur = gray_code (i);
if (count_bits(cur) == k) {

for (int j = 0; j < n; j++) {
if (cur & (1 << j))

cout << j + 1;
}
cout << "\n";

}
}

}

It’s worth mentioning that a more efficient implementation exists that only
resorts to building valid combinations and thus works in O

(
N ·

(N
K

))
however
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it is recursive in nature and for smaller values of N it probably has a larger
constant than the previous solution.

The implementation is derived from the formula:

G(N,K) = 0G(N − 1,K) ∪ 1G(N − 1,K − 1)R

This formula is obtained by modifying the general equation to determine the
Gray code, and works by selecting the subsequence from appropriate elements.

Its implementation is as follows:

vector<int> ans;

void gen(int n, int k, int idx, bool rev) {
if (k > n || k < 0)

return;

if (!n) {
for (int i = 0; i < idx; ++i) {

if (ans[i])
cout << i + 1;

}
cout << "\n";
return;

}

ans[idx] = rev;
gen(n - 1, k - rev, idx + 1, false);
ans[idx] = !rev;
gen(n - 1, k - !rev, idx + 1, true);

}

void all_combinations(int n, int k) {
ans.resize(n);
gen(n, k, 0, false);

}
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Chapter 18

Tasks

18.1 Placing Bishops on a Chessboard
Find the number of ways to place K bishops on an N ×N chessboard so that no
two bishops attack each other.

18.1.1 Algorithm
This problem can be solved using dynamic programming.

Let’s enumerate the diagonals of the chessboard as follows: black diagonals
have odd indices, white diagonals have even indices, and the diagonals are
numbered in non-decreasing order of the number of squares in them. Here is an
example for a 5× 5 chessboard.

1 2 5 6 9
2 5 6 9 8
5 6 9 8 7
6 9 8 7 4
9 8 7 4 3

Let D[i][j] denote the number of ways to place j bishops on diagonals with
indices up to i which have the same color as diagonal i. Then i = 1...2N-1
and j = 0...K.

We can calculate D[i][j] using only values of D[i-2] (we subtract 2 because
we only consider diagonals of the same color as i). There are two ways to get
D[i][j]. Either we place all j bishops on previous diagonals: then there are
D[i-2][j] ways to achieve this. Or we place one bishop on diagonal i and
j-1 bishops on previous diagonals. The number of ways to do this equals the
number of squares in diagonal i minus j-1, because each of j-1 bishops placed
on previous diagonals will block one square on the current diagonal. The number
of squares in diagonal i can be calculated as follows:

int squares (int i) {
if (i & 1)

return i / 4 * 2 + 1;
else
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return (i - 1) / 4 * 2 + 2;
}

The base case is simple: D[i][0] = 1, D[1][1] = 1.
Once we have calculated all values of D[i][j], the answer can be obtained

as follows: consider all possible numbers of bishops placed on black diagonals
i=0...K, with corresponding numbers of bishops on white diagonals K-i. The
bishops placed on black and white diagonals never attack each other, so the
placements can be done independently. The index of the last black diagonal is
2N-1, the last white one is 2N-2. For each i we add D[2N-1][i] * D[2N-2][K-i]
to the answer.

18.1.2 Implementation
int bishop_placements(int N, int K)
{

if (K > 2 * N - 1)
return 0;

vector<vector<int>> D(N * 2, vector<int>(K + 1));
for (int i = 0; i < N * 2; ++i)

D[i][0] = 1;
D[1][1] = 1;
for (int i = 2; i < N * 2; ++i)

for (int j = 1; j <= K; ++j)
D[i][j] = D[i-2][j] + D[i-2][j-1] * (squares(i) - j + 1);

int ans = 0;
for (int i = 0; i <= K; ++i)

ans += D[N*2-1][i] * D[N*2-2][K-i];
return ans;

}
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18.2 Balanced bracket sequences
A balanced bracket sequence is a string consisting of only brackets, such
that this sequence, when inserted certain numbers and mathematical operations,
gives a valid mathematical expression. Formally you can define balanced bracket
sequence with:

• e (the empty string) is a balanced bracket sequence.
• if s is a balanced bracket sequence, then so is (s).
• if s and t are balanced bracket sequences, then so is st.

For instance (())() is a balanced bracket sequence, but ())( is not.
Of course you can define other bracket sequences also with multiple bracket

types in a similar fashion.
In this article we discuss some classic problems involving balanced bracket

sequences (for simplicity we will only call them sequences): validation, number of
sequences, finding the lexicographical next sequence, generating all sequences of
a certain size, finding the index of sequence, and generating the k-th sequences.
We will also discuss two variations for the problems, the simpler version when
only one type of brackets is allowed, and the harder case when there are multiple
types.

18.2.1 Balance validation
We want to check if a given string is balanced or not.

At first suppose there is only one type of bracket. For this case there exists
a very simple algorithm. Let depth be the current number of open brackets.
Initially depth = 0. We iterate over all character of the string, if the current
bracket character is an opening bracket, then we increment depth, otherwise we
decrement it. If at any time the variable depth gets negative, or at the end it is
different from 0, than the string is not a balances sequence. Otherwise it is.

If there are several bracket types involved, then the algorithm needs to be
changes. Instead of a counter depth we create a stack, in which we will store all
opening brackets that we meet. If the current bracket character is an opening
one, we put it onto the stack. If it is a closing one, then we check if the stack is
non-empty, and if the top element of the stack is of the same type as the current
closing bracket. If both conditions are fulfilled, then we remove the opening
bracket from the stack. If at any time one of the conditions is not fulfilled, or at
the end the stack is not empty, then the string is not balanced. Otherwise it is.

18.2.2 Number of balanced sequences

Formula

The number of balanced bracket sequences with only one bracket type can be
calculated using the Catalan numbers. The number of balanced bracket sequences
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of length 2n (n pairs of brackets) is:

1
n+ 1

(
2n
n

)

If we allow k types of brackets, then each pair be of any of the k types
(independently of the others), thus the number of balanced bracket sequences is:

1
n+ 1

(
2n
n

)
kn

Dynamic programming

On the other hand these numbers can be computed using dynamic program-
ming. Let d[n] be the number of regular bracket sequences with n pairs of
bracket. Note that in the first position there is always an opening bracket. And
somewhere later is the corresponding closing bracket of the pair. It is clear that
inside this pair there is a balanced bracket sequence, and similarly after this
pair there is a balanced bracket sequence. So to compute d[n], we will look at
how many balanced sequences of i pairs of brackets are inside this first bracket
pair, and how many balanced sequences with n− 1− i pairs are after this pair.
Consequently the formula has the form:

d[n] =
n−1∑
i=0

d[i] · d[n− 1− i]

The initial value for this recurrence is d[0] = 1.

18.2.3 Finding the lexicographical next balanced sequence
Here we only consider the case with one valid bracket type.

Given a balanced sequence, we have to find the next (in lexicographical order)
balanced sequence.

It should be obvious, that we have to find the rightmost opening bracket, which
we can replace by a closing bracket without violation the condition, that there are
more closing brackets than opening brackets up to this position. After replacing
this position, we can fill the remaining part of the string with the lexicographically
minimal one: i.e. first with as much opening brackets as possible, and then fill
up the remaining positions with closing brackets. In other words we try to
leave a long as possible prefix unchanged, and the suffix gets replaced by the
lexicographically minimal one.

To find this position, we can iterate over the character from right to left, and
maintain the balance depth of open and closing brackets. When we meet an
opening brackets, we will decrement depth, and when we meet a closing bracket,
we increase it. If we are at some point meet an opening bracket, and the balance
after processing this symbol is positive, then we have found the rightmost position
that we can change. We change the symbol, compute the number of opening and
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closing brackets that we have to add to the right side, and arrange them in the
lexicographically minimal way.

If we find do suitable position, then this sequence is already the maximal
possible one, and there is no answer.

bool next_balanced_sequence(string & s) {
int n = s.size();
int depth = 0;
for (int i = n - 1; i >= 0; i--) {

if (s[i] == '(')
depth--;

else
depth++;

if (s[i] == '(' && depth > 0) {
depth--;
int open = (n - i - 1 - depth) / 2;
int close = n - i - 1 - open;
string next = s.substr(0, i) + ')' + string(open, '(') + string(close, ')');
s.swap(next);
return true;

}
}
return false;

}

This function computes in O(n) time the next balanced bracket sequence,
and returns false if there is no next one.

18.2.4 Finding all balanced sequences
Sometimes it is required to find and output all balanced bracket sequences of a
specific length n.

To generate then, we can start with the lexicographically smallest sequence
((. . . (()) . . . )), and then continue to find the next lexicographically sequences
with the algorithm described in the previous section.

However, if the length of the sequence is not very long (e.g. n smaller than
12), then we can also generate all permutations conveniently with the C++ STL
function next_permutation, and check each one for balanceness.

Also they can be generate using the ideas we used for counting all sequences
with dynamic programming. We will discuss the ideas in the next two sections.

18.2.5 Sequence index
Given a balanced bracket sequence with n pairs of brackets. We have to find
its index in the lexicographically ordered list of all balanced sequences with n
bracket pairs.

Let’s define an auxiliary array d[i][j], where i is the length of the bracket
sequence (semi-balanced, each closing bracket has a corresponding opening
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bracket, but not every opening bracket has necessarily a corresponding closing
one), and j is the current balance (difference between opening and closing
brackets). d[i][j] is the number of such sequences that fit the parameters. We
will calculate these numbers with only one bracket type.

For the start value i = 0 the answer is obvious: d[0][0] = 1, and d[0][j] = 0 for
j > 0. Now let i > 0, and we look at the last character in the sequence. If the
last character was an opening bracket (, then the state before was (i− 1, j − 1),
if it was a closing bracket ), then the previous state was (i− 1, j + 1). Thus we
obtain the recursion formula:

d[i][j] = d[i− 1][j − 1] + d[i− 1][j + 1]

d[i][j] = 0 holds obviously for negative j. Thus we can compute this array in
O(n2).

Now let us generate the index for a given sequence.
First let there be only one type of brackets. We will us the counter depth

which tells us how nested we currently are, and iterate over the characters of the
sequence. If the current character s[i] is equal to (, then we increment depth. If
the current character s[i] is equal to ), then we must add d[2n− i− 1][depth + 1]
to the answer, taking all possible endings starting with a ( into account (which
are lexicographically smaller sequences), and then decrement depth.

New let there be k different bracket types.
Thus, when we look at the current character s[i] before recomputing depth, we

have to go through all bracket types that are smaller than the current character,
and try to put this bracket into the current position (obtaining a new balance
ndepth = depth± 1), and add the number of ways to finish the sequence (length
2n− i− 1, balance ndepth) to the answer:

d[2n− i− 1][ndepth] · k
2n−i−1−ndepth

2

This formula can be derived as follows: First we “forget” that there are multiple
bracket types, and just take the answer d[2n− i− 1][ndepth]. Now we consider
how the answer will change is we have k types of brackets. We have 2n− i− 1
undefined positions, of which ndepth are already predetermined because of the
opening brackets. But all the other brackets ((2n− i− i− ndepth)/2 pairs) can
be of any type, therefore we multiply the number by such a power of k.

18.2.6 Finding the k-th sequence
Let n be the number of bracket pairs in the sequence. We have to find the k-th
balanced sequence in lexicographically sorted list of all balanced sequences for a
given k.

As in the previous section we compute the auxiliary array d[i][j], the number
of semi-balanced bracket sequences of length i with balance j.

First, we start with only one bracket type.
We will iterate over the characters in the string we want to generate. As in

the previous problem we store a counter depth, the current nesting depth. In
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each position we have to decide if we use an opening of a closing bracket. To
have to put an opening bracket character, it d[2n − i − 1][depth + 1] ≥ k. We
increment the counter depth, and move on to the next character. Otherwise we
decrement k by d[2n− i− 1][depth + 1], put a closing bracket and move on.

string kth_balanced(int n, int k) {
vector<vector<int>> d(2*n+1, vector<int>(n+1, 0));
d[0][0] = 1;
for (int i = 1; i <= 2*n; i++) {

d[i][0] = d[i-1][1];
for (int j = 1; j < n; j++)

d[i][j] = d[i-1][j-1] + d[i-1][j+1];
d[i][n] = d[i-1][n-1];

}

string ans;
int depth = 0;
for (int i = 0; i < 2*n; i++) {

if (depth + 1 <= n && d[2*n-i-1][depth+1] >= k) {
ans += '(';
depth++;

} else {
ans += ')';
if (depth + 1 <= n)

k -= d[2*n-i-1][depth+1];
depth--;

}
}
return ans;

}

Now let there be k types of brackets. The solution will only differ slightly in
that we have to multiply the value d[2n− i−1][ndepth] by k(2n−i−1−ndepth)/2 and
take into account that there can be different bracket types for the next character.

Here is an implementation using two types of brackets: round and square:

string kth_balanced2(int n, int k) {
vector<vector<int>> d(2*n+1, vector<int>(n+1, 0));
d[0][0] = 1;
for (int i = 1; i <= 2*n; i++) {

d[i][0] = d[i-1][1];
for (int j = 1; j < n; j++)

d[i][j] = d[i-1][j-1] + d[i-1][j+1];
d[i][n] = d[i-1][n-1];

}

string ans;
int shift, depth = 0;

stack<char> st;
for (int i = 0; i < 2*n; i++) {
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// '('
shift = ((2*n-i-1-depth-1) / 2);
if (shift >= 0 && depth + 1 <= n) {

int cnt = d[2*n-i-1][depth+1] << shift;
if (cnt >= k) {

ans += '(';
st.push('(');
depth++;
continue;

}
k -= cnt;

}

// ')'
shift = ((2*n-i-1-depth+1) / 2);
if (shift >= 0 && depth && st.top() == '(') {

int cnt = d[2*n-i-1][depth-1] << shift;
if (cnt >= k) {

ans += ')';
st.pop();
depth--;
continue;

}
k -= cnt;

}

// '['
shift = ((2*n-i-1-depth-1) / 2);
if (shift >= 0 && depth + 1 <= n) {

int cnt = d[2*n-i-1][depth+1] << shift;
if (cnt >= k) {

ans += '[';
st.push('[');
depth++;
continue;

}
k -= cnt;

}

// ']'
ans += ']';
st.pop();
depth--;

}
return ans;

}



Combinatorics, Chapter 18. Tasks 360

18.3 Counting labeled graphs

18.3.1 Labeled graphs
Let the number of vertices in a graph be n. We have to compute the number Gn
of labeled graphs with n vertices (labeled means that the vertices are marked with
the numbers from 1 to n). The edges of the graphs are considered undirected,
and loops and multiple edges are forbidden.

We consider the set of all possible edges of the graph. For each edge (i, j) we
can assume that i < j (because the graph is undirected, and there are no loops).
Therefore the set of all edges has the cardinality

(n
2
)
, i.e. n(n−1)

2 .
Since any labeled graph is uniquely determined by its edges, the number of

labeled graphs with n vertices is equal to:

Gn = 2
n(n−1)

2

18.3.2 Connected labeled graphs
Here, we additionally impose the restriction that the graph has to be connected.

Let’s denote the required number of connected graphs with n vertices as Cn.
We will first discuss how many disconnected graphs exists. Then the number

of connected graphs will be Gn minus the number of disconnected graphs. Even
more, we will count the number of disconnected, rooted graphs.A rooted
graph is a graph, where we emphasize one vertex by labeling it as root. Obviously
we have n possibilities to root a graph with n labeled vertices, therefore we will
need to divide the number of disconnected rooted graphs by n at the end to get
the number of disconnected graphs.

The root vertex will appear in a connected component of size 1, . . . n−1. There
are k

(n
k

)
CkGn−k graphs such that the root vertex is in a connected component

with k vertices (there are
(n
k

)
ways to choose k vertices for the component, these

are connected in one of Ck ways, the root vertex can be any of the k vertices, and
the remainder n− k vertices can be connected/disconnected in any way, which
gives a factor of Gn−k). Therefore the number of disconnected graphs with n
vertices is:

1
n

n−1∑
k=1

k

(
n

k

)
CkGn−k

And finally the number of connected graphs is:

Cn = Gn −
1
n

n−1∑
k=1

k

(
n

k

)
CkGn−k

18.3.3 Labeled graphs with k connected components
Based on the formula from the previous section, we will learn how to count the
number of labeled graphs with n vertices and k connected components.
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This number can be computed using dynamic programming. We will compute
D[i][j] - the number of labeled graphs with i vertices and j components - for
each i ≤ n and j ≤ k.

Let’s discuss how to compute the next element D[n][k] if we already know the
previous values. We use a common approach, we take the last vertex (index n).
This vertex belongs to some component. If the size of this component be s, then
there are

(n−1
s−1
)
ways to choose such a set of vertices, and Cs ways to connect

them.After removing this component from the graph we have n− s remaining
vertices with k − 1 connected components. Therefore we obtain the following
recurrence relation:

D[n][k] =
n∑
s=1

(
n− 1
s− 1

)
CsD[n− s][k − 1]
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Part VII

Numerical Methods
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Chapter 19

Search

19.1 Ternary Search
We are given a function f(x) which is unimodal on an interval [l, r]. By unimodal
function, we mean one of two behaviors of the function:

1. The function strictly increases first, reaches a maximum (at a single point
or over an interval), and then strictly decreases.

2. The function strictly decreases first, reaches a minimum, and then strictly
increases.

In this article, we will assume the first scenario. The second scenario is
completely symmetrical to the first.

The task is to find the maximum of function f(x) on the interval [l, r].

19.1.1 Algorithm
Consider any 2 points m1, and m2 in this interval: l < m1 < m2 < r. We
evaluate the function at m1 and m2, i.e. find the values of f(m1) and f(m2).
Now, we get one of three options:

• f(m1) < f(m2)
The desired maximum can not be located on the left side of m1, i.e. on the
interval [l,m1], since either both points m1 and m2 or just m1 belong to
the area where the function increases. In either case, this means that we
have to search for the maximum in the segment [m1, r].

• f(m1) > f(m2)
This situation is symmetrical to the previous one: the maximum can not be
located on the right side of m2, i.e. on the interval [m2, r], and the search
space is reduced to the segment [l,m2].

• f(m1) = f(m2)
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We can see that either both of these points belong to the area where the
value of the function is maximized, or m1 is in the area of increasing values
and m2 is in the area of descending values (here we used the strictness
of function increasing/decreasing). Thus, the search space is reduced to
[m1,m2]. To simplify the code, this case can be combined with any of the
previous cases.

Thus, based on the comparison of the values in the two inner points, we can
replace the current interval [l, r] with a new, shorter interval [l′, r′]. Repeatedly
applying the described procedure to the interval, we can get an arbitrarily short
interval. Eventually, its length will be less than a certain pre-defined constant
(accuracy), and the process can be stopped. This is a numerical method, so we
can assume that after that the function reaches its maximum at all points of
the last interval [l, r]. Without loss of generality, we can take f(l) as the return
value.

We didn’t impose any restrictions on the choice of points m1 and m2. This
choice will define the convergence rate and the accuracy of the implementation.
The most common way is to choose the points so that they divide the interval
[l, r] into three equal parts. Thus, we have

m1 = l + (r − l)
3

m2 = r − (r − l)
3

If m1 and m2 are chosen to be closer to each other, the convergence rate will
increase slightly.

Run time analysis

T (n) = T (2n/3) + 1 = Θ(logn)

It can be visualized as follows: every time after evaluating the function at
points m1 and m2, we are essentially ignoring about one third of the interval,
either the left or right one. Thus the size of the search space is 2n/3 of the
original one.

Applying Master’s Theorem, we get the desired complexity estimate.

The case of the integer arguments

If f(x) takes integer parameter, the interval [l, r] becomes discrete. Since we did
not impose any restrictions on the choice of points m1 and m2, the correctness
of the algorithm is not affected. m1 and m2 can still be chosen to divide [l, r]
into 3 approximately equal parts.

The difference occurs in the stopping criterion of the algorithm. Ternary
search will have to stop when (r − l) < 3, because in that case we can no longer
select m1 and m2 to be different from each other as well as from l and r, and
this can cause an infinite loop. Once (r− l) < 3, the remaining pool of candidate

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
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points (l, l + 1, . . . , r) needs to be checked to find the point which produces the
maximum value f(x).

19.1.2 Implementation
double ternary_search(double l, double r) {

double eps = 1e-9; //set the error limit here
while (r - l > eps) {

double m1 = l + (r - l) / 3;
double m2 = r - (r - l) / 3;
double f1 = f(m1); //evaluates the function at m1
double f2 = f(m2); //evaluates the function at m2
if (f1 < f2)

l = m1;
else

r = m2;
}
return f(l); //return the maximum of f(x) in [l, r]

}

Here eps is in fact the absolute error (not taking into account errors due to
the inaccurate calculation of the function).

Instead of the criterion r - l > eps, we can select a constant number of
iterations as a stopping criterion. The number of iterations should be chosen to
ensure the required accuracy. Typically, in most programming challenges the
error limit is 10−6 and thus 200 - 300 iterations are sufficient. Also, the number
of iterations doesn’t depend on the values of l and r, so the number of iterations
corresponds to the required relative error.

19.1.3 Practice Problems
• Codechef - Race time
• Hackerearth - Rescuer
• Spoj - Building Construction
• Codeforces - Weakness and Poorness
• LOJ - Closest Distance
• GYM - Dome of Circus (D)
• UVA - Galactic Taxes
• GYM - Chasing the Cheetahs (A)
• UVA - 12197 - Trick or Treat
• SPOJ - Building Construction
• Codeforces - Devu and his Brother
• Codechef - Is This JEE
• Codeforces - Restorer Distance
• TIMUS 1719 Kill the Shaitan-Boss
• TIMUS 1913 Titan Ruins: Alignment of Forces

https://www.codechef.com/problems/AMCS03
https://www.hackerearth.com/september-circuits/algorithm/rescuer-1/
http://www.spoj.com/problems/KOPC12A/
http://codeforces.com/problemset/problem/578/C
http://lightoj.com/volume_showproblem.php?problem=1146
http://codeforces.com/gym/101309
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4898
http://codeforces.com/gym/100829
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3349
http://www.spoj.com/problems/KOPC12A/
https://codeforces.com/problemset/problem/439/D
https://www.codechef.com/problems/ICM2003
https://codeforces.com/contest/1355/problem/E
https://acm.timus.ru/problem.aspx?space=1&num=1719
https://acm.timus.ru/problem.aspx?space=1&num=1913
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19.2 Newton’s method for finding roots
This is an iterative method invented by Isaac Newton around 1664. However, this
method is also sometimes called the Raphson method, since Raphson invented
the same algorithm a few years after Newton, but his article was published much
earlier.

The task is as follows. Given the following equation:

f(x) = 0

We want to solve the equation. More precisely, we want to find one of its
roots (it is assumed that the root exists). It is assumed that f(x) is continuous
and differentiable on an interval [a, b].

19.2.1 Algorithm
The input parameters of the algorithm consist of not only the function f(x) but
also the initial approximation - some x0, with which the algorithm starts.

Suppose we have already calculated xi, calculate xi+1 as follows. Draw the
tangent to the graph of the function f(x) at the point x = xi, and find the point of
intersection of this tangent with the x-axis. xi+1 is set equal to the x-coordinate
of the point found, and we repeat the whole process from the beginning.

It is not difficult to obtain the following formula:

xi+1 = xi −
f(xi)
f ′(xi)

It is intuitively clear that if the function f(x) is “good” (smooth), and xi is
close enough to the root, then xi+1 will be even closer to the desired root.

The rate of convergence is quadratic, which, conditionally speaking, means
that the number of exact digits in the approximate value xi doubles with each
iteration.

19.2.2 Application for calculating the square root
Let’s use the calculation of square root as an example of Newton’s method.

If we substitute f(x) = x2 − n, then after simplifying the expression, we get:

xi+1 =
xi + n

xi

2
The first typical variant of the problem is when a rational number n is given,

and its root must be calculated with some accuracy eps:

double sqrt_newton(double n) {
const double eps = 1E-15;
double x = 1;
for (;;) {

double nx = (x + n / x) / 2;
if (abs(x - nx) < eps)
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break;
x = nx;

}
return x;

}

Another common variant of the problem is when we need to calculate the
integer root (for the given n find the largest x such that x2 ≤ n). Here it is
necessary to slightly change the termination condition of the algorithm, since it
may happen that x will start to “jump” near the answer. Therefore, we add a
condition that if the value x has decreased in the previous step, and it tries to
increase at the current step, then the algorithm must be stopped.

int isqrt_newton(int n) {
int x = 1;
bool decreased = false;
for (;;) {

int nx = (x + n / x) >> 1;
if (x == nx || nx > x && decreased)

break;
decreased = nx < x;
x = nx;

}
return x;

}

Finally, we are given the third variant - for the case of bignum arithmetic.
Since the number n can be large enough, it makes sense to pay attention to
the initial approximation. Obviously, the closer it is to the root, the faster the
result will be achieved. It is simple enough and effective to take the initial
approximation as the number 2bits/2, where bits is the number of bits in the
number n. Here is the Java code that demonstrates this variant:

public static BigInteger isqrtNewton(BigInteger n) {
BigInteger a = BigInteger.ONE.shiftLeft(n.bitLength() / 2);
boolean p_dec = false;
for (;;) {

BigInteger b = n.divide(a).add(a).shiftRight(1);
if (a.compareTo(b) == 0 || a.compareTo(b) < 0 && p_dec)

break;
p_dec = a.compareTo(b) > 0;
a = b;

}
return a;

}

For example, this code is executed in 60 milliseconds for n = 101000, and if
we remove the improved selection of the initial approximation (just starting with
1), then it will be executed in about 120 milliseconds.
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19.2.3 Practice Problems
• UVa 10428 - The Roots

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=16&page=show_problem&problem=1369
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Chapter 20

Integration

20.1 Integration by Simpson’s formula
We are going to calculate the value of a definite integral∫ b

a
f(x)dx

The solution described here was published in one of the dissertations of
Thomas Simpson in 1743.

20.1.1 Simpson’s formula
Let n be some natural number. We divide the integration segment [a, b] into 2n
equal parts:

xi = a+ ih, i = 0 . . . 2n,

h = b− a
2n .

Now we calculate the integral separately on each of the segments [x2i−2, x2i],
i = 1 . . . n, and then add all the values.

So, suppose we consider the next segment [x2i−2, x2i], i = 1 . . . n. Re-
place the function f(x) on it with a parabola P (x) passing through 3 points
(x2i−2, x2i−1, x2i). Such a parabola always exists and is unique; it can be found
analytically. For instance we could construct it using the Lagrange polynomial
interpolation. The only remaining thing left to do is to integrate this polynomial.
If you do this for a general function f , you receive a remarkably simple expression:

∫ x2i

x2i−2
f(x) dx ≈

∫ x2i

x2i−2
P (x) dx = (f(x2i−2) + 4f(x2i−1) + (f(x2i))

h

3
Adding these values over all segments, we obtain the final Simpson’s for-

mula:

∫ b

a
f(x)dx ≈ (f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + . . .+ 4f(x2N−1) + f(x2N )) h3
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20.1.2 Error
The error in approximating an integral by Simpson’s formula is

− 1
90

(
b−a

2

)5
f (4)(ξ)

where ξ is some number between a and b.
The error is asymptotically proportional to (b − a)5. However, the above

derivations suggest an error proportional to (b − a)4. Simpson’s rule gains an
extra order because the points at which the integrand is evaluated are distributed
symmetrically in the interval [a, b].

20.1.3 Implementation
Here, f(x) is some user-defined function.

const int N = 1000 * 1000; // number of steps (already multiplied by 2)

double simpson_integration(double a, double b){
double h = (b - a) / N;
double s = f(a) + f(b); // a = x_0 and b = x_2n
for (int i = 1; i <= N - 1; ++i) { // Refer to final Simpson's formula

double x = a + h * i;
s += f(x) * ((i & 1) ? 4 : 2);

}
s *= h / 3;
return s;

}

20.1.4 Practice Problems
• URI - Environment Protection

https://www.urionlinejudge.com.br/judge/en/problems/view/1297
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Part VIII

Geometry
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Chapter 21

Elementary operations

21.1 Basic Geometry
In this article we will consider basic operations on points in Euclidean space which
maintains the foundation of the whole analytical geometry. We will consider for
each point r the vector ~r directed from 0 to r. Later we will not distinguish
between r and ~r and use the term point as a synonym for vector.

21.1.1 Linear operations
Both 2D and 3D points maintain linear space, which means that for them sum
of points and multiplication of point by some number are defined. Here are those
basic implementations for 2D:

struct point2d {
ftype x, y;
point2d() {}
point2d(ftype x, ftype y): x(x), y(y) {}
point2d& operator+=(const point2d &t) {

x += t.x;
y += t.y;
return *this;

}
point2d& operator-=(const point2d &t) {

x -= t.x;
y -= t.y;
return *this;

}
point2d& operator*=(ftype t) {

x *= t;
y *= t;
return *this;

}
point2d& operator/=(ftype t) {

x /= t;
y /= t;
return *this;
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}
point2d operator+(const point2d &t) const {

return point2d(*this) += t;
}
point2d operator-(const point2d &t) const {

return point2d(*this) -= t;
}
point2d operator*(ftype t) const {

return point2d(*this) *= t;
}
point2d operator/(ftype t) const {

return point2d(*this) /= t;
}

};
point2d operator*(ftype a, point2d b) {

return b * a;
}

And 3D points:

struct point3d {
ftype x, y, z;
point3d() {}
point3d(ftype x, ftype y, ftype z): x(x), y(y), z(z) {}
point3d& operator+=(const point3d &t) {

x += t.x;
y += t.y;
z += t.z;
return *this;

}
point3d& operator-=(const point3d &t) {

x -= t.x;
y -= t.y;
z -= t.z;
return *this;

}
point3d& operator*=(ftype t) {

x *= t;
y *= t;
z *= t;
return *this;

}
point3d& operator/=(ftype t) {

x /= t;
y /= t;
z /= t;
return *this;

}
point3d operator+(const point3d &t) const {

return point3d(*this) += t;
}
point3d operator-(const point3d &t) const {
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return point3d(*this) -= t;
}
point3d operator*(ftype t) const {

return point3d(*this) *= t;
}
point3d operator/(ftype t) const {

return point3d(*this) /= t;
}

};
point3d operator*(ftype a, point3d b) {

return b * a;
}

Here ftype is some type used for coordinates, usually int, double or long
long.

21.1.2 Dot product

Definition

The dot (or scalar) product a · b for vectors a and b can be defined in two
identical ways. Geometrically it is product of the length of the first vector by
the length of the projection of the second vector onto the first one. As you may
see from the image below this projection is nothing but |a| cos θ where θ is the
angle between a and b. Thus a · b = |a| cos θ · |b|.

The dot product holds some notable properties:

1. a · b = b · a
2. (α · a) · b = α · (a · b)
3. (a + b) · c = a · c + b · c

I.e. it is a commutative function which is linear with respect to both arguments.
Let’s denote the unit vectors as

ex =

1
0
0

 , ey =

0
1
0

 , ez =

0
0
1

 .
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With this notation we can write the vector r = (x; y; z) as r = x ·ex+y ·ey+z ·ez.
And since for unit vectors

ex · ex = ey · ey = ez · ez = 1, ex · ey = ey · ez = ez · ex = 0

we can see that in terms of coordinates for a = (x1; y1; z1) and b = (x2; y2; z2)
holds

a ·b = (x1 · ex + y1 · ey + z1 · ez) · (x2 · ex + y2 · ey + z2 · ez) = x1x2 + y1y2 + z1z2

That is also the algebraic definition of the dot product. From this we can
write functions which calculate it.

ftype dot(point2d a, point2d b) {
return a.x * b.x + a.y * b.y;

}
ftype dot(point3d a, point3d b) {

return a.x * b.x + a.y * b.y + a.z * b.z;
}

When solving problems one should use algebraic definition to calculate dot
products, but keep in mind geometric definition and properties to use it.

Properties

We can define many geometrical properties via the dot product. For example

1. Norm of a (squared length): |a|2 = a · a
2. Length of a: |a| =

√
a · a

3. Projection of a onto b: a · b
|b|

4. Angle between vectors: arccos
( a · b
|a| · |b|

)
5. From the previous point we may see that the dot product is positive if the

angle between them is acute, negative if it is obtuse and it equals zero if
they are orthogonal, i.e. they form a right angle.

Note that all these functions do not depend on the number of dimensions,
hence they will be the same for the 2D and 3D case:

ftype norm(point2d a) {
return dot(a, a);

}
double abs(point2d a) {

return sqrt(norm(a));
}
double proj(point2d a, point2d b) {

return dot(a, b) / abs(b);
}
double angle(point2d a, point2d b) {

return acos(dot(a, b) / abs(a) / abs(b));
}
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To see the next important property we should take a look at the set of points
r for which r · a = C for some fixed constant C. You can see that this set of
points is exactly the set of points for which the projection onto a is the point
C · a
|a| and they form a hyperplane orthogonal to a. You can see the vector a

alongside with several such vectors having same dot product with it in 2D on the
picture below:

In 2D these vectors will form a line, in 3D they will form a plane. Note that
this result allows us to define a line in 2D as r ·n = C or (r− r0) ·n = 0 where n
is vector orthogonal to the line and r0 is any vector already present on the line
and C = r0 · n. In the same manner a plane can be defined in 3D.

21.1.3 Cross product

Definition

Assume you have three vectors a, b and c in 3D space joined in a parallelepiped
as in the picture below:

How would you calculate its volume? From school we know that we should
multiply the area of the base with the height, which is projection of a onto
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direction orthogonal to base. That means that if we define b× c as the vector
which is orthogonal to both b and c and which length is equal to the area of the
parallelogram formed by b and c then |a · (b× c)| will be equal to the volume of
the parallelepiped. For integrity we will say that b× c will be always directed in
such way that the rotation from the vector b to the vector c from the point of
b× c is always counter-clockwise (see the picture below).

This defines the cross (or vector) product b× c of the vectors b and c and
the triple product a · (b× c) of the vectors a, b and c.

Some notable properties of cross and triple products:

1. a × b = −b× a
2. (α · a)× b = α · (a × b)
3. For any b and c there is exactly one vector r such that a · (b× c) = a · r

for any vector a. Indeed if there are two such vectors r1 and r2 then
a · (r1 − r2) = 0 for all vectors a which is possible only when r1 = r2.

4. a · (b× c) = b · (c× a) = −a · (c× b)
5. (a + b)× c = a× c + b× c. Indeed for all vectors r the chain of equations

holds:

r·((a+b)×c) = (a+b)·(c×r) = a·(c×r)+b·(c×r) = r·(a×c)+r·(b×c) = r·(a×c+b×c)

Which proves (a + b)× c = a × c + b× c due to point 3.
6. |a×b| = |a| · |b| sin θ where θ is angle between a and b, since |a×b| equals

to the area of the parallelogram formed by a and b.

Given all this and that the following equation holds for the unit vectors

ex × ex = ey × ey = ez × ez = 0, ex × ey = ez, ey × ez = ex, ez × ex = ey

we can calculate the cross product of a = (x1; y1; z1) and b = (x2; y2; z2) in
coordinate form:
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a × b = (x1 · ex + y1 · ey + z1 · ez)× (x2 · ex + y2 · ey + z2 · ez) =

(y1z2 − z1y2)ex + (z1x2 − x1z2)ey + (x1y2 − y1x2)

Which also can be written in the more elegant form:

a × b =

∣∣∣∣∣∣∣
ex ey ez
x1 y1 z1
x2 y2 z2

∣∣∣∣∣∣∣ , a · (b× c) =

∣∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣∣
Here | · | stands for the determinant of a matrix.

Some kind of cross product (namely the pseudo-scalar product) can also be
implemented in the 2D case. If we would like to calculate the area of parallelogram
formed by vectors a and b we would compute |ez ·(a×b)| = |x1y2−y1x2|. Another
way to obtain the same result is to multiply |a| (base of parallelogram) with the
height, which is the projection of vector b onto vector a rotated by 90◦ which in
turn is â = (−y1;x1). That is, to calculate |â · b| = |x1y2 − y1x2|.

If we will take the sign into consideration then the area will be positive if the
rotation from a to b (i.e. from the view of the point of ez) is performed counter-
clockwise and negative otherwise. That defines the pseudo-scalar product. Note
that it also equals |a|·|b| sin θ where θ is angle from a to b count counter-clockwise
(and negative if rotation is clockwise).

Let’s implement all this stuff!

point3d cross(point3d a, point3d b) {
return point3d(a.y * b.z - a.z * b.y,

a.z * b.x - a.x * b.z,
a.x * b.y - a.y * b.x);

}
ftype triple(point3d a, point3d b, point3d c) {

return dot(a, cross(b, c));
}
ftype cross(point2d a, point2d b) {

return a.x * b.y - a.y * b.x;
}

Properties

As for the cross product, it equals to the zero vector iff the vectors a and b are
collinear (they form a common line, i.e. they are parallel). The same thing holds
for the triple product, it is equal to zero iff the vectors a, b and c are coplanar
(they form a common plane).

From this we can obtain universal equations defining lines and planes. A line
can be defined via its direction vector d and an initial point r0 or by two points a
and b. It is defined as (r− r0)×d = 0 or as (r− a)× (b− a) = 0. As for planes,
it can be defined by three points a, b and c as (r− a) · ((b− a)× (c− a)) = 0
or by initial point r0 and two direction vectors lying in this plane d1 and d2:
(r− r0) · (d1 × d2) = 0.
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In 2D the pseudo-scalar product also may be used to check the orientation
between two vectors because it is positive if the rotation from the first to the
second vector is clockwise and negative otherwise. And, of course, it can be used
to calculate areas of polygons, which is described in a different article. A triple
product can be used for the same purpose in 3D space.

21.1.4 Exercises

Line intersection

There are many possible ways to define a line in 2D and you shouldn’t hesitate
to combine them. For example we have two lines and we want to find their
intersection points. We can say that all points from first line can be parameterized
as r = a1 + t · d1 where a1 is initial point, d1 is direction and t is some real
parameter. As for second line all its points must satisfy (r− a2)× d2 = 0. From
this we can easily find parameter t:

(a1 + t · d1 − a2)× d2 = 0 ⇒ t = (a2 − a1)× d2
d1 × d2

Let’s implement function to intersect two lines.

point2d intersect(point2d a1, point2d d1, point2d a2, point2d d2) {
return a1 + cross(a2 - a1, d2) / cross(d1, d2) * d1;

}

Planes intersection

However sometimes it might be hard to use some geometric insights. For example,
you’re given three planes defined by initial points ai and directions di and you
want to find their intersection point. You may note that you just have to solve
the system of equations: 

r · n1 = a1 · n1,

r · n2 = a2 · n2,

r · n3 = a3 · n3

Instead of thinking on geometric approach, you can work out an algebraic
one which can be obtained immediately. For example, given that you already
implemented a point class, it will be easy for you to solve this system using
Cramer’s rule because the triple product is simply the determinant of the matrix
obtained from the vectors being its columns:

point3d intersect(point3d a1, point3d n1, point3d a2, point3d n2, point3d a3, point3d n3) {
point3d x(n1.x, n2.x, n3.x);
point3d y(n1.y, n2.y, n3.y);
point3d z(n1.z, n2.z, n3.z);
point3d d(dot(a1, n1), dot(a2, n2), dot(a3, n3));
return point3d(triple(d, y, z),

triple(x, d, z),
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triple(x, y, d)) / triple(n1, n2, n3);
}

Now you may try to find out approaches for common geometric operations
yourself to get used to all this stuff.
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21.2 Finding the equation of a line for a segment
The task is: given the coordinates of the ends of a segment, construct a line
passing through it.

We assume that the segment is non-degenerate, i.e. has a length greater than
zero (otherwise, of course, infinitely many different lines pass through it).

Two-dimensional case

Let the given segment be PQ i.e. the known coordinates of its ends Px, Py, Qx, Qy
.

It is necessary to construct the equation of a line in the plane passing
through this segment, i.e. find the coefficients A,B,C in the equation of a line:

Ax+By + C = 0.

Note that for the required triples (A,B,C) there are infinitely many solu-
tions which describe the given segment: you can multiply all three coefficients by
an arbitrary non-zero number and get the same straight line. Therefore, our task
is to find one of these triples.

It is easy to verify (by substitution of these expressions and the coordinates
of the points P and Q into the equation of a straight line) that the following set
of coefficients fits:

A = Py −Qy,

B = Qx − Px,

C = −APx −BPy.

Integer case

An important advantage of this method of constructing a straight line is that
if the coordinates of the ends were integer, then the coefficients obtained will
also be integer . In some cases, this allows one to perform geometric operations
without resorting to real numbers at all.

However, there is a small drawback: for the same straight line different triples
of coefficients can be obtained. To avoid this, but do not go away from the
integer coefficients, you can apply the following technique, often called rationing.
Find the greatest common divisor of numbers |A|, |B|, |C| , we divide all three
coefficients by it, and then we make the normalization of the sign: if A < 0 or
A = 0, B < 0 then multiply all three coefficients by −1 . As a result, we will come
to the conclusion that for identical straight lines, identical triples of coefficients
will be obtained, which makes it easy to check straight lines for equality.
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Real case

When working with real numbers, you should always be aware of errors.
The coefficients A and B will have the order of the original coordinates, the

coefficient C is of the order of the square of them. This may already be quite large
numbers, and, for example, when we intersect straight lines, they will become
even larger, which can lead to large rounding errors already when the coordinates
of the end points are of order 103.

Therefore, when working with real numbers, it is desirable to produce the
so-called normalization, this is straightforward: namely, to make the coefficients
such that A2 +B2 = 1 . To do this, calculate the number Z :

Z =
√
A2 +B2,

and divide all three coefficients A,B,C by it.
Thus, the order of the coefficients A and B will not depend on the order of

the input coordinates, and the coefficient C will be of the same order as the input
coordinates. In practice, this leads to a significant improvement in the accuracy
of calculations.

Finally, we mention the comparison of straight lines - in fact, after such
a normalization, for the same straight line, only two triples of coefficients can
be obtained: up to multiplication by −1. Accordingly, if we make an additional
normalization taking into account the sign (if A < −ε or |A| < ε, B < −ε then
multiply by −1 ), the resulting coefficients will be unique.

Three-dimensional and multidimensional case

Already in the three-dimensional case there is no simple equation describing a
straight line (it can be defined as the intersection of two planes, that is, a system
of two equations, but this is an inconvenient method).

Consequently, in the three-dimensional and multidimensional cases we must
use the parametric method of defining a straight line , i.e. as a point p
and a vector v :

p+ vt, “‘t ∈ R.

Those. a straight line is all points that can be obtained from a point p adding
a vector v with an arbitrary coefficient.

The construction of a straight line in a parametric form along the coordinates
of the ends of a segment is trivial, we just take one end of the segment for the
point p, and the vector from the first to the second end — for the vector v.
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21.3 Intersection Point of Lines
You are given two lines, described via the equations a1x + b1y + c1 = 0 and
a2x+b2y+c2 = 0. We have to find the intersection point of the lines, or determine
that the lines are parallel.

21.3.1 Solution
If two lines are not parallel, they intersect. To find their intersection point, we
need to solve the following system of linear equations:{

a1x+ b1y + c1 = 0
a2x+ b2y + c2 = 0

Using Cramer’s rule, we can immediately write down the solution for the
system, which will give us the required intersection point of the lines:

x = −

∣∣∣∣∣c1 b1
c2 b2

∣∣∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣
= − c1b2 − c2b1

a1b2 − a2b1
,

y = −

∣∣∣∣∣a1 c1
a2 c2

∣∣∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣
= −a1c2 − a2c1

a1b2 − a2b1
.

If the denominator equals 0, i.e.∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣ = a1b2 − a2b1 = 0

then either the system has no solutions (the lines are parallel and distinct) or
there are infinitely many solutions (the lines overlap). If we need to distinguish
these two cases, we have to check if coefficients c are proportional with the same
ratio as the coefficients a and b. To do that we only have calculate the following
determinants, and if they both equal 0, the lines overlap:∣∣∣∣∣a1 c1

a2 c2

∣∣∣∣∣ ,
∣∣∣∣∣b1 c1
b2 c2

∣∣∣∣∣
Notice, a different approach for computing the intersection point is explained

in the article Basic Geometry.

21.3.2 Implementation
struct pt {

double x, y;
};

geometry/basic-geometry.html
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struct line {
double a, b, c;

};

const double EPS = 1e-9;

double det(double a, double b, double c, double d) {
return a*d - b*c;

}

bool intersect(line m, line n, pt & res) {
double zn = det(m.a, m.b, n.a, n.b);
if (abs(zn) < EPS)

return false;
res.x = -det(m.c, m.b, n.c, n.b) / zn;
res.y = -det(m.a, m.c, n.a, n.c) / zn;
return true;

}

bool parallel(line m, line n) {
return abs(det(m.a, m.b, n.a, n.b)) < EPS;

}

bool equivalent(line m, line n) {
return abs(det(m.a, m.b, n.a, n.b)) < EPS

&& abs(det(m.a, m.c, n.a, n.c)) < EPS
&& abs(det(m.b, m.c, n.b, n.c)) < EPS;

}
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21.4 Check if two segments intersect
You are given two segments (a, b) and (c, d). You have to check if they intersect.
Of course, you may find their intersection and check if it isn’t empty, but this
can’t be done in integers for segments with integer coordinates. The approach
described here can work in integers.

21.4.1 Algorithm
Firstly, consider the case when the segments are part of the same line. In this
case it is sufficient to check if their projections on Ox and Oy intersect. In the
other case a and b must not lie on the same side of line (c, d), and c and d must
not lie on the same side of line (a, b). It can be checked with a couple of cross
products.

21.4.2 Implementation
The given algorithm is implemented for integer points. Of course, it can be easily
modified to work with doubles.

struct pt {
long long x, y;
pt() {}
pt(long long _x, long long _y) : x(_x), y(_y) {}
pt operator-(const pt& p) const { return pt(x - p.x, y - p.y); }
long long cross(const pt& p) const { return x * p.y - y * p.x; }
long long cross(const pt& a, const pt& b) const { return (a - *this).cross(b - *this); }

};

int sgn(const long long& x) { return x >= 0 ? x ? 1 : 0 : -1; }

bool inter1(long long a, long long b, long long c, long long d) {
if (a > b)

swap(a, b);
if (c > d)

swap(c, d);
return max(a, c) <= min(b, d);

}

bool check_inter(const pt& a, const pt& b, const pt& c, const pt& d) {
if (c.cross(a, d) == 0 && c.cross(b, d) == 0)

return inter1(a.x, b.x, c.x, d.x) && inter1(a.y, b.y, c.y, d.y);
return sgn(a.cross(b, c)) != sgn(a.cross(b, d)) &&

sgn(c.cross(d, a)) != sgn(c.cross(d, b));
}
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21.5 Finding Intersection of Two Segments
You are given two segments AB and CD, described as pairs of their endpoints.
Each segment can be a single point if its endpoints are the same. You have to
find the intersection of these segments, which can be empty (if the segments
don’t intersect), a single point or a segment (if the given segments overlap).

21.5.1 Solution
We can find the intersection point of segments in the same way as the intersection
of lines: reconstruct line equations from the segments’ endpoints and check
whether they are parallel.

If the lines are not parallel, we need to find their point of intersection and
check whether it belongs to both segments (to do this it’s sufficient to verify that
the intersection point belongs to each segment projected on X and Y axes). In
this case the answer will be either “no intersection” or the single point of lines’
intersection.

The case of parallel lines is slightly more complicated (the case of one or more
segments being a single point also belongs here). In this case we need to check
that both segments belong to the same line. If they don’t, the answer is “no
intersection”. If they do, the answer is the intersection of the segments belonging
to the same line, which is obtained by ordering the endpoints of both segments
in the increasing order of certain coordinate and taking the rightmost of left
endpoints and the leftmost of right endpoints.

If both segments are single points, these points have to be identical, and it
makes sense to perform this check separately.

In the beginning of the algorithm let’s add a bounding box check - it is
necessary for the case when the segments belong to the same line, and (being a
lightweight check) it allows the algorithm to work faster on average on random
tests.

21.5.2 Implementation
Here is the implementation, including all helper functions for lines and segments
processing.

The main function intersect returns true if the segments have a non-empty
intersection, and stores endpoints of the intersection segment in arguments left
and right. If the answer is a single point, the values written to left and right
will be the same.

const double EPS = 1E-9;

struct pt {
double x, y;

bool operator<(const pt& p) const
{

return x < p.x - EPS || (abs(x - p.x) < EPS && y < p.y - EPS);

geometry/lines-intersection.html
geometry/lines-intersection.html
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}
};

struct line {
double a, b, c;

line() {}
line(pt p, pt q)
{

a = p.y - q.y;
b = q.x - p.x;
c = -a * p.x - b * p.y;
norm();

}

void norm()
{

double z = sqrt(a * a + b * b);
if (abs(z) > EPS)

a /= z, b /= z, c /= z;
}

double dist(pt p) const { return a * p.x + b * p.y + c; }
};

double det(double a, double b, double c, double d)
{

return a * d - b * c;
}

inline bool betw(double l, double r, double x)
{

return min(l, r) <= x + EPS && x <= max(l, r) + EPS;
}

inline bool intersect_1d(double a, double b, double c, double d)
{

if (a > b)
swap(a, b);

if (c > d)
swap(c, d);

return max(a, c) <= min(b, d) + EPS;
}

bool intersect(pt a, pt b, pt c, pt d, pt& left, pt& right)
{

if (!intersect_1d(a.x, b.x, c.x, d.x) || !intersect_1d(a.y, b.y, c.y, d.y))
return false;

line m(a, b);
line n(c, d);
double zn = det(m.a, m.b, n.a, n.b);
if (abs(zn) < EPS) {
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if (abs(m.dist(c)) > EPS || abs(n.dist(a)) > EPS)
return false;

if (b < a)
swap(a, b);

if (d < c)
swap(c, d);

left = max(a, c);
right = min(b, d);
return true;

} else {
left.x = right.x = -det(m.c, m.b, n.c, n.b) / zn;
left.y = right.y = -det(m.a, m.c, n.a, n.c) / zn;
return betw(a.x, b.x, left.x) && betw(a.y, b.y, left.y) &&

betw(c.x, d.x, left.x) && betw(c.y, d.y, left.y);
}

}
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21.6 Circle-Line Intersection
Given the coordinates of the center of a circle and its radius, and the equation of
a line, you’re required to find the points of intersection.

21.6.1 Solution
Instead of solving the system of two equations, we will approach the problem
geometrically. This way we get a more accurate solution from the point of view
of numerical stability.

We assume without loss of generality that the circle is centered at the origin.
If it’s not, we translate it there and correct the C constant in the line equation.
So we have a circle centered at (0, 0) of radius r and a line with equation
Ax+By + C = 0.

Let’s start by find the point on the line which is closest to the origin (x0, y0).
First, it has to be at a distance

d0 = |C|√
A2 +B2

Second, since the vector (A,B) is perpendicular to the line, the coordinates
of the point must be proportional to the coordinates of this vector. Since we
know the distance of the point to the origin, we just need to scale the vector
(A,B) to this length, and we’ll get:

x0 = − AC

A2 +B2

y0 = − BC

A2 +B2

The minus signs are not obvious, but they can be easily verified by substituting
x0 and y0 in the equation of the line.

At this stage we can determine the number of intersection points, and even
find the solution when there is one or zero points. Indeed, if the distance from
(x0, y0) to the origin d0 is greater than the radius r, the answer is zero points.
If d0 = r, the answer is one point (x0, y0). If d0 < r, there are two points of
intersection, and now we have to find their coordinates.

So, we know that the point (x0, y0) is inside the circle. The two points of
intersection, (ax, ay) and (bx, by), must belong to the line Ax+By + C = 0 and
must be at the same distance d from (x0, y0), and this distance is easy to find:

d =
√
r2 − C2

A2 +B2

Note that the vector (−B,A) is collinear to the line, and thus we can find
the points in question by adding and subtracting vector (−B,A), scaled to the
length d, to the point (x0, y0).

Finally, the equations of the two points of intersection are:
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m =
√

d2

A2 +B2

ax = x0 +B ·m, ay = y0 −A ·m

bx = x0 −B ·m, by = y0 +A ·m

Had we solved the original system of equations using algebraic methods, we
would likely get an answer in a different form with a larger error. The geometric
method described here is more graphic and more accurate.

21.6.2 Implementation
As indicated at the outset, we assume that the circle is centered at the origin, and
therefore the input to the program is the radius r of the circle and the parameters
A, B and C of the equation of the line.

double r, a, b, c; // given as input
double x0 = -a*c/(a*a+b*b), y0 = -b*c/(a*a+b*b);
if (c*c > r*r*(a*a+b*b)+EPS)

puts ("no points");
else if (abs (c*c - r*r*(a*a+b*b)) < EPS) {

puts ("1 point");
cout << x0 << ' ' << y0 << '\n';

}
else {

double d = r*r - c*c/(a*a+b*b);
double mult = sqrt (d / (a*a+b*b));
double ax, ay, bx, by;
ax = x0 + b * mult;
bx = x0 - b * mult;
ay = y0 - a * mult;
by = y0 + a * mult;
puts ("2 points");
cout << ax << ' ' << ay << '\n' << bx << ' ' << by << '\n';

}

21.6.3 Practice Problems
• CODECHEF: ANDOOR

https://www.codechef.com/problems/ANDOOR
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21.7 Circle-Circle Intersection
You are given two circles on a 2D plane, each one described as coordinates of its
center and its radius. Find the points of their intersection (possible cases: one or
two points, no intersection or circles coincide).

21.7.1 Solution
Let’s reduce this problem to the circle-line intersection problem.

Assume without loss of generality that the first circle is centered at the origin
(if this is not true, we can move the origin to the center of the first circle and
adjust the coordinates of intersection points accordingly at output time). We
have a system of two equations:

x2 + y2 = r2
1

(x− x2)2 + (y − y2)2 = r2
2

Subtract the first equation from the second one to get rid of the second powers
of variables:

x2 + y2 = r2
1

x · (−2x2) + y · (−2y2) + (x2
2 + y2

2 + r2
1 − r2

2) = 0

Thus, we’ve reduced the original problem to the problem of finding intersec-
tions of the first circle and a line:

Ax+By + C = 0

A = −2x2

B = −2y2

C = x2
2 + y2

2 + r2
1 − r2

2

And this problem can be solved as described in the corresponding article.
The only degenerate case we need to consider separately is when the centers

of the circles coincide. In this case x2 = y2 = 0, and the line equation will be
C = r2

1 − r2
2 = 0. If the radii of the circles are the same, there are infinitely many

intersection points, if they differ, there are no intersections.

21.7.2 Practice Problems
• RadarFinder

• Runaway to a shadow - Codeforces Round #357

• ASC 1 Problem F “Get out!”

• SPOJ: CIRCINT

• UVA - 10301 - Rings and Glue

https://community.topcoder.com/stat?c=problem_statement&pm=7766
http://codeforces.com/problemset/problem/681/E
http://codeforces.com/gym/100199/problem/F
http://www.spoj.com/problems/CIRCINT/
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1242
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• Codeforces 933C A Colorful Prospect

• TIMUS 1429 Biscuits

https://codeforces.com/problemset/problem/933/C
https://acm.timus.ru/problem.aspx?space=1&num=1429
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21.8 Finding common tangents to two circles
Given two circles. It is required to find all their common tangents, i.e. all such
lines that touch both circles simultaneously.

The described algorithm will also work in the case when one (or both) circles
degenerate into points. Thus, this algorithm can also be used to find tangents to
a circle passing through a given point.

21.8.1 The number of common tangents
The number of common tangents to two circles can be 0,1,2,3,4 and infinite.
Look at the images for different cases.

Here, we won’t be considering degenerate cases, i.e when the circles coincide
(in this case they have infinitely many common tangents), or one circle lies inside
the other (in this case they have no common tangents, or if the circles are tangent,
there is one common tangent).

In most cases, two circles have four common tangents.
If the circles are tangent , then they will have three common tangents, but

this can be understood as a degenerate case: as if the two tangents coincided.
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Moreover, the algorithm described below will work in the case when one or
both circles have zero radius: in this case there will be, respectively, two or one
common tangent.

Summing up, we will always look for four tangents for all cases except
infinite tangents case (The infinite tangents case needs to be handled separately
and it is not discussed here). In degenerate cases, some of tangents will coincide,
but nevertheless, these cases will also fit into the big picture.

21.8.2 Algorithm
For the sake of simplicity of the algorithm, we will assume, without losing
generality, that the center of the first circle has coordinates (0, 0). (If this is not
the case, then this can be achieved by simply shifting the whole picture, and
after finding a solution, by shifting the obtained straight lines back.)

Denote r1 and r2 the radii of the first and second circles, and by (vx, vy) the
coordinates of the center of the second circle and point v different from origin.
(Note: we are not considering the case in which both the circles are same).

To solve the problem, we approach it purely algebraically . We need to
find all the lines of the form ax + by + c = 0 that lie at a distance r1 from
the origin of coordinates, and at a distance r2 from a point v. In addition, we
impose the condition of normalization of the straight line: the sum of the squares
of the coefficients and must be equal to one (this is necessary, otherwise the
same straight line will correspond to infinitely many representations of the form
ax+ by + c = 0). Total we get such a system of equations for the desired a, b, c:

a2 + b2 = 1

| a · 0 + b · 0 + c |= r1

| a · vx + b · vy + c |= r2

To get rid of the modulus, note that there are only four ways to open the
modulus in this system. All these methods can be considered by the general case,
if we understand the opening of the modulus as the fact that the coefficient on
the right-hand side may be multiplied by -1. In other words, we turn to this
system:

a2 + b2 = 1

c = ±r1

a · vx + b · vy + c = ±r2

Entering the notation d1 = ±r1 and d2 = ±r2 , we come to the conclusion
that the system must have four solutions:

a2 + b2 = 1

c = d1

a · vx + b · vy + c = d2
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The solution of this system is reduced to solving a quadratic equation. We
will omit all the cumbersome calculations, and immediately give a ready answer:

a =
(d2 − d1)vx ± vy

√
v2
x + v2

y − (d2 − d1)2

v2
x + v2

y

b =
(d2 − d1)vy ± vx

√
v2
x + v2

y − (d2 − d1)2

v2
x + v2

y

c = d1

Total we got eight solutions instead four. However, it is easy to understand
where superfluous decisions arise: in fact, in the latter system, it is enough to
take only one solution (for example, the first). In fact, the geometric meaning of
what we take ±r1 and ±r2 is clear: we are actually sorting out which side of each
circle there is a straight line. Therefore, the two methods that arise when solving
the latter system are redundant: it is enough to choose one of the two solutions
(only, of course, in all four cases, you must choose the same family of solutions).

The last thing that we have not yet considered is how to shift the straight
lines in the case when the first circle was not originally located at the origin.
However, everything is simple here: it follows from the linearity of the equation
of a straight line that the value a ·x0 + b · y0 (where x0 and y0 are the coordinates
of the original center of the first circle) must be subtracted from the coefficient c.

##Implementation We first describe all the necessary data structures and
other auxiliary definitions:

struct pt {
double x, y;

pt operator- (pt p) {
pt res = { x-p.x, y-p.y };
return res;

}
};

struct circle : pt {
double r;

};

struct line {
double a, b, c;

};

const double EPS = 1E-9;

double sqr (double a) {
return a * a;

}
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Then the solution itself can be written this way (where the main function for
the call is the second; and the first function is an auxiliary):

void tangents (pt c, double r1, double r2, vector<line> & ans) {
double r = r2 - r1;
double z = sqr(c.x) + sqr(c.y);
double d = z - sqr(r);
if (d < -EPS) return;
d = sqrt (abs (d));
line l;
l.a = (c.x * r + c.y * d) / z;
l.b = (c.y * r - c.x * d) / z;
l.c = r1;
ans.push_back (l);

}

vector<line> tangents (circle a, circle b) {
vector<line> ans;
for (int i=-1; i<=1; i+=2)

for (int j=-1; j<=1; j+=2)
tangents (b-a, a.r*i, b.r*j, ans);

for (size_t i=0; i<ans.size(); ++i)
ans[i].c -= ans[i].a * a.x + ans[i].b * a.y;

return ans;
}

21.8.3 Problems
TIMUS 1163 Chapaev

https://acm.timus.ru/problem.aspx?space=1&num=1163
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21.9 Length of the union of segments
Given n segments on a line, each described by a pair of coordinates (ai1, ai2). We
have to find the length of their union.

The following algorithm was proposed by Klee in 1977. It works in O(n logn)
and has been proven to be the asymptotically optimal.

21.9.1 Solution
We store in an array x the endpoints of all the segments sorted by their values.
And additionally we store whether it is a left end or a right end of a segment.
Now we iterate over the array, keeping a counter c of currently opened segments.
Whenever the current element is a left end, we increase this counter, and otherwise
we decrease it. To compute the answer, we take the length between the last to x
values xi − xi−1, whenever we come to a new coordinate, and there is currently
at least one segment is open.

21.9.2 Implementation
int length_union(const vector<pair<int, int>> &a) {

int n = a.size();
vector<pair<int, bool>> x(n*2);
for (int i = 0; i < n; i++) {

x[i*2] = {a[i].first, false};
x[i*2+1] = {a[i].second, true};

}

sort(x.begin(), x.end());

int result = 0;
int c = 0;
for (int i = 0; i < n * 2; i++) {

if (i > 0 && x[i].first > x[i-1].first && c > 0)
result += x[i].first - x[i-1].first;

if (x[i].second)
c--;

else
c++;

}
return result;

}
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Chapter 22

Polygons

22.1 Oriented area of a triangle
Given three points p1, p2 and p3, calculate an oriented (signed) area of a triangle
formed by them. The sign of the area is determined in the following way: imagine
you are standing in the plane at point p1 and are facing p2. You go to p2 and if
p3 is to your right (then we say the three vectors turn “clockwise”), the sign of
the area is negative, otherwise it is positive. If the three points are collinear, the
area is zero.

Using this signed area, we can both get the regular unsigned area (as the
absolute value of the signed area) and determine if the points lie clockwise or
counterclockwise in their specified order (which is useful, for example, in convex
hull algorithms).

22.1.1 Calculation
We can use the fact that a determinant of a 2× 2 matrix is equal to the signed
area of a parallelogram spanned by column (or row) vectors of the matrix. This
is analog to the definition of the cross product in 2D (see Basic Geometry). By
dividing this area by two we get the area of a triangle that we are interested in.
We will use ~p1p2 and ~p2p3 as the column vectors and calculate a 2×2 determinant:

2S =
∣∣∣∣∣x2 − x1 x3 − x2
y2 − y1 y3 − y2

∣∣∣∣∣ = (x2 − x1)(y3 − y2)− (x3 − x2)(y2 − y1)

22.1.2 Implementation
int signed_area_parallelogram(point2d p1, point2d p2, point2d p3) {

return cross(p2 - p1, p3 - p2);
}

double triangle_area(point2d p1, point2d p2, point2d p3) {
return abs(signed_area_parallelogram(p1, p2, p3)) / 2.0;

}

geometry/basic-geometry.html
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bool clockwise(point2d p1, point2d p2, point2d p3) {
return signed_area_parallelogram(p1, p2, p3) < 0;

}

bool counter_clockwise(point2d p1, point2d p2, point2d p3) {
return signed_area_parallelogram(p1, p2, p3) > 0;

}

22.1.3 Practice Problems
• Codechef - Chef and Polygons

https://www.codechef.com/problems/CHEFPOLY
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22.2 Finding area of simple polygon in O(N)

Let a simple polygon (i.e. without self intersection, not necessarily convex) be
given. It is required to calculate its area given its vertices.

22.2.1 Method 1
This is easy to do if we go through all edges and add trapezoid areas bounded by
each edge and x-axis. The area needs to be taken with sign so that the extra
area will be reduced. Hence, the formula is as follows:

A =
∑

(p,q)∈edges

(px − qx) · (py + qy)
2

Code:

double area(const vector<point>& fig) {
double res = 0;
for (unsigned i = 0; i < fig.size(); i++) {

point p = i ? fig[i - 1] : fig.back();
point q = fig[i];
res += (p.x - q.x) * (p.y + q.y);

}
return fabs(res) / 2;

}

22.2.2 Method 2
We can choose a point O arbitrarily, iterate over all edges adding the oriented
area of the triangle formed by the edge and point O. Again, due to the sign of
area, extra area will be reduced.

This method is better as it can be generalized to more complex cases (such
as when some sides are arcs instead of straight lines)
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22.3 Check if point belongs to the convex polygon in
O(log N)

Consider the following problem: you are given a convex polygon with integer
vertices and a lot of queries. Each query is a point, for which we should determine
whether it lies inside or on the boundary of the polygon or not. Suppose the
polygon is ordered counter-clockwise. We will answer each query in O(logn)
online.

22.3.1 Algorithm
Let’s pick the point with the smallest x-coordinate. If there are several of them,
we pick the one with the smallest y-coordinate. Let’s denote it as p0. Now all
other points p1, . . . , pn of the polygon are ordered by their polar angle from the
chosen point (because the polygon is ordered counter-clockwise).

If the point belongs to the polygon, it belongs to some triangle p0, pi, pi+1
(maybe more than one if it lies on the boundary of triangles). Consider the
triangle p0, pi, pi+1 such that p belongs to this triangle and i is maximum among
all such triangles.

There is one special case. p lies on the segment (p0, pn). This case we will
check separately. Otherwise all points pj with j ≤ i are counter-clockwise from p
with respect to p0, and all other points are not counter-clockwise from p. This
means that we can apply binary search for the point pi, such that pi is not
counter-clockwise from p with respect to p0, and i is maximum among all such
points. And afterwards we check if the points is actually in the determined
triangle.

The sign of (a− c)× (b− c) will tell us, if the point a is clockwise or counter-
clockwise from the point b with respect to the point c. If (a− c)× (b− c) > 0,
then the point a is to the right of the vector going from c to b, which means
clockwise from b with respect to c. And if (a− c)× (b− c) < 0, then the point is
to the left, or counter clockwise. And it is exactly on the line between the points
b and c.

Back to the algorithm: Consider a query point p. Firstly, we must check if
the point lies between p1 and pn. Otherwise we already know that it cannot
be part of the polygon. This can be done by checking if the cross product
(p1 − p0)× (p− p0) is zero or has the same sign with (p1 − p0)× (pn − p0), and
(pn − p0) × (p − p0) is zero or has the same sign with (pn − p0) × (p1 − p0).
Then we handle the special case in which p is part of the line (p0, p1). And
then we can binary search the last point from p1, . . . pn which is not counter-
clockwise from p with respect to p0. For a single point pi this condition can
be checked by checking that (pi − p0) × (p − p0) ≤ 0. After we found such
a point pi, we must test if p lies inside the triangle p0, pi, pi+1. To test if it
belongs to the triangle, we may simply check that |(pi − p0) × (pi+1 − p0)| =
|(p0 − p)× (pi − p)|+ |(pi − p)× (pi+1 − p)|+ |(pi+1 − p)× (p0 − p)|. This checks
if the area of the triangle p0, pi, pi+1 has to exact same size as the sum of the
sizes of the triangle p0, pi, p, the triangle p0, p, pi+1 and the triangle pi, pi+1, p. If
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p is outside, then the sum of those three triangle will be bigger than the size of
the triangle. If it is inside, then it will be equal.

22.3.2 Implementation
The function prepair will make sure that the lexicographical smallest point
(smallest x value, and in ties smallest y value) will be p0, and computes the
vectors pi − p0. Afterwards the function pointInConvexPolygon computes the
result of a query. We additionally remember the point p0 and translate all queried
points with it in order compute the correct distance, as vectors don’t have an
initial point. By translating the query points we can assume that all vectors start
at the origin (0, 0), and simplify the computations for distances and lengths.

struct pt {
long long x, y;
pt() {}
pt(long long _x, long long _y) : x(_x), y(_y) {}
pt operator+(const pt &p) const { return pt(x + p.x, y + p.y); }
pt operator-(const pt &p) const { return pt(x - p.x, y - p.y); }
long long cross(const pt &p) const { return x * p.y - y * p.x; }
long long dot(const pt &p) const { return x * p.x + y * p.y; }
long long cross(const pt &a, const pt &b) const { return (a - *this).cross(b - *this); }
long long dot(const pt &a, const pt &b) const { return (a - *this).dot(b - *this); }
long long sqrLen() const { return this->dot(*this); }

};

bool lexComp(const pt &l, const pt &r) {
return l.x < r.x || (l.x == r.x && l.y < r.y);

}

int sgn(long long val) { return val > 0 ? 1 : (val == 0 ? 0 : -1); }

vector<pt> seq;
pt translation;
int n;

bool pointInTriangle(pt a, pt b, pt c, pt point) {
long long s1 = abs(a.cross(b, c));
long long s2 = abs(point.cross(a, b)) + abs(point.cross(b, c)) + abs(point.cross(c, a));
return s1 == s2;

}

void prepare(vector<pt> &points) {
n = points.size();
int pos = 0;
for (int i = 1; i < n; i++) {

if (lexComp(points[i], points[pos]))
pos = i;

}
rotate(points.begin(), points.begin() + pos, points.end());
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n--;
seq.resize(n);
for (int i = 0; i < n; i++)

seq[i] = points[i + 1] - points[0];
translation = points[0];

}

bool pointInConvexPolygon(pt point) {
point = point - translation;
if (seq[0].cross(point) != 1 &&

sgn(seq[0].cross(point)) != sgn(seq[0].cross(seq[n - 1])))
return false;

if (seq[n - 1].cross(point) != 0 &&
sgn(seq[n - 1].cross(point)) != sgn(seq[n - 1].cross(seq[0])))

return false;

if (seq[0].cross(point) == 0)
return seq[0].sqrLen() >= point.sqrLen();

int l = 0, r = n - 1;
while (r - l > 1) {

int mid = (l + r) / 2;
int pos = mid;
if (seq[pos].cross(point) >= 0)

l = mid;
else

r = mid;
}
int pos = l;
return pointInTriangle(seq[pos], seq[pos + 1], pt(0, 0), point);

}

22.3.3 Problems
SGU253 Theodore Roosevelt Codeforces 55E Very simple problem

https://codeforces.com/problemsets/acmsguru/problem/99999/253
https://codeforces.com/contest/55/problem/E
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22.4 Minkowski sum of convex polygons

22.4.1 Definition
Consider two sets A and B of points on a plane. Minkowski sum A+B is defined
as {a+ b|a ∈ A, b ∈ B}. Here we will consider the case when A and B consist of
convex polygons P and Q with their interiors. Throughout this article we will
identify polygons with ordered sequences of their vertices, so that notation like
|P | or Pi makes sense. It turns out that the sum of convex polygons P and Q is
a convex polygon with at most |P |+ |Q| vertices.

22.4.2 Algorithm
Here we consider the polygons to be cyclically enumerated, i. e. P|P | = P0, Q|Q| =
Q0 and so on.

Since the size of the sum is linear in terms of the sizes of initial polygons, we
should aim at finding a linear-time algorithm. Suppose that both polygons are
ordered counter-clockwise. Consider sequences of edges {−−−−→PiPi+1} and {

−−−−−→
QjQj+1}

ordered by polar angle. We claim that the sequence of edges of P + Q can
be obtained by merging these two sequences preserving polar angle order and
replacing consequitive co-directed vectors with their sum. Straightforward usage
of this idea results in a linear-time algorithm, however, restoring the vertices of
P +Q from the sequence of sides requires repeated addition of vectors, which
may introduce unwanted precision issues if we’re working with floating-point
coordinates, so we will describe a slight modification of this idea.

Firstly we should reorder the vertices in such a way that the first vertex of
each polygon has the lowest y-coordinate (in case of several such vertices pick
the one with the smallest x-coordinate). After that the sides of both polygons
will become sorted by polar angle, so there is no need to sort them manually.
Now we create two pointers i (pointing to a vertex of P ) and j (pointing to a
vertex of Q), both initially set to 0. We repeat the following steps while i < |P |
or j < |Q|.

1. Append Pi +Qj to P +Q.

2. Compare polar angles of −−−−→PiPi+1 and −−−−−→QjQj+1.

3. Increment the pointer which corresponds to the smallest angle (if the angles
are equal, increment both).

22.4.3 Visualization
Here is a nice visualization, which may help you understand what is going on.

minkowski.gif

22.4.4 Distance between two polygons
One of the most common applications of Minkowski sum is computing the distance
between two convex polygons (or simply checking whether they intersect). The

https://raw.githubusercontent.com/e-maxx-eng/e-maxx-eng/master/img/minkowski.gif
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distance between two convex polygons P and Q is defined as min
a∈P,b∈Q

||a−b||. One
can note that the distance is always attained between two vertices or a vertex
and an edge, so we can easily find the distance in O(|P ||Q|). However, with
clever usage of Minkowski sum we can reduce the complexity to O(|P |+ |Q|).

If we reflect Q through the point (0, 0) obtaining polygon −Q, the problem
boils down to finding the smallest distance between a point in P + (−Q) and
(0, 0). We can find that distance in linear time using the following idea. If (0, 0) is
inside or on the boundary of polygon, the distance is 0, otherwise the distance is
attained between (0, 0) and some vertex or edge of the polygon. Since Minkowski
sum can be computed in linear time, we obtain a linear-time algorithm for finding
the distance between two convex polygons.

22.4.5 Implementation
Below is the implementation of Minkowski sum for polygons with integer points.
Note that in this case all computations can be done in integers since instead of
computing polar angles and directly comparing them we can look at the sign of
cross product of two vectors.

struct pt{
long long x, y;
pt operator + (const pt & p) const {

return pt{x + p.x, y + p.y};
}
pt operator - (const pt & p) const {

return pt{x - p.x, y - p.y};
}
long long cross(const pt & p) const {

return x * p.y - y * p.x;
}

};

void reorder_polygon(vector<pt> & P){
size_t pos = 0;
for(size_t i = 1; i < P.size(); i++){

if(P[i].y < P[pos].y || (P[i].y == P[pos].y && P[i].x < P[pos].x))
pos = i;

}
rotate(P.begin(), P.begin() + pos, P.end());

}

vector<pt> minkowski(vector<pt> P, vector<pt> Q){
// the first vertex must be the lowest
reorder_polygon(P);
reorder_polygon(Q);
// we must ensure cyclic indexing
P.push_back(P[0]);
P.push_back(P[1]);
Q.push_back(Q[0]);
Q.push_back(Q[1]);
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// main part
vector<pt> result;
size_t i = 0, j = 0;
while(i < P.size() - 2 || j < Q.size() - 2){

result.push_back(P[i] + Q[j]);
auto cross = (P[i + 1] - P[i]).cross(Q[j + 1] - Q[j]);
if(cross >= 0)

++i;
if(cross <= 0)

++j;
}
return result;

}

22.4.6 Problems
• Codeforces 87E Mogohu-Rea Idol
• Codeforces 1195F Geometers Anonymous Club
• TIMUS 1894 Non-Flying Weather

https://codeforces.com/problemset/problem/87/E
https://codeforces.com/contest/1195/problem/F
https://acm.timus.ru/problem.aspx?space=1&num=1894
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22.5 Pick’s Theorem
A polygon without self-intersections is called lattice if all its vertices have integer
coordinates in some 2D grid. Pick’s theorem provides a way to compute the area
of this polygon through the number of vertices that are lying on the boundary
and the number of vertices that lie strictly inside the polygon.

22.5.1 Formula
Given a certain lattice polygon with non-zero area.

We denote its area by S, the number of points with integer coordinates lying
strictly inside the polygon by I and the number of points lying on polygon sides
by B.

Then, the Pick’s formula states:

S = I + B

2 − 1

In particular, if the values of I and B for a polygon are given, the area can
be calculated in O(1) without even knowing the vertices.

This formula was discovered and proven by Austrian mathematician Georg
Alexander Pick in 1899.

22.5.2 Proof
The proof is carried out in many stages: from simple polygons to arbitrary ones:

• A single square: S = 1, I = 0, B = 4, which satisfies the formula.

• An arbitrary non-degenerate rectangle with sides parallel to coordinate
axes: Assume a and b be the length of the sides of rectangle. Then,
S = ab, I = (a − 1)(b − 1), B = 2(a + b). On substituting, we see that
formula is true.

• A right angle with legs parallel to the axes: To prove this, note that any
such triangle can be obtained by cutting off a rectangle by a diagonal.
Denoting the number of integral points lying on diagonal by c, it can be
shown that Pick’s formula holds for this triangle regardless of c.

• An arbitrary triangle: Note that any such triangle can be turned into a
rectangle by attaching it to sides of right-angled triangles with legs parallel
to the axes (you will not need more than 3 such triangles). From here, we
can get correct formula for any triangle.

• An arbitrary polygon: To prove this, triangulate it, ie, divide into triangles
with integral coordinates. Further, it is possible to prove that Pick’s theorem
retains its validity when a polygon is added to a triangle. Thus, we have
proven Pick’s formula for arbitrary polygon.
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22.5.3 Generalization to higher dimensions
Unfortunately, this simple and beautiful formula cannot be generalized to higher
dimensions.

John Reeve demonstrated this by proposing a tetrahedron (Reeve tetrahe-
dron) with following vertices in 1957:

A = (0, 0, 0), B = (1, 0, 0), C = (0, 1, 0), D = (1, 1, k),

where k can be any natural number. Then for any k, the tetrahedron ABCD
does not contain integer point inside it and has only 4 points on its borders,
A,B,C,D. Thus, the volume and surface area may vary in spite of unchanged
number of points within and on boundary. Therefore, Pick’s theorem doesn’t
allow generalizations.

However, higher dimensions still has a generalization using Ehrhart poly-
nomials but they are quite complex and depends not only on points inside but
also on the boundary of polytype.

22.5.4 Extra Resources
A few simple examples and a simple proof of Pick’s theorem can be found here.

http://www.geometer.org/mathcircles/pick.pdf
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22.6 Lattice points inside non-lattice polygon
For lattice polygons there is Pick’s formula to enumerate the lattice points inside
the polygon. What about polygons with arbitrary vertices?

Let’s process each of the polygon’s edges individually, and after that we may
sum up the amounts of lattice points under each edge considering its orientations
to choose a sign (like in calculating the area of a polygon using trapezoids).

First of all we should note that if current edge has endpoints in A = (x1; y1)
and B = (x2; y2) then it can be represented as a linear function:

y = y1 + (y2 − y1) · x− x1
x2 − x1

=
(
y2 − y1
x2 − x1

)
· x+

(
y1x2 − x1y2
x2 − x1

)

y = k · x+ b, k = y2 − y1
x2 − x1

, b = y1x2 − x1y2
x2 − x1

Now we will perform a substitution x = x′ + dx1e so that b′ = b + k · dx1e.
This allows us to work with x′1 = 0 and x′2 = x2 − dx1e. Let’s denote n = bx′2c.

We will not sum up points at x = n and on y = 0 for the integrity of the
algorithm. They may be added manually afterwards. Thus we have to sum up
n−1∑
x′=0
bk′ · x′ + b′c. We also assume that k′ ≥ 0 and b′ ≥ 0. Otherwise one should

substitute x′ = −t and add d|b′|e to b′.

Let’s discuss how we can evaluate a sum
n−1∑
x=0
bk · x+ bc. We have two cases:

• k ≥ 1 or b ≥ 1. Then we should start with summing up points below
y = bkc · x+ bbc. Their amount equals to

n−1∑
x=0
bkc · x+ bbc = (bkc(n− 1) + 2bbc)n

2 .

Now we are interested only in points (x; y) such that bkc · x+ bbc < y ≤
k · x + b. This amount is the same as the number of points such that
0 < y ≤ (k−bkc) ·x+ (b−bbc). So we reduced our problem to k′ = k−bkc,
b′ = b− bbc and both k′ and b′ less than 1 now. Here is a picture, we just
summed up blue points and subtracted the blue linear function from the
black one to reduce problem to smaller values for k and b:
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• k < 1 and b < 1. If bk · n+ bc equals 0, we can safely return 0. If this is
not the case, we can say that there are no lattice points such that x < 0
and 0 < y ≤ k · x + b. That means that we will have the same answer if
we consider new reference system in which O′ = (n; bk · n+ bc), axis x′ is
directed down and axis y′ is directed to the left. For this reference system
we are interested in lattice points on the set{

(x; y)
∣∣∣∣ 0 ≤ x < bk · n+ bc, 0 < y ≤ x+ (k · n+ b)− bk · n+ bc

k

}
which returns us back to the case k > 1. You can see new reference point
O′ and axes X ′ and Y ′ in the picture below:

As you see, in new reference system linear function will have coefficient 1
k

and its zero will be in the point bk ·n+ bc− (k ·n+ b) which makes formula
above correct.
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22.6.1 Complexity analysis

We have to count at most (k(n− 1) + 2b)n
2 points. Among them we will count

bkc(n− 1) + 2bbc
2 on the very first step. We may consider that b is negligibly

small because we can start with making it less than 1. In that case we cay say
that we count about bkc

k
≥ 1

2 of all points. Thus we will finish in O(logn) steps.

22.6.2 Implementation
Here is simple function which calculates number of integer points (x; y) such for
0 ≤ x < n and 0 < y ≤ bkx+ bc:

int count_lattices(Fraction k, Fraction b, long long n) {
auto fk = k.floor();
auto fb = b.floor();
auto cnt = 0LL;
if (k >= 1 || b >= 1) {

cnt += (fk * (n - 1) + 2 * fb) * n / 2;
k -= fk;
b -= fb;

}
auto t = k * n + b;
auto ft = t.floor();
if (ft >= 1) {

cnt += count_lattices(1 / k, (t - t.floor()) / k, t.floor());
}
return cnt;

}

Here Fraction is some class handling rational numbers. On practice it seems
that if all denominators and numerators are at most C by absolute value then in
the recursive calls they will be at most C2 if you keep dividing numerators and
denominators by their greatest common divisor. Given this assumption we can
say that one may use doubles and require accuracy of ε2 where ε is accuracy with
which k and b are given. That means that in floor one should consider numbers
as integer if they differs at most by ε2 from an integer.
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Chapter 23

Convex hull

23.1 Convex Hull construction using Graham’s Scan
In this article we will discuss the problem of constructing a convex hull from a
set of points.

Consider N points given on a plane, and the objective is to generate a convex
hull, i.e. the smallest convex polygon that contains all the given points.

The algorithm used here is Graham’s scan (proposed in 1972 by Graham)
with improvements by Andrew (1979). The algorithm allows for the construction
of a convex hull in O(N logN) using only comparison, addition and multiplication
operations. The algorithm is asymptotically optimal (as it is proven that there is
no algorithm asymptotically better), with the exception of a few problems where
parallel or online processing is involved.

23.1.1 Description
The algorithm first finds the leftmost and rightmost points A and B. In the event
multiple such points exist, the lowest among the left (lowest Y-coordinate) is
taken as A, and the highest among the right (highest Y-coordinate) is taken as
B. Clearly, A and B must both belong to the convex hull as they are the farthest
away and they cannot be contained by any line formed by a pair among the given
points.

Now, draw a line through AB. This divides all the other points into two sets,
S1 and S2, where S1 contains all the points above the line connecting A and B,
and S2 contains all the points below the line joining A and B. The points that lie
on the line joining A and B may belong to either set. The points A and B belong
to both sets. Now the algorithm constructs the upper set S1 and the lower set
S2 and then combines them to obtain the answer.

To get the upper set, we sort all points by the x-coordinate. For each point
we check if either - the current point is the last point, (which we defined as B), or
if the orientation between the line between A and the current point and the line
between the current point and B is clockwise. In those cases the current point
belongs to the upper set S1. Checking for clockwise or anticlockwise nature can
be done by checking the orientation.
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If the given point belongs to the upper set, we check the angle made by the
line connecting the second last point and the last point in the upper convex hull,
with the line connecting the last point in the upper convex hull and the current
point. If the angle is not clockwise, we remove the most recent point added to
the upper convex hull as the current point will be able to contain the previous
point once it is added to the convex hull.

The same logic applies for the lower set S2. If either - the current point is
B, or the orientation of the lines, formed by A and the current point and the
current point and B, is counterclockwise - then it belongs to S2.

If the given point belongs to the lower set, we act similarly as for a point on
the upper set except we check for a counterclockwise orientation instead of a
clockwise orientation. Thus, if the angle made by the line connecting the second
last point and the last point in the lower convex hull, with the line connecting the
last point in the lower convex hull and the current point is not counterclockwise,
we remove the most recent point added to the lower convex hull as the current
point will be able to contain the previous point once added to the hull.

The final convex hull is obtained from the union of the upper and lower
convex hull, and the implementation is as follows.

23.1.2 Implementation
struct pt {

double x, y;
};

bool cmp(pt a, pt b) {
return a.x < b.x || (a.x == b.x && a.y < b.y);

}

bool cw(pt a, pt b, pt c) {
return a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y) < 0;

}

bool ccw(pt a, pt b, pt c) {
return a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y) > 0;

}

void convex_hull(vector<pt>& a) {
if (a.size() == 1)

return;

sort(a.begin(), a.end(), &cmp);
pt p1 = a[0], p2 = a.back();
vector<pt> up, down;
up.push_back(p1);
down.push_back(p1);
for (int i = 1; i < (int)a.size(); i++) {

if (i == a.size() - 1 || cw(p1, a[i], p2)) {
while (up.size() >= 2 && !cw(up[up.size()-2], up[up.size()-1], a[i]))

up.pop_back();
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up.push_back(a[i]);
}
if (i == a.size() - 1 || ccw(p1, a[i], p2)) {

while(down.size() >= 2 && !ccw(down[down.size()-2], down[down.size()-1], a[i]))
down.pop_back();

down.push_back(a[i]);
}

}

a.clear();
for (int i = 0; i < (int)up.size(); i++)

a.push_back(up[i]);
for (int i = down.size() - 2; i > 0; i--)

a.push_back(down[i]);
}

23.1.3 Practice Problems
• Kattis - Convex Hull
• Kattis - Keep the Parade Safe
• Timus 1185: Wall
• Usaco 2014 January Contest, Gold - Cow Curling

https://open.kattis.com/problems/convexhull
https://open.kattis.com/problems/parade
http://acm.timus.ru/problem.aspx?space=1&num=1185
http://usaco.org/index.php?page=viewproblem2&cpid=382


23.2. Convex hull trick and Li Chao tree 415

23.2 Convex hull trick and Li Chao tree
Consider the following problem. There are n cities. You want to travel from city
1 to city n by car. To do this you have to buy some gasoline. It is known that a
liter of gasoline costs costk in the kth city. Initially your fuel tank is empty and
you spend one liter of gasoline per kilometer. Cities are located on the same line
in ascending order with kth city having coordinate xk. Also you have to pay tollk
to enter kth city. Your task is to make the trip with minimum possible cost. It’s
obvious that the solution can be calculated via dynamic programming:

dpi = tolli + min
j<i

(costj · (xi − xj) + dpj)

Naive approach will give you O(n2) complexity which can be improved to
O(n logn) or O(n log[Cε−1]) where C is largest possible |xi| and ε is precision
with which xi is considered (ε = 1 for integers which is usually the case). To do
this one should note that the problem can be reduced to adding linear functions
k · x+ b to the set and finding minimum value of the functions in some particular
point x. There are two main approaches one can use here.

23.2.1 Convex hull trick
The idea of this approach is to maintain a lower convex hull of linear functions.
Actually it would be a bit more convenient to consider them not as linear functions,
but as points (k; b) on the plane such that we will have to find the point which
has the least dot product with a given point (x; 1), that is, for this point kx+ b is
minimized which is the same as initial problem. Such minimum will necessarily
be on lower convex envelope of these points as can be seen below:

One has to keep points on the convex hull and normal vectors of the hull’s
edges. When you have a (x; 1) query you’ll have to find the normal vector closest
to it in terms of angles between them, then the optimum linear function will
correspond to one of its endpoints. To see that, one should note that points
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having a constant dot product with (x; 1) lie on a line which is orthogonal to
(x; 1), so the optimum linear function will be the one in which tangent to convex
hull which is collinear with normal to (x; 1) touches the hull. This point is the
one such that normals of edges lying to the left and to the right of it are headed
in different sides of (x; 1).

This approach is useful when queries of adding linear functions are monotone
in terms of k or if we work offline, i.e. we may firstly add all linear functions and
answer queries afterwards. So we cannot solve the cities/gasoline problems using
this way. That would require handling online queries. When it comes to deal
with online queries however, things will go tough and one will have to use some
kind of set data structure to implement a proper convex hull. Online approach
will however not be considered in this article due to its hardness and because
second approach (which is Li Chao tree) allows to solve the problem way more
simply. Worth mentioning that one can still use this approach online without
complications by square-root-decomposition. That is, rebuild convex hull from
scratch each

√
n new lines.

To implement this approach one should begin with some geometric utility
functions, here we suggest to use the C++ complex number type.

typedef int ftype;
typedef complex<ftype> point;
#define x real
#define y imag

ftype dot(point a, point b) {
return (conj(a) * b).x();

}

ftype cross(point a, point b) {
return (conj(a) * b).y();

}

Here we will assume that when linear functions are added, their k only
increases and we want to find minimum values. We will keep points in vector hull
and normal vectors in vector vecs. When we add a new point, we have to look at
the angle formed between last edge in convex hull and vector from last point in
convex hull to new point. This angle has to be directed counter-clockwise, that
is the dot product of the last normal vector in the hull (directed inside hull) and
the vector from the last point to the new one has to be non-negative. As long as
this isn’t true, we should erase the last point in the convex hull alongside with
the corresponding edge.

vector<point> hull, vecs;

void add_line(ftype k, ftype b) {
point nw = {k, b};
while(!vecs.empty() && dot(vecs.back(), nw - hull.back()) < 0) {

hull.pop_back();
vecs.pop_back();
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}
if(!hull.empty()) {

vecs.push_back(1i * (nw - hull.back()));
}
hull.push_back(nw);

}

Now to get the minimum value in some point we will find the first normal
vector in the convex hull that is directed counter-clockwise from (x; 1). The left
endpoint of such edge will be the answer. To check if vector a is not directed
counter-clockwise of vector b, we should check if their cross product [a, b] is
positive.

int get(ftype x) {
point query = {x, 1};
auto it = lower_bound(vecs.begin(), vecs.end(), query, [](point a, point b) {

return cross(a, b) > 0;
});
return dot(query, hull[it - vecs.begin()]);

}

23.2.2 Li Chao tree
Assume you’re given a set of functions such that each two can intersect at most
once. Let’s keep in each vertex of a segment tree some function in such way, that
if we go from root to the leaf it will be guaranteed that one of the functions we
met on the path will be the one giving the minimum value in that leaf. Let’s see
how to construct it.

Assume we’re in some vertex corresponding to half-segment [l, r) and the
function fold is kept there and we add the function fnew. Then the intersection
point will be either in [l;m) or in [m; r) where m =

⌊
l+r

2

⌋
. We can efficiently

find that out by comparing the values of the functions in points l and m. If the
dominating function changes, then it is in [l;m) otherwise it is in [m; r). Now
for the half of the segment with no intersection we will pick the lower function
and write it in the current vertex. You can see that it will always be the one
which is lower in point m. After that we recursively go to the other half of the
segment with the function which was the upper one. As you can see this will
keep correctness on the first half of segment and in the other one correctness will
be maintained during the recursive call. Thus we can add functions and check
the minimum value in the point in O(log[Cε−1]).

Here is the illustration of what is going on in the vertex when we add new
function:
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Let’s go to implementation now. Once again we will use complex numbers to
keep linear functions.

typedef long long ftype;
typedef complex<ftype> point;
#define x real
#define y imag

ftype dot(point a, point b) {
return (conj(a) * b).x();

}

ftype f(point a, ftype x) {
return dot(a, {x, 1});

}

We will keep functions in the array line and use binary indexing of the
segment tree. If you want to use it on large numbers or doubles, you should use
a dynamic segment tree. The segment tree should be initialized with default
values, e.g. with lines 0x+∞.

const int maxn = 2e5;

point line[4 * maxn];

void add_line(point nw, int v = 1, int l = 0, int r = maxn) {
int m = (l + r) / 2;
bool lef = f(nw, l) < f(line[v], l);
bool mid = f(nw, m) < f(line[v], m);
if(mid) {

swap(line[v], nw);
}
if(r - l == 1) {

return;
} else if(lef != mid) {

add_line(nw, 2 * v, l, m);
} else {

add_line(nw, 2 * v + 1, m, r);
}

}

Now to get the minimum in some point x we simply choose the minimum
value along the path to the point.
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ftype get(int x, int v = 1, int l = 0, int r = maxn) {
int m = (l + r) / 2;
if(r - l == 1) {

return f(line[v], x);
} else if(x < m) {

return min(f(line[v], x), get(x, 2 * v, l, m));
} else {

return min(f(line[v], x), get(x, 2 * v + 1, m, r));
}

}

23.2.3 Problems
• Dunjudge - TROUBLES (simple application of Convex Hull Trick after a

couple of observations)
• CS Academy - Squared Ends
• Codeforces - Escape Through Leaf
• CodeChef - Polynomials
• Codeforces - Kalila and Dimna in the Logging Industry
• Codeforces - Product Sum
• Codeforces - Bear and Bowling 4
• APIO 2010 - Commando

https://dunjudge.me/analysis/problems/896/
https://csacademy.com/contest/archive/task/squared-ends
http://codeforces.com/contest/932/problem/F
https://www.codechef.com/NOV17/problems/POLY
https://codeforces.com/problemset/problem/319/C
https://codeforces.com/problemset/problem/631/E
https://codeforces.com/problemset/problem/660/F
https://dunjudge.me/analysis/problems/264/
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Chapter 24

Sweep-line

24.1 Search for a pair of intersecting segments
Given n line segments on the plane. It is required to check whether at least two
of them intersect with each other. If the answer is yes, then print this pair of
intersecting segments; it is enough to choose any of them among several answers.

The naive solution algorithm is to iterate over all pairs of segments in O(n2)
and check for each pair whether they intersect or not. This article describes an
algorithm with the runtime time O(n logn), which is based on the sweep line
algorithm.

24.1.1 Algorithm
Let’s draw a vertical line x = −∞ mentally and start moving this line to the
right. In the course of its movement, this line will meet with segments, and at
each time a segment intersect with our line it intersects in exactly one point (we
will assume that there are no vertical segments).

Thus, for each segment, at some point in time, its point will appear on the
sweep line, then with the movement of the line, this point will move, and finally,
at some point, the segment will disappear from the line.

We are interested in the relative order of the segments along the vertical.
Namely, we will store a list of segments crossing the sweep line at a given time,
where the segments will be sorted by their y-coordinate on the sweep line.
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This order is interesting because intersecting segments will have the same
y-coordinate at least at one time:

We formulate key statements:

• To find an intersecting pair, it is sufficient to consider only adjacent
segments at each fixed position of the sweep line.

• It is enough to consider the sweep line not in all possible real positions
(−∞ . . .+∞), but only in those positions when new segments appear
or old ones disappear. In other words, it is enough to limit yourself only
to the positions equal to the abscissas of the end points of the segments.

• When a new line segment appears, it is enough to insert it to the desired
location in the list obtained for the previous sweep line. We should only
check for the intersection of the added segment with its immediate
neighbors in the list above and below.

• If the segment disappears, it is enough to remove it from the current list.
After that, it is necessary check for the intersection of the upper and
lower neighbors in the list.

• Other changes in the sequence of segments in the list, except for those
described, do not exist. No other intersection checks are required.

To understand the truth of these statements, the following remarks are
sufficient:

• Two disjoint segments never change their relative order. In fact, if
one segment was first higher than the other, and then became lower, then
between these two moments there was an intersection of these two segments.
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• Two non-intersecting segments also cannot have the same y-coordinates.
• From this it follows that at the moment of the segment appearance we

can find the position for this segment in the queue, and we will not have
to rearrange this segment in the queue any more: its order relative to
other segments in the queue will not change.

• Two intersecting segments at the moment of their intersection point will be
neighbors of each other in the queue.

• Therefore, for finding pairs of intersecting line segments is sufficient to
check the intersection of all and only those pairs of segments that sometime
during the movement of the sweep line at least once were neighbors to each
other. It is easy to notice that it is enough only to check the added segment
with its upper and lower neighbors, as well as when removing the segment
— its upper and lower neighbors (which after removal will become neighbors
of each other).

• It should be noted that at a fixed position of the sweep line, we must
first add all the segments that start at this x-coordinate, and only
then remove all the segments that end here. Thus, we do not miss the
intersection of segments on the vertex: i.e. such cases when two segments
have a common vertex.

• Note that vertical segments do not actually affect the correctness of the
algorithm. These segments are distinguished by the fact that they appear
and disappear at the same time. However, due to the previous comment,
we know that all segments will be added to the queue first, and only then
they will be deleted. Therefore, if the vertical segment intersects with some
other segment opened at that moment (including the vertical one), it will
be detected. In what place of the queue to place vertical segments?
After all, a vertical segment does not have one specific y-coordinate, it
extends for an entire segment along the y-coordinate. However, it is easy
to understand that any coordinate from this segment can be taken as a
y-coordinate.

Thus, the entire algorithm will perform no more than 2n tests on the inter-
section of a pair of segments, and will perform O(n) operations with a queue of
segments (O(1) operations at the time of appearance and disappearance of each
segment).

The final asymptotic behavior of the algorithm is thus O(n logn).

24.1.2 Implementation
We present the full implementation of the described algorithm:

const double EPS = 1E-9;

struct pt {
double x, y;

};

struct seg {
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pt p, q;
int id;

double get_y(double x) const {
if (abs(p.x - q.x) < EPS)

return p.y;
return p.y + (q.y - p.y) * (x - p.x) / (q.x - p.x);

}
};

bool intersect1d(double l1, double r1, double l2, double r2) {
if (l1 > r1)

swap(l1, r1);
if (l2 > r2)

swap(l2, r2);
return max(l1, l2) <= min(r1, r2) + EPS;

}

int vec(const pt& a, const pt& b, const pt& c) {
double s = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
return abs(s) < EPS ? 0 : s > 0 ? +1 : -1;

}

bool intersect(const seg& a, const seg& b)
{

return intersect1d(a.p.x, a.q.x, b.p.x, b.q.x) &&
intersect1d(a.p.y, a.q.y, b.p.y, b.q.y) &&
vec(a.p, a.q, b.p) * vec(a.p, a.q, b.q) <= 0 &&
vec(b.p, b.q, a.p) * vec(b.p, b.q, a.q) <= 0;

}

bool operator<(const seg& a, const seg& b)
{

double x = max(min(a.p.x, a.q.x), min(b.p.x, b.q.x));
return a.get_y(x) < b.get_y(x) - EPS;

}

struct event {
double x;
int tp, id;

event() {}
event(double x, int tp, int id) : x(x), tp(tp), id(id) {}

bool operator<(const event& e) const {
if (abs(x - e.x) > EPS)

return x < e.x;
return tp > e.tp;

}
};

set<seg> s;
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vector<set<seg>::iterator> where;

set<seg>::iterator prev(set<seg>::iterator it) {
return it == s.begin() ? s.end() : --it;

}

set<seg>::iterator next(set<seg>::iterator it) {
return ++it;

}

pair<int, int> solve(const vector<seg>& a) {
int n = (int)a.size();
vector<event> e;
for (int i = 0; i < n; ++i) {

e.push_back(event(min(a[i].p.x, a[i].q.x), +1, i));
e.push_back(event(max(a[i].p.x, a[i].q.x), -1, i));

}
sort(e.begin(), e.end());

s.clear();
where.resize(a.size());
for (size_t i = 0; i < e.size(); ++i) {

int id = e[i].id;
if (e[i].tp == +1) {

set<seg>::iterator nxt = s.lower_bound(a[id]), prv = prev(nxt);
if (nxt != s.end() && intersect(*nxt, a[id]))

return make_pair(nxt->id, id);
if (prv != s.end() && intersect(*prv, a[id]))

return make_pair(prv->id, id);
where[id] = s.insert(nxt, a[id]);

} else {
set<seg>::iterator nxt = next(where[id]), prv = prev(where[id]);
if (nxt != s.end() && prv != s.end() && intersect(*nxt, *prv))

return make_pair(prv->id, nxt->id);
s.erase(where[id]);

}
}

return make_pair(-1, -1);
}

The main function here is solve(), which returns the number of found
intersecting segments, or (−1,−1), if there are no intersections.

Checking for the intersection of two segments is carried out by the intersect
() function, using an algorithm based on the oriented area of the triangle.

The queue of segments is the global variable s, a set<event>. Iterators that
specify the position of each segment in the queue (for convenient removal of
segments from the queue) are stored in the global array where.

Two auxiliary functions prev() and next() are also introduced, which return
iterators to the previous and next elements (or end(), if one does not exist).

The constant EPS denotes the error of comparing two real numbers (it is
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mainly used when checking two segments for intersection).

24.1.3 Problems
• TIMUS 1469 No Smoking!

https://acm.timus.ru/problem.aspx?space=1&num=1469
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24.2 Point location in O(log n)
Consider the following problem: you are given a planar subdivision without no
vertices of degree one and zero, and a lot of queries. Each query is a point, for
which we should determine the face of the subdivision it belongs to. We will
answer each query in O(logn) offline. This problem may arise when you need to
locate some points in a Voronoi diagram or in some simple polygon.

24.2.1 Algorithm
Firstly, for each query point p (x_0, y_0) we want to find such an edge that if
the point belongs to any edge, the point lies on the edge we found, otherwise
this edge must intersect the line x = x_0 at some unique point (x_0, y) where
y < y_0 and this y is maximum among all such edges. The following image
shows both cases.

We will solve this problem offline using the sweep line algorithm. Let’s iterate
over x-coordinates of query points and edges’ endpoints in increasing order and
keep a set of edges s. For each x-coordinate we will add some events beforehand.

The events will be of four types: add, remove, vertical, get. For each vertical
edge (both endpoints have the same x-coordinate) we will add one vertical event
for the corresponding x-coordinate. For every other edge we will add one add
event for the minimum of x-coordinates of the endpoints and one remove event
for the maximum of x-coordinates of the endpoints. Finally, for each query point
we will add one get event for its x-coordinate.

For each x-coordinate we will sort the events by their types in order (vertical,
get, remove, add). The following image shows all events in sorted order for each
x-coordinate.

https://en.wikipedia.org/wiki/Planar_straight-line_graph
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We will keep two sets during the sweep-line process. A set t for all non-vertical
edges, and one set vert especially for the vertical ones. We will clear the set vert
at the beginning of processing each x-coordinate.

Now let’s process the events for a fixed x-coordinate.

• If we got a vertical event, we will simply insert the minimum y-coordinate
of the corresponding edge’s endpoints to vert.

• If we got a remove or add event, we will remove the corresponding edge
from t or add it to t.

• Finally, for each get event we must check if the point lies on some vertical
edge by performing a binary search in vert. If the point doesn’t lie on
any vertical edge, we must find the answer for this query in t. To do this,
we again make a binary search. In order to handle some degenerate cases
(e.g. in case of the triangle (0, 0), (0, 2), (1, 1) when we query the point
(0, 0)), we must answer all get events again after we processed all the events
for this x-coordinate and choose the best of two answers.

Now let’s choose a comparator for the set t. This comparator should check if
one edge doesn’t lie above other for every x-coordinate they both cover. Suppose
that we have two edges (a, b) and (c, d). Then the comparator is (in pseudocode):

val = sgn((b− a)× (c− a)) + sgn((b− a)× (d− a)) if val 6= 0 then return
val > 0 val = sgn((d− c)× (a− c)) + sgn((d− c)× (b− c)) return val < 0

Now for every query we have the corresponding edge. How to find the face?
If we couldn’t find the edge it means that the point is in the outer face. If the
point belongs to the edge we found, the face is not unique. Otherwise, there are
two candidates - the faces that are bounded by this edge. How to check which
one is the answer? Note that the edge is not vertical. Then the answer is the
face that is above this edge. Let’s find such a face for each non-vertical edge.
Consider a counter-clockwise traversal of each face. If during this traversal we
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increased x-coordinate while passing through the edge, then this face is the face
we need to find for this edge.

24.2.2 Notes
Actually, with persistent trees this approach can be used to answer the queries
online.

24.2.3 Implementation
The following code is implemented for integers, but it can be easily modified to
work with doubles (by changing the compare methods and the point type). This
implementation assumes that the subdivision is correctly stored inside a DCEL
and the outer face is numbered −1. For each query a pair (1, i) is returned if
the point lies strictly inside the face number i, and a pair (0, i) is returned if the
point lies on the edge number i.

typedef long long ll;

bool ge(const ll& a, const ll& b) { return a >= b; }
bool le(const ll& a, const ll& b) { return a <= b; }
bool eq(const ll& a, const ll& b) { return a == b; }
bool gt(const ll& a, const ll& b) { return a > b; }
bool lt(const ll& a, const ll& b) { return a < b; }
int sgn(const ll& x) { return le(x, 0) ? eq(x, 0) ? 0 : -1 : 1; }

struct pt {
ll x, y;
pt() {}
pt(ll _x, ll _y) : x(_x), y(_y) {}
pt operator-(const pt& a) const { return pt(x - a.x, y - a.y); }
ll dot(const pt& a) const { return x * a.x + y * a.y; }
ll dot(const pt& a, const pt& b) const { return (a - *this).dot(b - *this); }
ll cross(const pt& a) const { return x * a.y - y * a.x; }
ll cross(const pt& a, const pt& b) const { return (a - *this).cross(b - *this); }
bool operator==(const pt& a) const { return a.x == x && a.y == y; }

};

struct Edge {
pt l, r;

};

bool edge_cmp(Edge* edge1, Edge* edge2)
{

const pt a = edge1->l, b = edge1->r;
const pt c = edge2->l, d = edge2->r;
int val = sgn(a.cross(b, c)) + sgn(a.cross(b, d));
if (val != 0)

return val > 0;
val = sgn(c.cross(d, a)) + sgn(c.cross(d, b));
return val < 0;

https://en.wikipedia.org/wiki/Doubly_connected_edge_list
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}

enum EventType { DEL = 2, ADD = 3, GET = 1, VERT = 0 };

struct Event {
EventType type;
int pos;
bool operator<(const Event& event) const { return type < event.type; }

};

vector<Edge*> sweepline(vector<Edge*> planar, vector<pt> queries)
{

using pt_type = decltype(pt::x);

// collect all x-coordinates
auto s =

set<pt_type, std::function<bool(const pt_type&, const pt_type&)>>(lt);
for (pt p : queries)

s.insert(p.x);
for (Edge* e : planar) {

s.insert(e->l.x);
s.insert(e->r.x);

}

// map all x-coordinates to ids
int cid = 0;
auto id =

map<pt_type, int, std::function<bool(const pt_type&, const pt_type&)>>(
lt);

for (auto x : s)
id[x] = cid++;

// create events
auto t = set<Edge*, decltype(*edge_cmp)>(edge_cmp);
auto vert_cmp = [](const pair<pt_type, int>& l,

const pair<pt_type, int>& r) {
if (!eq(l.first, r.first))

return lt(l.first, r.first);
return l.second < r.second;

};
auto vert = set<pair<pt_type, int>, decltype(vert_cmp)>(vert_cmp);
vector<vector<Event>> events(cid);
for (int i = 0; i < (int)queries.size(); i++) {

int x = id[queries[i].x];
events[x].push_back(Event{GET, i});

}
for (int i = 0; i < (int)planar.size(); i++) {

int lx = id[planar[i]->l.x], rx = id[planar[i]->r.x];
if (lx > rx) {

swap(lx, rx);
swap(planar[i]->l, planar[i]->r);

}
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if (lx == rx) {
events[lx].push_back(Event{VERT, i});

} else {
events[lx].push_back(Event{ADD, i});
events[rx].push_back(Event{DEL, i});

}
}

// perform sweep line algorithm
vector<Edge*> ans(queries.size(), nullptr);
for (int x = 0; x < cid; x++) {

sort(events[x].begin(), events[x].end());
vert.clear();
for (Event event : events[x]) {

if (event.type == DEL) {
t.erase(planar[event.pos]);

}
if (event.type == VERT) {

vert.insert(make_pair(
min(planar[event.pos]->l.y, planar[event.pos]->r.y),
event.pos));

}
if (event.type == ADD) {

t.insert(planar[event.pos]);
}
if (event.type == GET) {

auto jt = vert.upper_bound(
make_pair(queries[event.pos].y, planar.size()));

if (jt != vert.begin()) {
--jt;
int i = jt->second;
if (ge(max(planar[i]->l.y, planar[i]->r.y),

queries[event.pos].y)) {
ans[event.pos] = planar[i];
continue;

}
}
Edge* e = new Edge;
e->l = e->r = queries[event.pos];
auto it = t.upper_bound(e);
if (it != t.begin())

ans[event.pos] = *(--it);
delete e;

}
}

for (Event event : events[x]) {
if (event.type != GET)

continue;
if (ans[event.pos] != nullptr &&

eq(ans[event.pos]->l.x, ans[event.pos]->r.x))
continue;
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Edge* e = new Edge;
e->l = e->r = queries[event.pos];
auto it = t.upper_bound(e);
delete e;
if (it == t.begin())

e = nullptr;
else

e = *(--it);
if (ans[event.pos] == nullptr) {

ans[event.pos] = e;
continue;

}
if (e == nullptr)

continue;
if (e == ans[event.pos])

continue;
if (id[ans[event.pos]->r.x] == x) {

if (id[e->l.x] == x) {
if (gt(e->l.y, ans[event.pos]->r.y))

ans[event.pos] = e;
}

} else {
ans[event.pos] = e;

}
}

}
return ans;

}

struct DCEL {
struct Edge {

pt origin;
Edge* nxt = nullptr;
Edge* twin = nullptr;
int face;

};
vector<Edge*> body;

};

vector<pair<int, int>> point_location(DCEL planar, vector<pt> queries)
{

vector<pair<int, int>> ans(queries.size());
vector<Edge*> planar2;
map<intptr_t, int> pos;
map<intptr_t, int> added_on;
int n = planar.body.size();
for (int i = 0; i < n; i++) {

if (planar.body[i]->face > planar.body[i]->twin->face)
continue;

Edge* e = new Edge;
e->l = planar.body[i]->origin;
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e->r = planar.body[i]->twin->origin;
added_on[(intptr_t)e] = i;
pos[(intptr_t)e] =

lt(planar.body[i]->origin.x, planar.body[i]->twin->origin.x)
? planar.body[i]->face
: planar.body[i]->twin->face;

planar2.push_back(e);
}
auto res = sweepline(planar2, queries);
for (int i = 0; i < (int)queries.size(); i++) {

if (res[i] == nullptr) {
ans[i] = make_pair(1, -1);
continue;

}
pt p = queries[i];
pt l = res[i]->l, r = res[i]->r;
if (eq(p.cross(l, r), 0) && le(p.dot(l, r), 0)) {

ans[i] = make_pair(0, added_on[(intptr_t)res[i]]);
continue;

}
ans[i] = make_pair(1, pos[(intptr_t)res[i]]);

}
for (auto e : planar2)

delete e;
return ans;

}

24.2.4 Problems
• TIMUS 1848 Fly Hunt
• UVA 12310 Point Location

http://acm.timus.ru/problem.aspx?space=1&num=1848&locale=en
https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=297&page=show_problem&problem=3732
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Chapter 25

Miscellaneous

25.1 Finding the nearest pair of points

25.1.1 Problem statement
Given n points on the plane. Each point pi is defined by its coordinates (xi, yi).
It is required to find among them two such points, such that the distance between
them is minimal:

min
i,j=0...n−1,

i 6=j

ρ(pi, pj).

We take the usual Euclidean distances:

ρ(pi, pj) =
√

(xi − xj)2 + (yi − yj)2.

The trivial algorithm - iterating over all pairs and calculating the distance
for each — works in O(n2).

The algorithm running in time O(n logn) is described below. This algorithm
was proposed by Preparata in 1975. Preparata and Shamos also showed that this
algorithm is optimal in the decision tree model.

25.1.2 Algorithm
We construct an algorithm according to the general scheme of divide-and-
conquer algorithms: the algorithm is designed as a recursive function, to which
we pass a set of points; this recursive function splits this set in half, calls itself
recursively on each half, and then performs some operations to combine the
answers. The operation of combining consist of detecting the cases when one
point of the optimal solution fell into one half, and the other point into the
other (in this case, recursive calls from each of the halves cannot detect this
pair separately). The main difficulty, as always in case of divide and conquer
algorithms, lies in the effective implementation of the merging stage. If a set of
n points is passed to the recursive function, then the merge stage should work no
more than O(n), then the asymptotics of the whole algorithm T (n) will be found
from the equation:
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T (n) = 2T (n/2) +O(n).

The solution to this equation, as is known, is T (n) = O(n logn).
So, we proceed on to the construction of the algorithm. In order to come to

an effective implementation of the merge stage in the future, we will divide the
set of points into two subsets, according to their x-coordinates: In fact, we draw
some vertical line dividing the set of points into two subsets of approximately
the same size. It is convenient to make such a partition as follows: We sort the
points in the standard way as pairs of numbers, ie.:

pi < pj ⇐⇒ (xi < xj) ∨
(

(xi = xj) ∧ (yi < yj)
)

Then take the middle point after sorting pm(m = bn/2c), and all the points
before it and the pm itself are assigned to the first half, and all the points after it
- to the second half:

A1 = {pi | i = 0 . . .m}

A2 = {pi | i = m+ 1 . . . n− 1}.

Now, calling recursively on each of the sets A1 and A2, we will find the answers
h1 and h2 for each of the halves. And take the best of them: h = min(h1, h2).

Now we need to make a merge stage, i.e. we try to find such pairs of points,
for which the distance between which is less than h and one point is lying in
A1 and the other in A2. It is obvious that it is sufficient to consider only those
points that are separated from the vertical line by a distance less than h, i.e. the
set B of the points considered at this stage is equal to:

B = {pi | |xi − xm | < h}.

For each point in the set B, we try to find the points that are closer to it than
h. For example, it is sufficient to consider only those points whose y-coordinate
differs by no more than h. Moreover, it makes no sense to consider those points
whose y-coordinate is greater than the y-coordinate of the current point. Thus,
for each point pi we define the set of considered points C(pi) as follows:

C(pi) = {pj | pj ∈ B, yi − h < yj ≤ yi}.

If we sort the points of the set B by y-coordinate, it will be very easy to find
C(pi): these are several points in a row ahead to the point pi.

So, in the new notation, the merging stage looks like this: build a set B,
sort the points in it by y-coordinate, then for each point pi ∈ B consider all
points pj ∈ C(pi), and for each pair (pi, pj) calculate the distance and compare
with the current best distance.

At first glance, this is still a non-optimal algorithm: it seems that the sizes
of sets C(pi) will be of order n, and the required asymptotics will not work.
However, surprisingly, it can be proved that the size of each of the sets C(pi) is
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a quantity O(1), i.e. it does not exceed some small constant regardless of the
points themselves. Proof of this fact is given in the next section.

Finally, we pay attention to the sorting, which the above algorithm contains:
first,sorting by pairs (x, y), and then second, sorting the elements of the set B
by y. In fact, both of these sorts inside the recursive function can be eliminated
(otherwise we would not reach the O(n) estimate for the merging stage, and
the general asymptotics of the algorithm would be O(n log2 n)). It is easy to
get rid of the first sort — it is enough to perform this sort before starting the
recursion: after all, the elements themselves do not change inside the recursion,
so there is no need to sort again. With the second sorting a little more difficult
to perform, performing it previously will not work. But, remembering the merge
sort, which also works on the principle of divide-and-conquer, we can simply
embed this sort in our recursion. Let recursion, taking some set of points (as
we remember,ordered by pairs (x, y)), return the same set, but sorted by the
y-coordinate. To do this, simply merge (in O(n)) the two results returned by
recursive calls. This will result in a set sorted by y-coordinate.

25.1.3 Evaluation of the asymptotics
To show that the above algorithm is actually executed in O(n logn), we need to
prove the following fact: |C(pi)| = O(1).

So, let us consider some point pi; recall that the set C(pi) is a set of points
whose y-coordinate lies in the segment [yi − h; yi], and, moreover, along the x
coordinate, the point pi itself, and all the points of the set C(pi) lie in the band
width 2h. In other words, the points we are considering pi and C(pi) lie in a
rectangle of size 2h× h.

Our task is to estimate the maximum number of points that can lie in this
rectangle 2h× h; thus, we estimate the maximum size of the set C(pi). At the
same time, when evaluating, we must not forget that there may be repeated
points.

Remember that h was obtained from the results of two recursive calls — on
sets A1 and A2, and A1 contains points to the left of the partition line and
partially on it, A2 contains the remaining points of the partition line and points
to the right of it. For any pair of points from A1, as well as from A2, the distance
can not be less than h — otherwise it would mean incorrect operation of the
recursive function.

To estimate the maximum number of points in the rectangle 2h× h we divide
it into two squares h × h, the first square include all points C(pi) ∩ A1, and
the second contains all the others, i.e. C(pi) ∩ A2. It follows from the above
considerations that in each of these squares the distance between any two points
is at least h.

We show that there are at most four points in each square. For example, this
can be done as follows: divide the square into 4 sub-squares with sides h/2. Then
there can be no more than one point in each of these sub-squares (since even
the diagonal is equal to h/

√
2, which is less than h). Therefore, there can be no

more than 4 points in the whole square.
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So, we have proved that in a rectangle 2h× h can not be more than 4 · 2 = 8
points, and, therefore, the size of the set C(pi) cannot exceed 7, as required.

25.1.4 Implementation
We introduce a data structure to store a point (its coordinates and a number)
and comparison operators required for two types of sorting:

struct pt {
int x, y, id;

};

struct cmp_x {
bool operator()(const pt & a, const pt & b) const {

return a.x < b.x || (a.x == b.x && a.y < b.y);
}

};

struct cmp_y {
bool operator()(const pt & a, const pt & b) const {

return a.y < b.y;
}

};

int n;
vector<pt> a;

For a convenient implementation of recursion, we introduce an auxiliary
function upd_ans(), which will calculate the distance between two points and
check whether it is better than the current answer:

double mindist;
pair<int, int> best_pair;

void upd_ans(const pt & a, const pt & b) {
double dist = sqrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y));
if (dist < mindist) {

mindist = dist;
best_pair = {a.id, b.id};

}
}

Finally, the implementation of the recursion itself. It is assumed that before
calling it, the array a[] is already sorted by x-coordinate. In recursion we pass just
two pointers l, r, which indicate that it should look for the answer for a[l . . . r).
If the distance between r and l is too small, the recursion must be stopped, and
perform a trivial algorithm to find the nearest pair and then sort the subarray
by y-coordinate.

To merge two sets of points received from recursive calls into one (ordered by y-
coordinate), we use the standard STL merge() function, and create an auxiliary
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buffer t[](one for all recursive calls). (Using inplace_merge () is impractical
because it generally does not work in linear time.)

Finally, the set B is stored in the same array t.

vector<pt> t;

void rec(int l, int r) {
if (r - l <= 3) {

for (int i = l; i < r; ++i) {
for (int j = i + 1; j < r; ++j) {

upd_ans(a[i], a[j]);
}

}
sort(a.begin() + l, a.begin() + r, cmp_y());
return;

}

int m = (l + r) >> 1;
int midx = a[m].x;
rec(l, m);
rec(m, r);

merge(a.begin() + l, a.begin() + m, a.begin() + m, a.begin() + r, t.begin(), cmp_y());
copy(t.begin(), t.begin() + r - l, a.begin() + l);

int tsz = 0;
for (int i = l; i < r; ++i) {

if (abs(a[i].x - midx) < mindist) {
for (int j = tsz - 1; j >= 0 && a[i].y - t[j].y < mindist; --j)

upd_ans(a[i], t[j]);
t[tsz++] = a[i];

}
}

}

By the way, if all the coordinates are integer, then at the time of the recursion
you can not move to fractional values, and store in mindist the square of the
minimum distance.

In the main program, recursion should be called as follows:

t.resize(n);
sort(a.begin(), a.end(), cmp_x());
mindist = 1E20;
rec(0, n);

25.1.5 Generalization: finding a triangle with minimal perimeter
The algorithm described above is interestingly generalized to this problem: among
a given set of points, choose three different points so that the sum of pairwise
distances between them is the smallest.
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In fact, to solve this problem, the algorithm remains the same: we divide
the field into two halves of the vertical line, call the solution recursively on both
halves, choose the minimum minper from the found perimeters, build a strip with
the thickness of minper/2, and iterate through all triangles that can improve the
answer. (Note that the triangle with perimeter ≤ minper has the longest side
≤ minper/2.)

25.1.6 Practice problems
• UVA 10245 “The Closest Pair Problem” [difficulty: low]
• SPOJ #8725 CLOPPAIR “Closest Point Pair” [difficulty: low]
• CODEFORCES Team Olympiad Saratov - 2011 “Minimum amount” [diffi-

culty: medium]
• Google CodeJam 2009 Final " Min Perimeter "[difficulty: medium]
• SPOJ #7029 CLOSEST “Closest Triple” [difficulty: medium]
• TIMUS 1514 National Park [difficulty: medium]

https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1186
https://www.spoj.com/problems/CLOPPAIR/
http://codeforces.com/contest/120/problem/J
http://codeforces.com/contest/120/problem/J
https://code.google.com/codejam/contest/311101/dashboard#s=a&a=1
https://www.spoj.com/problems/CLOSEST/
https://acm.timus.ru/problem.aspx?space=1&num=1514
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25.2 Delaunay triangulation and Voronoi diagram
Consider a set {pi} of points on the plane. A Voronoi diagram V ({pi}) of
{pi} is a partition of the plane into n regions Vi, where Vi = {p ∈ R2; ρ(p, pi) =
min ρ(p, pk)}. The cells of the Voronoi diagram are polygons (possibly infinite).
A Delaunay triangulation D({pi}) of {pi} is a triangulation where every point
pi is outside or on the boundary of the circumcircle of each triangle T ∈ D({pi}).

There is a nasty degenerated case when the Voronoi diagram isn’t connected
and Delaunay triangulation doesn’t exist. This case is when all points are
collinear.

25.2.1 Properties
The Delaunay triangulation maximizes the minimum angle among all possible
triangulations.

The Minimum Euclidean spanning tree of a point set is a subset of edges of
its’ Delaunay triangulation.

25.2.2 Duality
Suppose that {pi} is not collinear and among {pi} no four points lie on one circle.
Then V ({pi}) and D({pi}) are dual, so if we obtain one of them, we may obtain
the other in O(n). What to do if it’s not the case? The collinear case may be
processed easily. Otherwise, V and D′ are dual, where D′ is obtained from D by
removing all the edges such that two triangles on this edge share the circumcircle.

25.2.3 Building Delaunay and Voronoi
Because of the duality, we only need a fast algorithm to compute only one of V
and D. We will describe how to build D({pi}) in O(n logn). The triangulation
will be built via divide-and-conquer algorithm due to Guibas and Stolfi.

25.2.4 Quad-edge data structure
During the algorithm D will be stored inside the quad-edge data structure. This
structure is described in the picture:

In the algorithm we will use the following functions on edges:

1. make_edge(a, b) This function creates an isolated edge from point a to
point b together with its’ reverse edge and both dual edges.
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2. splice(a, b) This is a key function of the algorithm. It swaps a->Onext
with b->Onext and a->Onext->Rot->Onext with b->Onext->Rot->Onext.

3. delete_edge(e) This function deletes e from the triangulation. To
delete e, we may simply call splice(e, e->Oprev) and splice(e->Rev,
e->Rev->Oprev).

4. connect(a, b) This function creates a new edge e from a->Dest to
b->Org in such a way that a, b, e all have the same left face. To do
this, we call e = make_edge(a->Dest, b->Org), splice(e, a->Lnext)
and splice(e->Rev, b).

25.2.5 Algorithm
The algorithm will compute the triangulation and return two quad-edges: the
counterclockwise convex hull edge out of the leftmost vertex and the clockwise
convex hull edge out of the rightmost vertex.

Let’s sort all points by x, and if x1 = x2 then by y. Let’s solve the problem for
some segment (l, r) (initially (l, r) = (0, n−1)). If r−l+1 = 2, we will add an edge
(p[l], p[r]) and return. If r − l + 1 = 3, we will firstly add the edges (p[l], p[l + 1])
and (p[l + 1], p[r]). We must also connect them using splice(a->Rev, b). Now
we must close the triangle. Our next action will depend on the orientation of
p[l], p[l+1], p[r]. If they are collinear, we can’t make a triangle, so we simply return
(a, b->Rev). Otherwise, we create a new edge c by calling connect(b, a). If
the points are oriented counter-clockwise, we return (a, b->Rev). Otherwise we
return (c->Rev, c).

Now suppose that r − l + 1 ≥ 4. Firstly, let’s solve L = (l, l+r2 ) and R =
( l+r2 + 1, r) recursively. Now we have to merge these triangulations into one
triangulation. Note that our points are sorted, so while merging we will add
edges from L to R (so-called cross edges) and remove some edges from L to L
and from R to R. What is the structure of the cross edges? All these edges
must cross a line parallel to the y-axis and placed at the splitting x value. This
establishes a linear ordering of the cross edges, so we can talk about successive
cross edges, the bottom-most cross edge, etc. The algorithm will add the cross
edges in ascending order. Note that any two adjacent cross edges will have a
common endpoint, and the third side of the triangle they define goes from L to L
or from R to R. Let’s call the current cross edge the base. The successor of the
base will either go from the left endpoint of the base to one of the R-neighbors
of the right endpoint or vice versa. Consider the circumcircle of base and the
previous cross edge. Suppose this circle is transformed into other circles having
base as a chord but lying further into the Oy direction. Our circle will go up
for a while, but unless base is an upper tangent of L and R we will encounter
a point belonging either to L or to R giving rise to a new triangle without any
points in the circumcircle. The new L-R edge of this triangle is the next cross
edge added. To do this efficiently, we compute two edges lcand and rcand so
that lcand points to the first L point encountered in this process, and rcand
points to the first R point. Then we choose the one that would be encountered
first. Initially base points to the lower tangent of L and R.
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25.2.6 Implementation
Note that the implementation of the in_circle function is GCC-specific.

typedef long long ll;

bool ge(const ll& a, const ll& b) { return a >= b; }
bool le(const ll& a, const ll& b) { return a <= b; }
bool eq(const ll& a, const ll& b) { return a == b; }
bool gt(const ll& a, const ll& b) { return a > b; }
bool lt(const ll& a, const ll& b) { return a < b; }
int sgn(const ll& a) { return a >= 0 ? a ? 1 : 0 : -1; }

struct pt {
ll x, y;
pt() { }
pt(ll _x, ll _y) : x(_x), y(_y) { }
pt operator-(const pt& p) const {

return pt(x - p.x, y - p.y);
}
ll cross(const pt& p) const {

return x * p.y - y * p.x;
}
ll cross(const pt& a, const pt& b) const {

return (a - *this).cross(b - *this);
}
ll dot(const pt& p) const {

return x * p.x + y * p.y;
}
ll dot(const pt& a, const pt& b) const {

return (a - *this).dot(b - *this);
}
ll sqrLength() const {

return this->dot(*this);
}
bool operator==(const pt& p) const {

return eq(x, p.x) && eq(y, p.y);
}

};

const pt inf_pt = pt(1e18, 1e18);

struct QuadEdge {
pt origin;
QuadEdge* rot = nullptr;
QuadEdge* onext = nullptr;
bool used = false;
QuadEdge* rev() const {

return rot->rot;
}
QuadEdge* lnext() const {

return rot->rev()->onext->rot;
}
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QuadEdge* oprev() const {
return rot->onext->rot;

}
pt dest() const {

return rev()->origin;
}

};

QuadEdge* make_edge(pt from, pt to) {
QuadEdge* e1 = new QuadEdge;
QuadEdge* e2 = new QuadEdge;
QuadEdge* e3 = new QuadEdge;
QuadEdge* e4 = new QuadEdge;
e1->origin = from;
e2->origin = to;
e3->origin = e4->origin = inf_pt;
e1->rot = e3;
e2->rot = e4;
e3->rot = e2;
e4->rot = e1;
e1->onext = e1;
e2->onext = e2;
e3->onext = e4;
e4->onext = e3;
return e1;

}

void splice(QuadEdge* a, QuadEdge* b) {
swap(a->onext->rot->onext, b->onext->rot->onext);
swap(a->onext, b->onext);

}

void delete_edge(QuadEdge* e) {
splice(e, e->oprev());
splice(e->rev(), e->rev()->oprev());
delete e->rev()->rot;
delete e->rev();
delete e->rot;
delete e;

}

QuadEdge* connect(QuadEdge* a, QuadEdge* b) {
QuadEdge* e = make_edge(a->dest(), b->origin);
splice(e, a->lnext());
splice(e->rev(), b);
return e;

}

bool left_of(pt p, QuadEdge* e) {
return gt(p.cross(e->origin, e->dest()), 0);

}
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bool right_of(pt p, QuadEdge* e) {
return lt(p.cross(e->origin, e->dest()), 0);

}

template <class T>
T det3(T a1, T a2, T a3, T b1, T b2, T b3, T c1, T c2, T c3) {

return a1 * (b2 * c3 - c2 * b3) - a2 * (b1 * c3 - c1 * b3) +
a3 * (b1 * c2 - c1 * b2);

}

bool in_circle(pt a, pt b, pt c, pt d) {
// If there is __int128, calculate directly.
// Otherwise, calculate angles.
#if defined(__LP64__) || defined(_WIN64)

__int128 det = -det3<__int128>(b.x, b.y, b.sqrLength(), c.x, c.y,
c.sqrLength(), d.x, d.y, d.sqrLength());

det += det3<__int128>(a.x, a.y, a.sqrLength(), c.x, c.y, c.sqrLength(), d.x,
d.y, d.sqrLength());

det -= det3<__int128>(a.x, a.y, a.sqrLength(), b.x, b.y, b.sqrLength(), d.x,
d.y, d.sqrLength());

det += det3<__int128>(a.x, a.y, a.sqrLength(), b.x, b.y, b.sqrLength(), c.x,
c.y, c.sqrLength());

return det > 0;
#else

auto ang = [](pt l, pt mid, pt r) {
ll x = mid.dot(l, r);
ll y = mid.cross(l, r);
long double res = atan2((long double)x, (long double)y);
return res;

};
long double kek = ang(a, b, c) + ang(c, d, a) - ang(b, c, d) - ang(d, a, b);
if (kek > 1e-8)

return true;
else

return false;
#endif
}

pair<QuadEdge*, QuadEdge*> build_tr(int l, int r, vector<pt>& p) {
if (r - l + 1 == 2) {

QuadEdge* res = make_edge(p[l], p[r]);
return make_pair(res, res->rev());

}
if (r - l + 1 == 3) {

QuadEdge *a = make_edge(p[l], p[l + 1]), *b = make_edge(p[l + 1], p[r]);
splice(a->rev(), b);
int sg = sgn(p[l].cross(p[l + 1], p[r]));
if (sg == 0)

return make_pair(a, b->rev());
QuadEdge* c = connect(b, a);
if (sg == 1)

return make_pair(a, b->rev());
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else
return make_pair(c->rev(), c);

}
int mid = (l + r) / 2;
QuadEdge *ldo, *ldi, *rdo, *rdi;
tie(ldo, ldi) = build_tr(l, mid, p);
tie(rdi, rdo) = build_tr(mid + 1, r, p);
while (true) {

if (left_of(rdi->origin, ldi)) {
ldi = ldi->lnext();
continue;

}
if (right_of(ldi->origin, rdi)) {

rdi = rdi->rev()->onext;
continue;

}
break;

}
QuadEdge* basel = connect(rdi->rev(), ldi);
auto valid = [&basel](QuadEdge* e) { return right_of(e->dest(), basel); };
if (ldi->origin == ldo->origin)

ldo = basel->rev();
if (rdi->origin == rdo->origin)

rdo = basel;
while (true) {

QuadEdge* lcand = basel->rev()->onext;
if (valid(lcand)) {

while (in_circle(basel->dest(), basel->origin, lcand->dest(),
lcand->onext->dest())) {

QuadEdge* t = lcand->onext;
delete_edge(lcand);
lcand = t;

}
}
QuadEdge* rcand = basel->oprev();
if (valid(rcand)) {

while (in_circle(basel->dest(), basel->origin, rcand->dest(),
rcand->oprev()->dest())) {

QuadEdge* t = rcand->oprev();
delete_edge(rcand);
rcand = t;

}
}
if (!valid(lcand) && !valid(rcand))

break;
if (!valid(lcand) ||

(valid(rcand) && in_circle(lcand->dest(), lcand->origin,
rcand->origin, rcand->dest())))

basel = connect(rcand, basel->rev());
else

basel = connect(basel->rev(), lcand->rev());
}
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return make_pair(ldo, rdo);
}

vector<tuple<pt, pt, pt>> delaunay(vector<pt> p) {
sort(p.begin(), p.end(), [](const pt& a, const pt& b) {

return lt(a.x, b.x) || (eq(a.x, b.x) && lt(a.y, b.y));
});
auto res = build_tr(0, (int)p.size() - 1, p);
QuadEdge* e = res.first;
vector<QuadEdge*> edges = {e};
while (lt(e->onext->dest().cross(e->dest(), e->origin), 0))

e = e->onext;
auto add = [&p, &e, &edges]() {

QuadEdge* curr = e;
do {

curr->used = true;
p.push_back(curr->origin);
edges.push_back(curr->rev());
curr = curr->lnext();

} while (curr != e);
};
add();
p.clear();
int kek = 0;
while (kek < (int)edges.size()) {

if (!(e = edges[kek++])->used)
add();

}
vector<tuple<pt, pt, pt>> ans;
for (int i = 0; i < (int)p.size(); i += 3) {

ans.push_back(make_tuple(p[i], p[i + 1], p[i + 2]));
}
return ans;

}

25.2.7 Problems
• TIMUS 1504 Good Manners
• TIMUS 1520 Empire Strikes Back
• SGU 383 Caravans

http://acm.timus.ru/problem.aspx?space=1&num=1504
http://acm.timus.ru/problem.aspx?space=1&num=1520
https://codeforces.com/problemsets/acmsguru/problem/99999/383
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25.3 Vertical decomposition

25.3.1 Overview
Vertical decomposition is a powerful technique used in various geometry problems.
The general idea is to cut the plane into several vertical stripes with some “good”
properties and solve the problem for these stripes independently. We will illustrate
the idea on some examples.

25.3.2 Area of the union of triangles
Suppose that there are n triangles on a plane and we are to find the area of their
union. The problem would be easy if the triangles didn’t intersect, so let’s get
rid of these intersections by dividing the plane into vertical stripes by drawing
vertical lines through all vertices and all points of intersection of sides of different
triangles. There may be O(n2) such lines so we obtained O(n2) stripes. Now
consider some vertical stripe. Each non-vertical segment either crosses it from left
to right or doesn’t cross at all. Also, no two segments intersect strictly inside the
stripe. It means that the part of the union of triangles that lies inside this stripe
is composed of disjoint trapezoids with bases lying on the sides of the stripe.
This property allows us to compute the area inside each stripe with a following
scanline algorithm. Each segment crossing the stripe is either upper or lower,
depending on whether the interior of the corresponding triangle is above or below
the segment. We can visualize each upper segment as an opening bracket and
each lower segment as a closing bracket and decompose the stripe into trapezoids
by decomposing the bracket sequence into smaller correct bracket sequences. This
algorithm requires O(n3 logn) time and O(n2) memory. ### Optimization 1
{#sec:geometry_vertical_decomposition15} Firstly we will reduce the runtime
to O(n2 logn). Instead of generating trapezoids for each stripe let’s fix some
triangle side (segment s = (s0, s1)) and find the set of stripes where this segment
is a side of some trapezoid. Note that in this case we only have to find the stripes
where the balance of brackets below (or above, in case of a lower segment) s is
zero. It means that instead of running vertical scanline for each stripe we can
run a horizontal scanline for all parts of other segments which affect the balance
of brackets with respect to s. For simplicity we will show how to do this for an
upper segment, the algorithm for lower segments is similar. Consider some other
non-vertical segment t = (t0, t1) and find the intersection [x1, x2] of projections
of s and t on Ox. If this intersection is empty or consists of one point, t can be
discarded since s and t do not intersect the interior of the same stripe. Otherwise
consider the intersection I of s and t. There are three cases.

1. I = ∅

In this case t is either above or below s on [x1, x2]. If t is above, it doesn’t
affect whether s is a side of some trapezoid or not. If t is below s, we should add
1 or −1 to the balance of bracket sequences for all stripes in [x1, x2], depending
on whether t is upper or lower.
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2. I consists of a single point p

This case can be reduced to the previous one by splitting [x1, x2] into [x1, px]
and [px, x2].

3. I is some segment l

This case means that the parts of s and t for x ∈ [x1, x2] coincide. If t is
lower, s is clearly not a side of a trapezoid. Otherwise, it could happen that both
s and t can be considered as a side of some trapezoid. In order to resolve this
ambiguity, we can decide that only the segment with the lowest index should
be considered as a side (here we suppose that triangle sides are enumerated in
some way). So, if index(s) < index(t), we should ignore this case, otherwise we
should mark that s can never be a side on [x1, x2] (for example, by adding a
corresponding event with balance −2).

Here is a graphic representation of the three cases.
Finally we should remark on processing all the additions of 1 or −1 on

all stripes in [x1, x2]. For each addition of w on [x1, x2] we can create events
(x1, w), (x2,−w) and process all these events with a sweep line.

Optimization 2

Note that if we apply the previous optimization, we no longer have to find all
stripes explicitly. This reduces the memory consumption to O(n).

25.3.3 Intersection of convex polygons
Another usage of vertical decomposition is to compute the intersection of two
convex polygons in linear time. Suppose the plane is split into vertical stripes by
vertical lines passing through each vertex of each polygon. Then if we consider
one of the input polygons and some stripe, their intersection is either a trapezoid,
a triangle or a point. Therefore we can simply intersect these shapes for each
vertical stripe and merge these intersections into a single polygon.

25.3.4 Implementation
Below is the code that calculates area of the union of a set of triangles in
O(n2 logn) time and O(n) memory.

typedef double dbl;

const dbl eps = 1e-9;

inline bool eq(dbl x, dbl y){
return fabs(x - y) < eps;

}

inline bool lt(dbl x, dbl y){
return x < y - eps;
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}

inline bool gt(dbl x, dbl y){
return x > y + eps;

}

inline bool le(dbl x, dbl y){
return x < y + eps;

}

inline bool ge(dbl x, dbl y){
return x > y - eps;

}

struct pt{
dbl x, y;
inline pt operator - (const pt & p)const{

return pt{x - p.x, y - p.y};
}
inline pt operator + (const pt & p)const{

return pt{x + p.x, y + p.y};
}
inline pt operator * (dbl a)const{

return pt{x * a, y * a};
}
inline dbl cross(const pt & p)const{

return x * p.y - y * p.x;
}
inline dbl dot(const pt & p)const{

return x * p.x + y * p.y;
}
inline bool operator == (const pt & p)const{

return eq(x, p.x) && eq(y, p.y);
}

};

struct Line{
pt p[2];
Line(){}
Line(pt a, pt b):p{a, b}{}
pt vec()const{

return p[1] - p[0];
}
pt& operator [](size_t i){

return p[i];
}

};

inline bool lexComp(const pt & l, const pt & r){
if(fabs(l.x - r.x) > eps){

return l.x < r.x;
}
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else return l.y < r.y;
}

vector<pt> interSegSeg(Line l1, Line l2){
if(eq(l1.vec().cross(l2.vec()), 0)){

if(!eq(l1.vec().cross(l2[0] - l1[0]), 0))
return {};

if(!lexComp(l1[0], l1[1]))
swap(l1[0], l1[1]);

if(!lexComp(l2[0], l2[1]))
swap(l2[0], l2[1]);

pt l = lexComp(l1[0], l2[0]) ? l2[0] : l1[0];
pt r = lexComp(l1[1], l2[1]) ? l1[1] : l2[1];
if(l == r)

return {l};
else return lexComp(l, r) ? vector<pt>{l, r} : vector<pt>();

}
else{

dbl s = (l2[0] - l1[0]).cross(l2.vec()) / l1.vec().cross(l2.vec());
pt inter = l1[0] + l1.vec() * s;
if(ge(s, 0) && le(s, 1) && le((l2[0] - inter).dot(l2[1] - inter), 0))

return {inter};
else

return {};
}

}
inline char get_segtype(Line segment, pt other_point){

if(eq(segment[0].x, segment[1].x))
return 0;

if(!lexComp(segment[0], segment[1]))
swap(segment[0], segment[1]);

return (segment[1] - segment[0]).cross(other_point - segment[0]) > 0 ? 1 : -1;
}

dbl union_area(vector<tuple<pt, pt, pt> > triangles){
vector<Line> segments(3 * triangles.size());
vector<char> segtype(segments.size());
for(size_t i = 0; i < triangles.size(); i++){

pt a, b, c;
tie(a, b, c) = triangles[i];
segments[3 * i] = lexComp(a, b) ? Line(a, b) : Line(b, a);
segtype[3 * i] = get_segtype(segments[3 * i], c);
segments[3 * i + 1] = lexComp(b, c) ? Line(b, c) : Line(c, b);
segtype[3 * i + 1] = get_segtype(segments[3 * i + 1], a);
segments[3 * i + 2] = lexComp(c, a) ? Line(c, a) : Line(a, c);
segtype[3 * i + 2] = get_segtype(segments[3 * i + 2], b);

}
vector<dbl> k(segments.size()), b(segments.size());
for(size_t i = 0; i < segments.size(); i++){

if(segtype[i]){
k[i] = (segments[i][1].y - segments[i][0].y) / (segments[i][1].x - segments[i][0].x);
b[i] = segments[i][0].y - k[i] * segments[i][0].x;
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}
}
dbl ans = 0;
for(size_t i = 0; i < segments.size(); i++){

if(!segtype[i])
continue;

dbl l = segments[i][0].x, r = segments[i][1].x;
vector<pair<dbl, int> > evts;
for(size_t j = 0; j < segments.size(); j++){

if(!segtype[j] || i == j)
continue;

dbl l1 = segments[j][0].x, r1 = segments[j][1].x;
if(ge(l1, r) || ge(l, r1))

continue;
dbl common_l = max(l, l1), common_r = min(r, r1);
auto pts = interSegSeg(segments[i], segments[j]);
if(pts.empty()){

dbl yl1 = k[j] * common_l + b[j];
dbl yl = k[i] * common_l + b[i];
if(lt(yl1, yl) == (segtype[i] == 1)){

int evt_type = -segtype[i] * segtype[j];
evts.emplace_back(common_l, evt_type);
evts.emplace_back(common_r, -evt_type);

}
}
else if(pts.size() == 1u){

dbl yl = k[i] * common_l + b[i], yl1 = k[j] * common_l + b[j];
int evt_type = -segtype[i] * segtype[j];
if(lt(yl1, yl) == (segtype[i] == 1)){

evts.emplace_back(common_l, evt_type);
evts.emplace_back(pts[0].x, -evt_type);

}
yl = k[i] * common_r + b[i], yl1 = k[j] * common_r + b[j];
if(lt(yl1, yl) == (segtype[i] == 1)){

evts.emplace_back(pts[0].x, evt_type);
evts.emplace_back(common_r, -evt_type);

}
}
else{

if(segtype[j] != segtype[i] || j > i){
evts.emplace_back(common_l, -2);
evts.emplace_back(common_r, 2);

}
}

}
evts.emplace_back(l, 0);
sort(evts.begin(), evts.end());
size_t j = 0;
int balance = 0;
while(j < evts.size()){

size_t ptr = j;
while(ptr < evts.size() && eq(evts[j].first, evts[ptr].first)){



25.3. Vertical decomposition 451

balance += evts[ptr].second;
++ptr;

}
if(!balance && !eq(evts[j].first, r)){

dbl next_x = ptr == evts.size() ? r : evts[ptr].first;
ans -= segtype[i] * (k[i] * (next_x + evts[j].first) + 2 * b[i]) * (next_x - evts[j].first);

}
j = ptr;

}
}
return ans/2;

}

25.3.5 Problems
• Codeforces 62C Inquisition
• Codeforces 107E Darts

https://codeforces.com/contest/62/problem/C
https://codeforces.com/contest/107/problem/E
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25.4 Half-plane intersection
In this article we will discuss the problem of computing the intersection of a
set of half-planes. Such an intersection can be conveniently represented as a
convex region/polygon, where every point inside of it is also inside all of the
half-planes, and it is this polygon that we’re trying to find or construct. We give
some initial intuition for the problem, describe a O(N logN) approach known as
the Sort-and-Incremental algorithm and give some sample applications of this
technique.

It is strongly recommended for the reader to be familiar with basic geometrical
primitives and operations (points, vectors, intersection of lines). Additionally,
knowledge about Convex Hulls or the Convex Hull Trick may help to better
understand the concepts in this article, but they are not a prerequisite by any
means.

25.4.1 Initial clarifications and definitions
For the entire article, we will make some assumptions (unless specified otherwise):

1. We define N to be the quantity of half-planes in the given set.
2. We will represent lines and half-planes by one point and one vector (any

point that lies on the given line, and the direction vector of the line). In
the case of half-planes, we assume that every half-plane allows the region
to the left side of its direction vector. Additionally, we define the angle of a
half-plane to be the polar angle of its direction vector. See image below for
example.

3. We will assume that the resulting intersection is always either bounded
or empty. If we need to handle the unbounded case, we can simply add 4
half-planes that define a large-enough bounding box.

4. We will assume, for simplicity, that there are no parallel half-planes in the
given set. Towards the end of the article we will discuss how to deal with
such cases.

The half-plane y ≥ 2x − 2 can be represented as the point P = (1, 0) with
direction vector PQ = Q− P = (1, 2)
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25.4.2 Brute force approach - O(N3)
One of the most straightforward and obvious solutions would be to compute the
intersection point of the lines of all pairs of half-planes and, for each point, check
if it is inside all of the other half-planes. Since there are O(N2) intersection points,
and for each of them we have to check O(N) half-planes, the total time complexity
is O(N3). The actual region of the intersection can then be reconstructed using,
for example, a Convex Hull algorithm on the set of intersection points that were
included in all the half-planes.

It is fairly easy to see why this works: the vertices of the resulting convex
polygon are all intersection points of the half-plane lines, and each of those
vertices is obviously part of all the half-planes. The main advantage of this
method is that its easy to understand, remember and code on-the-fly if you just
need to check if the intersection is empty or not. However, it is awfully slow and
unfit for most problems, so we need something faster.

25.4.3 Incremental approach - O(N2)
Another fairly straightforward approach is to incrementally construct the inter-
section of the half-planes, one at a time. This method is basically equivalent
to cutting a convex polygon by a line N times, and removing the redundant
half-planes at every step. To do this, we can represent the convex polygon
as a list of line segments, and to cut it with a half-plane we simply find the
intersection points of the segments with the half-plane line (there will only be two
intersection points if the line properly intersects the polygon), and replace all the
line segments in-between with the new segment corresponding to the half-plane.
Since such procedure can be implemented in linear time, we can simply start with
a big bounding box and cut it down with each one of the half-planes, obtaining a
total time complexity of O(N2).

This method is a big step in the right direction, but it does feel wasteful to
have to iterate over O(N) half-planes at every step. We will see next that, by
making some clever observations, the ideas behind this incremental approach can
be recycled to create a O(N logN) algorithm.

25.4.4 Sort-and-Incremental algorithm - O(N log N)
The first properly-documented source of this algorithm we could find was Zeyuan
Zhu’s thesis for Chinese Team Selecting Contest titled New Algorithm for Half-
plane Intersection and its Practical Value, from the year 2006. The approach
we’ll describe next is based on this same algorithm, but instead of computing
two separate intersections for the lower and upper halves of the intersections,
we’ll construct it all at once in one pass with a deque (double-ended queue).

The algorithm itself, as the name may spoil, takes advantage of the fact that
the resulting region from the intersection of half-planes is convex, and thus it
will consist of some segments of half-planes in order sorted by their angles. This
leads to a crucial observation: if we incrementally intersect the half-planes in
their order sorted by angle (as they would appear in the final, resulting shape of

http://people.csail.mit.edu/zeyuan/publications.htm
http://people.csail.mit.edu/zeyuan/publications.htm
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the intersection) and store them in a double-ended queue, then we will only ever
need to remove half-planes from the front and the back of the deque.

To better visualize this fact, suppose we’re performing the incremental ap-
proach described previously on a set of half-planes that is sorted by angle (in
this case, we’ll assume they’re sorted from −π to π), and suppose that we’re
about to start some arbitrary k’th step. This means we have already constructed
the intersection of the first k − 1 half-planes. Now, because the half-planes are
sorted by angle, whatever the k’th half-plane is, we can be sure that it will form
a convex turn with the (K − 1)’th half-plane. For that reason, a few things may
happen:

1. Some (possibly none) of the half-planes in the back of the intersection
may become redundant. In this case, we need to pop these now-useless
half-planes from the back of the deque.

2. Some (possibly none) of the half-planes at the front may become redundant.
Analogous to case 1, we just pop them from the front of the deque.

3. The intersection may become empty (after handling cases 1 and/or 2).
In this case, we just report the intersection is empty and terminate the
algorithm.

We say a half-plane is “redundant” if it does not contribute anything to the
intersection. Such a half-plane could be removed and the resulting intersection
would not change at all.

Here’s a small example with an illustration:
Let H = {A,B,C,D,E} be the set of half-planes currently present in the

intersection. Additionally, let P = {p, q, r, s} be the set of intersection points of
adjacent half-planes in H. Now, suppose we wish to intersect it with the half-plane
F , as seen in the illustration below:

Notice the half-plane F makes A and E redundant in the intersection. So we
remove both A and E from the front and back of the intersection, respectively, and
add F at the end. And we finally obtain the new intersection H = {B,C,D, F}
with P = {q, r, t, u}.
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With all of this in mind, we have almost everything we need to actually
implement the algorithm, but we still need to talk about some special cases. At
the beginning of the article we said we would add a bounding box to take care of
the cases where the intersection could be unbounded, so the only tricky case we
actually need to handle is parallel half-planes. We can have two sub-cases: two
half-planes can be parallel with the same direction or with opposite direction.
The reason this case needs to be handled separately is because we will need to
compute intersection points of half-plane lines to be able to check if a half-plane
is redundant or not, and two parallel lines have no intersection point, so we need
a special way to deal with them.

Notice that, because we’re adding the bounding box to deal with the un-
bounded case, this also deals with the case where we have two adjacent parallel
half-planes with opposite directions, since there will have to be at least one of
the bounding-box half-planes in between these two (remember they are sorted
by angle). Thus the only case we actually need to handle is having multiple
half-planes with the same angle, and it turns out this is also very easy to handle:
just keep the leftmost one and erase the rest, since the others will be completely
redundant anyways.

To sum up, the full algorithm will roughly look as follows:

1. We begin by sorting the set of half-planes by angle, which takes O(N logN)
time.

2. We will iterate over the set of half-planes, and for each one, we will perform
the incremental procedure, popping from the front and the back of the
double-ended queue as necessary. This will take linear time in total, as
every half-plane can only be added or removed once.

3. At the end, the convex polygon resulting from the intersection can be simply
obtained by computing the intersection points of adjacent half-planes in
the deque at the end of the procedure. This will take linear time as well. It
is also possible to store such points during step 2 and skip this step entirely,
but we believe it is slightly easier (in terms of implementation) to compute
them on-the-fly.

In total, we have achieved a time complexity of O(N logN). Since sorting is
clearly the bottleneck, the algorithm can be made to run in linear time in the
special case where we are given half-planes sorted in advance by their angles (an
example of such a case would be obtaining the half-planes that define a convex
polygon).
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Direct implementation

Here is a sample, direct implementation of the algorithm, with comments ex-
plaining most parts:

Simple point/vector and half-plane structs:

// Redefine epsilon and infinity as necessary. Be mindful of precision errors.
const long double eps = 1e-9, inf = 1e9;

// Basic point/vector struct.
struct Point {

long double x, y;
explicit Point(long double x = 0, long double y = 0) : x(x), y(y) {}

// Addition, substraction, multiply by constant, cross product.

friend Point operator + (const Point& p, const Point& q) {
return Point(p.x + q.x, p.y + q.y);

}

friend Point operator - (const Point& p, const Point& q) {
return Point(p.x - q.x, p.y - q.y);

}

friend Point operator * (const Point& p, const long double& k) {
return Point(p.x * k, p.y * k);

}

friend long double cross(const Point& p, const Point& q) {
return p.x * q.y - p.y * q.x;

}
};

// Basic half-plane struct.
struct Halfplane {

// 'p' is a passing point of the line and 'pq' is the direction vector of the line.
Point p, pq;
long double angle;

Halfplane() {}
Halfplane(const Point& a, const Point& b) : p(a), pq(b - a) {

angle = atan2l(pq.y, pq.x);
}

// Check if point 'r' is outside this half-plane.
// Every half-plane allows the region to the LEFT of its line.
bool out(const Point& r) {

return cross(pq, r - p) < -eps;
}
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// Comparator for sorting.
// If the angle of both half-planes is equal, the leftmost one should go first.
bool operator < (const Halfplane& e) const {

if (fabsl(angle - e.angle) < eps) return cross(pq, e.p - p) < 0;
return angle < e.angle;

}

// We use equal comparator for std::unique to easily remove parallel half-planes.
bool operator == (const Halfplane& e) const {

return fabsl(angle - e.angle) < eps;
}

// Intersection point of the lines of two half-planes. It is assumed they're never parallel.
friend Point inter(const Halfplane& s, const Halfplane& t) {

long double alpha = cross((t.p - s.p), t.pq) / cross(s.pq, t.pq);
return s.p + (s.pq * alpha);

}
};

Algorithm:

// Actual algorithm
vector<Point> hp_intersect(vector<Halfplane>& H) {

Point box[4] = { // Bounding box in CCW order
Point(inf, inf),
Point(-inf, inf),
Point(-inf, -inf),
Point(inf, -inf)

};

for(int i = 0; i<4; i++) { // Add bounding box half-planes.
Halfplane aux(box[i], box[(i+1) % 4]);
H.push_back(aux);

}

// Sort and remove duplicates
sort(H.begin(), H.end());
H.erase(unique(H.begin(), H.end()), H.end());

deque<Halfplane> dq;
int len = 0;
for(int i = 0; i < int(H.size()); i++) {

// Remove from the back of the deque while last half-plane is redundant
while (len > 1 && H[i].out(inter(dq[len-1], dq[len-2]))) {

dq.pop_back();
--len;

}

// Remove from the front of the deque while first half-plane is redundant
while (len > 1 && H[i].out(inter(dq[0], dq[1]))) {
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dq.pop_front();
--len;

}

// Add new half-plane
dq.push_back(H[i]);
++len;

}

// Final cleanup: Check half-planes at the front against the back and vice-versa
while (len > 2 && dq[0].out(inter(dq[len-1], dq[len-2]))) {

dq.pop_back();
--len;

}

while (len > 2 && dq[len-1].out(inter(dq[0], dq[1]))) {
dq.pop_front();
--len;

}

// Report empty intersection if necessary
if (len < 3) return vector<Point>();

// Reconstruct the convex polygon from the remaining half-planes.
vector<Point> ret(len);
for(int i = 0; i+1 < len; i++) {

ret[i] = inter(dq[i], dq[i+1]);
}
ret.back() = inter(dq[len-1], dq[0]);
return ret;

}

Implementation discussion

A special thing to note is that, in case there multiple half-planes that intersect
at the same point, then this algorithm could return repeated adjacent points in
the final polygon. However, this should not have any impact on judging correctly
whether the intersection is empty or not, and it does not affect the polygon
area at all either. You may want to remove these duplicates depending on what
tasks you need to do after. You can do this very easily with std::unique. We
want to keep the repeat points during the execution of the algorithm so that the
intersections with area equal to zero can be computed correctly (for example,
intersections that consist of a single point, line or line-segment). I encourage the
reader to test some small hand-made cases where the intersection results in a
single point or line.

One more thing that should be talked about is what to do if we are given
half-planes in the form of a linear constraint (for example, ax+ by + c ≤ 0). In
such case, there are two options. You can either implement the algorithm with the
corresponding modifications to work with such representation (essentially create
your own half-plane struct, should be fairly straightforward if you’re familiar
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with the convex hull trick), or you can transform the lines into the representation
we used in this article by taking any 2 points of each line. In general, it is
recommended to work with the representation that you’re given in the problem
to avoid additional precision issues.

25.4.5 Problems, tasks and applications
Many problems that can be solved with half-plane intersection can also be
solved without it, but with (usually) more complicated or uncommon approaches.
Generally, half-plane intersection can appear when dealing with problems related
to polygons (mostly convex), visibility in the plane and two-dimensional linear
programming. Here are some sample tasks that can be solved with this technique:

Convex polygon intersection

One of the classical applications of half-plane intersection: Given N polygons,
compute the region that is included inside all of the polygons.

Since the intersection of a set of half-planes is a convex polygon, we can also
represent a convex polygon as a set of half-planes (every edge of the polygon
is a segment of a half-plane). Generate these half-planes for every polygon and
compute the intersection of the whole set. The total time complexity is O(S logS),
where S is the total number of sides of all the polygons. The problem can also
theoretically be solved in O(S logN) by merging the N sets of half-planes using a
heap and then running the algorithm without the sorting step, but such solution
has much worse constant factor than straightforward sorting and only provides
minor speed gains for very small N .

Visibility in the plane

Problems that require something among the lines of “determine if some line
segments are visible from some point(s) in the plane” can usually be formulated
as half-plane intersection problems. Take, for example, the following task: Given
some simple polygon (not necessarily convex), determine if there’s any point
inside the polygon such that the whole boundary of the polygon can be observed
from that point. This is also known as finding the kernel of a polygon and can
be solved by simple half-plane intersection, taking each edge of the polygon as a
half-plane and then computing its intersection.

Here’s a related, more interesting problem that was presented by Artem
Vasilyev in one of his Brazilian ICPC Summer School lectures: Given a set p of
points p1, p2 . . . pn in the plane, determine if there’s any point q you can stand
at such that you can see all the points of p from left to right in increasing order
of their index.

Such problem can be solved by noticing that being able to see some point pi
to the left of pj is the same as being able to see the right side of the line segment
from pi to pj (or equivalently, being able to see the left side of the segment from
pj to pi). With that in mind, we can simply create a half-plane for every line

https://en.wikipedia.org/wiki/Star-shaped_polygon
https://youtu.be/WKyZSitpm6M?t=6463
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segment pipi+1 (or pi+1pi depending on the orientation you choose) and check if
the intersection of the whole set is empty or not.

Half-plane intersection with binary search

Another common application is utilizing half-plane intersection as a tool to
validate the predicate of a binary search procedure. Here’s an example of such a
problem, also presented by Artem Vasilyev in the same lecture that was previously
mentioned: Given a convex polygon P , find the biggest circumference that can
be inscribed inside of it.

Instead of looking for some sort of closed-form solution, annoying formulas or
obscure algorithmic solutions, lets instead try to binary search on the answer.
Notice that, for some fixed r, a circle with radius r can be inscribed inside P
only if there exists some point inside P that has distance greater or equal than
r to all the points of the boundary of P . This condition can be validated by
“shrinking” the polygon inwards by a distance of r and checking that the polygon
remains non-degenerate (or is a point/segment itself). Such procedure can be
simulated by taking the half-planes of the polygon sides in counter-clockwise
order, translating each of them by a distance of r in the direction of the region
they allow (that is, orthogonal to the direction vector of the half-plane), and
checking if the intersection is not empty.

Clearly, if we can inscribe a circle of radius r, we can also inscribe any other
circle of radius smaller than r. So we can perform a binary search on the radius
r and validate every step using half-plane intersection. Also, note that the half-
planes of a convex polygon are already sorted by angle, so the sorting step can
be skipped in the algorithm. Thus we obtain a total time complexity of O(NK),
where N is the number of polygon vertices and K is the number of iterations of
the binary search (the actual value will depend on the range of possible answers
and the desired precision).

Two-dimensional linear programming

One more application of half-plane intersection is linear programming in two
variables. All linear constraints for two variables can be expressed in the form of
Ax+By + C ≤ 0 (inequality comparator may vary). Clearly, these are just half-
planes, so checking if a feasible solution exists for a set of linear constraints can be
done with half-plane intersection. Additionally, for a given set of linear constraints,
it is possible to compute the region of feasible solutions (i.e. the intersection
of the half-planes) and then answer multiple queries of maximizing/minimizing
some linear function f(x, y) subject to the constraints in O(logN) per query
using binary search (very similar to the convex hull trick).

It is worth mentioning that there also exists a fairly simple randomized
algorithm that can check whether a set of linear constraints has a feasible
solution or not, and maximize/minimize some linear function subject to the given
constraints. This randomized algorithm was also explained nicely by Artem
Vasilyev in the lecture mentioned earlier. Here are some additional resources
on it, should the reader be interested: CG - Lecture 4, parts 4 and 5 and Petr

https://youtu.be/5dfc355t2y4
https://petr-mitrichev.blogspot.com/2016/07/a-half-plane-week.html
https://petr-mitrichev.blogspot.com/2016/07/a-half-plane-week.html
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Mitrichev’s blog (which includes the solution to the hardest problem in the
practice problems list below).

25.4.6 Practice problems

Classic problems, direct application

• Codechef - Animesh decides to settle down
• POJ - How I mathematician Wonder What You Are!
• POJ - Rotating Scoreboard
• POJ - Video Surveillance
• POJ - Art Gallery
• POJ - Uyuw’s Concert

Harder problems

• POJ - Most Distant Point from the Sea - Medium
• POJ - Feng Shui - Medium
• POJ - Triathlon - Medium/hard
• DMOJ - Arrow - Medium/hard
• POJ - Jungle Outpost - Hard
• Codeforces - Jungle Outpost (alternative link, problem J) - Hard
• Yandex - Asymmetry Value (need virtual contest to see, problem F) - Very

Hard

Additional problems

• 40th Petrozavodsk Programming Camp, Winter 2021 - Day 1: Jagiellonian
U Contest, Grand Prix of Krakow - Problem B: (Almost) Fair Cake-
Cutting. At the time of writing the article, this problem was private and
only accessible by participants of the Programming Camp.

25.4.7 References, bibliography and other sources

Main sources

• New Algorithm for Half-plane Intersection and its Practical Value. Original
paper of the algorithm.

• Artem Vasilyev’s Brazilian ICPC Summer School 2020 lecture. Amazing
lecture on half-plane intersection. Also covers other geometry topics.

Good blogs (Chinese)

• Fundamentals of Computational Geometry - Intersection of Half-planes.
• Detailed introduction to the half-plane intersection algorithm.
• Summary of Half-plane intersection problems.
• Sorting incremental method of half-plane intersection.

https://petr-mitrichev.blogspot.com/2016/07/a-half-plane-week.html
https://petr-mitrichev.blogspot.com/2016/07/a-half-plane-week.html
https://petr-mitrichev.blogspot.com/2016/07/a-half-plane-week.html
https://www.codechef.com/problems/CHN02
http://poj.org/problem?id=3130
http://poj.org/problem?id=3335
http://poj.org/problem?id=1474
http://poj.org/problem?id=1279
http://poj.org/problem?id=2451
http://poj.org/problem?id=3525
http://poj.org/problem?id=3384
http://poj.org/problem?id=1755
https://dmoj.ca/problem/ccoprep3p3
http://poj.org/problem?id=3968
https://codeforces.com/gym/101309/attachments?mobile=false
https://contest.yandex.com/contest/2540/enter/
https://contest.yandex.com/contest/2540/enter/
http://people.csail.mit.edu/zeyuan/publications.htm
https://youtu.be/WKyZSitpm6M?t=6463
https://zhuanlan.zhihu.com/p/83499723
https://blog.csdn.net/qq_40861916/article/details/83541403
https://blog.csdn.net/qq_40482358/article/details/87921815
https://blog.csdn.net/u012061345/article/details/23872929
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Randomized algorithm

• Linear Programming and Half-Plane intersection - Parts 4 and 5.
• Petr Mitrichev’s Blog: A half-plane week.

https://youtu.be/5dfc355t2y4
https://petr-mitrichev.blogspot.com/2016/07/a-half-plane-week.html
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Part IX

Graphs
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Chapter 26

Graph traversal

26.1 Breadth-first search
Breadth first search is one of the basic and essential searching algorithms on
graphs.

As a result of how the algorithm works, the path found by breadth first search
to any node is the shortest path to that node, i.e the path that contains the
smallest number of edges in unweighted graphs.

The algorithm works in O(n+m) time, where n is number of vertices and m
is the number of edges.

26.1.1 Description of the algorithm
The algorithm takes as input an unweighted graph and the id of the source vertex
s. The input graph can be directed or undirected, it does not matter to the
algorithm.

The algorithm can be understood as a fire spreading on the graph: at the
zeroth step only the source s is on fire. At each step, the fire burning at each
vertex spreads to all of its neighbors. In one iteration of the algorithm, the “ring
of fire” is expanded in width by one unit (hence the name of the algorithm).

More precisely, the algorithm can be stated as follows: Create a queue q
which will contain the vertices to be processed and a Boolean array used[] which
indicates for each vertex, if it has been lit (or visited) or not.

Initially, push the source s to the queue and set used[s] = true, and for all
other vertices v set used[v] = false. Then, loop until the queue is empty and in
each iteration, pop a vertex from the front of the queue. Iterate through all the
edges going out of this vertex and if some of these edges go to vertices that are
not already lit, set them on fire and place them in the queue.

As a result, when the queue is empty, the “ring of fire” contains all vertices
reachable from the source s, with each vertex reached in the shortest possible
way. You can also calculate the lengths of the shortest paths (which just requires
maintaining an array of path lengths d[]) as well as save information to restore all
of these shortest paths (for this, it is necessary to maintain an array of “parents”
p[], which stores for each vertex the vertex from which we reached it).
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26.1.2 Implementation
We write code for the described algorithm in C++.

vector<vector<int>> adj; // adjacency list representation
int n; // number of nodes
int s; // source vertex

queue<int> q;
vector<bool> used(n);
vector<int> d(n), p(n);

q.push(s);
used[s] = true;
p[s] = -1;
while (!q.empty()) {

int v = q.front();
q.pop();
for (int u : adj[v]) {

if (!used[u]) {
used[u] = true;
q.push(u);
d[u] = d[v] + 1;
p[u] = v;

}
}

}

If we have to restore and display the shortest path from the source to some
vertex u, it can be done in the following manner:

if (!used[u]) {
cout << "No path!";

} else {
vector<int> path;
for (int v = u; v != -1; v = p[v])

path.push_back(v);
reverse(path.begin(), path.end());
cout << "Path: ";
for (int v : path)

cout << v << " ";
}

26.1.3 Applications of BFS
• Find the shortest path from a source to other vertices in an unweighted

graph.

• Find all connected components in an undirected graph in O(n+m) time:
To do this, we just run BFS starting from each vertex, except for vertices
which have already been visited from previous runs. Thus, we perform
normal BFS from each of the vertices, but do not reset the array used[]
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each and every time we get a new connected component, and the total
running time will still be O(n+m) (performing multiple BFS on the graph
without zeroing the array used[] is called a series of breadth first searches).

• Finding a solution to a problem or a game with the least number of moves,
if each state of the game can be represented by a vertex of the graph, and
the transitions from one state to the other are the edges of the graph.

• Finding the shortest path in a graph with weights 0 or 1: This requires just
a little modification to normal breadth-first search: Instead of maintaining
array used[], we will now check if the distance to vertex is shorter than
current found distance, then if the current edge is of zero weight, we add
it to the front of the queue else we add it to the back of the queue.This
modification is explained in more detail in the article 0-1 BFS.

• Finding the shortest cycle in a directed unweighted graph: Start a breadth-
first search from each vertex. As soon as we try to go from the current
vertex back to the source vertex, we have found the shortest cycle containing
the source vertex. At this point we can stop the BFS, and start a new BFS
from the next vertex. From all such cycles (at most one from each BFS)
choose the shortest.

• Find all the edges that lie on any shortest path between a given pair of
vertices (a, b). To do this, run two breadth first searches: one from a and one
from b. Let da[] be the array containing shortest distances obtained from
the first BFS (from a) and db[] be the array containing shortest distances
obtained from the second BFS from b. Now for every edge (u, v) it is easy
to check whether that edge lies on any shortest path between a and b: the
criterion is the condition da[u] + 1 + db[v] = da[b].

• Find all the vertices on any shortest path between a given pair of vertices
(a, b). To accomplish that, run two breadth first searches: one from a and
one from b. Let da[] be the array containing shortest distances obtained from
the first BFS (from a) and db[] be the array containing shortest distances
obtained from the second BFS (from b). Now for each vertex it is easy to
check whether it lies on any shortest path between a and b: the criterion is
the condition da[v] + db[v] = da[b].

• Find the shortest path of even length from a source vertex s to a target
vertex t in an unweighted graph: For this, we must construct an auxiliary
graph, whose vertices are the state (v, c), where v - the current node, c = 0
or c = 1 - the current parity. Any edge (a, b) of the original graph in this
new column will turn into two edges ((u, 0), (v, 1)) and ((u, 1), (v, 0)). After
that we run a BFS to find the shortest path from the starting vertex (s, 0)
to the end vertex (t, 0).

26.1.4 Practice Problems
• SPOJ: AKBAR

graph/01_bfs.html
http://spoj.com/problems/AKBAR


26.1. Breadth-first search 467

• SPOJ: NAKANJ
• SPOJ: WATER
• SPOJ: MICE AND MAZE
• Timus: Caravans
• DevSkills - Holloween Party
• DevSkills - Ohani And The Link Cut Tree
• SPOJ - Spiky Mazes
• SPOJ - Four Chips (hard)
• SPOJ - Inversion Sort
• Codeforces - Shortest Path
• SPOJ - Yet Another Multiple Problem
• UVA 11392 - Binary 3xType Multiple
• UVA 10968 - KuPellaKeS
• Codeforces - Police Stations
• Codeforces - Okabe and City
• SPOJ - Find the Treasure
• Codeforces - Bear and Forgotten Tree 2
• Codeforces - Cycle in Maze
• UVA - 11312 - Flipping Frustration
• SPOJ - Ada and Cycle
• CSES - Labyrinth
• CSES - Message Route
• CSES - Monsters

http://www.spoj.com/problems/NAKANJ/
http://www.spoj.com/problems/WATER
http://www.spoj.com/problems/MICEMAZE/
http://acm.timus.ru/problem.aspx?space=1&num=2034
https://devskill.com/CodingProblems/ViewProblem/60
https://devskill.com/CodingProblems/ViewProblem/150
http://www.spoj.com/problems/SPIKES/
http://www.spoj.com/problems/ADV04F1/
http://www.spoj.com/problems/INVESORT/
http://codeforces.com/contest/59/problem/E
http://www.spoj.com/problems/MULTII/
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2387
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1909
http://codeforces.com/contest/796/problem/D
http://codeforces.com/contest/821/problem/D
http://www.spoj.com/problems/DIGOKEYS/
http://codeforces.com/contest/653/problem/E
http://codeforces.com/contest/769/problem/C
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2287
http://www.spoj.com/problems/ADACYCLE/
https://cses.fi/problemset/task/1193
https://cses.fi/problemset/result/794325/
https://cses.fi/problemset/task/1194
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26.2 Depth First Search
Depth First Search is one of the main graph algorithms.

Depth First Search finds the lexicographical first path in the graph from a
source vertex u to each vertex. Depth First Search will also find the shortest
paths in a tree (because there only exists one simple path), but on general graphs
this is not the case.

The algorithm works in O(m+ n) time where n is the number of vertices and
m is the number of edges.

26.2.1 Description of the algorithm
The idea behind DFS is to go as deep into the graph as possible, and backtrack
once you are at a vertex without any unvisited adjacent vertices.

It is very easy to describe / implement the algorithm recursively: We start
the search at one vertex. After visiting a vertex, we further perform a DFS for
each adjacent vertex that we haven’t visited before. This way we visit all vertices
that are reachable from the starting vertex.

For more details check out the implementation.

26.2.2 Applications of Depth First Search
• Find any path in the graph from source vertex u to all vertices.

• Find lexicographical first path in the graph from source u to all vertices.

• Check if a vertex in a tree is an ancestor of some other vertex:
At the beginning and end of each search call we remember the entry and
exit “time” of each vertex. Now you can find the answer for any pair of
vertices (i, j) in O(1): vertex i is an ancestor of vertex j if and only if
entry[i] < entry[j] and exit[i] > exit[j].

• Find the lowest common ancestor (LCA) of two vertices.

• Topological sorting:
Run a series of depth first searches so as to visit each vertex exactly once
in O(n+m) time. The required topological ordering will be the vertices
sorted in descending order of exit time.

• Check whether a given graph is acyclic and find cycles in a graph. (As
mentioned above by counting back edges in every connected components).

• Find strongly connected components in a directed graph:
First do a topological sorting of the graph. Then transpose the graph
and run another series of depth first searches in the order defined by the
topological sort. For each DFS call the component created by it is a strongly
connected component.
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• Find bridges in an undirected graph:
First convert the given graph into a directed graph by running a series of
depth first searches and making each edge directed as we go through it, in
the direction we went. Second, find the strongly connected components in
this directed graph. Bridges are the edges whose ends belong to different
strongly connected components.

26.2.3 Classification of edges of a graph
We can classify the edges using the entry and exit time of the end nodes u and v
of the edges (u, v). These classifications are often used for problems like finding
bridges and finding articulation points.

We perform a DFS and classify the encountered edges using the following
rules:

If v is not visited:

• Tree Edge - If v is visited after u then edge (u, v) is called a tree edge. In
other words, if v is visited for the first time and u is currently being visited
then (u, v) is called tree edge. These edges form a DFS tree and hence the
name tree edges.

If v is visited before u:

• Back edges - If v is an ancestor of u, then the edge (u, v) is a back edge. v
is an ancestor exactly if we already entered v, but not exited it yet. Back
edges complete a cycle as there is a path from ancestor v to descendant
u (in the recursion of DFS) and an edge from descendant u to ancestor
v (back edge), thus a cycle is formed. Cycles can be detected using back
edges.

• Forward Edges - If v is a descendant of u, then edge (u, v) is a forward edge.
In other words, if we already visited and exited v and entry[u] < entry[v]
then the edge (u, v) forms a forward edge.

• Cross Edges: if v is neither an ancestor or descendant of u, then edge (u, v)
is a cross edge. In other words, if we already visited and exited v and
entry[u] > entry[v] then (u, v) is a cross edge.

Note: Forward edges and cross edges only exist in directed graphs.

26.2.4 Implementation
vector<vector<int>> adj; // graph represented as an adjacency list
int n; // number of vertices

vector<bool> visited;

void dfs(int v) {
visited[v] = true;
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for (int u : adj[v]) {
if (!visited[u])

dfs(u);
}

}

This is the most simple implementation of Depth First Search. As described
in the applications it might be useful to also compute the entry and exit times
and vertex color. We will color all vertices with the color 0, if we haven’t visited
them, with the color 1 if we visited them, and with the color 2, if we already
exited the vertex.

Here is a generic implementation that additionally computes those:

vector<vector<int>> adj; // graph represented as an adjacency list
int n; // number of vertices

vector<int> color;

vector<int> time_in, time_out;
int dfs_timer = 0;

void dfs(int v) {
time_in[v] = dfs_timer++;
color[v] = 1;
for (int u : adj[v])

if (color[u] == 0)
dfs(u);

color[v] = 2;
time_out[v] = dfs_timer++;

}

26.2.5 Practice Problems
• SPOJ: ABCPATH
• SPOJ: EAGLE1
• Codeforces: Kefa and Park
• Timus:Werewolf
• Timus:Penguin Avia
• Timus:Two Teams
• SPOJ - Ada and Island
• UVA 657 - The die is cast
• SPOJ - Sheep
• SPOJ - Path of the Rightenous Man
• SPOJ - Validate the Maze
• SPOJ - Ghosts having Fun
• Codeforces - Underground Lab
• DevSkills - Maze Tester
• DevSkills - Tourist
• Codeforces - Anton and Tree

http://www.spoj.com/problems/ABCPATH/
http://www.spoj.com/problems/EAGLE1/
http://codeforces.com/problemset/problem/580/C
http://acm.timus.ru/problem.aspx?space=1&num=1242
http://acm.timus.ru/problem.aspx?space=1&num=1709
http://acm.timus.ru/problem.aspx?space=1&num=1106
http://www.spoj.com/problems/ADASEA/
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=598
http://www.spoj.com/problems/KOZE/
http://www.spoj.com/problems/RIOI_2_3/
http://www.spoj.com/problems/MAKEMAZE/
http://www.spoj.com/problems/GHOSTS/
http://codeforces.com/contest/781/problem/C
https://devskill.com/CodingProblems/ViewProblem/3
https://devskill.com/CodingProblems/ViewProblem/17
http://codeforces.com/contest/734/problem/E
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• Codeforces - Transformation: From A to B
• Codeforces - One Way Reform
• Codeforces - Centroids
• Codeforces - Generate a String
• Codeforces - Broken Tree
• Codeforces - Dasha and Puzzle
• Codeforces - Making genome In Berland
• Codeforces - Road Improvement
• Codeforces - Garland
• Codeforces - Labeling Cities
• Codeforces - Send the Fool Futher!
• Codeforces - The tag Game
• Codeforces - Leha and Another game about graphs
• Codeforces - Shortest path problem
• Codeforces - Upgrading Tree
• Codeforces - From Y to Y
• Codeforces - Chemistry in Berland
• Codeforces - Wizards Tour
• Codeforces - Ring Road
• Codeforces - Mail Stamps
• Codeforces - Ant on the Tree
• SPOJ - Cactus
• SPOJ - Mixing Chemicals

http://codeforces.com/contest/727/problem/A
http://codeforces.com/contest/723/problem/E
http://codeforces.com/contest/709/problem/E
http://codeforces.com/contest/710/problem/E
http://codeforces.com/contest/758/problem/E
http://codeforces.com/contest/761/problem/E
http://codeforces.com/contest/638/problem/B
http://codeforces.com/contest/638/problem/C
http://codeforces.com/contest/767/problem/C
http://codeforces.com/contest/794/problem/D
http://codeforces.com/contest/802/problem/K
http://codeforces.com/contest/813/problem/C
http://codeforces.com/contest/841/problem/D
http://codeforces.com/contest/845/problem/G
http://codeforces.com/contest/844/problem/E
http://codeforces.com/contest/849/problem/C
http://codeforces.com/contest/846/problem/E
http://codeforces.com/contest/861/problem/F
http://codeforces.com/contest/24/problem/A
http://codeforces.com/contest/29/problem/C
http://codeforces.com/contest/29/problem/D
http://www.spoj.com/problems/CAC/
http://www.spoj.com/problems/AMR10J/
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Chapter 27

Connected components,
bridges, articulations points

27.1 Search for connected components in a graph
Given an undirected graph G with n nodes and m edges. We are required to find
in it all the connected components, i.e, several groups of vertices such that within
a group each vertex can be reached from another and no path exists between
different groups.

27.1.1 An algorithm for solving the problem
• To solve the problem, we can use Depth First Search or Breadth First

Search.

• In fact, we will be doing a series of rounds of DFS: The first round will start
from first node and all the nodes in the first connected component will be
traversed (found). Then we find the first unvisited node of the remaining
nodes, and run Depth First Search on it, thus finding a second connected
component. And so on, until all the nodes are visited.

• The total asymptotic running time of this algorithm is O(n+m) : In fact,
this algorithm will not run on the same vertex twice, which means that
each edge will be seen exactly two times (at one end and at the other end).

27.1.2 Implementation
int n;
vector<int> g[MAXN] ;
bool used[MAXN] ;
vector<int> comp ;

void dfs(int v) {
used[v] = true ;
comp.push_back(v);
for (size_t i = 0; i < (int) g[v].size(); ++i) {
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int to = g[v][i];
if (!used[to])

dfs(to);
}

}

void find_comps() {
for (int i = 0; i < n ; ++i)

used [i] = false;
for (int i = 0; i < n ; ++i)

if (!used[i]) {
comp.clear();
dfs(i);
cout << "Component:" ;
for (size_t j = 0; j < comp.size(); ++j)

cout << ' ' << comp[j];
cout << endl ;

}
}

• The most important function that is used is find_comps() which finds and
displays connected components of the graph.

• The graph is stored in adjacency list representation, i.e g[i] contains a list
of vertices that have edges from the vertex i. The constant MAXN should be
set equal to the maximum possible number of vertices in the graph.

• Vector comp contains a list of nodes in the current connected component.

27.1.3 Practice Problems
• SPOJ: CCOMPS
• SPOJ: CT23E
• CODECHEF: GERALD07
• CSES : Building Roads

http://www.spoj.com/problems/CCOMPS/
http://www.spoj.com/problems/CT23E/
https://www.codechef.com/MARCH14/problems/GERALD07
https://cses.fi/problemset/task/1666
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27.2 Finding bridges in a graph in O(N + M)
We are given an undirected graph. A bridge is defined as an edge which, when
removed, makes the graph disconnected (or more precisely, increases the number
of connected components in the graph). The task is to find all bridges in the
given graph.

Informally, the problem is formulated as follows: given a map of cities
connected with roads, find all “important” roads, i.e. roads which, when removed,
cause disappearance of a path between some pair of cities.

The algorithm described here is based on depth first search and has O(N+M)
complexity, where N is the number of vertices and M is the number of edges in
the graph.

Note that there is also the article Finding Bridges Online - unlike the offline
algorithm described here, the online algorithm is able to maintain the list of all
bridges in a changing graph (assuming that the only type of change is addition
of new edges).

27.2.1 Algorithm
Pick an arbitrary vertex of the graph root and run depth first search from it.
Note the following fact (which is easy to prove):

• Let’s say we are in the DFS, looking through the edges starting from vertex
v. The current edge (v, to) is a bridge if and only if none of the vertices to
and its descendants in the DFS traversal tree has a back-edge to vertex v
or any of its ancestors. Indeed, this condition means that there is no other
way from v to to except for edge (v, to).

Now we have to learn to check this fact for each vertex efficiently. We’ll use
“time of entry into node” computed by the depth first search.

So, let tin[v] denote entry time for node v. We introduce an array low which
will let us check the fact for each vertex v. low[v] is the minimum of tin[v], the
entry times tin[p] for each node p that is connected to node v via a back-edge
(v, p) and the values of low[to] for each vertex to which is a direct descendant of
v in the DFS tree:

low[v] = min


tin[v]
tin[p] for all p for which (v, p) is a back edge
low[to] for all to for which (v, to) is a tree edge

Now, there is a back edge from vertex v or one of its descendants to one of
its ancestors if and only if vertex v has a child to for which low[to] ≤ tin[v]. If
low[to] = tin[v], the back edge comes directly to v, otherwise it comes to one of
the ancestors of v.

Thus, the current edge (v, to) in the DFS tree is a bridge if and only if
low[to] > tin[v].
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27.2.2 Implementation
The implementation needs to distinguish three cases: when we go down the edge
in DFS tree, when we find a back edge to an ancestor of the vertex and when we
return to a parent of the vertex. These are the cases:

• visited[to] = false - the edge is part of DFS tree;
• visited[to] = true && to 6= parent - the edge is back edge to one of the

ancestors;
• to = parent - the edge leads back to parent in DFS tree.

To implement this, we need a depth first search function which accepts the
parent vertex of the current node.

C++ implementation

int n; // number of nodes
vector<vector<int>> adj; // adjacency list of graph

vector<bool> visited;
vector<int> tin, low;
int timer;

void dfs(int v, int p = -1) {
visited[v] = true;
tin[v] = low[v] = timer++;
for (int to : adj[v]) {

if (to == p) continue;
if (visited[to]) {

low[v] = min(low[v], tin[to]);
} else {

dfs(to, v);
low[v] = min(low[v], low[to]);
if (low[to] > tin[v])

IS_BRIDGE(v, to);
}

}
}

void find_bridges() {
timer = 0;
visited.assign(n, false);
tin.assign(n, -1);
low.assign(n, -1);
for (int i = 0; i < n; ++i) {

if (!visited[i])
dfs(i);

}
}

Main function is find_bridges; it performs necessary initialization and starts
depth first search in each connected component of the graph.
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Function IS_BRIDGE(a, b) is some function that will process the fact that
edge (a, b) is a bridge, for example, print it.

Note that this implementation malfunctions if the graph has multiple edges,
since it ignores them. Of course, multiple edges will never be a part of the answer,
so IS_BRIDGE can check additionally that the reported bridge is not a multiple
edge. Alternatively it’s possible to pass to dfs the index of the edge used to enter
the vertex instead of the parent vertex (and store the indices of all vertices).

27.2.3 Practice Problems
• UVA #796 “Critical Links” [difficulty: low]
• UVA #610 “Street Directions” [difficulty: medium]
• Case of the Computer Network (Codeforces Round #310 Div. 1 E) [diffi-

culty: hard]
• UVA 12363 - Hedge Mazes
• UVA 315 - Network
• GYM - Computer Network (J)
• SPOJ - King Graffs Defense
• SPOJ - Critical Edges
• Codeforces - Break Up
• Codeforces - Tourist Reform

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=737
http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=551
http://codeforces.com/problemset/problem/555/E
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=3785
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=251
http://codeforces.com/gym/100114
http://www.spoj.com/problems/GRAFFDEF/
http://www.spoj.com/problems/EC_P/
http://codeforces.com/contest/700/problem/C
http://codeforces.com/contest/732/problem/F
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27.3 Finding Bridges Online
We are given an undirected graph. A bridge is an edge whose removal makes
the graph disconnected (or, more precisely, increases the number of connected
components). Our task is to find all the bridges in the given graph.

Informally this task can be put as follows: we have to find all the “important”
roads on the given road map, i.e. such roads that the removal of any of them will
lead to some cities being unreachable from others.

There is already the article Finding Bridges in O(N +M) which solves this
task with a Depth First Search traversal. This algorithm will be much more
complicated, but it has one big advantage: the algorithm described in this article
works online, which means that the input graph doesn’t have to be known in
advance. The edges are added once at a time, and after each addition the
algorithm recounts all the bridges in the current graph. In other words the
algorithm is designed to work efficiently on a dynamic, changing graph.

More rigorously the statement of the problem is as follows: Initially the graph
is empty and consists of n vertices. Then we receive pairs of vertices (a, b), which
denote an edge added to the graph. After each received edge, i.e. after adding
each edge, output the current number of bridges in the graph.

It is also possible to maintain a list of all bridges as well as explicitly support
the 2-edge-connected components.

The algorithm described below works in O(n logn + m) time, where m is
the number of edges. The algorithm is based on the data structure Disjoint Set
Union. However the implementation in this article takes O(n logn + m logn)
time, because it uses the simplified version of the DSU without Union by Rank.

27.3.1 Algorithm
First let’s define a k-edge-connected component: it is a connected component
that remains connected whenever you remove fewer than k edges.

It is very easy to see, that the bridges partition the graph into 2-edge-connected
components. If we compress each of those 2-edge-connected components into
vertices and only leave the bridges as edges in the compressed graph, then we
obtain an acyclic graph, i.e. a forest.

The algorithm described below maintains this forest explicitly as well as the
2-edge-connected components.

It is clear that initially, when the graph is empty, it contains n 2-edge-
connected components, which by themselves are not connect.

When adding the next edge (a, b) there can occur three situations:

• Both vertices a and b are in the same 2-edge-connected component - then
this edge is not a bridge, and does not change anything in the forest
structure, so we can just skip this edge.
Thus, in this case the number of bridges does not change.

• The vertices a and b are in completely different connected components,
i.e. each one is part of a different tree. In this case, the edge (a, b) becomes
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a new bridge, and these two trees are combined into one (and all the old
bridges remain).
Thus, in this case the number of bridges increases by one.

• The vertices a and b are in one connected component, but in different
2-edge-connected components. In this case, this edge forms a cycle along
with some of the old bridges. All these bridges end being bridges, and the
resulting cycle must be compressed into a new 2-edge-connected component.
Thus, in this case the number of bridges decreases by two or more.

Consequently the whole task is reduced to the effective implementation of all
these operations over the forest of 2-edge-connected components.

27.3.2 Data Structures for storing the forest
The only data structure that we need is Disjoint Set Union. In fact we will make
two copies of this structure: one will be to maintain the connected components,
the other to maintain the 2-edge-connected components. And in addition we
store the structure of the trees in the forest of 2-edge-connected components via
pointers: Each 2-edge-connected component will store the index par[] of its
ancestor in the tree.

We will now consistently disassemble every operation that we need to learn
to implement:

• Check whether the two vertices lie in the same connected / 2-edge-connected
component. It is done with the usual DSU algorithm, we just find and
compare the representatives of the DSUs.

• Joining two trees for some edge (a, b). Since it could turn out that neither
the vertex a nor the vertex b are the roots of their trees, the only way to
connect these two trees is to re-root one of them. For example you can
re-root the tree of vertex a, and then attach it to another tree by setting
the ancestor of a to b.
However the question about the effectiveness of the re-rooting operation
arises: in order to re-root the tree with the root r to the vertex v, it is
necessary to necessary to visit all vertices on the path between v and r and
redirect the pointers par[] in the opposite direction, and also change the
references to the ancestors in the DSU that is responsible for the connected
components.
Thus, the cost of re-rooting is O(h), where h is the height of the tree. You
can make an even worse estimate by saying that the cost is O(size) where
size is the number of vertices in the tree. The final complexity will not
differ.
We now apply a standard technique: we re-root the tree that contains fewer
vertices. Then it is intuitively clear that the worst case is when two trees
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of approximately equal sizes are combined, but then the result is a tree of
twice the size. This does not allow this situation to happen many times.
In general the total cost can be written in the form of a recurrence:

T (n) = max
k=1...n−1

{T (k) + T (n− k) +O(min(k, n− k))}

T (n) is the number of operations necessary to obtain a tree with n vertices
by means of re-rooting and unifying trees. A tree of size n can be created
by combining two smaller trees of size k and n− k. This recurrence is has
the solution T (n) = O(n logn).
Thus, the total time spent on all re-rooting operations will be O(n logn) if
we always re-root the smaller of the two trees.
We will have to maintain the size of each connected component, but the
data structure DSU makes this possible without difficulty.

• Searching for the cycle formed by adding a new edge (a, b). Since a and
b are already connected in the tree we need to find the Lowest Common
Ancestor of the vertices a and b. The cycle will consist of the paths from b
to the LCA, from the LCA to b and the edge a to b.
After finding the cycle we compress all vertices of the detected cycle into
one vertex. This means that we already have a complexity proportional
to the cycle length, which means that we also can use any LCA algorithm
proportional to the length, and don’t have to use any fast one.
Since all information about the structure of the tree is available is the
ancestor array par[], the only reasonable LCA algorithm is the following:
mark the vertices a and b as visited, then we go to their ancestors par[a]
and par[b] and mark them, then advance to their ancestors and so on,
until we reach an already marked vertex. This vertex is the LCA that we
are looking for, and we can find the vertices on the cycle by traversing the
path from a and b to the LCA again.
It is obvious that the complexity of this algorithm is proportional to the
length of the desired cycle.

• Compression of the cycle by adding a new edge (a, b) in a tree.
We need to create a new 2-edge-connected component, which will consist
of all vertices of the detected cycle (also the detected cycle itself could
consist of some 2-edge-connected components, but this does not change
anything). In addition it is necessary to compress them in such a way that
the structure of the tree is not disturbed, and all pointers par[] and two
DSUs are still correct.
The easiest way to achieve this is to compress all the vertices of the cycle
to their LCA. In fact the LCA is the highest of the vertices, i.e. its ancestor
pointer par[] remains unchanged. For all the other vertices of the loop
the ancestors do not need to be updated, since these vertices simply cease
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to exists. But in the DSU of the 2-edge-connected components all these
vertices will simply point to the LCA.
We will implement the DSU of the 2-edge-connected components without the
Union by rank optimization, therefore we will get the complexity O(logn)
on average per query. To achieve the complexity O(1) on average per query,
we need to combine the vertices of the cycle according to Union by rank,
and then assign par[] accordingly.

27.3.3 Implementation
Here is the final implementation of the whole algorithm.

As mentioned before, for the sake of simplicity the DSU of the 2-edge-
connected components is written without Union by rank, therefore the resulting
complexity will be O(logn) on average.

Also in this implementation the bridges themselves are not stored, only their
count bridges. However it will not be difficult to create a set of all bridges.

Initially you call the function init(), which initializes the two DSUs (creating
a separate set for each vertex, and setting the size equal to one), and sets the
ancestors par.

The main function is add_edge(a, b), which processes and adds a new edge.

vector<int> par, dsu_2ecc, dsu_cc, dsu_cc_size;
int bridges;
int lca_iteration;
vector<int> last_visit;

void init(int n) {
par.resize(n);
dsu_2ecc.resize(n);
dsu_cc.resize(n);
dsu_cc_size.resize(n);
lca_iteration = 0;
last_visit.assign(n, 0);
for (int i=0; i<n; ++i) {

dsu_2ecc[i] = i;
dsu_cc[i] = i;
dsu_cc_size[i] = 1;
par[i] = -1;

}
bridges = 0;

}

int find_2ecc(int v) {
if (v == -1)

return -1;
return dsu_2ecc[v] == v ? v : dsu_2ecc[v] = find_2ecc(dsu_2ecc[v]);

}

int find_cc(int v) {
v = find_2ecc(v);
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return dsu_cc[v] == v ? v : dsu_cc[v] = find_cc(dsu_cc[v]);
}

void make_root(int v) {
v = find_2ecc(v);
int root = v;
int child = -1;
while (v != -1) {

int p = find_2ecc(par[v]);
par[v] = child;
dsu_cc[v] = root;
child = v;
v = p;

}
dsu_cc_size[root] = dsu_cc_size[child];

}

void merge_path (int a, int b) {
++lca_iteration;
vector<int> path_a, path_b;
int lca = -1;
while (lca == -1) {

if (a != -1) {
a = find_2ecc(a);
path_a.push_back(a);
if (last_visit[a] == lca_iteration){

lca = a;
break;
}

last_visit[a] = lca_iteration;
a = par[a];

}
if (b != -1) {

b = find_2ecc(b);
path_b.push_back(b);
if (last_visit[b] == lca_iteration){

lca = b;
break;
}

last_visit[b] = lca_iteration;
b = par[b];

}

}

for (int v : path_a) {
dsu_2ecc[v] = lca;
if (v == lca)

break;
--bridges;

}
for (int v : path_b) {



Graphs, Chapter 27. Connected components, bridges, articulations points 482

dsu_2ecc[v] = lca;
if (v == lca)

break;
--bridges;

}
}

void add_edge(int a, int b) {
a = find_2ecc(a);
b = find_2ecc(b);
if (a == b)

return;

int ca = find_cc(a);
int cb = find_cc(b);

if (ca != cb) {
++bridges;
if (dsu_cc_size[ca] > dsu_cc_size[cb]) {

swap(a, b);
swap(ca, cb);

}
make_root(a);
par[a] = dsu_cc[a] = b;
dsu_cc_size[cb] += dsu_cc_size[a];

} else {
merge_path(a, b);

}
}

The DSU for the 2-edge-connected components is stored in the vector
dsu_2ecc, and the function returning the representative is find_2ecc(v). This
function is used many times in the rest of the code, since after the compression
of several vertices into one all these vertices cease to exist, and instead only the
leader has the correct ancestor par in the forest of 2-edge-connected components.

The DSU for the connected components is stored in the vector dsu_cc, and
there is also an additional vector dsu_cc_size to store the component sizes. The
function find_cc(v) returns the leader of the connectivity component (which is
actually the root of the tree).

The re-rooting of a tree make_root(v) works as descibed above: if traverses
from the vertex v via the ancestors to the root vertex, each time redirecting
the ancestor par in the opposite direction. The link to the representative of the
connected component dsu_cc is also updated, so that it points to the new root
vertex. After re-rooting we have to assign the new root the correct size of the
connected component. Also we have to be careful that we call find_2ecc() to
get the representatives of the 2-edge-connected component, rather than some
other vertex that have already been compressed.

The cycle finding and compression function merge_path(a, b) is also imple-
mented as descibed above. It searches for the LCA of a and b be rising these
nodes in parallel, until we meet a vertex for the second time. For efficiency
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purposes we choose a unique identifier for each LCA finding call, and mark
the traversed vertices with it. This works in O(1), while other approaches like
using set perform worse. The passed paths are stored in the vectors path_a
and path_b, and we use them to walk through them a second time up to the
LCA, thereby obtaining all vertices of the cycle. All the vertices of the cycle
get compressed by attaching them to the LCA, hence the average complexity is
O(logn) (since we don’t use Union by rank). All the edges we pass have been
bridges, so we subtract 1 for each edge in the cycle.

Finally the query function add_edge(a, b) determines the connected com-
ponents in which the vertices a and b lie. If they lie in different connectivity
components, then a smaller tree is re-rooted and then attached to the larger tree.
Otherwise if the vertices a and b lie in one tree, but in different 2-edge-connected
components, then the function merge_path(a, b) is called, which will detect
the cycle and compress it into one 2-edge-connected component.
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27.4 Finding articulation points in a graph in O(N+M)

We are given an undirected graph. An articulation point (or cut vertex) is defined
as a vertex which, when removed along with associated edges, makes the graph
disconnected (or more precisely, increases the number of connected components
in the graph). The task is to find all articulation points in the given graph.

The algorithm described here is based on depth first search and has O(N+M)
complexity, where N is the number of vertices and M is the number of edges in
the graph.

27.4.1 Algorithm
Pick an arbitrary vertex of the graph root and run depth first search from it.
Note the following fact (which is easy to prove):

• Let’s say we are in the DFS, looking through the edges starting from vertex
v 6= root. If the current edge (v, to) is such that none of the vertices to or its
descendants in the DFS traversal tree has a back-edge to any of ancestors
of v, then v is an articulation point. Otherwise, v is not an articulation
point.

• Let’s consider the remaining case of v = root. This vertex will be the point
of articulation if and only if this vertex has more than one child in the DFS
tree.

Now we have to learn to check this fact for each vertex efficiently. We’ll use
“time of entry into node” computed by the depth first search.

So, let tin[v] denote entry time for node v. We introduce an array low[v]
which will let us check the fact for each vertex v. low[v] is the minimum of tin[v],
the entry times tin[p] for each node p that is connected to node v via a back-edge
(v, p) and the values of low[to] for each vertex to which is a direct descendant of
v in the DFS tree:

low[v] = min


tin[v]
tin[p] for all p for which (v, p) is a back edge
low[to] for all to for which (v, to) is a tree edge

Now, there is a back edge from vertex v or one of its descendants to one of
its ancestors if and only if vertex v has a child to for which low[to] < tin[v]. If
low[to] = tin[v], the back edge comes directly to v, otherwise it comes to one of
the ancestors of v.

Thus, the vertex v in the DFS tree is an articulation point if and only if
low[to] ≥ tin[v].
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27.4.2 Implementation
The implementation needs to distinguish three cases: when we go down the edge
in DFS tree, when we find a back edge to an ancestor of the vertex and when we
return to a parent of the vertex. These are the cases:

• visited[to] = false - the edge is part of DFS tree;
• visited[to] = true && to 6= parent - the edge is back edge to one of the

ancestors;
• to = parent - the edge leads back to parent in DFS tree.

To implement this, we need a depth first search function which accepts the
parent vertex of the current node.

C++ implementation

int n; // number of nodes
vector<vector<int>> adj; // adjacency list of graph

vector<bool> visited;
vector<int> tin, low;
int timer;

void dfs(int v, int p = -1) {
visited[v] = true;
tin[v] = low[v] = timer++;
int children=0;
for (int to : adj[v]) {

if (to == p) continue;
if (visited[to]) {

low[v] = min(low[v], tin[to]);
} else {

dfs(to, v);
low[v] = min(low[v], low[to]);
if (low[to] >= tin[v] && p!=-1)

IS_CUTPOINT(v);
++children;

}
}
if(p == -1 && children > 1)

IS_CUTPOINT(v);
}

void find_cutpoints() {
timer = 0;
visited.assign(n, false);
tin.assign(n, -1);
low.assign(n, -1);
for (int i = 0; i < n; ++i) {

if (!visited[i])
dfs (i);

}
}
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Main function is find_cutpoints; it performs necessary initialization and
starts depth first search in each connected component of the graph.

Function IS_CUTPOINT(a) is some function that will process the fact that
vertex a is an articulation point, for example, print it (Caution that this can be
called multiple times for a vertex).

27.4.3 Practice Problems
• UVA #10199 “Tourist Guide” [difficulty: low]
• UVA #315 “Network” [difficulty: low]
• SPOJ - Submerging Islands
• Codeforces - Cutting Figure

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=13&page=show_problem&problem=1140
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=5&page=show_problem&problem=251
http://www.spoj.com/problems/SUBMERGE/
https://codeforces.com/problemset/problem/193/A
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27.5 Finding strongly connected components – Build-
ing condensation graph

27.5.1 Definitions
You are given a directed graph G with vertices V and edges E. It is possible
that there are loops and multiple edges. Let’s denote n as number of vertices
and m as number of edges in G.

Strongly connected component is a maximal subset of vertices C such
that any two vertices of this subset are reachable from each other, i.e. for any
u, v ∈ C:

u 7→ v, v 7→ u

where 7→ means reachability, i.e. existence of the path from first vertex to the
second.

It is obvious, that strongly connected components do not intersect each
other, i.e. this is a partition of all graph vertices. Thus we can give a definition
of condensation graph GSCC as a graph containing every strongly connected
component as one vertex. Each vertex of the condensation graph corresponds to
the strongly connected component of graph G. There is an oriented edge between
two vertices Ci and Cj of the condensation graph if and only if there are two
vertices u ∈ Ci, v ∈ Cj such that there is an edge in initial graph, i.e. (u, v) ∈ E.

The most important property of the condensation graph is that it is acyclic.
Indeed, suppose that there is an edge between C and C ′, let’s prove that there
is no edge from C ′ to C. Suppose that C ′ 7→ C. Then there are two vertices
u′ ∈ C and v′ ∈ C ′ such that v′ 7→ u′. But since u and u′ are in the same strongly
connected component then there is a path between them; the same for v and
v′. As a result, if we join these paths we have that v 7→ u and at the same time
u 7→ v. Therefore u and v should be at the same strongly connected component,
so this is contradiction. This completes the proof.

The algorithm described in the next section extracts all strongly connected
components in a given graph. It is quite easy to build a condensation graph then.

27.5.2 Description of the algorithm
Described algorithm was independently suggested by Kosaraju and Sharir at
1979. This is an easy-to-implement algorithm based on two series of depth first
search, and working for O(n+m) time.

On the first step of the algorithm we are doing sequence of depth first
searches, visiting the entire graph. We start at each vertex of the graph and run
a depth first search from every non-visited vertex. For each vertex we are keeping
track of exit time tout[v]. These exit times have a key role in an algorithm and
this role is expressed in next theorem.

First, let’s make notations: let’s define exit time tout[C] from the strongly
connected component C as maximum of values tout[v] by all v ∈ C. Besides,
during the proof of the theorem we will mention entry times tin[v] in each vertex
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and in the same way consider tin[C] for each strongly connected component C
as minimum of values tin[v] by all v ∈ C.

Theorem. Let C and C ′ are two different strongly connected components
and there is an edge (C,C ′) in a condensation graph between these two vertices.
Then tout[C] > tout[C ′].

There are two main different cases at the proof depending on which component
will be visited by depth first search first, i.e. depending on difference between
tin[C] and tin[C ′]:

• The component C was reached first. It means that depth first search comes
at some vertex v of component C at some moment, but all other vertices
of components C and C ′ were not visited yet. By condition there is an
edge (C,C ′) in a condensation graph, so not only the entire component C
is reachable from v but the whole component C ′ is reachable as well. It
means that depth first search that is running from vertex v will visit all
vertices of components C and C ′, so they will be descendants for v in a
depth first search tree, i.e. for each vertex u ∈ C ∪ C ′, u 6= v we have that
tout[v] > tout[u], as we claimed.

• Assume that component C ′ was visited first. Similarly, depth first search
comes at some vertex v of component C ′ at some moment, but all other
vertices of components C and C ′ were not visited yet. But by condition there
is an edge (C,C ′) in the condensation graph, so, because of acyclic property
of condensation graph, there is no back path from C ′ to C, i.e. depth first
search from vertex v will not reach vertices of C. It means that vertices
of C will be visited by depth first search later, so tout[C] > tout[C ′]. This
completes the proof.

Proved theorem is the base of algorithm for finding strongly connected
components. It follows that any edge (C,C ′) in condensation graph comes from
a component with a larger value of tout to component with a smaller value.

If we sort all vertices v ∈ V by decreasing of their exit moment tout[v] then the
first vertex u is going to be a vertex from “root” strongly connected component,
i.e. a vertex that no edges in a condensation graph come into. Now we want
to run such search from this vertex u so that it will visit all vertices in this
strongly connected component, but not others; doing so, we can gradually select
all strongly connected components: let’s remove all vertices corresponding to the
first selected component, and then let’s find a vertex with the largest value of
tout, and run this search from it, and so on.

Let’s consider transposed graph GT , i.e. graph received from G by reversing
the direction of each edge. Obviously, this graph will have the same strongly
connected components as the initial graph. Moreover, the condensation graph
GSCC will also get transposed. It means that there will be no edges from our
“root” component to other components.

Thus, for visiting the whole “root” strongly connected component, containing
vertex v, is enough to run search from vertex v in graph GT . This search will
visit all vertices of this strongly connected component and only them. As was
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mentioned before, we can remove these vertices from the graph then, and find
the next vertex with a maximal value of tout[v] and run search in transposed
graph from it, and so on.

Thus, we built next algorithm for selecting strongly connected components:
1st step. Run sequence of depth first search of graph G which will return

vertices with increasing exit time tout, i.e. some list order.
2nd step. Build transposed graph GT . Run a series of depth (breadth) first

searches in the order determined by list order (to be exact in reverse order, i.e. in
decreasing order of exit times). Every set of vertices, reached after the next
search, will be the next strongly connected component.

Algorithm asymptotic is O(n + m), because it is just two depth (breadth)
first searches.

Finally, it is appropriate to mention topological sort here. First of all, step 1
of the algorithm represents reversed topological sort of graph G (actually this is
exactly what vertices’ sort by exit time means). Secondly, the algorithm’s scheme
generates strongly connected components by decreasing order of their exit times,
thus it generates components - vertices of condensation graph - in topological
sort order.

27.5.3 Implementation
vector<vector<int>> adj, adj_rev;
vector<bool> used;
vector<int> order, component;

void dfs1(int v) {
used[v] = true;

for (auto u : adj[v])
if (!used[u])

dfs1(u);

order.push_back(v);
}

void dfs2(int v) {
used[v] = true;
component.push_back(v);

for (auto u : adj_rev[v])
if (!used[u])

dfs2(u);
}

int main() {
int n;
// ... read n ...

for (;;) {
int a, b;
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// ... read next directed edge (a,b) ...
adj[a].push_back(b);
adj_rev[b].push_back(a);

}

used.assign(n, false);

for (int i = 0; i < n; i++)
if (!used[i])

dfs1(i);

used.assign(n, false);
reverse(order.begin(), order.end());

for (auto v : order)
if (!used[v]) {

dfs2 (v);

// ... processing next component ...

component.clear();
}

}

Here, g is graph, gr is transposed graph. Function dfs1 implements depth
first search on graph G, function dfs2 - on transposed graph GT . Function dfs1
fills the list order with vertices in increasing order of their exit times (actually,
it is making a topological sort). Function dfs2 stores all reached vertices in list
component, that is going to store next strongly connected component after each
run.

Condensation Graph Implementation

// continuing from previous code

vector<int> roots(n, 0);
vector<int> root_nodes;
vector<vector<int>> adj_scc(n);

for (auto v : order)
if (!used[v]) {

dfs2(v);

int root = component.front();
for (auto u : component) roots[u] = root;
root_nodes.push_back(root);

component.clear();
}
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for (int v = 0; v < n; v++)
for (auto u : adj[v]) {

int root_v = roots[v],
root_u = roots[u];

if (root_u != root_v)
adj_scc[root_v].push_back(root_u);

}

Here, we have selected the root of each component as the first node in its list.
This node will represent its entire SCC in the condensation graph. roots[v]
indicates the root node for the SCC to which node v belongs. root_nodes is the
list of all root nodes (one per component) in the condensation graph.

adj_scc is the adjacency list of the root_nodes. We can now traverse on
adj_scc as our condensation graph, using only those nodes which belong to
root_nodes.

27.5.4 Literature
• Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein. Intro-

duction to Algorithms [2005].
• M. Sharir. A strong-connectivity algorithm and its applications in data-flow

analysis [1979].

27.5.5 Practice Problems
• SPOJ - Submerging Islands
• SPOJ - Good Travels
• SPOJ - Lego
• Codechef - Chef and Round Run
• Dev Skills - A Song of Fire and Ice
• UVA - 11838 - Come and Go
• UVA 247 - Calling Circles
• UVA 13057 - Prove Them All
• UVA 12645 - Water Supply
• UVA 11770 - Lighting Away
• UVA 12926 - Trouble in Terrorist Town
• UVA 11324 - The Largest Clique
• UVA 11709 - Trust groups
• UVA 12745 - Wishmaster
• SPOJ - True Friends
• SPOJ - Capital City
• Codeforces - Scheme
• SPOJ - Ada and Panels
• CSES - Flight Routes Check
• CSES - Planets and Kingdoms
• CSES -Coin Collector
• Codeforces - Checkposts

http://www.spoj.com/problems/SUBMERGE/
http://www.spoj.com/problems/GOODA/
http://www.spoj.com/problems/LEGO/
https://www.codechef.com/AUG16/problems/CHEFRRUN
https://devskill.com/CodingProblems/ViewProblem/79
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2938
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=183
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4955
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4393
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2870
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=862&page=show_problem&problem=4805
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2299
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2756
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4598
http://www.spoj.com/problems/TFRIENDS/
http://www.spoj.com/problems/CAPCITY/
http://codeforces.com/contest/22/problem/E
http://www.spoj.com/problems/ADAPANEL/
https://cses.fi/problemset/task/1682
https://cses.fi/problemset/task/1683
https://cses.fi/problemset/task/1686
https://codeforces.com/problemset/problem/427/C
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27.6 Strong Orientation
A strong orientation of an undirected graph is an assignment of a direction to
each edge that makes it a strongly connected graph. That is, after the orientation
we should be able to visit any vertex from any vertex by following the directed
edges.

27.6.1 Solution
Of course, this cannot be done to every graph. Consider a bridge in a graph. We
have to assign a direction to it and by doing so we make this bridge “crossable”
in only one direction. That means we can’t go from one of the bridge’s ends to
the other, so we can’t make the graph strongly connected.

Now consider a DFS through a bridgeless connected graph. Clearly, we will
visit each vertex. And since there are no bridges, we can remove any DFS tree
edge and still be able to go from below the edge to above the edge by using a
path that contains at least one back edge. From this follows that from any vertex
we can go to the root of the DFS tree. Also, from the root of the DFS tree we
can visit any vertex we choose. We found a strong orientation!

In other words, to strongly orient a bridgeless connected graph, run a DFS
on it and let the DFS tree edges point away from the DFS root and all other
edges from the descendant to the ancestor in the DFS tree.

The result that bridgeless connected graphs are exactly the graphs that have
strong orientations is called Robbins’ theorem.

27.6.2 Problem extension
Let’s consider the problem of finding a graph orientation so that the number of
SCCs is minimal.

Of course, each graph component can be considered separately. Now, since
only bridgeless graphs are strongly orientable, let’s remove all bridges temporarily.
We end up with some number of bridgeless components (exactly how many
components there were at the beginning + how many bridges there were) and we
know that we can strongly orient each of them.

We were only allowed to orient edges, not remove them, but it turns out
we can orient the bridges arbitrarily. Of course, the easiest way to orient them
is to run the algorithm described above without modifications on each original
connected component.

Implementation

Here, the input is n — the number of vertices, m — the number of edges, then
m lines describing the edges.

The output is the minimal number of SCCs on the first line and on the second
line a string of m characters, either > — telling us that the corresponding edge
from the input is oriented from the left to the right vertex (as in the input), or <
— the opposite.
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This is a bridge search algorithm modified to also orient the edges, you can
as well orient the edges as a first step and count the SCCs on the oriented graph
as a second.

vector<vector<pair<int, int>>> adj; // adjacency list - vertex and edge pairs
vector<pair<int, int>> edges;

vector<int> tin, low;
int bridge_cnt;
string orient;
vector<bool> edge_used;
void find_bridges(int v) {

static int time = 0;
low[v] = tin[v] = time++;
for (auto p : adj[v]) {

if (edge_used[p.second]) continue;
edge_used[p.second] = true;
orient[p.second] = v == edges[p.second].first ? '>' : '<';
int nv = p.first;
if (tin[nv] == -1) { // if nv is not visited yet

find_bridges(nv);
low[v] = min(low[v], low[nv]);
if (low[nv] > tin[v]) {

// a bridge between v and nv
bridge_cnt++;

}
} else {

low[v] = min(low[v], low[nv]);
}

}
}

int main() {
int n, m;
scanf("%d %d", &n, &m);
adj.resize(n);
tin.resize(n, -1);
low.resize(n, -1);
orient.resize(m);
edges.resize(m);
edge_used.resize(m);
for (int i = 0; i < m; i++) {

int a, b;
scanf("%d %d", &a, &b);
a--; b--;
adj[a].push_back({b, i});
adj[b].push_back({a, i});
edges[i] = {a, b};

}
int comp_cnt = 0;
for (int v = 0; v < n; v++) {

if (tin[v] == -1) {
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comp_cnt++;
find_bridges(v);

}
}
printf("%d\n%s\n", comp_cnt + bridge_cnt, orient.c_str());

}

27.6.3 Practice Problems
• 26th Polish OI - Osiedla

https://szkopul.edu.pl/problemset/problem/nldsb4EW1YuZykBlf4lcZL1Y/site/
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Chapter 28

Single-source shortest paths

28.1 Dijkstra Algorithm
You are given a directed or undirected weighted graph with n vertices and m
edges. The weights of all edges are non-negative. You are also given a starting
vertex s. This article discusses finding the lengths of the shortest paths from a
starting vertex s to all other vertices, and output the shortest paths themselves.

This problem is also called single-source shortest paths problem.

28.1.1 Algorithm
Here is an algorithm described by the Dutch computer scientist Edsger W.
Dijkstra in 1959.

Let’s create an array d[] where for each vertex v we store the current length of
the shortest path from s to v in d[v]. Initially d[s] = 0, and for all other vertices
this length equals infinity. In the implementation a sufficiently large number
(which is guaranteed to be greater than any possible path length) is chosen as
infinity.

d[v] =∞, v 6= s

In addition, we maintain a Boolean array u[] which stores for each vertex v
whether it’s marked. Initially all vertices are unmarked:

u[v] = false

The Dijkstra’s algorithm runs for n iterations. At each iteration a vertex v is
chosen as unmarked vertex which has the least value d[v]:

Evidently, in the first iteration the starting vertex s will be selected.
The selected vertex v is marked. Next, from vertex v relaxations are

performed: all edges of the form (v, to) are considered, and for each vertex to
the algorithm tries to improve the value d[to]. If the length of the current edge
equals len, the code for relaxation is:

d[to] = min(d[to], d[v] + len)
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After all such edges are considered, the current iteration ends. Finally, after
n iterations, all vertices will be marked, and the algorithm terminates. We claim
that the found values d[v] are the lengths of shortest paths from s to all vertices
v.

Note that if some vertices are unreachable from the starting vertex s, the
values d[v] for them will remain infinite. Obviously, the last few iterations of
the algorithm will choose those vertices, but no useful work will be done for
them. Therefore, the algorithm can be stopped as soon as the selected vertex
has infinite distance to it.

Restoring Shortest Paths

Usually one needs to know not only the lengths of shortest paths but also the
shortest paths themselves. Let’s see how to maintain sufficient information to
restore the shortest path from s to any vertex. We’ll maintain an array of
predecessors p[] in which for each vertex v 6= s p[v] is the penultimate vertex in
the shortest path from s to v. Here we use the fact that if we take the shortest
path to some vertex v and remove v from this path, we’ll get a path ending in
at vertex p[v], and this path will be the shortest for the vertex p[v]. This array
of predecessors can be used to restore the shortest path to any vertex: starting
with v, repeatedly take the predecessor of the current vertex until we reach the
starting vertex s to get the required shortest path with vertices listed in reverse
order. So, the shortest path P to the vertex v is equal to:

P = (s, . . . , p[p[p[v]]], p[p[v]], p[v], v)

Building this array of predecessors is very simple: for each successful relaxation,
i.e. when for some selected vertex v, there is an improvement in the distance to
some vertex to, we update the predecessor vertex for to with vertex v:

p[to] = v

28.1.2 Proof
The main assertion on which Dijkstra’s algorithm correctness is based is the
following:

After any vertex v becomes marked, the current distance to it d[v]
is the shortest, and will no longer change.

The proof is done by induction. For the first iteration this statement is
obvious: the only marked vertex is s, and the distance to is d[s] = 0 is indeed
the length of the shortest path to s. Now suppose this statement is true for all
previous iterations, i.e. for all already marked vertices; let’s prove that it is not
violated after the current iteration completes. Let v be the vertex selected in the
current iteration, i.e. v is the vertex that the algorithm will mark. Now we have
to prove that d[v] is indeed equal to the length of the shortest path to it l[v].

Consider the shortest path P to the vertex v. This path can be split into two
parts: P1 which consists of only marked nodes (at least the starting vertex s is
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part of P1), and the rest of the path P2 (it may include a marked vertex, but it
always starts with an unmarked vertex). Let’s denote the first vertex of the path
P2 as p, and the last vertex of the path P1 as q.

First we prove our statement for the vertex p, i.e. let’s prove that d[p] = l[p].
This is almost obvious: on one of the previous iterations we chose the vertex q
and performed relaxation from it. Since (by virtue of the choice of vertex p) the
shortest path to p is the shortest path to q plus edge (p, q), the relaxation from q
set the value of d[p] to the length of the shortest path l[p].

Since the edges’ weights are non-negative, the length of the shortest path
l[p] (which we just proved to be equal to d[p]) does not exceed the length l[v]
of the shortest path to the vertex v. Given that l[v] ≤ d[v] (because Dijkstra’s
algorithm could not have found a shorter way than the shortest possible one), we
get the inequality:

d[p] = l[p] ≤ l[v] ≤ d[v]

On the other hand, since both vertices p and v are unmarked, and the current
iteration chose vertex v, not p, we get another inequality:

d[p] ≥ d[v]

From these two inequalities we conclude that d[p] = d[v], and then from
previously found equations we get:

d[v] = l[v]

Q.E.D.

28.1.3 Implementation
Dijkstra’s algorithm performs n iterations. On each iteration it selects an
unmarked vertex v with the lowest value d[v], marks it and checks all the edges
(v, to) attempting to improve the value d[to].

The running time of the algorithm consists of:

• n searches for a vertex with the smallest value d[v] among O(n) unmarked
vertices

• m relaxation attempts

For the simplest implementation of these operations on each iteration vertex
search requires O(n) operations, and each relaxation can be performed in O(1).
Hence, the resulting asymptotic behavior of the algorithm is:

O(n2 +m)

This complexity is optimal for dense graph, i.e. when m ≈ n2. However in
sparse graphs, when m is much smaller than the maximal number of edges n2,
the problem can be solved in O(n logn + m) complexity. The algorithm and
implementation can be found on the article Dijkstra on sparse graphs.
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const int INF = 1000000000;
vector<vector<pair<int, int>>> adj;

void dijkstra(int s, vector<int> & d, vector<int> & p) {
int n = adj.size();
d.assign(n, INF);
p.assign(n, -1);
vector<bool> u(n, false);

d[s] = 0;
for (int i = 0; i < n; i++) {

int v = -1;
for (int j = 0; j < n; j++) {

if (!u[j] && (v == -1 || d[j] < d[v]))
v = j;

}

if (d[v] == INF)
break;

u[v] = true;
for (auto edge : adj[v]) {

int to = edge.first;
int len = edge.second;

if (d[v] + len < d[to]) {
d[to] = d[v] + len;
p[to] = v;

}
}

}
}

Here the graph adj is stored as adjacency list: for each vertex v adj[v] contains
the list of edges going from this vertex, i.e. the list of pair<int,int> where the
first element in the pair is the vertex at the other end of the edge, and the second
element is the edge weight.

The function takes the starting vertex s and two vectors that will be used as
return values.

First of all, the code initializes arrays: distances d[], labels u[] and predecessors
p[]. Then it performs n iterations. At each iteration the vertex v is selected which
has the smallest distance d[v] among all the unmarked vertices. If the distance to
selected vertex v is equal to infinity, the algorithm stops. Otherwise the vertex is
marked, and all the edges going out from this vertex are checked. If relaxation
along the edge is possible (i.e. distance d[to] can be improved), the distance d[to]
and predecessor p[to] are updated.

After performing all the iterations array d[] stores the lengths of the shortest
paths to all vertices, and array p[] stores the predecessors of all vertices (except
starting vertex s). The path to any vertex t can be restored in the following way:

vector<int> restore_path(int s, int t, vector<int> const& p) {
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vector<int> path;

for (int v = t; v != s; v = p[v])
path.push_back(v);

path.push_back(s);

reverse(path.begin(), path.end());
return path;

}

28.1.4 References
• Edsger Dijkstra. A note on two problems in connexion with graphs [1959]
• Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein. Intro-

duction to Algorithms [2005]

28.1.5 Practice Problems
• Timus - Ivan’s Car [Difficulty:Medium]
• Timus - Sightseeing Trip
• SPOJ - SHPATH [Difficulty:Easy]
• Codeforces - Dijkstra? [Difficulty:Easy]
• Codeforces - Shortest Path
• Codeforces - Jzzhu and Cities
• Codeforces - The Classic Problem
• Codeforces - President and Roads
• Codeforces - Complete The Graph
• TopCoder - SkiResorts
• TopCoder - MaliciousPath
• SPOJ - Ada and Trip
• LA - 3850 - Here We Go(relians) Again
• GYM - Destination Unknown (D)
• UVA 12950 - Even Obsession
• GYM - Journey to Grece (A)
• UVA 13030 - Brain Fry
• UVA 1027 - Toll
• UVA 11377 - Airport Setup
• Codeforces - Dynamic Shortest Path
• UVA 11813 - Shopping
• UVA 11833 - Route Change
• SPOJ - Easy Dijkstra Problem
• LA - 2819 - Cave Raider
• UVA 12144 - Almost Shortest Path
• UVA 12047 - Highest Paid Toll
• UVA 11514 - Batman
• Codeforces - Team Rocket Rises Again
• UVA - 11338 - Minefield
• UVA 11374 - Airport Express

http://acm.timus.ru/problem.aspx?space=1&num=1930
http://acm.timus.ru/problem.aspx?space=1&num=1004
http://www.spoj.com/problems/SHPATH/
http://codeforces.com/problemset/problem/20/C
http://codeforces.com/problemset/problem/59/E
http://codeforces.com/problemset/problem/449/B
http://codeforces.com/problemset/problem/464/E
http://codeforces.com/problemset/problem/567/E
http://codeforces.com/problemset/problem/715/B
https://community.topcoder.com/stat?c=problem_statement&pm=12468
https://community.topcoder.com/stat?c=problem_statement&pm=13596
http://www.spoj.com/problems/ADATRIP/
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1851
http://codeforces.com/gym/100625
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=4829
http://codeforces.com/gym/100753
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=866&page=show_problem&problem=4918
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=3468
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=2372
http://codeforces.com/problemset/problem/843/D
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2913
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=226&page=show_problem&problem=2933
http://www.spoj.com/problems/EZDIJKST/en/
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=820
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=3296
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3198
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=2509
http://codeforces.com/contest/757/problem/F
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2313
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2369
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• UVA 11097 - Poor My Problem
• UVA 13172 - The music teacher
• Codeforces - Dirty Arkady’s Kitchen
• SPOJ - Delivery Route
• SPOJ - Costly Chess
• CSES - Shortest Routes 1
• CSES - Flight Discount
• CSES - Flight Routes

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2038
https://uva.onlinejudge.org/index.php?option=onlinejudge&Itemid=8&page=show_problem&problem=5083
http://codeforces.com/contest/827/problem/F
http://www.spoj.com/problems/DELIVER/
http://www.spoj.com/problems/CCHESS/
https://cses.fi/problemset/task/1671
https://cses.fi/problemset/task/1195
https://cses.fi/problemset/task/1196
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28.2 Dijkstra on sparse graphs
For the statement of the problem, the algorithm with implementation and proof
can be found on the article Dijkstra’s algorithm.

28.2.1 Algorithm
We recall in the derivation of the complexity of Dijkstra’s algorithm we used two
factors: the time of finding the unmarked vertex with the smallest distance d[v],
and the time of the relaxation, i.e. the time of changing the values d[to].

In the simplest implementation these operations require O(n) and O(1) time.
Therefore, since we perform the first operation O(n) times, and the second one
O(m) times, we obtained the complexity O(n2 +m).

It is clear, that this complexity is optimal for a dense graph, i.e. when m ≈ n2.
However in sparse graphs, when m is much smaller than the maximal number
of edges n2, the complexity gets less optimal because of the first term. Thus it
is necessary to improve the execution time of the first operation (and of course
without greatly affecting the second operation by much).

To accomplish that we can use a variation of multiple auxiliary data structures.
The most efficient is the Fibonacci heap, which allows the first operation to
run in O(logn), and the second operation in O(1). Therefore we will get the
complexity O(n logn+m) for Dijkstra’s algorithm, which is also the theoretical
minimum for the shortest path search problem. Therefore this algorithm works
optimal, and Fibonacci heaps are the optimal data structure. There doesn’t
exist any data structure, that can perform both operations in O(1), because
this would also allow to sort a list of random numbers in linear time, which is
impossible. Interestingly there exists an algorithm by Thorup that finds the
shortest path in O(m) time, however only works for integer weights, and uses a
completely different idea. So this doesn’t lead to any contradictions. Fibonacci
heaps provide the optimal complexity for this task. However they are quite
complex to implement, and also have a quite large hidden constant.

As a compromise you can use data structures, that perform both types of
operations (extracting a minimum and updating an item) in O(logn). Then the
complexity of Dijkstra’s algorithm is O(n logn+m logn) = O(m logn).

C++ provides two such data structures: set and priority_queue. The
first is based on red-black trees, and the second one on heaps. Therefore
priority_queue has a smaller hidden constant, but also has a drawback: it
doesn’t support the operation of removing an element. Because of this we need
to do a “workaround”, that actually leads to a slightly worse factor logm instead
of logn (although in terms of complexity they are identical).

28.2.2 Implementation

set

Let us start with the container set. Since we need to store vertices ordered
by their values d[], it is convenient to store actual pairs: the distance and the
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index of the vertex. As a result in a set pairs are automatically sorted by their
distances.

const int INF = 1000000000;
vector<vector<pair<int, int>>> adj;

void dijkstra(int s, vector<int> & d, vector<int> & p) {
int n = adj.size();
d.assign(n, INF);
p.assign(n, -1);

d[s] = 0;
set<pair<int, int>> q;
q.insert({0, s});
while (!q.empty()) {

int v = q.begin()->second;
q.erase(q.begin());

for (auto edge : adj[v]) {
int to = edge.first;
int len = edge.second;

if (d[v] + len < d[to]) {
q.erase({d[to], to});
d[to] = d[v] + len;
p[to] = v;
q.insert({d[to], to});

}
}

}
}

We don’t need the array u[] from the normal Dijkstra’s algorithm implemen-
tation any more. We will use the set to store that information, and also find
the vertex with the shortest distance with it. It kinda acts like a queue. The
main loops executes until there are no more vertices in the set/queue. A vertex
with the smallest distance gets extracted, and for each successful relaxation we
first remove the old pair, and then after the relaxation add the new pair into the
queue.

priority_queue

The main difference to the implementation with set is that we cannot remove
elements from the priority_queue (although heaps can support that operation
in theory). Therefore we have to cheat a little bit. We simply don’t delete the
old pair from the queue. As a result a vertex can appear multiple times with
different distance in the queue at the same time. Among these pairs we are only
interested in the pairs where the first element is equal to the corresponding value
in d[], all the other pairs are old. Therefore we need to make a small modification:
at the beginning of each iteration, after extracting the next pair, we check if it
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is an important pair or if it is already an old and handled pair. This check is
important, otherwise the complexity can increase up to O(nm).

By default a priority_queue sorts elements in descending order. To make
it sort the elements in ascending order, we can either store the negated distances
in it, or pass it a different sorting function. We will do the second option.

const int INF = 1000000000;
vector<vector<pair<int, int>>> adj;

void dijkstra(int s, vector<int> & d, vector<int> & p) {
int n = adj.size();
d.assign(n, INF);
p.assign(n, -1);

d[s] = 0;
using pii = pair<int, int>;
priority_queue<pii, vector<pii>, greater<pii>> q;
q.push({0, s});
while (!q.empty()) {

int v = q.top().second;
int d_v = q.top().first;
q.pop();
if (d_v != d[v])

continue;

for (auto edge : adj[v]) {
int to = edge.first;
int len = edge.second;

if (d[v] + len < d[to]) {
d[to] = d[v] + len;
p[to] = v;
q.push({d[to], to});

}
}

}
}

In practice the priority_queue version is a little bit faster than the version
with set.

Getting rid of pairs

You can improve the performance a little bit more if you don’t store pairs in
the containers, but only the vertex indices. In this case we must overload the
comparison operator: it must compare two vertices using the distances stored in
d[].

As a result of the relaxation, the distance of some vertices will change. However
the data structure will not resort itself automatically. In fact changing distances
of vertices in the queue, might destroy the data structure. As before, we need to
remove the vertex before we relax it, and then insert it again afterwards.
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Since we only can remove from set, this optimization is only applicable for
the set method, and doesn’t work with priority_queue implementation. In
practice this significantly increases the performance, especially when larger data
types are used to store distances, like long long or double.



28.3. Bellman-Ford Algorithm 505

28.3 Bellman-Ford Algorithm
Single source shortest path with negative weight edges

Suppose that we are given a weighted directed graph G with n vertices and
m edges, and some specified vertex v. You want to find the length of shortest
paths from vertex v to every other vertex.

Unlike the Dijkstra algorithm, this algorithm can also be applied to graphs
containing negative weight edges . However, if the graph contains a negative
cycle, then, clearly, the shortest path to some vertices may not exist (due to
the fact that the weight of the shortest path must be equal to minus infinity);
however, this algorithm can be modified to signal the presence of a cycle of
negative weight, or even deduce this cycle.

The algorithm bears the name of two American scientists: Richard Bellman
and Lester Ford. Ford actually invented this algorithm in 1956 during the study
of another mathematical problem, which eventually reduced to a subproblem of
finding the shortest paths in the graph, and Ford gave an outline of the algorithm
to solve this problem. Bellman in 1958 published an article devoted specifically to
the problem of finding the shortest path, and in this article he clearly formulated
the algorithm in the form in which it is known to us now.

28.3.1 Description of the algorithm
Let us assume that the graph contains no negative weight cycle. The case of
presence of a negative weight cycle will be discussed below in a separate section.

We will create an array of distances d[0 . . . n− 1], which after execution of
the algorithm will contain the answer to the problem. In the beginning we fill it
as follows: d[v] = 0, and all other elements d[] equal to infinity ∞.

The algorithm consists of several phases. Each phase scans through all edges
of the graph, and the algorithm tries to produce relaxation along each edge (a, b)
having weight c. Relaxation along the edges is an attempt to improve the value
d[b] using value d[a] + c. In fact, it means that we are trying to improve the
answer for this vertex using edge (a, b) and current response for vertex a.

It is claimed that n − 1 phases of the algorithm are sufficient to correctly
calculate the lengths of all shortest paths in the graph (again, we believe that
the cycles of negative weight do not exist). For unreachable vertices the distance
d[] will remain equal to infinity ∞.

28.3.2 Implementation
Unlike many other graph algorithms, for Bellman-Ford algorithm, it is more
convenient to represent the graph using a single list of all edges (instead of n lists
of edges - edges from each vertex). We start the implementation with a structure
edge for representing the edges. The input to the algorithm are numbers n, m,
list e of edges and the starting vertex v. All the vertices are numbered 0 to n− 1.
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The simplest implementation

The constant INF denotes the number “infinity” — it should be selected in such
a way that it is greater than all possible path lengths.

struct edge
{

int a, b, cost;
};

int n, m, v;
vector<edge> e;
const int INF = 1000000000;

void solve()
{

vector<int> d (n, INF);
d[v] = 0;
for (int i=0; i<n-1; ++i)

for (int j=0; j<m; ++j)
if (d[e[j].a] < INF)

d[e[j].b] = min (d[e[j].b], d[e[j].a] + e[j].cost);
// display d, for example, on the screen

}

The check if (d[e[j].a] < INF) is needed only if the graph contains nega-
tive weight edges: no such verification would result in relaxation from the vertices
to which paths have not yet found, and incorrect distance, of the type ∞− 1,
∞− 2 etc. would appear.

A better implementation

This algorithm can be somewhat speeded up: often we already get the answer in
a few phases and no useful work is done in remaining phases, just a waste visiting
all edges. So, let’s keep the flag, to tell whether something changed in the current
phase or not, and if any phase, nothing changed, the algorithm can be stopped.
(This optimization does not improve the asymptotic behavior, i.e., some graphs
will still need all n− 1 phases, but significantly accelerates the behavior of the
algorithm “on an average”, i.e., on random graphs.)

With this optimization, it is generally unnecessary to restrict manually the
number of phases of the algorithm to n− 1 — the algorithm will stop after the
desired number of phases.

void solve()
{

vector<int> d (n, INF);
d[v] = 0;
for (;;)
{

bool any = false;
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for (int j=0; j<m; ++j)
if (d[e[j].a] < INF)

if (d[e[j].b] > d[e[j].a] + e[j].cost)
{

d[e[j].b] = d[e[j].a] + e[j].cost;
any = true;

}

if (!any) break;
}
// display d, for example, on the screen

}

Retrieving Path

Let us now consider how to modify the algorithm so that it not only finds the
length of shortest paths, but also allows to reconstruct the shortest paths.

For that, let’s create another array p[0 . . . n − 1], where for each vertex we
store its “predecessor”, i.e. the penultimate vertex in the shortest path leading
to it. In fact, the shortest path to any vertex a is a shortest path to some vertex
p[a], to which we added a at the end of the path.

Note that the algorithm works on the same logic: it assumes that the shortest
distance to one vertex is already calculated, and, tries to improve the shortest
distance to other vertices from that vertex. Therefore, at the time of improvement
we just need to remember p[], i.e, the vertex from which this improvement has
occurred.

Following is an implementation of the Bellman-Ford with the retrieval of
shortest path to a given node t:

void solve()
{

vector<int> d (n, INF);
d[v] = 0;
vector<int> p (n, -1);

for (;;)
{

bool any = false;
for (int j = 0; j < m; ++j)

if (d[e[j].a] < INF)
if (d[e[j].b] > d[e[j].a] + e[j].cost)
{

d[e[j].b] = d[e[j].a] + e[j].cost;
p[e[j].b] = e[j].a;
any = true;

}
if (!any) break;

}

if (d[t] == INF)
cout << "No path from " << v << " to " << t << ".";
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else
{

vector<int> path;
for (int cur = t; cur != -1; cur = p[cur])

path.push_back (cur);
reverse (path.begin(), path.end());

cout << "Path from " << v << " to " << t << ": ";
for (size_t i=0; i<path.size(); ++i)

cout << path[i] << ' ';
}

}

Here starting from the vertex t, we go through the predecessors till we reach
starting vertex with no predecessor, and store all the vertices in the path in the
list path. This list is a shortest path from v to t, but in reverse order, so we call
reverse() function over path and then output the path.

28.3.3 The proof of the algorithm
First, note that for all unreachable vertices u the algorithm will work correctly,
the label d[u] will remain equal to infinity (because the algorithm Bellman-Ford
will find some way to all reachable vertices from the start vertex v, and relaxation
for all other remaining vertices will never happen).

Let us now prove the following assertion: After the execution of ith phase,
the Bellman-Ford algorithm correctly finds all shortest paths whose number of
edges does not exceed i.

In other words, for any vertex a let us denote the k number of edges in the
shortest path to it (if there are several such paths, you can take any). According
to this statement, the algorithm guarantees that after kth phase the shortest path
for vertex a will be found.

Proof: Consider an arbitrary vertex a to which there is a path from the
starting vertex v, and consider a shortest path to it (p0 = v, p1, . . . , pk = a).
Before the first phase, the shortest path to the vertex p0 = v was found correctly.
During the first phase, the edge (p0, p1) has been checked by the algorithm, and
therefore, the distance to the vertex p1 was correctly calculated after the first
phase. Repeating this statement k times, we see that after kth phase the distance
to the vertex pk = a gets calculated correctly, which we wanted to prove.

The last thing to notice is that any shortest path cannot have more than
n− 1 edges. Therefore, the algorithm sufficiently goes up to the (n− 1)th phase.
After that, it is guaranteed that no relaxation will improve the distance to some
vertex.

28.3.4 The case of a negative cycle
Everywhere above we considered that there is no negative cycle in the graph
(precisely, we are interested in a negative cycle that is reachable from the starting
vertex v, and, for an unreachable cycles nothing in the above algorithm changes).
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In the presence of a negative cycle(s), there are further complications associated
with the fact that distances to all vertices in this cycle, as well as the distances
to the vertices reachable from this cycle is not defined — they should be equal to
minus infinity (−∞).

It is easy to see that the Bellman-Ford algorithm can endlessly do the relax-
ation among all vertices of this cycle and the vertices reachable from it. Therefore,
if you do not limit the number of phases to n−1, the algorithm will run indefinitely,
constantly improving the distance from these vertices.

Hence we obtain the criterion for presence of a cycle of negative weights
reachable for source vertex v: after (n− 1)th phase, if we run algorithm for one
more phase, and it performs at least one more relaxation, then the graph contains
a negative weight cycle that is reachable from v; otherwise, such a cycle does not
exist.

Moreover, if such a cycle is found, the Bellman-Ford algorithm can be modified
so that it retrieves this cycle as a sequence of vertices contained in it. For this, it
is sufficient to remember the last vertex x for which there was a relaxation in nth
phase. This vertex will either lie in a negative weight cycle, or is reachable from
it. To get the vertices that are guaranteed to lie in a negative cycle, starting
from the vertex x, pass through to the predecessors n times. Hence we will get
the vertex y, namely the vertex in the cycle earliest reachable from source. We
have to go from this vertex, through the predecessors, until we get back to the
same vertex y (and it will happen, because relaxation in a negative weight cycle
occur in a circular manner).

Implementation:

void solve()
{

vector<int> d (n, INF);
d[v] = 0;
vector<int> p (n - 1);
int x;
for (int i=0; i<n; ++i)
{

x = -1;
for (int j=0; j<m; ++j)

if (d[e[j].a] < INF)
if (d[e[j].b] > d[e[j].a] + e[j].cost)
{

d[e[j].b] = max (-INF, d[e[j].a] + e[j].cost);
p[e[j].b] = e[j].a;
x = e[j].b;

}
}

if (x == -1)
cout << "No negative cycle from " << v;

else
{
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int y = x;
for (int i=0; i<n; ++i)

y = p[y];

vector<int> path;
for (int cur=y; ; cur=p[cur])
{

path.push_back (cur);
if (cur == y && path.size() > 1)

break;
}
reverse (path.begin(), path.end());

cout << "Negative cycle: ";
for (size_t i=0; i<path.size(); ++i)

cout << path[i] << ' ';
}

}

Due to the presence of a negative cycle, for n iterations of the algorithm, the
distances may go far in the negative range (to negative numbers of the order of
−nmW , where W is the maximum absolute value of any weight in the graph).
Hence in the code, we adopted additional measures against the integer overflow
as follows:

d[e[j].b] = max (-INF, d[e[j].a] + e[j].cost);

The above implementation looks for a negative cycle reachable from some
starting vertex v; however, the algorithm can be modified to just looking for any
negative cycle in the graph. For this we need to put all the distance d[i] to zero
and not infinity — as if we are looking for the shortest path from all vertices
simultaneously; the validity of the detection of a negative cycle is not affected.

For more on this topic — see separate article, Finding a negative cycle in the
graph.

28.3.5 Shortest Path Faster Algorithm (SPFA)
SPFA is a improvement of the Bellman-Ford algorithm which takes advantage of
the fact that not all attempts at relaxation will work. The main idea is to create
a queue containing only the vertices that were relaxed but that still could further
relax their neighbors. And whenever you can relax some neighbor, you should
put him in the queue. This algorithm can also be used to detect negative cycles
as the Bellman-Ford.

The worst case of this algorithm is equal to the O(nm) of the Bellman-Ford,
but in practice it works much faster and some people claim that it works even in
O(m) on average. However be careful, because this algorithm is deterministic
and it is easy to create counterexamples that make the algorithm run in O(nm).

There are some care to be taken in the implementation, such as the fact that
the algorithm continues forever if there is a negative cycle. To avoid this, it is

https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm#Average-case_performance
https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm#Average-case_performance
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possible to create a counter that stores how many times a vertex has been relaxed
and stop the algorithm as soon as some vertex got relaxed for the n-th time.
Note, also there is no reason to put a vertex in the queue if it is already in.

const int INF = 1000000000;
vector<vector<pair<int, int>>> adj;

bool spfa(int s, vector<int>& d) {
int n = adj.size();
d.assign(n, INF);
vector<int> cnt(n, 0);
vector<bool> inqueue(n, false);
queue<int> q;

d[s] = 0;
q.push(s);
inqueue[s] = true;
while (!q.empty()) {

int v = q.front();
q.pop();
inqueue[v] = false;

for (auto edge : adj[v]) {
int to = edge.first;
int len = edge.second;

if (d[v] + len < d[to]) {
d[to] = d[v] + len;
if (!inqueue[to]) {

q.push(to);
inqueue[to] = true;
cnt[to]++;
if (cnt[to] > n)

return false; // negative cycle
}

}
}

}
return true;

}

28.3.6 Related problems in online judges
A list of tasks that can be solved using the Bellman-Ford algorithm:

• E-OLIMP #1453 “Ford-Bellman” [difficulty: low]
• UVA #423 “MPI Maelstrom” [difficulty: low]
• UVA #534 “Frogger” [difficulty: medium]
• UVA #10099 “The Tourist Guide” [difficulty: medium]
• UVA #515 “King” [difficulty: medium]
• UVA 12519 - The Farnsworth Parabox

http://www.e-olimp.com.ua/problems/1453
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=364
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=7&page=show_problem&problem=475
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=12&page=show_problem&problem=1040
http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=456
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3964
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See also the problem list in the article Finding the negative cycle in a graph.
* CSES - High Score * CSES - Cycle Finding

https://cses.fi/problemset/task/1673
https://cses.fi/problemset/task/1197
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28.4 0-1 BFS
It is well-known, that you can find the shortest paths between a single source and
all other vertices in O(|E|) using Breadth First Search in an unweighted graph,
i.e. the distance is the minimal number of edges that you need to traverse from
the source to another vertex. We can interpret such a graph also as a weighted
graph, where every edge has the weight 1. If not all edges in graph have the
same weight, that we need a more general algorithm, like Dijkstra which runs in
O(|V |2 + |E|) or O(|E| log |V |) time.

However if the weights are more constrained, we can often do better. In this
article we demonstrate how we can use BFS to solve the SSSP (single-source
shortest path) problem in O(|E|), if the weight of each edge is either 0 or 1.

28.4.1 Algorithm
We can develop the algorithm by closely study Dijkstra’s algorithm and think
about the consequences that our special graph implies. The general form of
Dijkstra’s algorithm is (here a set is used for the priority queue):

d.assign(n, INF);
d[s] = 0;
set<pair<int, int>> q;
q.insert({0, s});
while (!q.empty()) {

int v = q.begin()->second;
q.erase(q.begin());

for (auto edge : adj[v]) {
int u = edge.first;
int w = edge.second;

if (d[v] + w < d[u]) {
q.erase({d[u], u});
d[u] = d[v] + w;
q.insert({d[u], u});

}
}

}

We can notice that the difference between the distances between the source s
and two other vertices in the queue differs by at most one. Especially, we know
that d[v] ≤ d[u] ≤ d[v]+1 for each u ∈ Q. The reason for this is, that we only add
vertices with equal distance or with distance plus one to the queue during each
iteration. Assuming there exists a u in the queue with d[u]−d[v] > 1, then u must
have been insert in the queue via a different vertex t with d[t] ≥ d[u]− 1 > d[v].
However this is impossible, since Dijkstra’s algorithm iterates over the vertices in
increasing order.



Graphs, Chapter 28. Single-source shortest paths 514

This means, that the order of the queue looks like this:

Q = v︸︷︷︸
d[v]

, . . . , u︸︷︷︸
d[v]

, m︸︷︷︸
d[v]+1

. . . n︸︷︷︸
d[v]+1

This structure is so simple, that we don’t need an actual priority queue,
i.e. using a balanced binary tree would be an overkill. We can simply use a
normal queue, and append new vertices at the beginning if the corresponding
edge has weight 0, i.e. if d[u] = d[v], or at the end if the edge has weight 1, i.e. if
d[u] = d[v] + 1. This way the queue still remains sorted at all time.

vector<int> d(n, INF);
d[s] = 0;
deque<int> q;
q.push_front(s);
while (!q.empty()) {

int v = q.front();
q.pop_front();
for (auto edge : adj[v]) {

int u = edge.first;
int w = edge.second;
if (d[v] + w < d[u]) {

d[u] = d[v] + w;
if (w == 1)

q.push_back(u);
else

q.push_front(u);
}

}
}

28.4.2 Dial’s algorithm
We can extend this even further if we allow the weights of the edges to be even
bigger. If every edge in the graph has a weight ≤ k, then the distances of vertices
in the queue will differ by at most k from the distance of v to the source. So we
can keep k + 1 buckets for the vertices in the queue, and whenever the bucket
corresponding to the smallest distance gets empty, we make a cyclic shift to
get the bucket with the next higher distance. This extension is called Dial’s
algorithm.

28.4.3 Practice problems
• CodeChef - Chef and Reversing
• Labyrinth
• KATHTHI
• DoNotTurn
• Ocean Currents
• Olya and Energy Drinks
• Three States

https://www.codechef.com/problems/REVERSE
https://codeforces.com/contest/1063/problem/B
http://www.spoj.com/problems/KATHTHI/
https://community.topcoder.com/stat?c=problem_statement&pm=10337
https://onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=2620
https://codeforces.com/problemset/problem/877/D
https://codeforces.com/problemset/problem/590/C
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• Colliding Traffic
• CHamber of Secrets
• Spiral Maximum
• Minimum Cost to Make at Least One Valid Path in a Grid

https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2621
https://codeforces.com/problemset/problem/173/B
https://codeforces.com/problemset/problem/173/C
https://leetcode.com/problems/minimum-cost-to-make-at-least-one-valid-path-in-a-grid
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28.5 D´Esopo-Pape algorithm
Given a graph with n vertices and m edges with weights wi and a starting vertex
v0. The task is to find the shortest path from the vertex v0 to every other vertex.

The algorithm from D´Esopo-Pape will work faster than Dijkstra’s algorithm
and the Bellman-Ford algorithm in most cases, and will also work for negative
edges. However not for negative cycles.

28.5.1 Description
Let the array d contain the shortest path lengths, i.e. di is the current length of
the shortest path from the vertex v0 to the vertex i. Initially this array is filled
with infinity for every vertex, except dv0 = 0. After the algorithm finishes, this
array will contain the shortest distances.

Let the array p contain the current ancestors, i.e. pi is the direct ancestor
of the vertex i on the current shortest path from v0 to i. Just like the array d,
the array p changes gradually during the algorithm and at the end takes its final
values.

Now to the algorithm. At each step three sets of vertices are maintained:

• M0 - vertices, for which the distance has already been calculated (although
it might not be the final distance)

• M1 - vertices, for which the distance currently is calculated
• M2 - vertices, for which the distance has not yet been calculated

The vertices in the set M1 are stored in a bidirectional queue (deque).
At each step of the algorithm we take a vertex from the set M1 (from the

front of the queue). Let u be the selected vertex. We put this vertex u into the
set M0. Then we iterate over all edges coming out of this vertex. Let v be the
second end of the current edge, and w its weight.

• If v belongs to M2, then v is inserted into the set M1 by inserting it at the
back of the queue. dv is set to du + w.

• If v belongs toM1, then we try to improve the value of dv: dv = min(dv, du+
w). Since v is already in M1, we don’t need to insert it into M1 and the
queue.

• If v belongs to M0, and if dv can be improved dv > du+w, then we improve
dv and insert the vertex v back to the set M1, placing it at the beginning
of the queue.

And of course, with each update in the array d we also have to update the
corresponding element in the array p.

28.5.2 Implementation
We will use an array m to store in which set each vertex is currently.
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struct Edge {
int to, w;

};

int n;
vector<vector<Edge>> adj;

const int INF = 1e9;

void shortest_paths(int v0, vector<int>& d, vector<int>& p) {
d.assign(n, INF);
d[v0] = 0;
vector<int> m(n, 2);
deque<int> q;
q.push_back(v0);
p.assign(n, -1);

while (!q.empty()) {
int u = q.front();
q.pop_front();
m[u] = 0;
for (Edge e : adj[u]) {

if (d[e.to] > d[u] + e.w) {
d[e.to] = d[u] + e.w;
p[e.to] = u;
if (m[e.to] == 2) {

m[e.to] = 1;
q.push_back(e.to);

} else if (m[e.to] == 0) {
m[e.to] = 1;
q.push_front(e.to);

}
}

}
}

}

28.5.3 Complexity
The algorithm performs usually quite fast. In most cases even faster than
Dijkstra’s algorithm. However there exist cases for which the algorithm takes
exponential time.
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Chapter 29

All-pairs shortest paths

29.1 Floyd-Warshall Algorithm
Given a directed or an undirected weighted graph G with n vertices. The task is
to find the length of the shortest path dij between each pair of vertices i and j.

The graph may have negative weight edges, but no negative weight cycles.
If there is such a negative cycle, you can just traverse this cycle over and over,

in each iteration making the cost of the path smaller. So you can make certain
paths arbitrarily small, or in other words that shortest path is undefined. That
automatically means that an undirected graph cannot have any negative weight
edges, as such an edge forms already a negative cycle as you can move back and
forth along that edge as long as you like.

This algorithm can also be used to detect the presence of negative cycles.
The graph has a negative cycle if at the end of the algorithm, the distance from
a vertex v to itself is negative.

This algorithm has been simultaneously published in articles by Robert
Floyd and Stephen Warshall in 1962. However, in 1959, Bernard Roy published
essentially the same algorithm, but its publication went unnoticed.

29.1.1 Description of the algorithm
The key idea of the algorithm is to partition the process of finding the shortest
path between any two vertices to several incremental phases.

Let us number the vertices starting from 1 to n. The matrix of distances is
d[][].

Before k-th phase (k = 1 . . . n), d[i][j] for any vertices i and j stores the
length of the shortest path between the vertex i and vertex j, which contains
only the vertices {1, 2, ..., k − 1} as internal vertices in the path.

In other words, before k-th phase the value of d[i][j] is equal to the length of
the shortest path from vertex i to the vertex j, if this path is allowed to enter
only the vertex with numbers smaller than k (the beginning and end of the path
are not restricted by this property).

It is easy to make sure that this property holds for the first phase. For k = 0,
we can fill matrix with d[i][j] = wij if there exists an edge between i and j with
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weight wij and d[i][j] =∞ if there doesn’t exist an edge. In practice ∞ will be
some high value. As we shall see later, this is a requirement for the algorithm.

Suppose now that we are in the k-th phase, and we want to compute the
matrix d[][] so that it meets the requirements for the (k + 1)-th phase. We have
to fix the distances for some vertices pairs (i, j). There are two fundamentally
different cases:

• The shortest way from the vertex i to the vertex j with internal vertices
from the set {1, 2, . . . , k} coincides with the shortest path with internal
vertices from the set {1, 2, . . . , k − 1}.
In this case, d[i][j] will not change during the transition.

• The shortest path with internal vertices from {1, 2, . . . , k} is shorter.
This means that the new, shorter path passes through the vertex k. This
means that we can split the shortest path between i and j into two paths:
the path between i and k, and the path between k and j. It is clear that
both this paths only use internal vertices of {1, 2, . . . , k − 1} and are the
shortest such paths in that respect. Therefore we already have computed
the lengths of those paths before, and we can compute the length of the
shortest path between i and j as d[i][k] + d[k][j].

Combining these two cases we find that we can recalculate the length of all
pairs (i, j) in the k-th phase in the following way:

dnew[i][j] = min(d[i][j], d[i][k] + d[k][j])

Thus, all the work that is required in the k-th phase is to iterate over all pairs
of vertices and recalculate the length of the shortest path between them. As a
result, after the n-th phase, the value d[i][j] in the distance matrix is the length
of the shortest path between i and j, or is ∞ if the path between the vertices i
and j does not exist.

A last remark - we don’t need to create a separate distance matrix dnew[][]
for temporarily storing the shortest paths of the k-th phase, i.e. all changes can
be made directly in the matrix d[][] at any phase. In fact at any k-th phase we
are at most improving the distance of any path in the distance matrix, hence we
cannot worsen the length of the shortest path for any pair of the vertices that
are to be processed in the (k + 1)-th phase or later.

The time complexity of this algorithm is obviously O(n3).

29.1.2 Implementation
Let d[][] is a 2D array of size n× n, which is filled according to the 0-th phase as
explained earlier. Also we will set d[i][i] = 0 for any i at the 0-th phase.

Then the algorithm is implemented as follows:

for (int k = 0; k < n; ++k) {
for (int i = 0; i < n; ++i) {
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for (int j = 0; j < n; ++j) {
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);

}
}

}

It is assumed that if there is no edge between any two vertices i and j, then the
matrix at d[i][j] contains a large number (large enough so that it is greater than
the length of any path in this graph). Then this edge will always be unprofitable
to take, and the algorithm will work correctly.

However if there are negative weight edges in the graph, special measures
have to be taken. Otherwise the resulting values in matrix may be of the form
∞− 1, ∞− 2, etc., which, of course, still indicates that between the respective
vertices doesn’t exist a path. Therefore, if the graph has negative weight edges,
it is better to write the Floyd-Warshall algorithm in the following way, so that it
does not perform transitions using paths that don’t exist.

for (int k = 0; k < n; ++k) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
if (d[i][k] < INF && d[k][j] < INF)

d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

}
}

29.1.3 Retrieving the sequence of vertices in the shortest path
It is easy to maintain additional information with which it will be possible to
retrieve the shortest path between any two given vertices in the form of a sequence
of vertices.

For this, in addition to the distance matrix d[][], a matrix of ancestors p[][]
must be maintained, which will contain the number of the phase where the
shortest distance between two vertices was last modified. It is clear that the
number of the phase is nothing more than a vertex in the middle of the desired
shortest path. Now we just need to find the shortest path between vertices i and
p[i][j], and between p[i][j] and j. This leads to a simple recursive reconstruction
algorithm of the shortest path.

29.1.4 The case of real weights
If the weights of the edges are not integer but real, it is necessary to take the
errors, which occur when working with float types, into account.

The Floyd-Warshall algorithm has the unpleasant effect, that the errors
accumulate very quickly. In fact if there is an error in the first phase of δ, this
error may propagate to the second iteration as 2δ, to the third iteration as 4δ,
and so on.

To avoid this the algorithm can be modified to take the error (EPS = δ) into
account by using following comparison:
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if (d[i][k] + d[k][j] < d[i][j] - EPS)
d[i][j] = d[i][k] + d[k][j];

29.1.5 The case of negative cycles
Formally the Floyd-Warshall algorithm does not apply to graphs containing
negative weight cycle(s). But for all pairs of vertices i and j for which there
doesn’t exist a path starting at i, visiting a negative cycle, and end at j, the
algorithm will still work correctly.

For the pair of vertices for which the answer does not exist (due to the
presence of a negative cycle in the path between them), the Floyd algorithm will
store any number (perhaps highly negative, but not necessarily) in the distance
matrix. However it is possible to improve the Floyd-Warshall algorithm, so that
it carefully treats such pairs of vertices, and outputs them, for example as −INF.

This can be done in the following way: let us run the usual Floyd-Warshall
algorithm for a given graph. Then a shortest path between vertices i and j does
not exist, if and only if, there is a vertex t that is reachable from i and also from
j, for which d[t][t] < 0.

In addition, when using the Floyd-Warshall algorithm for graphs with negative
cycles, we should keep in mind that situations may arise in which distances can
get exponentially fast into the negative. Therefore integer overflow must be
handled by limiting the minimal distance by some value (e.g. −INF).

To learn more about finding negative cycles in a graph, see the separate
article Finding a negative cycle in the graph.

29.1.6 Practice Problems
• UVA: Page Hopping
• SPOJ: Possible Friends
• CODEFORCES: Greg and Graph
• SPOJ: CHICAGO - 106 miles to Chicago
• UVA 10724 - Road Construction
• UVA 117 - The Postal Worker Rings Once
• Codeforces - Traveling Graph
• UVA - 1198 - The Geodetic Set Problem
• UVA - 10048 - Audiophobia
• UVA - 125 - Numbering Paths
• LOJ - Travel Company
• UVA 423 - MPI Maelstrom
• UVA 1416 - Warfare And Logistics
• UVA 1233 - USHER
• UVA 10793 - The Orc Attack
• UVA 10099 The Tourist Guide
• UVA 869 - Airline Comparison
• UVA 13211 - Geonosis
• SPOJ - Defend the Rohan
• Codeforces - Roads in Berland

https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=762
http://www.spoj.com/problems/SOCIALNE/
http://codeforces.com/problemset/problem/295/B
http://www.spoj.com/problems/CHICAGO/
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1665
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=53
http://codeforces.com/problemset/problem/21/D
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=3639
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=989
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=61
http://lightoj.com/volume_showproblem.php?problem=1221
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=364
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4162
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3674
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1734
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1040
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=810
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=5134
http://www.spoj.com/problems/ROHAAN/
http://codeforces.com/contest/25/problem/C
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• Codeforces - String Problem
• GYM - Manic Moving (C)
• SPOJ - Arbitrage
• UVA - 12179 - Randomly-priced Tickets
• LOJ - 1086 - Jogging Trails
• SPOJ - Ingredients
• CSES - Shortest Routes II

http://codeforces.com/contest/33/problem/B
http://codeforces.com/gym/101223
http://www.spoj.com/problems/ARBITRAG/
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3331
http://lightoj.com/volume_showproblem.php?problem=1086
http://www.spoj.com/problems/INGRED/
https://cses.fi/problemset/task/1672
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29.2 Number of paths of fixed length / Shortest paths
of fixed length

The following article describes solutions to these two problems built on the same
idea: reduce the problem to the construction of matrix and compute the solution
with the usual matrix multiplication or with a modified multiplication.

29.2.1 Number of paths of a fixed length
We are given a directed, unweighted graph G with n vertices and we are given
an integer k. The task is the following: for each pair of vertices (i, j) we have to
find the number of paths of length k between these vertices. Paths don’t have to
be simple, i.e. vertices and edges can be visited any number of times in a single
path.

We assume that the graph is specified with an adjacency matrix, i.e. the
matrix G[][] of size n × n, where each element G[i][j] equal to 1 if the vertex
i is connected with j by an edge, and 0 is they are not connected by an edge.
The following algorithm works also in the case of multiple edges: if some pair of
vertices (i, j) is connected with m edges, then we can record this in the adjacency
matrix by setting G[i][j] = m. Also the algorithm works if the graph contains
loops (a loop is an edge that connect a vertex with itself).

It is obvious that the constructed adjacency matrix if the answer to the
problem for the case k = 1. It contains the number of paths of length 1 between
each pair of vertices.

We will build the solution iteratively: Let’s assume we know the answer for
some k. Here we describe a method how we can construct the answer for k + 1.
Denote by Ck the matrix for the case k, and by Ck+1 the matrix we want to
construct. With the following formula we can compute every entry of Ck+1:

Ck+1[i][j] =
n∑
p=1

Ck[i][p] ·G[p][j]

It is easy to see that the formula computes nothing other than the product of
the matrices Ck and G:

Ck+1 = Ck ·G

Thus the solution of the problem can be represented as follows:

Ck = G ·G · · ·G︸ ︷︷ ︸
k times

= Gk

It remains to note that the matrix products can be raised to a high power
efficiently using Binary exponentiation. This gives a solution with O(n3 log k)
complexity.
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29.2.2 Shortest paths of a fixed length
We are given a directed weighted graph G with n vertices and an integer k. For
each pair of vertices (i, j) we have to find the length of the shortest path between
i and j that consists of exactly k edges.

We assume that the graph is specified by an adjacency matrix, i.e. via the
matrix G[][] of size n× n where each element G[i][j] contains the length of the
edges from the vertex i to the vertex j. If there is no edge between two vertices,
then the corresponding element of the matrix will be assigned to infinity ∞.

It is obvious that in this form the adjacency matrix is the answer to the
problem for k = 1. It contains the lengths of shortest paths between each pair of
vertices, or ∞ if a path consisting of one edge doesn’t exist.

Again we can build the solution to the problem iteratively: Let’s assume we
know the answer for some k. We show how we can compute the answer for k + 1.
Let us denote Lk the matrix for k and Lk+1 the matrix we want to build. Then
the following formula computes each entry of Lk+1:

Lk+1[i][j] = min
p=1...n

(Lk[i][p] +G[p][j])

When looking closer at this formula, we can draw an analogy with the matrix
multiplication: in fact the matrix Lk is multiplied by the matrix G, the only
difference is that instead in the multiplication operation we take the minimum
instead of the sum.

Lk+1 = Lk �G,

where the operation � is defined as follows:

A�B = C ⇐⇒ Cij = min
p=1...n

(Aip +Bpj)

Thus the solution of the task can be represented using the modified multipli-
cation:

Lk = G� . . .�G︸ ︷︷ ︸
k times

= G�k

It remains to note that we also can compute this exponentiation efficiently
with Binary exponentiation, because the modified multiplication is obviously
associative. So also this solution has O(n3 log k) complexity.

29.2.3 Generalization of the problems for paths with length up
to k

The above solutions solve the problems for a fixed k. However the solutions can
be adapted for solving problems for which the paths are allowed to contain no
more than k edges.

This can be done by slightly modifying the input graph.
We duplicate each vertex: for each vertex v we create one more vertex v′

and add the edge (v, v′) and the loop (v′, v′). The number of paths between
i and j with at most k edges is the same number as the number of paths



29.2. Number of paths of fixed length / Shortest paths of fixed length 525

between i and j′ with exactly k + 1 edges, since there is a bijection that maps
every path [p0 = i, p1, . . . , pm−1, pm = j] of length m ≤ k to the path
[p0 = i, p1, . . . , pm−1, pm = j, j′, . . . , j′] of length k + 1.

The same trick can be applied to compute the shortest paths with at most k
edges. We again duplicate each vertex and add the two mentioned edges with
weight 0.
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Chapter 30

Spanning trees

30.1 Minimum spanning tree - Prim’s algorithm
Given a weighted, undirected graph G with n vertices and m edges. You want to
find a spanning tree of this graph which connects all vertices and has the least
weight (i.e. the sum of weights of edges is minimal). A spanning tree is a set of
edges such that any vertex can reach any other by exactly one simple path. The
spanning tree with the least weight is called a minimum spanning tree.

In the left image you can see a weighted undirected graph, and in the right
image you can see the corresponding minimum spanning tree.

It is easy to see that any spanning tree will necessarily contain n− 1 edges.
This problem appears quite naturally in a lot of problems. For instance in

the following problem: there are n cities and for each pair of cities we are given
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the cost to build a road between them (or we know that is physically impossible
to build a road between them). We have to build roads, such that we can get
from each city to every other city, and the cost for building all roads is minimal.

30.1.1 Prim’s Algorithm
This algorithm was originally discovered by the Czech mathematician Vojtěch
Jarník in 1930. However this algorithm is mostly known as Prim’s algorithm
after the American mathematician Robert Clay Prim, who rediscovered and
republished it in 1957. Additionally Edsger Dijkstra published this algorithm in
1959.

Algorithm description

Here we describe the algorithm in its simplest form. The minimum spanning
tree is built gradually by adding edges one at a time. At first the spanning tree
consists only of a single vertex (chosen arbitrarily). Then the minimum weight
edge outgoing from this vertex is selected and added to the spanning tree. After
that the spanning tree already consists of two vertices. Now select and add the
edge with the minimum weight that has one end in an already selected vertex
(i.e. a vertex that is already part of the spanning tree), and the other end in an
unselected vertex. And so on, i.e. every time we select and add the edge with
minimal weight that connects one selected vertex with one unselected vertex. The
process is repeated until the spanning tree contains all vertices (or equivalently
until we have n− 1 edges).

In the end the constructed spanning tree will be minimal. If the graph was
originally not connected, then there doesn’t exist a spanning tree, so the number
of selected edges will be less than n− 1.

Proof

Let the graph G be connected, i.e. the answer exists. We denote by T the
resulting graph found by Prim’s algorithm, and by S the minimum spanning tree.
Obviously T is indeed a spanning tree and a subgraph of G. We only need to
show that the weights of S and T coincide.

Consider the first time in the algorithm when we add an edge to T that is
not part of S. Let us denote this edge with e, its ends by a and b, and the set of
already selected vertices as V (a ∈ V and b /∈ V , or visa versa).

In the minimal spanning tree S the vertices a and b are connected by some
path P . On this path we can find an edge f such that one end of f lies in V and
the other end doesn’t. Since the algorithm chose e instead of f , it means that
the weight of f is greater or equal to the weight of e.

We add the edge e to the minimum spanning tree S and remove the edge
f . By adding e we created a cycle, and since f was also part of the only cycle,
by removing it the resulting graph is again free of cycles. And because we only
removed an edge from a cycle, the resulting graph is still connected.
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The resulting spanning tree cannot have a larger total weight, since the weight
of e was not larger than the weight of f , and it also cannot have a smaller weight
since S was a minimum spanning tree. This means that by replacing the edge f
with e we generated a different minimum spanning tree. And e has to have the
same weight as f .

Thus all the edges we pick in Prim’s algorithm have the same weights as the
edges of any minimum spanning tree, which means that Prim’s algorithm really
generates a minimum spanning tree.

30.1.2 Implementation
The complexity of the algorithm depends on how we search for the next minimal
edge among the appropriate edges. There are multiple approaches leading to
different complexities and different implementations.

Trivial implementations: O(nm) and O(n2 +m logn)

If we search the edge by iterating over all possible edges, then it takes O(m) time
to find the edge with the minimal weight. The total complexity will be O(nm).
In the worst case this is O(n3), really slow.

This algorithm can be improved if we only look at one edge from each already
selected vertex. For example we can sort the edges from each vertex in ascending
order of their weights, and store a pointer to the first valid edge (i.e. an edge that
goes to an non-selected vertex). Then after finding and selecting the minimal
edge, we update the pointers. This give a complexity of O(n2 + m), and for
sorting the edges an additional O(m logn), which gives the complexity O(n2 logn)
in the worst case.

Below we consider two slightly different algorithms, one for dense and one for
sparse graphs, both with a better complexity.

Dense graphs: O(n2)

We approach this problem for a different side: for every not yet selected vertex
we will store the minimum edge to an already selected vertex.

Then during a step we only have to look at these minimum weight edges,
which will have a complexity of O(n).

After adding an edge some minimum edge pointers have to be recalculated.
Note that the weights only can decrease, i.e. the minimal weight edge of every
not yet selected vertex might stay the same, or it will be updated by an edge to
the newly selected vertex. Therefore this phase can also be done in O(n).

Thus we received a version of Prim’s algorithm with the complexity O(n2).
In particular this implementation is very convenient for the Euclidean Min-

imum Spanning Tree problem: we have n points on a plane and the distance
between each pair of points is the Euclidean distance between them, and we
want to find a minimum spanning tree for this complete graph. This task can be
solved by the described algorithm in O(n2) time and O(n) memory, which is not
possible with Kruskal’s algorithm.
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int n;
vector<vector<int>> adj; // adjacency matrix of graph
const int INF = 1000000000; // weight INF means there is no edge

struct Edge {
int w = INF, to = -1;

};

void prim() {
int total_weight = 0;
vector<bool> selected(n, false);
vector<Edge> min_e(n);
min_e[0].w = 0;

for (int i=0; i<n; ++i) {
int v = -1;
for (int j = 0; j < n; ++j) {

if (!selected[j] && (v == -1 || min_e[j].w < min_e[v].w))
v = j;

}

if (min_e[v].w == INF) {
cout << "No MST!" << endl;
exit(0);

}

selected[v] = true;
total_weight += min_e[v].w;
if (min_e[v].to != -1)

cout << v << " " << min_e[v].to << endl;

for (int to = 0; to < n; ++to) {
if (adj[v][to] < min_e[to].w)

min_e[to] = {adj[v][to], v};
}

}

cout << total_weight << endl;
}

The adjacency matrix adj[][] of size n× n stores the weights of the edges,
and it uses the weight INF if there doesn’t exist an edge between two vertices. The
algorithm uses two arrays: the flag selected[], which indicates which vertices
we already have selected, and the array min_e[] which stores the edge with
minimal weight to an selected vertex for each not-yet-selected vertex (it stores
the weight and the end vertex). The algorithm does n steps, in each iteration
the vertex with the smallest edge weight is selected, and the min_e[] of all other
vertices gets updated.
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Sparse graphs: O(m logn)

In the above described algorithm it is possible to interpret the operations of
finding the minimum and modifying some values as set operations. These two
classical operations are supported by many data structure, for example by set
in C++ (which are implemented via red-black trees).

The main algorithm remains the same, but now we can find the minimum
edge in O(logn) time. On the other hand recomputing the pointers will now take
O(n logn) time, which is worse than in the previous algorithm.

But when we consider that we only need to update O(m) times in total, and
perform O(n) searches for the minimal edge, then the total complexity will be
O(m logn). For sparse graphs this is better than the above algorithm, but for
dense graphs this will be slower.

const int INF = 1000000000;

struct Edge {
int w = INF, to = -1;
bool operator<(Edge const& other) const {

return make_pair(w, to) < make_pair(other.w, other.to);
}

};

int n;
vector<vector<Edge>> adj;

void prim() {
int total_weight = 0;
vector<Edge> min_e(n);
min_e[0].w = 0;
set<Edge> q;
q.insert({0, 0});
vector<bool> selected(n, false);
for (int i = 0; i < n; ++i) {

if (q.empty()) {
cout << "No MST!" << endl;
exit(0);

}

int v = q.begin()->to;
selected[v] = true;
total_weight += q.begin()->w;
q.erase(q.begin());

if (min_e[v].to != -1)
cout << v << " " << min_e[v].to << endl;

for (Edge e : adj[v]) {
if (!selected[e.to] && e.w < min_e[e.to].w) {

q.erase({min_e[e.to].w, e.to});
min_e[e.to] = {e.w, v};
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q.insert({e.w, e.to});
}

}
}

cout << total_weight << endl;
}

Here the graph is represented via a adjacency list adj[], where adj[v]
contains all edges (in form of weight and target pairs) for the vertex v. min_e[v]
will store the weight of the smallest edge from vertex v to an already selected
vertex (again in the form of a weight and target pair). In addition the queue q is
filled with all not yet selected vertices in the order of increasing weights min_e.
The algorithm does n steps, on each of which it selects the vertex v with the
smallest weight min_e (by extracting it from the beginning of the queue), and
then looks through all the edges from this vertex and updates the values in min_e
(during an update we also need to also remove the old edge from the queue q
and put in the new edge).
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30.2 Minimum spanning tree - Kruskal’s algorithm
Given a weighted undirected graph. We want to find a subtree of this graph
which connects all vertices (i.e. it is a spanning tree) and has the least weight
(i.e. the sum of weights of all the edges is minimum) of all possible spanning trees.
This spanning tree is called a minimum spanning tree.

In the left image you can see a weighted undirected graph, and in the right
image you can see the corresponding minimum spanning tree.

This article will discuss few important facts associated with minimum spanning
trees, and then will give the simplest implementation of Kruskal’s algorithm for
finding minimum spanning tree.

30.2.1 Properties of the minimum spanning tree
• A minimum spanning tree of a graph is unique, if the weight of all the

edges are distinct. Otherwise, there may be multiple minimum spanning
trees. (Specific algorithms typically output one of the possible minimum
spanning trees).

• Minimum spanning tree is also the tree with minimum product of weights
of edges. (It can be easily proved by replacing the weights of all edges with
their logarithms)

• In a minimum spanning tree of a graph, the maximum weight of an edge is
the minimum possible from all possible spanning trees of that graph. (This
follows from the validity of Kruskal’s algorithm).

• The maximum spanning tree (spanning tree with the sum of weights of
edges being maximum) of a graph can be obtained similarly to that of the
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minimum spanning tree, by changing the signs of the weights of all the
edges to their opposite and then applying any of the minimum spanning
tree algorithm.

30.2.2 Kruskal’s algorithm
This algorithm was described by Joseph Bernard Kruskal, Jr. in 1956.

Kruskal’s algorithm initially places all the nodes of the original graph isolated
from each other, to form a forest of single node trees, and then gradually merges
these trees, combining at each iteration any two of all the trees with some edge of
the original graph. Before the execution of the algorithm, all edges are sorted by
weight (in non-decreasing order). Then begins the process of unification: pick all
edges from the first to the last (in sorted order), and if the ends of the currently
picked edge belong to different subtrees, these subtrees are combined, and the
edge is added to the answer. After iterating through all the edges, all the vertices
will belong to the same sub-tree, and we will get the answer.

30.2.3 The simplest implementation
The following code directly implements the algorithm described above, and is
having O(M logM + N2) time complexity. Sorting edges requires O(M logN)
(which is the same as O(M logM)) operations. Information regarding the subtree
to which a vertex belongs is maintained with the help of an array tree_id[] -
for each vertex v, tree_id[v] stores the number of the tree , to which v belongs.
For each edge, whether it belongs to the ends of different trees, can be determined
in O(1). Finally, the union of the two trees is carried out in O(N) by a simple
pass through tree_id[] array. Given that the total number of merge operations
is N − 1, we obtain the asymptotic behavior of O(M logN +N2).

struct Edge {
int u, v, weight;
bool operator<(Edge const& other) {

return weight < other.weight;
}

};

int n;
vector<Edge> edges;

int cost = 0;
vector<int> tree_id(n);
vector<Edge> result;
for (int i = 0; i < n; i++)

tree_id[i] = i;

sort(edges.begin(), edges.end());

for (Edge e : edges) {
if (tree_id[e.u] != tree_id[e.v]) {
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cost += e.weight;
result.push_back(e);

int old_id = tree_id[e.u], new_id = tree_id[e.v];
for (int i = 0; i < n; i++) {

if (tree_id[i] == old_id)
tree_id[i] = new_id;

}
}

}

30.2.4 Proof of correctness
Why does Kruskal’s algorithm give us the correct result?

If the original graph was connected, then also the resulting graph will be
connected. Because otherwise there would be two components that could be
connected with at least one edge. Though this is impossible, because Kruskal
would have chosen one of these edges, since the ids of the components are different.
Also the resulting graph doesn’t contain any cycles, since we forbid this explicitly
in the algorithm. Therefore the algorithm generates a spanning tree.

So why does this algorithm give us a minimum spanning tree?
We can show the proposal “if F is a set of edges chosen by the algorithm at

any stage in the algorithm, then there exists a MST that contains all edges of F ”
using induction.

The proposal is obviously true at the beginning, the empty set is a subset of
any MST.

Now let’s assume F is some edge set at any stage of the algorithm, T is a
MST containing F and e is the new edge we want to add using Kruskal.

If e generates a cycle, then we don’t add it, and so the proposal is still true
after this step.

In case that T already contains e, the proposal is also true after this step.
In case T doesn’t contain the edge e, then T + e will contain a cycle C. This

cycle will contain at least one edge f , that is not in F . The set of edges T − f + e
will also be a spanning tree. Notice that the weight of f cannot be smaller than
the weight of e, because otherwise Kruskal would have chosen f earlier. It also
cannot have a bigger weight, since that would make the total weight of T − f + e
smaller than the total weight of T , which is impossible since T is already a MST.
This means that the weight of e has to be the same as the weight of f . Therefore
T − f + e is also a MST, and it contains all edges from F + e. So also here the
proposal is still fulfilled after the step.

This proves the proposal. Which means that after iterating over all edges
the resulting edge set will be connected, and will be contained in a MST, which
means that it has to be a MST already.

30.2.5 Improved implementation
We can use the **Disjoint Set Union** (DSU) data structure to write a faster
implementation of the Kruskal’s algorithm with the time complexity of about
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O(M logN). This article details such an approach.

30.2.6 Practice Problems
• SPOJ - Koicost
• SPOJ - MaryBMW
• Codechef - Fullmetal Alchemist
• Codeforces - Edges in MST
• UVA 12176 - Bring Your Own Horse
• UVA 10600 - ACM Contest and Blackout
• UVA 10724 - Road Construction
• Hackerrank - Roads in HackerLand
• UVA 11710 - Expensive subway
• Codechef - Chefland and Electricity
• UVA 10307 - Killing Aliens in Borg Maze
• Codeforces - Flea
• Codeforces - Igon in Museum
• Codeforces - Hongcow Builds a Nation
• DevSkills - Repairing Road
• UVA - 908 - Re-connecting Computer Sites
• UVA 1208 - Oreon
• UVA 1235 - Anti Brute Force Lock
• UVA 10034 - Freckles
• UVA 11228 - Transportation system
• UVA 11631 - Dark roads
• UVA 11733 - Airports
• UVA 11747 - Heavy Cycle Edges
• SPOJ - Blinet
• SPOJ - Help the Old King
• Codeforces - Hierarchy
• SPOJ - Modems
• CSES - Road Reparation
• CSES - Road Construction

http://www.spoj.com/problems/KOICOST/
http://www.spoj.com/problems/MARYBMW/
https://www.codechef.com/ICL2016/problems/ICL16A
http://codeforces.com/contest/160/problem/D
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3328
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1541
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1665
https://www.hackerrank.com/contests/june-world-codesprint/challenges/johnland/problem
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2757
https://www.codechef.com/problems/CHEFELEC
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1248
http://codeforces.com/problemset/problem/32/C
http://codeforces.com/problemset/problem/598/D
http://codeforces.com/problemset/problem/744/A
https://devskill.com/CodingProblems/ViewProblem/344
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=849
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3649
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3676
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=975
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=2169
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2678
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2833
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2847
http://www.spoj.com/problems/BLINNET/
http://www.spoj.com/problems/IITKWPCG/
http://codeforces.com/contest/17/problem/B
https://www.spoj.com/problems/EC_MODE/
https://cses.fi/problemset/task/1675
https://cses.fi/problemset/task/1676
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30.3 Minimum spanning tree - Kruskal with Disjoint
Set Union

For an explanation of the MST problem and the Kruskal algorithm, first see the
main article on Kruskal’s algorithm.

In this article we will consider the data structure "Disjoint Set Union" for
implementing Kruskal’s algorithm, which will allow the algorithm to achieve the
time complexity of O(M logN).

30.3.1 Description
Just as in the simple version of the Kruskal algorithm, we sort all the edges
of the graph in non-decreasing order of weights. Then put each vertex in its
own tree (i.e. its set) via calls to the make_set function - it will take a total
of O(N). We iterate through all the edges (in sorted order) and for each edge
determine whether the ends belong to different trees (with two find_set calls
in O(1) each). Finally, we need to perform the union of the two trees (sets), for
which the DSU union_sets function will be called - also in O(1). So we get the
total time complexity of O(M logN +N +M) = O(M logN).

30.3.2 Implementation
Here is an implementation of Kruskal’s algorithm with Union by Rank.

vector<int> parent, rank;

void make_set(int v) {
parent[v] = v;
rank[v] = 0;

}

int find_set(int v) {
if (v == parent[v])

return v;
return parent[v] = find_set(parent[v]);

}

void union_sets(int a, int b) {
a = find_set(a);
b = find_set(b);
if (a != b) {

if (rank[a] < rank[b])
swap(a, b);

parent[b] = a;
if (rank[a] == rank[b])

rank[a]++;
}

}

struct Edge {



30.3. Minimum spanning tree - Kruskal with Disjoint Set Union 537

int u, v, weight;
bool operator<(Edge const& other) {

return weight < other.weight;
}

};

int n;
vector<Edge> edges;

int cost = 0;
vector<Edge> result;
parent.resize(n);
rank.resize(n);
for (int i = 0; i < n; i++)

make_set(i);

sort(edges.begin(), edges.end());

for (Edge e : edges) {
if (find_set(e.u) != find_set(e.v)) {

cost += e.weight;
result.push_back(e);
union_sets(e.u, e.v);

}
}

Notice: since the MST will contain exactly N − 1 edges, we can stop the for
loop once we found that many.

30.3.3 Practice Problems
See main article on Kruskal’s algorithm for the list of practice problems on this
topic.
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30.4 Second Best Minimum Spanning Tree
A Minimum Spanning Tree T is a tree for the given graph G which spans over
all vertices of the given graph and has the minimum weight sum of all the edges,
from all the possible spanning trees. A second best MST T ′ is a spanning tree,
that has the second minimum weight sum of all the edges, from all the possible
spanning trees of the graph G.

30.4.1 Observation
Let T be the Minimum Spanning Tree of a graph G. It can be observed, that the
second best Minimum Spanning Tree differs from T by only one edge replacement.
(For a proof of this statement refer to problem 23-1 here).

So we need to find an edge enew which is in not in T , and replace it with an
edge in T (let it be eold) such that the new graph T ′ = (T ∪ {enew}) \ {eold} is a
spanning tree and the weight difference (enew − eold) is minimum.

30.4.2 Using Kruskal’s Algorithm
We can use Kruskal’s algorithm to find the MST first, and then just try to remove
a single edge from it and replace it with another.

1. Sort the edges in O(E logE), then find a MST using Kruskal in O(E).
2. For each edge in the MST (we will have V − 1 edges in it) temporarily

exclude it from the edge list so that it cannot be chosen.
3. Then, again try to find a MST in O(E) using the remaining edges.
4. Do this for all the edges in MST, and take the best of all.

Note: we don’t need to sort the edges again in for Step 3.
So, the overall time complexity will be O(E log V + E + V E) = O(V E).

30.4.3 Modeling into a Lowest Common Ancestor (LCA) prob-
lem

In the previous approach we tried all possibilities of removing one edge of the
MST. Here we will do the exact opposite. We try to add every edge that is not
already in the MST.

1. Sort the edges in O(E logE), then find a MST using Kruskal in O(E).
2. For each edge e not already in the MST, temporarily add it to the MST,

creating a cycle.
3. Find the edge k with maximal weight in the cycle that is not equal to e.
4. Remove k temporarily, creating a new spanning tree.
5. Compute the weight difference δ = weight(e)− weight(k), and remember

it together with the changed edge.
6. Repeat step 2 for all other edges, and return the spanning tree with the

smallest weight difference to the MST.

http://www-bcf.usc.edu/~shanghua/teaching/Spring2010/public_html/files/HW2_Solutions_A.pdf


30.4. Second Best Minimum Spanning Tree 539

The time complexity of the algorithm depends on how we compute the ks,
which are the maximum weight edges in step 2 of this algorithm. One way to
compute them efficiently in O(E log V ) is to transform the problem into a Lowest
Common Ancestor (LCA) problem.

We will preprocess the LCA by rooting the MST and will also compute the
maximum edge weights for each node on the paths to their ancestors. This can
be done using Binary Lifting for LCA.

The final time complexity of this approach is O(E log V ).
For example:

In the image left is the MST and right is the second best MST.
In the given graph suppose we root the MST at the blue vertex on the top,

and then run our algorithm by start picking the edges not in MST. Let the edge

graph/lca_binary_lifting.html
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picked first be the edge (u, v) with weight 36. Adding this edge to the tree forms
a cycle 36 - 7 - 2 - 34.

Now we will find the maximum weight edge in this cycle by finding the
LCA(u, v) = p. We compute the maximum weight edge on the paths from u to p
and from v to p. Note: the LCA(u, v) can also be equal to u or v in some case.
In this example we will get the edge with weight 34 as maximum edge weight in
the cycle. By removing the edge we get a new spanning tree, that has a weight
difference of only 2.

After doing this also with all other edges that are not part of the initial
MST, we can see that this spanning tree was also the second best spanning tree
overall. Choosing the edge with weight 14 will increase the weight of the tree by
7, choosing the edge with weight 27 increases it by 14, choosing the edge with
weight 28 increases it by 21, and choosing the edge with weight 39 will increase
the tree by 5.

30.4.4 Implementation
struct edge {

int s, e, w, id;
bool operator<(const struct edge& other) { return w < other.w; }

};
typedef struct edge Edge;

const int N = 2e5 + 5;
long long res = 0, ans = 1e18;
int n, m, a, b, w, id, l = 21;
vector<Edge> edges;
vector<int> h(N, 0), parent(N, -1), size(N, 0), present(N, 0);
vector<vector<pair<int, int>>> adj(N), dp(N, vector<pair<int, int>>(l));
vector<vector<int>> up(N, vector<int>(l, -1));

pair<int, int> combine(pair<int, int> a, pair<int, int> b) {
vector<int> v = {a.first, a.second, b.first, b.second};
int topTwo = -3, topOne = -2;
for (int c : v) {

if (c > topOne) {
topTwo = topOne;
topOne = c;

} else if (c > topTwo && c < topOne) {
topTwo = c;

}
}
return {topOne, topTwo};

}

void dfs(int u, int par, int d) {
h[u] = 1 + h[par];
up[u][0] = par;
dp[u][0] = {d, -1};
for (auto v : adj[u]) {
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if (v.first != par) {
dfs(v.first, u, v.second);

}
}

}

pair<int, int> lca(int u, int v) {
pair<int, int> ans = {-2, -3};
if (h[u] < h[v]) {

swap(u, v);
}
for (int i = l - 1; i >= 0; i--) {

if (h[u] - h[v] >= (1 << i)) {
ans = combine(ans, dp[u][i]);
u = up[u][i];

}
}
if (u == v) {

return ans;
}
for (int i = l - 1; i >= 0; i--) {

if (up[u][i] != -1 && up[v][i] != -1 && up[u][i] != up[v][i]) {
ans = combine(ans, combine(dp[u][i], dp[v][i]));
u = up[u][i];
v = up[v][i];

}
}
ans = combine(ans, combine(dp[u][0], dp[v][0]));
return ans;

}

int main(void) {
cin >> n >> m;
for (int i = 1; i <= n; i++) {

parent[i] = i;
size[i] = 1;

}
for (int i = 1; i <= m; i++) {

cin >> a >> b >> w; // 1-indexed
edges.push_back({a, b, w, i - 1});

}
sort(edges.begin(), edges.end());
for (int i = 0; i <= m - 1; i++) {

a = edges[i].s;
b = edges[i].e;
w = edges[i].w;
id = edges[i].id;
if (unite_set(a, b)) {

adj[a].emplace_back(b, w);
adj[b].emplace_back(a, w);
present[id] = 1;
res += w;
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}
}
dfs(1, 0, 0);
for (int i = 1; i <= l - 1; i++) {

for (int j = 1; j <= n; ++j) {
if (up[j][i - 1] != -1) {

int v = up[j][i - 1];
up[j][i] = up[v][i - 1];
dp[j][i] = combine(dp[j][i - 1], dp[v][i - 1]);

}
}

}
for (int i = 0; i <= m - 1; i++) {

id = edges[i].id;
w = edges[i].w;
if (!present[id]) {

auto rem = lca(edges[i].s, edges[i].e);
if (rem.first != w) {

if (ans > res + w - rem.first) {
ans = res + w - rem.first;

}
} else if (rem.second != -1) {

if (ans > res + w - rem.second) {
ans = res + w - rem.second;

}
}

}
}
cout << ans << "\n";
return 0;

}

30.4.5 References
1. Competitive Programming-3, by Steven Halim
2. web.mit.edu

30.4.6 Problems
• Codeforces - Minimum spanning tree for each edge

http://web.mit.edu/6.263/www/quiz1-f05-sol.pdf
https://codeforces.com/problemset/problem/609/E
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30.5 Kirchhoff’s theorem. Finding the number of
spanning trees

Problem: You are given a connected undirected graph (with possible multiple
edges) represented using an adjacency matrix. Find the number of different
spanning trees of this graph.

The following formula was proven by Kirchhoff in 1847.

30.5.1 Kirchhoff’s matrix tree theorem
Let A be the adjacency matrix of the graph: Au,v is the number of edges between
u and v. Let D be the degree matrix of the graph: a diagonal matrix with Du,u

being the degree of vertex u (including multiple edges and loops - edges which
connect vertex u with itself).

The Laplacian matrix of the graph is defined as L = D − A. According to
Kirchhoff’s theorem, all cofactors of this matrix are equal to each other, and
they are equal to the number of spanning trees of the graph. The (i, j) cofactor
of a matrix is the product of (−1)i+j with the determinant of the matrix that
you get after removing the i-th row and j-th column. So you can, for example,
delete the last row and last column of the matrix L, and the absolute value of the
determinant of the resulting matrix will give you the number of spanning trees.

The determinant of the matrix can be found in O(N3) by using the Gaussian
method.

The proof of this theorem is quite difficult and is not presented here; for an
outline of the proof and variations of the theorem for graphs without multiple
edges and for directed graphs refer to Wikipedia.

30.5.2 Relation to Kirchhoff’s circuit laws
Kirchhoff’s matrix tree theorem and Kirchhoff’s laws for electrical circuit are
related in a beautiful way. It is possible to show (using Ohm’s law and Kirchhoff’s
first law) that resistance Rij between two points of the circuit i and j is

Rij =

∣∣∣L(i,j)
∣∣∣

|Lj |
.

Here the matrix L is obtained from the matrix of inverse resistances A (Ai,j
is inverse of the resistance of the conductor between points i and j) using the
procedure described in Kirchhoff’s matrix tree theorem. T j is the matrix with
row and column j removed, T (i,j) is the matrix with two rows and two columns i
and j removed.

Kirchhoff’s theorem gives this formula geometric meaning.

30.5.3 Practice Problems
• CODECHEF: Roads in Stars
• SPOJ: Maze

https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem
https://www.codechef.com/problems/STARROAD
http://www.spoj.com/problems/KPMAZE/
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• CODECHEF: Complement Spanning Trees

https://www.codechef.com/problems/CSTREE
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30.6 Prüfer code
In this article we will look at the so-called Prüfer code (or Prüfer sequence),
which is a way of encoding a labeled tree into a sequence of numbers in a unique
way.

With the help of the Prüfer code we will prove Cayley’s formula (which
specified the number of spanning trees in a complete graph). Also we show the
solution to the problem of counting the number of ways of adding edges to a
graph to make it connected.

Note, we will not consider trees consisting of a single vertex - this is a special
case in which multiple statements clash.

30.6.1 Prüfer code
The Prüfer code is a way of encoding a labeled tree with n vertices using a
sequence of n− 2 integers in the interval [0;n− 1]. This encoding also acts as
a bijection between all spanning trees of a complete graph and the numerical
sequences.

Although using the Prüfer code for storing and operating on tree is impractical
due the specification of the representation, the Prüfer codes are used frequently:
mostly in solving combinatorial problems.

The inventor - Heinz Prüfer - proposed this code in 1918 as a proof for
Cayley’s formula.

Building the Prüfer code for a given tree

The Prüfer code is constructed as follows. We will repeat the following procedure
n− 2 times: we select the leaf of the tree with the smallest number, remove it
from the tree, and write down the number of the vertex that was connected to it.
After n− 2 iterations there will only remain 2 vertices, and the algorithm ends.

Thus the Prüfer code for a given tree is a sequence of n− 2 numbers, where
each number is the number of the connected vertex, i.e. this number is in the
interval [0, n− 1].

The algorithm for computing the Prüfer code can be implemented easily
with O(n logn) time complexity, simply by using a data structure to extract the
minimum (for instance set or priority_queue in C++), which contains a list
of all the current leafs.

vector<vector<int>> adj;

vector<int> pruefer_code() {
int n = adj.size();
set<int> leafs;
vector<int> degree(n);
vector<bool> killed(n, false);
for (int i = 0; i < n; i++) {

degree[i] = adj[i].size();
if (degree[i] == 1)
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leafs.insert(i);
}

vector<int> code(n - 2);
for (int i = 0; i < n - 2; i++) {

int leaf = *leafs.begin();
leafs.erase(leafs.begin());
killed[leaf] = true;

int v;
for (int u : adj[leaf]) {

if (!killed[u])
v = u;

}

code[i] = v;
if (--degree[v] == 1)

leafs.insert(v);
}

return code;
}

However the construction can also be implemented in linear time. Such an
approach is described in the next section.

Building the Prüfer code for a given tree in linear time

The essence of the algorithm is to use a moving pointer, which will always
point to the current leaf vertex that we want to remove.

At first glance this seems impossible, because during the process of construct-
ing the Prüfer code the leaf number can increase and decrease. However after
a closer look, this is actually not true. The number of leafs will not increase.
Either the number decreases by one (we remove one leaf vertex and don’t gain
a new one), or it stay the same (we remove one leaf vertex and gain another
one). In the first case there is no other way than searching for the next smallest
leaf vertex. In the second case, however, we can decide in O(1) time, if we can
continue using the vertex that became a new leaf vertex, or if we have to search
for the next smallest leaf vertex. And in quite a lot of times we can continue
with the new leaf vertex.

To do this we will use a variable ptr, which will indicate that in the set of
vertices between 0 and ptr is at most one leaf vertex, namely the current one.
All other vertices in that range are either already removed from the tree, or have
still more than one adjacent vertices. At the same time we say, that we haven’t
removed any leaf vertices bigger than ptr yet.

This variable is already very helpful in the first case. After removing the
current leaf node, we know that there cannot be a leaf node between 0 and ptr,
therefore we can start the search for the next one directly at ptr + 1, and we
don’t have to start the search back at vertex 0. And in the second case, we can
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further distinguish two cases: Either the newly gained leaf vertex is smaller than
ptr, then this must be the next leaf vertex, since we know that there are no other
vertices smaller than ptr. Or the newly gained leaf vertex is bigger. But then we
also know that it has to be bigger than ptr, and can start the search again at
ptr + 1.

Even though we might have to perform multiple linear searches for the next
leaf vertex, the pointer ptr only increases and therefore the time complexity in
total is O(n).
vector<vector<int>> adj;
vector<int> parent;

void dfs(int v) {
for (int u : adj[v]) {

if (u != parent[v]) {
parent[u] = v;
dfs(u);

}
}

}

vector<int> pruefer_code() {
int n = adj.size();
parent.resize(n);
parent[n-1] = -1;
dfs(n-1);

int ptr = -1;
vector<int> degree(n);
for (int i = 0; i < n; i++) {

degree[i] = adj[i].size();
if (degree[i] == 1 && ptr == -1)

ptr = i;
}

vector<int> code(n - 2);
int leaf = ptr;
for (int i = 0; i < n - 2; i++) {

int next = parent[leaf];
code[i] = next;
if (--degree[next] == 1 && next < ptr) {

leaf = next;
} else {

ptr++;
while (degree[ptr] != 1)

ptr++;
leaf = ptr;

}
}

return code;
}
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In the code we first find for each its ancestor parent[i], i.e. the ancestor
that this vertex will have once we remove it from the tree. We can find this
ancestor by rooting the tree at the vertex n − 1. This is possible because the
vertex n− 1 will never be removed from the tree. We also compute the degree for
each vertex. ptr is the pointer that indicates the minimum size of the remaining
leaf vertices (except the current one leaf). We will either assign the current leaf
vertex with next, if this one is also a leaf vertex and it is smaller than ptr, or
we start a linear search for the smallest leaf vertex by increasing the pointer.

It can be easily seen, that this code has the complexity O(n).

Some properties of the Prüfer code

• After constructing the Prüfer code two vertices will remain. One of them is
the highest vertex n− 1, but nothing else can be said about the other one.

• Each vertex appears in the Prüfer code exactly a fixed number of times -
its degree minus one. This can be easily checked, since the degree will get
smaller every time we record its label in the code, and we remove it once
the degree is 1. For the two remaining vertices this fact is also true.

Restoring the tree using the Prüfer code

To restore the tree it suffice to only focus on the property discussed in the
last section. We already know the degree of all the vertices in the desired tree.
Therefore we can find all leaf vertices, and also the first leaf that was removed in
the first step (it has to be the smallest leaf). This leaf vertex was connected to
the vertex corresponding to the number in the first cell of the Prüfer code.

Thus we found the first edge removed by when then the Prüfer code was
generated. We can add this edge to the answer and reduce the degrees at both
ends of the edge.

We will repeat this operation until we have used all numbers of the Prüfer
code: we look for the minimum vertex with degree equal to 1, connect it with
the next vertex from the Prüfer code, and reduce the degree.

In the end we only have two vertices left with degree equal to 1. These are
the vertices that didn’t got removed by the Prüfer code process. We connect
them to get the last edge of the tree. One of them will always be the vertex n− 1.

This algorithm can be implemented easily in O(n logn): we use a
data structure that supports extracting the minimum (for example set<> or
priority_queue<> in C++) to store all the leaf vertices.

The following implementation returns the list of edges corresponding to the
tree.

vector<pair<int, int>> pruefer_decode(vector<int> const& code) {
int n = code.size() + 2;
vector<int> degree(n, 1);
for (int i : code)

degree[i]++;

set<int> leaves;
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for (int i = 0; i < n; i++) {
if (degree[i] == 1)

leaves.insert(i);
}

vector<pair<int, int>> edges;
for (int v : code) {

int leaf = *leaves.begin();
leaves.erase(leaves.begin());

edges.emplace_back(leaf, v);
if (--degree[v] == 1)

leaves.insert(v);
}
edges.emplace_back(*leaves.begin(), n-1);
return edges;

}

Restoring the tree using the Prüfer code in linear time

To obtain the tree in linear time we can apply the same technique used to obtain
the Prüfer code in linear time.

We don’t need a data structure to extract the minimum. Instead we can
notice that, after processing the current edge, only one vertex becomes a leaf.
Therefore we can either continue with this vertex, or we find a smaller one with
a linear search by moving a pointer.

vector<pair<int, int>> pruefer_decode(vector<int> const& code) {
int n = code.size() + 2;
vector<int> degree(n, 1);
for (int i : code)

degree[i]++;

int ptr = 0;
while (degree[ptr] != 1)

ptr++;
int leaf = ptr;

vector<pair<int, int>> edges;
for (int v : code) {

edges.emplace_back(leaf, v);
if (--degree[v] == 1 && v < ptr) {

leaf = v;
} else {

ptr++;
while (degree[ptr] != 1)

ptr++;
leaf = ptr;

}
}
edges.emplace_back(leaf, n-1);
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return edges;
}

Bijection between trees and Prüfer codes

For each tree there exists a Prüfer code corresponding to it. And for each Prüfer
code we can restore the original tree.

It follows that also every Prüfer code (i.e. a sequence of n− 2 numbers in the
range [0;n− 1]) corresponds to a tree.

Therefore all trees and all Prüfer codes form a bijection (a one-to-one
correspondence).

30.6.2 Cayley’s formula
Cayley’s formula states that the number of spanning trees in a complete
labeled graph with n vertices is equal to:

nn−2

There are multiple proofs for this formula. Using the Prüfer code concept this
statement comes without any surprise.

In fact any Prüfer code with n − 2 numbers from the interval [0;n − 1]
corresponds to some tree with n vertices. So we have nn−2 different such Prüfer
codes. Since each such tree is a spanning tree of a complete graph with n vertices,
the number of such spanning trees is also nn−2.

30.6.3 Number of ways to make a graph connected
The concept of Prüfer codes are even more powerful. It allows to create a lot
more general formulas than Cayley’s formula.

In this problem we are given a graph with n vertices and m edges. The graph
currently has k components. We want to compute the number of ways of adding
k−1 edges so that the graph becomes connected (obviously k−1 is the minimum
number necessary to make the graph connected).

Let us derive a formula for solving this problem.
We use s1, . . . , sk for the sizes of the connected components in the graph. We

cannot add edges within a connected component. Therefore it turns out that
this problem is very similar to the search for the number of spanning trees of
a complete graph with k vertices. The only difference is that each vertex has
actually the size si: each edge connecting the vertex i, actually multiplies the
answer by si.

Thus in order to calculate the number of possible ways it is important to
count how often each of the k vertices is used in the connecting tree. To obtain
a formula for the problem it is necessary to sum the answer over all possible
degrees.
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Let d1, . . . , dk be the degrees of the vertices in the tree after connecting the
vertices. The sum of the degrees is twice the number of edges:

k∑
i=1

di = 2k − 2

If the vertex i has degree di, then it appears di− 1 times in the Prüfer code. The
Prüfer code for a tree with k vertices has length k − 2. So the number of ways
to choose a code with k − 2 numbers where the number i appears exactly di − 1
times is equal to the multinomial coefficient(

k − 2
d1 − 1, d2 − 1, . . . , dk − 1

)
= (k − 2)!

(d1 − 1)!(d2 − 1)! · · · (dk − 1)! .

The fact that each edge adjacent to the vertex i multiplies the answer by si we
receive the answer, assuming that the degrees of the vertices are d1, . . . , dk:

sd1
1 · s

d2
2 · · · s

dk
k ·

(
k − 2

d1 − 1, d2 − 1, . . . , dk − 1

)
To get the final answer we need to sum this for all possible ways to choose the
degrees: ∑

di≥1∑k

i=1 di=2k−2

sd1
1 · s

d2
2 · · · s

dk
k ·

(
k − 2

d1 − 1, d2 − 1, . . . , dk − 1

)

Currently this looks like a really horrible answer, however we can use the
multinomial theorem, which says:

(x1 + · · ·+ xm)p =
∑
ci≥0∑m

i=1 ci=p

xc1
1 · x

c2
2 · · ·x

cm
m ·

(
p

c1, c2, . . . cm

)

This look already pretty similar. To use it we only need to substitute with
ei = di − 1: ∑

ei≥0∑k

i=1 ei=k−2

se1+1
1 · se2+1

2 · · · sek+1
k ·

(
k − 2

e1, e2, . . . , ek

)

After applying the multinomial theorem we get the answer to the problem:

s1 · s2 · · · sk · (s1 + s2 + · · ·+ sk)k−2 = s1 · s2 · · · sk · nk−2

By accident this formula also holds for k = 1.

30.6.4 Practice problems
• UVA #10843 - Anne’s game
• Timus #1069 - Prufer Code
• Codeforces - Clues
• Topcoder - TheCitiesAndRoadsDivTwo

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=20&page=show_problem&problem=1784
http://acm.timus.ru/problem.aspx?space=1&num=1069
http://codeforces.com/contest/156/problem/D
https://community.topcoder.com/stat?c=problem_statement&pm=10774&rd=14146
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Chapter 31

Cycles

31.1 Checking a graph for acyclicity and finding a
cycle in O(M)

Consider a directed or undirected graph without loops and multiple edges. We
have to check whether it is acyclic, and if it is not, then find any cycle.

We can solve this problem by using Depth First Search in O(M) where M is
number of edges.

31.1.1 Algorithm
We will run a series of DFS in the graph. Initially all vertices are colored white
(0). From each unvisited (white) vertex, start the DFS, mark it gray (1) while
entering and mark it black (2) on exit. If DFS moves to a gray vertex, then
we have found a cycle (if the graph is undirected, the edge to parent is not
considered). The cycle itself can be reconstructed using parent array.

31.1.2 Implementation
Here is an implementation for directed graph.

int n;
vector<vector<int>> adj;
vector<char> color;
vector<int> parent;
int cycle_start, cycle_end;

bool dfs(int v) {
color[v] = 1;
for (int u : adj[v]) {

if (color[u] == 0) {
parent[u] = v;
if (dfs(u))

return true;
} else if (color[u] == 1) {

cycle_end = v;
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cycle_start = u;
return true;

}
}
color[v] = 2;
return false;

}

void find_cycle() {
color.assign(n, 0);
parent.assign(n, -1);
cycle_start = -1;

for (int v = 0; v < n; v++) {
if (color[v] == 0 && dfs(v))

break;
}

if (cycle_start == -1) {
cout << "Acyclic" << endl;

} else {
vector<int> cycle;
cycle.push_back(cycle_start);
for (int v = cycle_end; v != cycle_start; v = parent[v])

cycle.push_back(v);
cycle.push_back(cycle_start);
reverse(cycle.begin(), cycle.end());

cout << "Cycle found: ";
for (int v : cycle)

cout << v << " ";
cout << endl;

}
}

Here is an implementation for undirected graph. Note that in the undirected
version, if a vertex v gets colored black, it will never be visited again by the DFS.
This is because we already explored all connected edges of v when we first visited
it. The connected component containing v (after removing the edge between v
and its parent) must be a tree, if the DFS has completed processing v without
finding a cycle. So we don’t even need to distinguish between gray and black
states. Thus we can turn the char vector color into a boolean vector visited.

int n;
vector<vector<int>> adj;
vector<bool> visited;
vector<int> parent;
int cycle_start, cycle_end;

bool dfs(int v, int par) { // passing vertex and its parent vertex
visited[v] = true;
for (int u : adj[v]) {
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if(u == par) continue; // skipping edge to parent vertex
if (visited[u]) {

cycle_end = v;
cycle_start = u;
return true;

}
parent[u] = v;
if (dfs(u, parent[u]))

return true;
}
return false;

}

void find_cycle() {
visited.assign(n, false);
parent.assign(n, -1);
cycle_start = -1;

for (int v = 0; v < n; v++) {
if (!visited[v] && dfs(v, parent[v]))

break;
}

if (cycle_start == -1) {
cout << "Acyclic" << endl;

} else {
vector<int> cycle;
cycle.push_back(cycle_start);
for (int v = cycle_end; v != cycle_start; v = parent[v])

cycle.push_back(v);
cycle.push_back(cycle_start);
reverse(cycle.begin(), cycle.end());

cout << "Cycle found: ";
for (int v : cycle)

cout << v << " ";
cout << endl;

}
}

Practice problems:

• CSES : Round Trip
• CSES : Round Trip II

https://cses.fi/problemset/task/1669
https://cses.fi/problemset/task/1678/
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31.2 Finding a negative cycle in the graph
You are given a directed weighted graph G with N vertices and M edges. Find
any cycle of negative weight in it, if such a cycle exists.

In another formulation of the problem you have to find all pairs of vertices
which have a path of arbitrarily small weight between them.

It is convenient to use different algorithms to solve these two variations of
the problem, so we’ll discuss both of them here.

31.2.1 Using Bellman-Ford algorithm
Bellman-Ford algorithm allows you to check whether there exists a cycle of
negative weight in the graph, and if it does, find one of these cycles.

The details of the algorithm are described in the article on the Bellman-Ford
algorithm. Here we’ll describe only its application to this problem.

Do N iterations of Bellman-Ford algorithm. If there were no changes on the
last iteration, there is no cycle of negative weight in the graph. Otherwise take a
vertex the distance to which has changed, and go from it via its ancestors until a
cycle is found. This cycle will be the desired cycle of negative weight.

Implementation

struct Edge {
int a, b, cost;

};

int n, m;
vector<Edge> edges;
const int INF = 1000000000;

void solve()
{

vector<int> d(n);
vector<int> p(n, -1);
int x;
for (int i = 0; i < n; ++i) {

x = -1;
for (Edge e : edges) {

if (d[e.a] + e.cost < d[e.b]) {
d[e.b] = d[e.a] + e.cost;
p[e.b] = e.a;
x = e.b;

}
}

}

if (x == -1) {
cout << "No negative cycle found.";

} else {
for (int i = 0; i < n; ++i)
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x = p[x];

vector<int> cycle;
for (int v = x;; v = p[v]) {

cycle.push_back(v);
if (v == x && cycle.size() > 1)

break;
}
reverse(cycle.begin(), cycle.end());

cout << "Negative cycle: ";
for (int v : cycle)

cout << v << ' ';
cout << endl;

}
}

31.2.2 Using Floyd-Warshall algorithm
The Floyd-Warshall algorithm allows to solve the second variation of the problem
- finding all pairs of vertices (i, j) which don’t have a shortest path between them
(i.e. a path of arbitrarily small weight exists).

Again, the details can be found in the Floyd-Warshall article, and here we
describe only its application.

Run Floyd-Warshall algorithm on the graph. Initially d[v][v] = 0 for each
v. But after running the algorithm d[v][v] will be smaller than 0 if there exists
a negative length path from v to v. We can use this to also find all pairs of
vertices that don’t have a shortest path between them. We iterate over all pairs
of vertices (i, j) and for each pair we check whether they have a shortest path
between them. To do this try all possibilities for an intermediate vertex t. (i, j)
doesn’t have a shortest path, if one of the intermediate vertices t has d[t][t] < 0
(i.e. t is part of a cycle of negative weight), t can be reached from i and j can be
reached from t. Then the path from i to j can have arbitrarily small weight. We
will denote this with -INF.

Implementation

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

for (int t = 0; t < n; ++t) {
if (d[i][t] < INF && d[t][t] < 0 && d[t][j] < INF)

d[i][j] = - INF;
}

}
}

31.2.3 Practice Problems
• UVA: Wormholes
• SPOJ: Alice in Amsterdam, I mean Wonderland

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=499
http://www.spoj.com/problems/UCV2013B/
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• SPOJ: Johnsons Algorithm

http://www.spoj.com/problems/JHNSN/
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31.3 Finding the Eulerian path in O(M)
A Eulerian path is a path in a graph that passes through all of its edges exactly
once. A Eulerian cycle is a Eulerian path that is a cycle.

The problem is to find the Eulerian path in an undirected multigraph
with loops.

31.3.1 Algorithm
First we can check if there is an Eulerian path. We can use the following theorem.
An Eulerian cycle exists if and only if the degrees of all vertices are even. And
an Eulerian path exists if and only if the number of vertices with odd degrees
is two (or zero, in the case of the existence of a Eulerian cycle). In addition, of
course, the graph must be sufficiently connected (i.e., if you remove all isolated
vertices from it, you should get a connected graph).

The find the Eulerian path / Eulerian cycle we can use the following strategy:
We find all simple cycles and combine them into one - this will be the Eulerian
cycle. If the graph is such that the Eulerian path is not a cycle, then add the
missing edge, find the Eulerian cycle, then remove the extra edge.

Looking for all cycles and combining them can be done with a simple recursive
procedure:

procedure FindEulerPath(V)
1. iterate through all the edges outgoing from vertex V;

remove this edge from the graph,
and call FindEulerPath from the second end of this edge;

2. add vertex V to the answer.

The complexity of this algorithm is obviously linear with respect to the
number of edges.

But we can write the same algorithm in the non-recursive version:

stack St;
put start vertex in St;
until St is empty

let V be the value at the top of St;
if degree(V) = 0, then
add V to the answer;
remove V from the top of St;

otherwise
find any edge coming out of V;
remove it from the graph;
put the second end of this edge in St;

It is easy to check the equivalence of these two forms of the algorithm.
However, the second form is obviously faster, and the code will be much more.
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31.3.2 The Domino problem
We give here a classical Eulerian cycle problem - the Domino problem.

There are N dominoes, as it is known, on both ends of the Domino one
number is written(usually from 1 to 6, but in our case it is not important). You
want to put all the dominoes in a row so that the numbers on any two adjacent
dominoes, written on their common side, coincide. Dominoes are allowed to turn.

Reformulate the problem. Let the numbers written on the bottoms be the
vertices of the graph, and the dominoes be the edges of this graph (each Domino
with numbers (a, b) are the edges (a, b) and (b, a)). Then our problem is reduced
to the problem of finding the Eulerian path in this graph.

31.3.3 Implementation
The program below searches for and outputs a Eulerian loop or path in a graph,
or outputs −1 if it does not exist.

First, the program checks the degree of vertices: if there are no vertices with
an odd degree, then the graph has an Euler cycle, if there are 2 vertices with
an odd degree, then in the graph there is only an Euler path (but no Euler
cycle), if there are more than 2 such vertices, then in the graph there is no Euler
cycle or Euler path. To find the Euler path (not a cycle), let’s do this: if V 1
and V 2 are two vertices of odd degree,then just add an edge (V 1, V 2), in the
resulting graph we find the Euler cycle (it will obviously exist), and then remove
the “fictitious” edge (V 1, V 2) from the answer. We will look for the Euler cycle
exactly as described above (non-recursive version), and at the same time at the
end of this algorithm we will check whether the graph was connected or not (if
the graph was not connected, then at the end of the algorithm some edges will
remain in the graph, and in this case we need to print −1). Finally, the program
takes into account that there can be isolated vertices in the graph.

Notice that we use an adjacency matrix in this problem. Also this implemen-
tation handles finding the next with brute-force, which requires to iterate over
the complete row in the matrix over and over. A better way would be to store
the graph as an adjacency list, and remove edges in O(1) and mark the reversed
edges in separate list. This way we can archive a O(N) algorithm.

int main() {
int n;
vector<vector<int>> g(n, vector<int>(n));
// reading the graph in the adjacency matrix

vector<int> deg(n);
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j)
deg[i] += g[i][j];

}

int first = 0;
while (first < n && !deg[first])

++first;
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if (first == n) {
cout << -1;
return 0;

}

int v1 = -1, v2 = -1;
bool bad = false;
for (int i = 0; i < n; ++i) {

if (deg[i] & 1) {
if (v1 == -1)

v1 = i;
else if (v2 == -1)

v2 = i;
else

bad = true;
}

}

if (v1 != -1)
++g[v1][v2], ++g[v2][v1];

stack<int> st;
st.push(first);
vector<int> res;
while (!st.empty()) {

int v = st.top();
int i;
for (i = 0; i < n; ++i)

if (g[v][i])
break;

if (i == n) {
res.push_back(v);
st.pop();

} else {
--g[v][i];
--g[i][v];
st.push(i);

}
}

if (v1 != -1) {
for (size_t i = 0; i + 1 < res.size(); ++i) {

if ((res[i] == v1 && res[i + 1] == v2) ||
(res[i] == v2 && res[i + 1] == v1)) {
vector<int> res2;
for (size_t j = i + 1; j < res.size(); ++j)

res2.push_back(res[j]);
for (size_t j = 1; j <= i; ++j)

res2.push_back(res[j]);
res = res2;
break;

}
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}
}

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

if (g[i][j])
bad = true;

}
}

if (bad) {
cout << -1;

} else {
for (int x : res)

cout << x << " ";
}

}

Practice problems:

• CSES : Mail Delivery
• CSES : Teleporters Path

https://cses.fi/problemset/task/1691
https://cses.fi/problemset/task/1693
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Chapter 32

Lowest common ancestor

32.1 Lowest Common Ancestor - O(
√

N) and O(log N)
with O(N) preprocessing

Given a tree G. Given queries of the form (v1, v2), for each query you need to
find the lowest common ancestor (or least common ancestor), i.e. a vertex v that
lies on the path from the root to v1 and the path from the root to v2, and the
vertex should be the lowest. In other words, the desired vertex v is the most
bottom ancestor of v1 and v2. It is obvious that their lowest common ancestor
lies on a shortest path from v1 and v2. Also, if v1 is the ancestor of v2, v1 is their
lowest common ancestor.

The Idea of the Algorithm

Before answering the queries, we need to preprocess the tree. We make a DFS
traversal starting at the root and we build a list euler which stores the order of
the vertices that we visit (a vertex is added to the list when we first visit it, and
after the return of the DFS traversals to its children). This is also called an Euler
tour of the tree. It is clear that the size of this list will be O(N). We also need
to build an array first[0..N − 1] which stores for each vertex i its first occurrence
in euler. That is, the first position in euler such that euler[first[i]] = i. Also by
using the DFS we can find the height of each node (distance from root to it) and
store it in the array height[0..N − 1].

So how can we answer queries using the Euler tour and the additional two
arrays? Suppose the query is a pair of v1 and v2. Consider the vertices that we
visit in the Euler tour between the first visit of v1 and the first visit of v2. It is
easy to see, that the LCA(v1, v2) is the vertex with the lowest height on this path.
We already noticed, that the LCA has to be part of the shortest path between v1
and v2. Clearly it also has to be the vertex with the smallest height. And in the
Euler tour we essentially use the shortest path, except that we additionally visit
all subtrees that we find on the path. But all vertices in these subtrees are lower
in the tree than the LCA and therefore have a larger height. So the LCA(v1, v2)
can be uniquely determined by finding the vertex with the smallest height in the
Euler tour between first(v1) and first(v2).
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Let’s illustrate this idea. Consider the following graph and the Euler tour
with the corresponding heights:

Vertices: 1 2 5 2 6 2 1 3 1 4 7 4 1
Heights: 1 2 3 2 3 2 1 2 1 2 3 2 1

The tour starting at vertex 6 and ending at 4 we visit the vertices [6, 2, 1, 3, 1, 4].
Among those vertices the vertex 1 has the lowest height, therefore LCA(6, 4) = 1.

To recap: to answer a query we just need to find the vertex with smallest
height in the array euler in the range from first[v1] to first[v2]. Thus, the LCA
problem is reduced to the RMQ problem (finding the minimum in an range
problem).

Using Sqrt-Decomposition, it is possible to obtain a solution answering each
query in O(

√
N) with preprocessing in O(N) time.

Using a Segment Tree you can answer each query in O(logN) with prepro-
cessing in O(N) time.

Since there will almost never be any update to the stored values, a Sparse
Table might be a better choice, allowing O(1) query answering with O(N logN)
build time.

Implementation

In the following implementation of the LCA algorithm a Segment Tree is used.

struct LCA {
vector<int> height, euler, first, segtree;
vector<bool> visited;
int n;

LCA(vector<vector<int>> &adj, int root = 0) {
n = adj.size();
height.resize(n);
first.resize(n);
euler.reserve(n * 2);
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visited.assign(n, false);
dfs(adj, root);
int m = euler.size();
segtree.resize(m * 4);
build(1, 0, m - 1);

}

void dfs(vector<vector<int>> &adj, int node, int h = 0) {
visited[node] = true;
height[node] = h;
first[node] = euler.size();
euler.push_back(node);
for (auto to : adj[node]) {

if (!visited[to]) {
dfs(adj, to, h + 1);
euler.push_back(node);

}
}

}

void build(int node, int b, int e) {
if (b == e) {

segtree[node] = euler[b];
} else {

int mid = (b + e) / 2;
build(node << 1, b, mid);
build(node << 1 | 1, mid + 1, e);
int l = segtree[node << 1], r = segtree[node << 1 | 1];
segtree[node] = (height[l] < height[r]) ? l : r;

}
}

int query(int node, int b, int e, int L, int R) {
if (b > R || e < L)

return -1;
if (b >= L && e <= R)

return segtree[node];
int mid = (b + e) >> 1;

int left = query(node << 1, b, mid, L, R);
int right = query(node << 1 | 1, mid + 1, e, L, R);
if (left == -1) return right;
if (right == -1) return left;
return height[left] < height[right] ? left : right;

}

int lca(int u, int v) {
int left = first[u], right = first[v];
if (left > right)

swap(left, right);
return query(1, 0, euler.size() - 1, left, right);

}
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};

32.1.1 Practice Problems
• SPOJ: LCA
• SPOJ: DISQUERY
• TIMUS: 1471. Distance in the Tree
• CODEFORCES: Design Tutorial: Inverse the Problem
• CODECHEF: Lowest Common Ancestor
• SPOJ - Lowest Common Ancestor
• SPOJ - Ada and Orange Tree
• DevSkills - Motoku
• UVA 12655 - Trucks
• Codechef - Pishty and Tree
• UVA - 12533 - Joining Couples
• Codechef - So close yet So Far
• Codeforces - Drivers Dissatisfaction
• UVA 11354 - Bond
• SPOJ - Querry on a tree II
• Codeforces - Best Edge Weight
• Codeforces - Misha, Grisha and Underground
• SPOJ - Nlogonian Tickets
• Codeforces - Rowena Rawenclaws Diadem

http://www.spoj.com/problems/LCA/
http://www.spoj.com/problems/DISQUERY/
http://acm.timus.ru/problem.aspx?space=1&num=1471
http://codeforces.com/problemset/problem/472/D
https://www.codechef.com/problems/TALCA
http://www.spoj.com/problems/LCASQ/
http://www.spoj.com/problems/ADAORANG/
https://devskill.com/CodingProblems/ViewProblem/141
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=4384
https://www.codechef.com/problems/PSHTTR
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=441&page=show_problem&problem=3978
https://www.codechef.com/problems/CLOSEFAR
http://codeforces.com/contest/733/problem/F
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2339
http://www.spoj.com/problems/QTREE2/
http://codeforces.com/contest/828/problem/F
http://codeforces.com/contest/832/problem/D
http://www.spoj.com/problems/NTICKETS/
http://codeforces.com/contest/855/problem/D
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32.2 Lowest Common Ancestor - Binary Lifting
Let G be a tree. For every query of the form (u, v) we want to find the lowest
common ancestor of the nodes u and v, i.e. we want to find a node w that lies on
the path from u to the root node, that lies on the path from v to the root node,
and if there are multiple nodes we pick the one that is farthest away from the
root node. In other words the desired node w is the lowest ancestor of u and v.
In particular if u is an ancestor of v, then u is their lowest common ancestor.

The algorithm described in this article will need O(N logN) for preprocessing
the tree, and then O(logN) for each LCA query.

32.2.1 Algorithm
For each node we will precompute its ancestor above him, its ancestor two nodes
above, its ancestor four above, etc. Let’s store them in the array up, i.e. up[i][j]
is the 2ˆj-th ancestor above the node i with i=1...N, j=0...ceil(log(N)).
These information allow us to jump from any node to any ancestor above it in
O(logN) time. We can compute this array using a DFS traversal of the tree.

For each node we will also remember the time of the first visit of this node
(i.e. the time when the DFS discovers the node), and the time when we left it
(i.e. after we visited all children and exit the DFS function). We can use this
information to determine in constant time if a node is an ancestor of another
node.

Suppose now we received a query (u, v). We can immediately check whether
one node is the ancestor of the other. In this case this node is already the LCA.
If u is not the ancestor of v, and v not the ancestor of u, we climb the ancestors
of u until we find the highest (i.e. closest to the root) node, which is not an
ancestor of v (i.e. a node x, such that x is not an ancestor of v, but up[x][0]
is). We can find this node x in O(logN) time using the array up.

We will describe this process in more detail. Let L = ceil(log(N)). Suppose
first that i = L. If up[u][i] is not an ancestor of v, then we can assign u =
up[u][i] and decrement i. If up[u][i] is an ancestor, then we just decrement
i. Clearly after doing this for all non-negative i the node u will be the desired
node - i.e. u is still not an ancestor of v, but up[u][0] is.

Now, obviously, the answer to LCA will be up[u][0] - i.e., the smallest node
among the ancestors of the node u, which is also an ancestor of v.

So answering a LCA query will iterate i from ceil(log(N)) to 0 and checks
in each iteration if one node is the ancestor of the other. Consequently each
query can be answered in O(logN).

32.2.2 Implementation
int n, l;
vector<vector<int>> adj;

int timer;
vector<int> tin, tout;
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vector<vector<int>> up;

void dfs(int v, int p)
{

tin[v] = ++timer;
up[v][0] = p;
for (int i = 1; i <= l; ++i)

up[v][i] = up[up[v][i-1]][i-1];

for (int u : adj[v]) {
if (u != p)

dfs(u, v);
}

tout[v] = ++timer;
}

bool is_ancestor(int u, int v)
{

return tin[u] <= tin[v] && tout[u] >= tout[v];
}

int lca(int u, int v)
{

if (is_ancestor(u, v))
return u;

if (is_ancestor(v, u))
return v;

for (int i = l; i >= 0; --i) {
if (!is_ancestor(up[u][i], v))

u = up[u][i];
}
return up[u][0];

}

void preprocess(int root) {
tin.resize(n);
tout.resize(n);
timer = 0;
l = ceil(log2(n));
up.assign(n, vector<int>(l + 1));
dfs(root, root);

}

32.2.3 Practice Problems
• Codechef - Longest Good Segment

https://www.codechef.com/problems/LGSEG
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32.3 Lowest Common Ancestor - Farach-Colton and
Bender Algorithm

Let G be a tree. For every query of the form (u, v) we want to find the lowest
common ancestor of the nodes u and v, i.e. we want to find a node w that lies on
the path from u to the root node, that lies on the path from v to the root node,
and if there are multiple nodes we pick the one that is farthest away from the
root node. In other words the desired node w is the lowest ancestor of u and v.
In particular if u is an ancestor of v, then u is their lowest common ancestor.

The algorithm which will be described in this article was developed by Farach-
Colton and Bender. It is asymptotically optimal.

32.3.1 Algorithm
We use the classical reduction of the LCA problem to the RMQ problem. We
traverse all nodes of the tree with DFS and keep an array with all visited nodes
and the heights of these nodes. The LCA of two nodes u and v is the node
between the occurrences of u and v in the tour, that has the smallest height.

In the following picture you can see a possible Euler-Tour of a graph and in
the list below you can see the visited nodes and their heights.

Nodes: 1 2 5 2 6 2 1 3 1 4 7 4 1
Heights: 1 2 3 2 3 2 1 2 1 2 3 2 1

You can read more about this reduction in the article Lowest Common
Ancestor. In that article the minimum of a range was either found by sqrt-
decomposition in O(

√
N) or in O(logN) using a Segment tree. In this article we

look at how we can solve the given range minimum queries in O(1) time, while
still only taking O(N) time for preprocessing.

Note that the reduced RMQ problem is very specific: any two adjacent
elements in the array differ exactly by one (since the elements of the array are
nothing more than the heights of the nodes visited in order of traversal, and we
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either go to a descendant, in which case the next element is one bigger, or go back
to the ancestor, in which case the next element is one lower). The Farach-Colton
and Bender algorithm describes a solution for exactly this specialized RMQ
problem.

Let’s denote with A the array on which we want to perform the range minimum
queries. And N will be the size of A.

There is an easy data structure that we can use for solving the RMQ problem
with O(N logN) preprocessing and O(1) for each query: the Sparse Table. We
create a table T where each element T [i][j] is equal to the minimum of A in the
interval [i, i+ 2j − 1]. Obviously 0 ≤ j ≤ dlogNe, and therefore the size of the
Sparse Table will be O(N logN). You can build the table easily in O(N logN)
by noting that T [i][j] = min(T [i][j − 1], T [i+ 2j−1][j − 1]).

How can we answer a query RMQ in O(1) using this data structure? Let
the received query be [l, r], then the answer is min(T [l][sz], T [r − 2sz + 1][sz]),
where sz is the biggest exponent such that 2sz is not bigger than the range length
r − l + 1. Indeed we can take the range [l, r] and cover it two segments of length
2sz - one starting in l and the other ending in r. These segments overlap, but this
doesn’t interfere with our computation. To really achieve the time complexity of
O(1) per query, we need to know the values of sz for all possible lengths from 1
to N . But this can be easily precomputed.

Now we want to improve the complexity of the preprocessing down to O(N).
We divide the array A into blocks of size K = 0.5 logN with log being the

logarithm to base 2. For each block we calculate the minimum element and store
them in an array B. B has the size N

K . We construct a sparse table from the
array B. The size and the time complexity of it will be:

N

K
log

(
N

K

)
= 2N

log(N) log
( 2N

log(N)

)
=

= 2N
log(N)

(
1 + log

(
N

log(N)

))
≤ 2N

log(N) + 2N = O(N)

Now we only have to learn how to quickly answer range minimum queries
within each block. In fact if the received range minimum query is [l, r] and l and
r are in different blocks then the answer is the minimum of the following three
values: the minimum of the suffix of block of l starting at l, the minimum of the
prefix of block of r ending at r, and the minimum of the blocks between those.
The minimum of the blocks in between can be answered in O(1) using the Sparse
Table. So this leaves us only the range minimum queries inside blocks.

Here we will exploit the property of the array. Remember that the values in
the array - which are just height values in the tree - will always differ by one. If
we remove the first element of a block, and subtract it from every other item in
the block, every block can be identified by a sequence of length K − 1 consisting
of the number +1 and −1. Because these blocks are so small, there are only a
few different sequences that can occur. The number of possible sequences is:

2K−1 = 20.5 log(N)−1 = 0.5
(
2log(N)

)0.5
= 0.5

√
N
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Thus the number of different blocks is O(
√
N), and therefore we can pre-

compute the results of range minimum queries inside all different blocks in
O(
√
NK2) = O(

√
N log2(N)) = O(N) time. For the implementation we can

characterize a block by a bitmask of length K − 1 (which will fit in a standard
int) and store the index of the minimum in an array block[mask][l][r] of size
O(
√
N log2(N)).
So we learned how to precompute range minimum queries within each block,

as well as range minimum queries over a range of blocks, all in O(N). With
these precomputations we can answer each query in O(1), by using at most four
precomputed values: the minimum of the block containing l, the minimum of
the block containing r, and the two minima of the overlapping segments of the
blocks between them.

32.3.2 Implementation
int n;
vector<vector<int>> adj;

int block_size, block_cnt;
vector<int> first_visit;
vector<int> euler_tour;
vector<int> height;
vector<int> log_2;
vector<vector<int>> st;
vector<vector<vector<int>>> blocks;
vector<int> block_mask;

void dfs(int v, int p, int h) {
first_visit[v] = euler_tour.size();
euler_tour.push_back(v);
height[v] = h;

for (int u : adj[v]) {
if (u == p)

continue;
dfs(u, v, h + 1);
euler_tour.push_back(v);

}
}

int min_by_h(int i, int j) {
return height[euler_tour[i]] < height[euler_tour[j]] ? i : j;

}

void precompute_lca(int root) {
// get euler tour & indices of first occurences
first_visit.assign(n, -1);
height.assign(n, 0);
euler_tour.reserve(2 * n);
dfs(root, -1, 0);
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// precompute all log values
int m = euler_tour.size();
log_2.reserve(m + 1);
log_2.push_back(-1);
for (int i = 1; i <= m; i++)

log_2.push_back(log_2[i / 2] + 1);

block_size = max(1, log_2[m] / 2);
block_cnt = (m + block_size - 1) / block_size;

// precompute minimum of each block and build sparse table
st.assign(block_cnt, vector<int>(log_2[block_cnt] + 1));
for (int i = 0, j = 0, b = 0; i < m; i++, j++) {

if (j == block_size)
j = 0, b++;

if (j == 0 || min_by_h(i, st[b][0]) == i)
st[b][0] = i;

}
for (int l = 1; l <= log_2[block_cnt]; l++) {

for (int i = 0; i < block_cnt; i++) {
int ni = i + (1 << (l - 1));
if (ni >= block_cnt)

st[i][l] = st[i][l-1];
else

st[i][l] = min_by_h(st[i][l-1], st[ni][l-1]);
}

}

// precompute mask for each block
block_mask.assign(block_cnt, 0);
for (int i = 0, j = 0, b = 0; i < m; i++, j++) {

if (j == block_size)
j = 0, b++;

if (j > 0 && (i >= m || min_by_h(i - 1, i) == i - 1))
block_mask[b] += 1 << (j - 1);

}

// precompute RMQ for each unique block
int possibilities = 1 << (block_size - 1);
blocks.resize(possibilities);
for (int b = 0; b < block_cnt; b++) {

int mask = block_mask[b];
if (!blocks[mask].empty())

continue;
blocks[mask].assign(block_size, vector<int>(block_size));
for (int l = 0; l < block_size; l++) {

blocks[mask][l][l] = l;
for (int r = l + 1; r < block_size; r++) {

blocks[mask][l][r] = blocks[mask][l][r - 1];
if (b * block_size + r < m)

blocks[mask][l][r] = min_by_h(b * block_size + blocks[mask][l][r],
b * block_size + r) - b * block_size;
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}
}

}
}

int lca_in_block(int b, int l, int r) {
return blocks[block_mask[b]][l][r] + b * block_size;

}

int lca(int v, int u) {
int l = first_visit[v];
int r = first_visit[u];
if (l > r)

swap(l, r);
int bl = l / block_size;
int br = r / block_size;
if (bl == br)

return euler_tour[lca_in_block(bl, l % block_size, r % block_size)];
int ans1 = lca_in_block(bl, l % block_size, block_size - 1);
int ans2 = lca_in_block(br, 0, r % block_size);
int ans = min_by_h(ans1, ans2);
if (bl + 1 < br) {

int l = log_2[br - bl - 1];
int ans3 = st[bl+1][l];
int ans4 = st[br - (1 << l)][l];
ans = min_by_h(ans, min_by_h(ans3, ans4));

}
return euler_tour[ans];

}
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32.4 Solve RMQ (Range Minimum Query) by finding
LCA (Lowest Common Ancestor)

Given an array A[0..N-1]. For each query of the form [L, R] we want to find
the minimum in the array A starting from position L and ending with position R.
We will assume that the array A doesn’t change in the process, i.e. this article
describes a solution to the static RMQ problem

Here is a description of an asymptotically optimal solution. It stands apart
from other solutions for the RMQ problem, since it is very different from them: it
reduces the RMQ problem to the LCA problem, and then uses the Farach-Colton
and Bender algorithm, which reduces the LCA problem back to a specialized
RMQ problem and solves that.

32.4.1 Algorithm
We construct a Cartesian tree from the array A. A Cartesian tree of an array A
is a binary tree with the min-heap property (the value of parent node has to be
smaller or equal than the value of its children) such that the in-order traversal of
the tree visits the nodes in the same order as they are in the array A.

In other words, a Cartesian tree is a recursive data structure. The array
A will be partitioned into 3 parts: the prefix of the array up to the minimum,
the minimum, and the remaining suffix. The root of the tree will be a node
corresponding to the minimum element of the array A, the left subtree will be
the Cartesian tree of the prefix, and the right subtree will be a Cartesian tree of
the suffix.

In the following image you can see one array of length 10 and the corresponding
Cartesian tree.
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The range minimum query [l, r] is equivalent to the lowest common ancestor
query [l', r'], where l' is the node corresponding to the element A[l] and r'
the node corresponding to the element A[r]. Indeed the node corresponding to
the smallest element in the range has to be an ancestor of all nodes in the range,
therefor also from l' and r'. This automatically follows from the min-heap
property. And is also has to be the lowest ancestor, because otherwise l' and r'
would be both in the left or in the right subtree, which generates a contradiction
since in such a case the minimum wouldn’t even be in the range.

In the following image you can see the LCA queries for the RMQ queries [1,
3] and [5, 9]. In the first query the LCA of the nodes A[1] and A[3] is the
node corresponding to A[2] which has the value 2, and in the second query the
LCA of A[5] and A[9] is the node corresponding to A[8] which has the value 3.
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Such a tree can be built in O(N) time and the Farach-Colton and Benders
algorithm can preprocess the tree in O(N) and find the LCA in O(1).

32.4.2 Construction of a Cartesian tree
We will build the Cartesian tree by adding the elements one after another. In
each step we maintain a valid Cartesian tree of all the processed elements. It is
easy to see, that adding an element s[i] can only change the nodes in the most
right path - starting at the root and repeatedly taking the right child - of the
tree. The subtree of the node with the smallest, but greater or equal than s[i],
value becomes the left subtree of s[i], and the tree with root s[i] will become
the new right subtree of the node with the biggest, but smaller than s[i] value.

This can be implemented by using a stack to store the indices of the most
right nodes.

vector<int> parent(n, -1);
stack<int> s;
for (int i = 0; i < n; i++) {

int last = -1;
while (!s.empty() && A[s.top()] >= A[i]) {

last = s.top();
s.pop();

}
if (!s.empty())

parent[i] = s.top();
if (last >= 0)

parent[last] = i;
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s.push(i);
}
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32.5 Lowest Common Ancestor - Tarjan’s off-line al-
gorithm

We have a tree G with n nodes and we have m queries of the form (u, v). For
each query (u, v) we want to find the lowest common ancestor of the vertices u
and v, i.e. the node that is an ancestor of both u and v and has the greatest
depth in the tree. The node v is also an ancestor of v, so the LCA can also be
one of the two nodes.

In this article we will solve the problem off-line, i.e. we assume that all queries
are known in advance, and we therefore answer the queries in any order we like.
The following algorithm allows to answer all m queries in O(n+m) total time,
i.e. for sufficiently large m in O(1) for each query.

32.5.1 Algorithm
The algorithm is named after Robert Tarjan, who discovered it in 1979 and also
made many other contributions to the Disjoint Set Union data structure, which
will be heavily used in this algorithm.

The algorithm answers all queries with one DFS traversal of the tree. Namely
a query (u, v) is answered at node u, if node v has already been visited previously,
or vice versa.

So let’s assume we are currently at node v, we have already made recursive
DFS calls, and also already visited the second node u from the query (u, v). Let’s
learn how to find the LCA of these two nodes.

Note that LCA(u, v) is either the node v or one of its ancestors. So we need
to find the lowest node among the ancestors of v (including v), for which the node
u is a descendant. Also note that for a fixed v the visited nodes of the tree split
into a set of disjoint sets. Each ancestor p of node v has his own set containing
this node and all subtrees with roots in those of its children who are not part
of the path from v to the root of the tree. The set which contains the node u
determines the LCA(u, v): the LCA is the representative of the set, namely the
node on lies on the path between v and the root of the tree.

We only need to learn to efficiently maintain all these sets. For this purpose
we apply the data structure DSU. To be able to apply Union by rank, we store
the real representative (the value on the path between v and the root of the tree)
of each set in the array ancestor.

Let’s discuss the implementation of the DFS. Let’s assume we are currently
visiting the node v. We place the node in a new set in the DSU, ancestor[v]
= v. As usual we process all children of v. For this we must first recursively
call DFS from that node, and then add this node with all its subtree to the
set of v. This can be done with the function union_sets and the following
assignment ancestor[find_set(v)] = v (this is necessary, because union_sets
might change the representative of the set).

Finally after processing all children we can answer all queries of the form
(u, v) for which u has been already visited. The answer to the query, i.e. the LCA



Graphs, Chapter 32. Lowest common ancestor 578

of u and v, will be the node ancestor[find_set(u)]. It is easy to see that a
query will only be answered once.

Let’s us determine the time complexity of this algorithm. Firstly we have
O(n) because of the DFS. Secondly we have the function calls of union_sets
which happen n times, resulting also in O(n). And thirdly we have the calls of
find_set for every query, which gives O(m). So in total the time complexity is
O(n+m), which means that for sufficiently large m this corresponds to O(1) for
answering one query.

32.5.2 Implementation
Here is an implementation of this algorithm. The implementation of DSU has
been not included, as it can be used without any modifications.

vector<vector<int>> adj;
vector<vector<int>> queries;
vector<int> ancestor;
vector<bool> visited;

void dfs(int v)
{

visited[v] = true;
ancestor[v] = v;
for (int u : adj[v]) {

if (!visited[u]) {
dfs(u);
union_sets(v, u);
ancestor[find_set(v)] = v;

}
}
for (int other_node : queries[v]) {

if (visited[other_node])
cout << "LCA of " << v << " and " << other_node

<< " is " << ancestor[find_set(other_node)] << ".\n";
}

}

void compute_LCAs() {
// initialize n, adj and DSU
// for (each query (u, v)) {
// queries[u].push_back(v);
// queries[v].push_back(u);
// }

ancestor.resize(n);
visited.assign(n, false);
dfs(0);

}
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Chapter 33

Flows and related problems

33.1 Maximum flow - Ford-Fulkerson and Edmonds-
Karp

The Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson method
for computing a maximal flow in a flow network.

33.1.1 Flow network
First let’s define what a flow network, a flow, and a maximum flow is.

A network is a directed graph G with vertices V and edges E combined
with a function c, which assigns each edge e ∈ E a non-negative integer value,
the capacity of e. Such a network is called a flow network, if we additionally
label two vertices, one as source and one as sink.

A flow in a flow network is function f , that again assigns each edge e a
non-negative integer value, namely the flow. The function has to fulfill the
following two conditions:

The flow of an edge cannot exceed the capacity.

f(e) ≤ c(e)

And the sum of the incoming flow of a vertex u has to be equal to the sum of
the outgoing flow of u except in the source and sink vertices.∑

(v,u)∈E
f((v, u)) =

∑
(u,v)∈E

f((u, v))

The source vertex s only has an outgoing flow, and the sink vertex t has only
incoming flow.

It is easy to see that the following equation holds:∑
(s,u)∈E

f((s, u)) =
∑

(u,t)∈E
f((u, t))

A good analogy for a flow network is the following visualization: We represent
edges as water pipes, the capacity of an edge is the maximal amount of water
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that can flow through the pipe per second, and the flow of an edge is the amount
of water that currently flows through the pipe per second. This motivates the
first flow condition. There cannot flow more water through a pipe than its
capacity. The vertices act as junctions, where water comes out of some pipes,
and distributes it in some way to other pipes. This also motivates the second
flow condition. In each junction all the incoming water has to be distributed to
the other pipes. It cannot magically disappear or appear. The source s is origin
of all the water, and the water can only drain in the sink t.

The following image shows a flow network. The first value of each edge
represents the flow, which is initially 0, and the second value represents the
capacity.

The value of a flow of a network is the sum of all flows that gets produced in
source s, or equivalently of the flows that are consumed in the sink t. A maximal
flow is a flow with the maximal possible value. Finding this maximal flow of a
flow network is the problem that we want to solve.

In the visualization with water pipes, the problem can be formulated in the
following way: how much water can we push through the pipes from the source
to the sink.

The following image shows the maximal flow in the flow network.
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33.1.2 Ford-Fulkerson method
Let’s define one more thing. A residual capacity of an directed edge is the
capacity minus the flow. It should be noted that if there is a flow along some
directed edge (u, v), then the reversed edge has capacity 0 and we can define the
flow of it as f((v, u)) = −f((u, v)). This also defines the residual capacity for all
reversed edges. From all these edges we can create a residual network, which
is just a network with the same vertices and same edges, but we use the residual
capacities as capacities.

The Ford-Fulkerson method works as follows. First we set the flow of each
edge to zero. Then we look for an augmenting path from s to t. An augmenting
path is simple path in the residual graph, i.e. along the edges whose residual
capacity is positive. If such a path is found, then we can increase the flow along
these edges. We keep on searching for augmenting paths and increasing the flow.
Once there doesn’t exists an augmenting path any more, the flow is maximal.

Let us specify in more detail, what increasing the flow along an augmenting
path means. Let C be the smallest residual capacity of the edges in the path.
Then we increase the flow in the following way: we update f((u, v)) += C and
f((v, u)) -= C for every edge (u, v) in the path.

Here is an example to demonstrate the method. We use the same flow network
as above. Initially we start with a flow of 0.

We can find the path s−A−B − t with the residual capacities 7, 5 and 8.
Their minimum is 5, therefore we can increase the flow along this path by 5. This
gives a flow of 5 for the network.
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Again we look for an augmenting path, this time we find s−D −A− C − t
with the residual capacities 4, 3, 3 and 5. Therefore we can increase the flow by
3 and we get a flow of 8 for the network.
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This time we find the path s−D − C −B − t with the residual capacities 1,
2, 3 and 3, and we increase by 1.

This time we find the augmenting path s−A−D − C − t with the residual
capacities 2, 3, 1 and 2. We can increase by 1. But this path is very interesting.
It includes the reversed edge (A,D). In the original flow network we are not
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allowed to send any flow from A to D. But because we already have a flow of
3 from D to A this is possible. The intuition of it is the following: Instead of
sending a flow of 3 from D to A, we only send 2 and compensate this by sending
an additional flow of 1 from s to A, which allows us to send an additional flow of
1 along the path D − C − t.

Now it is impossible to find an augmenting path between s and t, therefore
this flow of 10 is the maximal possible. We have found the maximal flow.

It should be noted, that the Ford-Fulkerson method doesn’t specify a method
of finding the augmenting path. Possible approaches are using DFS or BFS which
both work in O(E). If all capacities of the network are integers, then for each
augmenting path the flow of the network increases by at least 1 (for more details
see Integral flow theorem). Therefore the complexity of Ford-Fulkerson is O(EF ),
where F is the maximal flow of the network. In case of rational capacities, the
algorithm will also terminate, but the complexity is not bounded. In case of
irrational capacities, the algorithm might never terminate, and might not even
converge to the maximal flow.
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33.1.3 Edmonds-Karp algorithm
Edmonds-Karp algorithm is just an implementation of the Ford-Fulkerson method
that uses BFS for finding augmenting paths. The algorithm was first published
by Yefim Dinitz in 1970, and later independently published by Jack Edmonds
and Richard Karp in 1972.

The complexity can be given independently of the maximal flow. The algo-
rithm runs in O(V E2) time, even for irrational capacities. The intuition is, that
every time we find an augmenting path one of the edges becomes saturated, and
the distance from the edge to s will be longer, if it appears later again in an
augmenting path. And the length of a simple paths is bounded by V .

Implementation

The matrix capacity stores the capacity for every pair of vertices. adj is the
adjacency list of the undirected graph, since we have also to use the reversed
of directed edges when we are looking for augmenting paths.

The function maxflow will return the value of the maximal flow. During the
algorithm the matrix capacity will actually store the residual capacity of the
network. The value of the flow in each edge will actually not be stored, but it is
easy to extend the implementation - by using an additional matrix - to also store
the flow and return it.

int n;
vector<vector<int>> capacity;
vector<vector<int>> adj;

int bfs(int s, int t, vector<int>& parent) {
fill(parent.begin(), parent.end(), -1);
parent[s] = -2;
queue<pair<int, int>> q;
q.push({s, INF});

while (!q.empty()) {
int cur = q.front().first;
int flow = q.front().second;
q.pop();

for (int next : adj[cur]) {
if (parent[next] == -1 && capacity[cur][next]) {

parent[next] = cur;
int new_flow = min(flow, capacity[cur][next]);
if (next == t)

return new_flow;
q.push({next, new_flow});

}
}

}

return 0;
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}

int maxflow(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new_flow;

while (new_flow = bfs(s, t, parent)) {
flow += new_flow;
int cur = t;
while (cur != s) {

int prev = parent[cur];
capacity[prev][cur] -= new_flow;
capacity[cur][prev] += new_flow;
cur = prev;

}
}

return flow;
}

33.1.4 Integral flow theorem
The theorem simply says, that if every capacity in the network is integer, then
the flow in each edge will be integer in the maximal flow.

33.1.5 Max-flow min-cut theorem
A s-t-cut is a partition of the vertices of a flow network into two sets, such that
a set includes the source s and the other one includes the sink t. The capacity of
a s-t-cut is defined as the sum of capacities of the edges from the source side to
the sink side.

Obviously we cannot send more flow from s to t than the capacity of any
s-t-cut. Therefore the maximum flow is bounded by the minimum cut capacity.

The max-flow min-cut theorem goes even further. It says that the capacity of
the maximum flow has to be equal to the capacity of the minimum cut.

In the following image you can see the minimum cut of the flow network
we used earlier. It shows that the capacity of the cut {s,A,D} and {B,C, t} is
5 + 3 + 2 = 10, which is equal to the maximum flow that we found. Other cuts
will have a bigger capacity, like the capacity between {s,A} and {B,C,D, t} is
4 + 3 + 5 = 12.
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A minimum cut can be found after performing a maximum flow computation
using the Ford-Fulkerson method. One possible minimum cut is the following:
the set of all vertices that can be reached from s in the residual graph (using
edges with positive residual capacity), and the set of all the other vertices. This
partition can be easily found using DFS starting at s.

33.1.6 Practice Problems
• Codeforces - Array and Operations
• Codeforces - Red-Blue Graph
• CSES - Download Speed
• CSES - Police Chase
• CSES - School Dance

https://codeforces.com/contest/498/problem/c
https://codeforces.com/contest/1288/problem/f
https://cses.fi/problemset/task/1694
https://cses.fi/problemset/task/1695
https://cses.fi/problemset/task/1696
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33.2 Maximum flow - Push-relabel algorithm
The push-relabel algorithm (or also known as preflow-push algorithm) is an
algorithm for computing the maximum flow of a flow network. The exact
definition of the problem that we want to solve can be found in the article
Maximum flow - Ford-Fulkerson and Edmonds-Karp.

In this article we will consider solving the problem by pushing a preflow
through the network, which will run in O(V 4), or more precisely in O(V 2E),
time. The algorithm was designed by Andrew Goldberg and Robert Tarjan in
1985.

33.2.1 Definitions
During the algorithm we will have to handle a preflow - i.e. a function f that is
similar to the flow function, but does not necessarily satisfies the flow conservation
constraint. For it only the constraints

0 ≤ f(e) ≤ c(e)

and ∑
(v,u)∈E

f((v, u)) ≥
∑

(u,v)∈E
f((u, v))

have to hold.
So it is possible for some vertex to receive more flow than it distributes. We

say that this vertex has some excess flow, and define the amount of it with the
excess function x(u) = ∑

(v,u)∈E f((v, u))−∑(u,v)∈E f((u, v)).
In the same way as with the flow function, we can define the residual capacities

and the residual graph with the preflow function.
The algorithm will start off with an initial preflow (some vertices having

excess), and during the execution the preflow will be handled and modified.
Giving away some details already, the algorithm will pick a vertex with excess,
and push the excess to neighboring vertices. It will repeat this until all vertices,
except the source and the sink, are free from excess. It is easy to see, that a
preflow without excess is a valid flow. This makes the algorithm terminate with
an actual flow.

There are still two problem, we have to deal with. First, how do we guarantee
that this actually terminates? And secondly, how do we guarantee that this will
actually give us a maximum flow, and not just any random flow?

To solve these problems we need the help of another function, namely the
labeling functions h, often also called height function, which assigns each vertex
an integer. We call a labeling is valid, if h(s) = |V |, h(t) = 0, and h(u) ≤ h(v) + 1
if there is an edge (u, v) in the residual graph - i.e. the edge (u, v) has a positive
capacity in the residual graph. In other words, if it is possible to increase the
flow from u to v, then the height of v can be at most one smaller than the height
of u, but it can be equal or even higher.

It is important to note, that if there exists a valid labeling function, then there
doesn’t exist an augmenting path from s to t in the residual graph. Because such
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a path will have a length of at most |V |− 1 edges, and each edge can decrease the
height only by at most by one, which is impossible if the first height is h(s) = |V |
and the last height is h(t) = 0.

Using this labeling function we can state the strategy of the push-relabel
algorithm: We start with a valid preflow and a valid labeling function. In each
step we push some excess between vertices, and update the labels of vertices.
We have to make sure, that after each step the preflow and the labeling are still
valid. If then the algorithm determines, the preflow is a valid flow. And because
we also have a valid labeling, there doesn’t exists a path between s and t in the
residual graph, which means that the flow is actually a maximum flow.

If we compare the Ford-Fulkerson algorithm with the push-relabel algorithm
it seems like the algorithms are the duals of each other. The Ford-Fulkerson
algorithm keeps a valid flow at all time and improves it until there doesn’t exists
an augmenting path any more, while in the push-relabel algorithm there doesn’t
exists an augmenting path at any time, and we will improve the preflow until it
is a valid flow.

33.2.2 Algorithm
First we have to initialize the graph with a valid preflow and labeling function.

Using the empty preflow - like it is done in the Ford-Fulkerson algorithm -
is not possible, because then there will be an augmenting path and this implies
that there doesn’t exists a valid labeling. Therefore we will initialize each edges
outgoing from s with its maximal capacity: f((s, u)) = c((s, u)). And all other
edges with zero. In this case there exists a valid labeling, namely h(s) = |V | for
the source vertex and h(u) = 0 for all other.

Now let’s describe the two operations in more detail.
With the push operation we try to push as much excess flow from one vertex u

to a neighboring vertex v. We have one rule: we are only allowed to push flow from
u to v if h(u) = h(v)+1. In layman’s terms, the excess flow has to flow downwards,
but not too steeply. Of course we only can push min(x(u), c((u, v))− f((u, v)))
flow.

If a vertex has excess, but it is not possible to push the excess to any adjacent
vertex, then we need to increase the height of this vertex. We call this operation
relabel. We will increase it by as much as it is possible, while still maintaining
validity of the labeling.

To recap, the algorithm in a nutshell is: We initialize a valid preflow and a
valid labeling. While we can perform push or relabel operations, we perform
them. Afterwards the preflow is actually a flow and we return it.

33.2.3 Complexity
It is easy to show, that the maximal label of a vertex is 2|V | − 1. At this point
all remaining excess can and will be pushed back to the source. This gives at
most O(V 2) relabel operations.

It can also be showed, that there will be at most O(V E) saturating pushes
(a push where the total capacity of the edge is used) and at most O(V 2E)
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non-saturating pushes (a push where the capacity of an edge is not fully used)
performed. If we pick a data structure that allows us to find the next vertex with
excess in O(1) time, then the total complexity of the algorithm is O(V 2E).

33.2.4 Implementation
const int inf = 1000000000;

int n;
vector<vector<int>> capacity, flow;
vector<int> height, excess, seen;
queue<int> excess_vertices;

void push(int u, int v)
{

int d = min(excess[u], capacity[u][v] - flow[u][v]);
flow[u][v] += d;
flow[v][u] -= d;
excess[u] -= d;
excess[v] += d;
if (d && excess[v] == d)

excess_vertices.push(v);
}

void relabel(int u)
{

int d = inf;
for (int i = 0; i < n; i++) {

if (capacity[u][i] - flow[u][i] > 0)
d = min(d, height[i]);

}
if (d < inf)

height[u] = d + 1;
}

void discharge(int u)
{

while (excess[u] > 0) {
if (seen[u] < n) {

int v = seen[u];
if (capacity[u][v] - flow[u][v] > 0 && height[u] > height[v])

push(u, v);
else

seen[u]++;
} else {

relabel(u);
seen[u] = 0;

}
}

}

int max_flow(int s, int t)
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{
height.assign(n, 0);
height[s] = n;
flow.assign(n, vector<int>(n, 0));
excess.assign(n, 0);
excess[s] = inf;
for (int i = 0; i < n; i++) {

if (i != s)
push(s, i);

}
seen.assign(n, 0);

while (!excess_vertices.empty()) {
int u = excess_vertices.front();
excess_vertices.pop();
if (u != s && u != t)

discharge(u);
}

int max_flow = 0;
for (int i = 0; i < n; i++)

max_flow += flow[i][t];
return max_flow;

}

Here we use the queue excess_vertices to store all vertices that currently
have excess. In that way we can pick the next vertex for a push or a relabel
operation in constant time.

And to make sure that we don’t spend too much time finding the adjacent
vertex to whom we can push, we use a data structure called current-arc.
Basically we will iterate over the edges in a circular order and always store the
last edge that we used. This way, for a certain labeling value, we will switch the
current edge only O(n) time. And since the relabeling already takes O(n) time,
we don’t make the complexity worse.
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33.3 Maximum flow - Push-relabel method improved
We will modify the push-relabel method to achieve a better runtime.

33.3.1 Description
The modification is extremely simple: In the previous article we chosen a vertex
with excess without any particular rule. But it turns out, that if we always choose
the vertices with the greatest height, and apply push and relabel operations on
them, then the complexity will become better. Moreover, to select the vertices
with the greatest height we actually don’t need any data structures, we simply
store the vertices with the greatest height in a list, and recalculate the list once
all of them are processed (then vertices with already lower height will be added
to the list), or whenever a new vertex with excess and a greater height appears
(after relabeling a vertex).

Despite the simplicity, this modification reduces the complexity by a lot. To
be precise, the complexity of the resulting algorithm is O(V E + V 2√E), which
in the worst case is O(V 3).

This modification was proposed by Cheriyan and Maheshwari in 1989.

33.3.2 Implementation
const int inf = 1000000000;

int n;
vector<vector<int>> capacity, flow;
vector<int> height, excess;

void push(int u, int v)
{

int d = min(excess[u], capacity[u][v] - flow[u][v]);
flow[u][v] += d;
flow[v][u] -= d;
excess[u] -= d;
excess[v] += d;

}

void relabel(int u)
{

int d = inf;
for (int i = 0; i < n; i++) {

if (capacity[u][i] - flow[u][i] > 0)
d = min(d, height[i]);

}
if (d < inf)

height[u] = d + 1;
}

vector<int> find_max_height_vertices(int s, int t) {
vector<int> max_height;
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for (int i = 0; i < n; i++) {
if (i != s && i != t && excess[i] > 0) {

if (!max_height.empty() && height[i] > height[max_height[0]])
max_height.clear();

if (max_height.empty() || height[i] == height[max_height[0]])
max_height.push_back(i);

}
}
return max_height;

}

int max_flow(int s, int t)
{

height.assign(n, 0);
height[s] = n;
flow.assign(n, vector<int>(n, 0));
excess.assign(n, 0);
excess[s] = inf;
for (int i = 0; i < n; i++) {

if (i != s)
push(s, i);

}

vector<int> current;
while (!(current = find_max_height_vertices(s, t)).empty()) {

for (int i : current) {
bool pushed = false;
for (int j = 0; j < n && excess[i]; j++) {

if (capacity[i][j] - flow[i][j] > 0 && height[i] == height[j] + 1) {
push(i, j);
pushed = true;

}
}
if (!pushed) {

relabel(i);
break;

}
}

}

int max_flow = 0;
for (int i = 0; i < n; i++)

max_flow += flow[i][t];
return max_flow;

}
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33.4 Maximum flow - Dinic’s algorithm

Dinic’s algorithm solves the maximum flow problem in O(V 2E). The maximum
flow problem is defined in this article Maximum flow - Ford-Fulkerson and
Edmonds-Karp. This algorithm was discovered by Yefim Dinitz in 1970.

33.4.1 Definitions

A residual network GR of network G is a network which contains two edges
for each edge (v, u) ∈ G:

• (v, u) with capacity cRvu = cvu − fvu
• (u, v) with capacity cRuv = fvu

A blocking flow of some network is such a flow that every path from s to t
contains at least one edge which is saturated by this flow. Note that a blocking
flow is not necessarily maximal.

A layered network of a network G is a network built in the following way.
Firstly, for each vertex v we calculate level[v] - the shortest path (unweighted)
from s to this vertex using only edges with positive capacity. Then we keep only
those edges (v, u) for which level[v] + 1 = level[u]. Obviously, this network is
acyclic.

33.4.2 Algorithm
The algorithm consists of several phases. On each phase we construct the layered
network of the residual network of G. Then we find an arbitrary blocking flow in
the layered network and add it to the current flow.

33.4.3 Proof of correctness
Let’s show that if the algorithm terminates, it finds the maximum flow.

If the algorithm terminated, it couldn’t find a blocking flow in the layered
network. It means that the layered network doesn’t have any path from s to t.
It means that the residual network doesn’t have any path from s to t. It means
that the flow is maximum.

33.4.4 Number of phases
The algorithm terminates in less than V phases. To prove this, we must firstly
prove two lemmas.

Lemma 1. The distances from s to each vertex don’t decrease after each
iteration, i. e. leveli+1[v] ≥ leveli[v].

Proof. Fix a phase i and a vertex v. Consider any shortest path P from s to v
in GRi+1. The length of P equals leveli+1[v]. Note that GRi+1 can only contain edges
from GRi and back edges for edges from GRi . If P has no back edges for GRi , then
leveli+1[v] ≥ leveli[v] because P is also a path in GRi . Now, suppose that P has at
least one back edge. Let the first such edge be (u,w).Then leveli+1[u] ≥ leveli[u]
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(because of the first case). The edge (u,w) doesn’t belong to GRi , so the edge
(w, u) was affected by the blocking flow on the previous iteration. It means that
leveli[u] = leveli[w] + 1. Also, leveli+1[w] = leveli+1[u] + 1. From these two
equations and leveli+1[u] ≥ leveli[u] we obtain leveli+1[w] ≥ leveli[w] + 2. Now
we can use the same idea for the rest of the path.

Lemma 2. leveli+1[t] > leveli[t]
Proof. From the previous lemma, leveli+1[t] ≥ leveli[t]. Suppose that

leveli+1[t] = leveli[t]. Note that GRi+1 can only contain edges from GRi and back
edges for edges from GRi . It means that there is a shortest path in GRi which
wasn’t blocked by the blocking flow. It’s a contradiction.

From these two lemmas we conclude that there are less than V phases because
level[t] increases, but it can’t be greater than V − 1.

33.4.5 Finding blocking flow
In order to find the blocking flow on each iteration, we may simply try pushing
flow with DFS from s to t in the layered network while it can be pushed. In
order to do it more quickly, we must remove the edges which can’t be used to
push anymore. To do this we can keep a pointer in each vertex which points to
the next edge which can be used. Each pointer can be moved at most E times,
so each phase works in O(V E).

33.4.6 Complexity
There are less than V phases, so the total complexity is O(V 2E).

33.4.7 Unit networks
A unit network is a network in which all the edges have unit capacity, and for
any vertex except s and t either incoming or outgoing edge is unique. That’s
exactly the case with the network we build to solve the maximum matching
problem with flows.

On unit networks Dinic’s algorithm works in O(E
√
V ). Let’s prove this.

Firstly, each phase now works in O(E) because each edge will be considered
at most once.

Secondly, suppose there have already been
√
V phases. Then all the augment-

ing paths with the length ≤
√
V have been found. Let f be the current flow, f ′

be the maximum flow. Consider their difference f ′−f . It is a flow in GR of value
|f ′| − |f | and on each edge it is either 0 or 1. It can be decomposed into |f ′| − |f |
paths from s to t and possibly cycles. As the network is unit, they can’t have
common vertices, so the total number of vertices is ≥ (|f ′| − |f |)

√
V , but it is

also ≤ V , so in another
√
V iterations we will definitely find the maximum flow.

33.4.8 Implementation
struct FlowEdge {

int v, u;
long long cap, flow = 0;
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FlowEdge(int v, int u, long long cap) : v(v), u(u), cap(cap) {}
};

struct Dinic {
const long long flow_inf = 1e18;
vector<FlowEdge> edges;
vector<vector<int>> adj;
int n, m = 0;
int s, t;
vector<int> level, ptr;
queue<int> q;

Dinic(int n, int s, int t) : n(n), s(s), t(t) {
adj.resize(n);
level.resize(n);
ptr.resize(n);

}

void add_edge(int v, int u, long long cap) {
edges.emplace_back(v, u, cap);
edges.emplace_back(u, v, 0);
adj[v].push_back(m);
adj[u].push_back(m + 1);
m += 2;

}

bool bfs() {
while (!q.empty()) {

int v = q.front();
q.pop();
for (int id : adj[v]) {

if (edges[id].cap - edges[id].flow < 1)
continue;

if (level[edges[id].u] != -1)
continue;

level[edges[id].u] = level[v] + 1;
q.push(edges[id].u);

}
}
return level[t] != -1;

}

long long dfs(int v, long long pushed) {
if (pushed == 0)

return 0;
if (v == t)

return pushed;
for (int& cid = ptr[v]; cid < (int)adj[v].size(); cid++) {

int id = adj[v][cid];
int u = edges[id].u;
if (level[v] + 1 != level[u] || edges[id].cap - edges[id].flow < 1)

continue;
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long long tr = dfs(u, min(pushed, edges[id].cap - edges[id].flow));
if (tr == 0)

continue;
edges[id].flow += tr;
edges[id ˆ 1].flow -= tr;
return tr;

}
return 0;

}

long long flow() {
long long f = 0;
while (true) {

fill(level.begin(), level.end(), -1);
level[s] = 0;
q.push(s);
if (!bfs())

break;
fill(ptr.begin(), ptr.end(), 0);
while (long long pushed = dfs(s, flow_inf)) {

f += pushed;
}

}
return f;

}
};
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33.5 Maximum flow - MPM algorithm
MPM (Malhotra, Pramodh-Kumar and Maheshwari) algorithm solves the maxi-
mum flow problem in O(V 3). This algorithm is similar to Dinic’s algorithm.

33.5.1 Algorithm
Like Dinic’s algorithm, MPM runs in phases, during each phase we find the
blocking flow in the layered network of the residual network of G. The main
difference from Dinic’s is how we find the blocking flow. Consider the layered
network L. For each node we define its’ inner potential and outer potential as:

pin(v) =
∑

(u,v)∈L
(c(u, v)− f(u, v))

pout(v) =
∑

(v,u)∈L
(c(v, u)− f(v, u))

Also we set pin(s) = pout(t) =∞. Given pin and pout we define the potential
as p(v) = min(pin(v), pout(v)). We call a node r a reference node if p(r) =
min{p(v)}. Consider a reference node r. We claim that the flow can be increased
by p(r) in such a way that p(r) becomes 0. It is true because L is acyclic, so we
can push the flow out of r by outgoing edges and it will reach t because each node
has enough outer potential to push the flow out when it reaches it. Similarly, we
can pull the flow from s. The construction of the blocked flow is based on this
fact. On each iteration we find a reference node and push the flow from s to t
through r. This process can be simulated by BFS. All completely saturated arcs
can be deleted from L as they won’t be used later in this phase anyway. Likewise,
all the nodes different from s and t without outgoing or incoming arcs can be
deleted.

Each phase works in O(V 2) because there are at most V iterations (because at
least the chosen reference node is deleted), and on each iteration we delete all the
edges we passed through except at most V . Summing, we get O(V 2+E) = O(V 2).
Since there are less than V phases (see the proof here), MPM works in O(V 3)
total.

33.5.2 Implementation
struct MPM{

struct FlowEdge{
int v, u;
long long cap, flow;
FlowEdge(){}
FlowEdge(int _v, int _u, long long _cap, long long _flow)

: v(_v), u(_u), cap(_cap), flow(_flow){}
FlowEdge(int _v, int _u, long long _cap)

: v(_v), u(_u), cap(_cap), flow(0ll){}
};
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const long long flow_inf = 1e18;
vector<FlowEdge> edges;
vector<char> alive;
vector<long long> pin, pout;
vector<list<int> > in, out;
vector<vector<int> > adj;
vector<long long> ex;
int n, m = 0;
int s, t;
vector<int> level;
vector<int> q;
int qh, qt;
void resize(int _n){

n = _n;
ex.resize(n);
q.resize(n);
pin.resize(n);
pout.resize(n);
adj.resize(n);
level.resize(n);
in.resize(n);
out.resize(n);

}
MPM(){}
MPM(int _n, int _s, int _t){resize(_n); s = _s; t = _t;}
void add_edge(int v, int u, long long cap){

edges.push_back(FlowEdge(v, u, cap));
edges.push_back(FlowEdge(u, v, 0));
adj[v].push_back(m);
adj[u].push_back(m + 1);
m += 2;

}
bool bfs(){

while(qh < qt){
int v = q[qh++];
for(int id : adj[v]){

if(edges[id].cap - edges[id].flow < 1)continue;
if(level[edges[id].u] != -1)continue;
level[edges[id].u] = level[v] + 1;
q[qt++] = edges[id].u;

}
}
return level[t] != -1;

}
long long pot(int v){

return min(pin[v], pout[v]);
}
void remove_node(int v){

for(int i : in[v]){
int u = edges[i].v;
auto it = find(out[u].begin(), out[u].end(), i);
out[u].erase(it);
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pout[u] -= edges[i].cap - edges[i].flow;
}
for(int i : out[v]){

int u = edges[i].u;
auto it = find(in[u].begin(), in[u].end(), i);
in[u].erase(it);
pin[u] -= edges[i].cap - edges[i].flow;

}
}
void push(int from, int to, long long f, bool forw){

qh = qt = 0;
ex.assign(n, 0);
ex[from] = f;
q[qt++] = from;
while(qh < qt){

int v = q[qh++];
if(v == to)

break;
long long must = ex[v];
auto it = forw ? out[v].begin() : in[v].begin();
while(true){

int u = forw ? edges[*it].u : edges[*it].v;
long long pushed = min(must, edges[*it].cap - edges[*it].flow);
if(pushed == 0)break;
if(forw){

pout[v] -= pushed;
pin[u] -= pushed;

}
else{

pin[v] -= pushed;
pout[u] -= pushed;

}
if(ex[u] == 0)

q[qt++] = u;
ex[u] += pushed;
edges[*it].flow += pushed;
edges[(*it)ˆ1].flow -= pushed;
must -= pushed;
if(edges[*it].cap - edges[*it].flow == 0){

auto jt = it;
++jt;
if(forw){

in[u].erase(find(in[u].begin(), in[u].end(), *it));
out[v].erase(it);

}
else{

out[u].erase(find(out[u].begin(), out[u].end(), *it));
in[v].erase(it);

}
it = jt;

}
else break;
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if(!must)break;
}

}
}
long long flow(){

long long ans = 0;
while(true){

pin.assign(n, 0);
pout.assign(n, 0);
level.assign(n, -1);
alive.assign(n, true);
level[s] = 0;
qh = 0; qt = 1;
q[0] = s;
if(!bfs())

break;
for(int i = 0; i < n; i++){

out[i].clear();
in[i].clear();

}
for(int i = 0; i < m; i++){

if(edges[i].cap - edges[i].flow == 0)
continue;

int v = edges[i].v, u = edges[i].u;
if(level[v] + 1 == level[u] && (level[u] < level[t] || u == t)){

in[u].push_back(i);
out[v].push_back(i);
pin[u] += edges[i].cap - edges[i].flow;
pout[v] += edges[i].cap - edges[i].flow;

}
}
pin[s] = pout[t] = flow_inf;
while(true){

int v = -1;
for(int i = 0; i < n; i++){

if(!alive[i])continue;
if(v == -1 || pot(i) < pot(v))

v = i;
}
if(v == -1)

break;
if(pot(v) == 0){

alive[v] = false;
remove_node(v);
continue;

}
long long f = pot(v);
ans += f;
push(v, s, f, false);
push(v, t, f, true);
alive[v] = false;
remove_node(v);
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}
}
return ans;

}
};
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33.6 Flows with demands
In a normal flow network the flow of an edge is only limited by the capacity c(e)
from above and by 0 from below. In this article we will discuss flow networks,
where we additionally require the flow of each edge to have a certain amount,
i.e. we bound the flow from below by a demand function d(e):

d(e) ≤ f(e) ≤ c(e)

So next each edge has a minimal flow value, that we have to pass along the edge.
This is a generalization of the normal flow problem, since setting d(e) = 0 for

all edges e gives a normal flow network. Notice, that in the normal flow network
it is extremely trivial to find a valid flow, just setting f(e) = 0 is already a valid
one. However if the flow of each edge has to satisfy a demand, than suddenly
finding a valid flow is already pretty complicated.

We will consider two problems:

1. finding an arbitrary flow that satisfies all constraints
2. finding a minimal flow that satisfies all constraints

33.6.1 Finding an arbitrary flow
We make the following changes in the network. We add a new source s′ and a
new sink t′, a new edge from the source s′ to every other vertex, a new edge for
every vertex to the sink t′, and one edge from t to s. Additionally we define the
new capacity function c′ as:

• c′((s′, v)) = ∑
u∈V d((u, v)) for each edge (s′, v).

• c′((v, t′)) = ∑
w∈V d((v, w)) for each edge (v, t′).

• c′((u, v)) = c((u, v))− d((u, v)) for each edge (u, v) in the old network.
• c′((t, s)) =∞

If the new network has a saturating flow (a flow where each edge outgoing
from s′ is completely filled, which is equivalent to every edge incoming to t′ is
completely filled), then the network with demands has a valid flow, and the
actual flow can be easily reconstructed from the new network. Otherwise there
doesn’t exist a flow that satisfies all conditions. Since a saturating flow has to
be a maximum flow, it can be found by any maximum flow algorithm, like the
Edmonds-Karp algorithm or the Push-relabel algorithm.

The correctness of these transformations is more difficult to understand. We
can think of it in the following way: Each edge e = (u, v) with d(e) > 0 is
originally replaced by two edges: one with the capacity d(i) , and the other
with c(i) − d(i). We want to find a flow that saturates the first edge (i.e. the
flow along this edge must be equal to its capacity). The second edge is less
important - the flow along it can be anything, assuming that it doesn’t exceed
its capacity. Consider each edge that has to be saturated, and we perform the
following operation: we draw the edge from the new source s′ to its end v, draw
the edge from its start u to the new sink t′, remove the edge itself, and from
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the old sink t to the old source s we draw an edge of infinite capacity. By these
actions we simulate the fact that this edge is saturated - from v there will be
an additionally d(e) flow outgoing (we simulate it with a new source that feeds
the right amount of flow to v), and u will also push d(e) additional flow (but
instead along the old edge, this flow will go directly to the new sink t′). A flow
with the value d(e), that originally flowed along the path s− · · · − u− v − . . . t
can now take the new path s′ − v− · · · − t− s− · · · − u− t′. The only thing that
got simplified in the definition of the new network, is that if procedure created
multiple edges between the same pair of vertices, then they are combined to one
single edge with the summed capacity.

33.6.2 Minimal flow
Note that along the edge (t, s) (from the old sink to the old source) with the
capacity ∞ flows the entire flow of the corresponding old network. I.e. the
capacity of this edge effects the flow value of the old network. By giving this
edge a sufficient large capacity (i.e. ∞), the flow of the old network is unlimited.
By limiting this edge by smaller capacities, the flow value will decrease. However
if we limit this edge by a too small value, than the network will not have a
saturated solution, e.g. the corresponding solution for the original network will
not satisfy the demand of the edges. Obviously here can use a binary search to
find the lowest value with which all constraints are still satisfied. This gives the
minimal flow of the original network.
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33.7 Minimum-cost flow - Successive shortest path
algorithm

Given a network G consisting of n vertices and m edges. For each edge (generally
speaking, oriented edges, but see below), the capacity (a non-negative integer)
and the cost per unit of flow along this edge (some integer) are given. Also the
source s and the sink t are marked.

For a given value K, we have to find a flow of this quantity, and among all
flows of this quantity we have to choose the flow with the lowest cost. This task
is called minimum-cost flow problem.

Sometimes the task is given a little differently: you want to find the maximum
flow, and among all maximal flows we want to find the one with the least cost.
This is called the minimum-cost maximum-flow problem.

Both these problems can be solved effectively with the algorithm of sucessive
shortest paths.

33.7.1 Algorithm
This algorithm is very similar to the Edmonds-Karp for computing the maximum
flow.

Simplest case

First we only consider the simplest case, where the graph is oriented, and there
is at most one edge between any pair of vertices (e.g. if (i, j) is an edge in the
graph, then (j, i) cannot be part in it as well).

Let Uij be the capacity of an edge (i, j) if this edge exists. And let Cij be
the cost per unit of flow along this edge (i, j). And finally let Fi,j be the flow
along the edge (i, j). Initially all flow values are zero.

We modify the network as follows: for each edge (i, j) we add the reverse
edge (j, i) to the network with the capacity Uji = 0 and the cost Cji = −Cij .
Since, according to our restrictions, the edge (j, i) was not in the network before,
we still have a network that is not a multigraph (graph with multiple edges). In
addition we will always keep the condition Fji = −Fij true during the steps of
the algorithm.

We define the residual network for some fixed flow F as follow (just like in
the Ford-Fulkerson algorithm): the residual network contains only unsaturated
edges (i.e. edges in which Fij < Uij), and the residual capacity of each such edge
is Rij = Uij − Fij .

Now we can talk about the algorithms to compute the minimum-cost flow.
At each iteration of the algorithm we find the shortest path in the residual graph
from s to t. In contrary to Edmonds-Karp we look for the shortest path in terms
of the cost of the path, instead of the number of edges. If there doesn’t exists a
path anymore, then the algorithm terminates, and the stream F is the desired
one. If a path was found, we increase the flow along it as much as possible (i.e. we
find the minimal residual capacity R of the path, and increase the flow by it, and



Graphs, Chapter 33. Flows and related problems 606

reduce the back edges by the same amount). If at some point the flow reaches
the value K, then we stop the algorithm (note that in the last iteration of the
algorithm it is necessary to increase the flow by only such an amount so that the
final flow value doesn’t surpass K).

It is not difficult to see, that if we set K to infinity, then the algorithm will
find the minimum-cost maximum-flow. So both variations of the problem can be
solved by the same algorithm.

Undirected graphs / multigraphs

The case of an undirected graph or a multigraph doesn’t differ conceptually from
the algorithm above. The algorithm will also work on these graphs. However it
becomes a little more difficult to implement it.

An undirected edge (i, j) is actually the same as two oriented edges (i, j)
and (j, i) with the same capacity and values. Since the above-described minimum-
cost flow algorithm generates a back edge for each directed edge, so it splits the
undirected edge into 4 directed edges, and we actually get a multigraph.

How do we deal with multiple edges? First the flow for each of the multiple
edges must be kept separately. Secondly, when searching for the shortest path, it
is necessary to take into account that it is important which of the multiple edges
is used in the path. Thus instead of the usual ancestor array we additionally
must store the edge number from which we came from along with the ancestor.
Thirdly, as the flow increases along a certain edge, it is necessary to reduce the
flow along the back edge. Since we have multiple edges, we have to store the
edge number for the reversed edge for each edge.

There are no other obstructions with undirected graphs or multigraphs.

Complexity

Analog to the analysis of the Edmonds-Karp algorithm we get the following
estimation: O(nm) · T (n,m), where T (n,m) is the time required to find the
shortest path in a graph with n vertices and m edges

If this search is done with the Dijkstra algorithm, then the complexity for the
minimum-cost algorithm would become O(n3m). However we deal with edges
with negative cost. So Dijkstra is not applicable, at least not unmodified.

Instead we can use the Bellman-Ford algorithm. With it the complexity
becomes O(n2m2).

33.7.2 Implementation
Here is an implementation using the SPFA algorithm for the simplest case.

struct Edge
{

int from, to, capacity, cost;
};

vector<vector<int>> adj, cost, capacity;
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const int INF = 1e9;

void shortest_paths(int n, int v0, vector<int>& d, vector<int>& p) {
d.assign(n, INF);
d[v0] = 0;
vector<bool> inq(n, false);
queue<int> q;
q.push(v0);
p.assign(n, -1);

while (!q.empty()) {
int u = q.front();
q.pop();
inq[u] = false;
for (int v : adj[u]) {

if (capacity[u][v] > 0 && d[v] > d[u] + cost[u][v]) {
d[v] = d[u] + cost[u][v];
p[v] = u;
if (!inq[v]) {

inq[v] = true;
q.push(v);

}
}

}
}

}

int min_cost_flow(int N, vector<Edge> edges, int K, int s, int t) {
adj.assign(N, vector<int>());
cost.assign(N, vector<int>(N, 0));
capacity.assign(N, vector<int>(N, 0));
for (Edge e : edges) {

adj[e.from].push_back(e.to);
adj[e.to].push_back(e.from);
cost[e.from][e.to] = e.cost;
cost[e.to][e.from] = -e.cost;
capacity[e.from][e.to] = e.capacity;

}

int flow = 0;
int cost = 0;
vector<int> d, p;
while (flow < K) {

shortest_paths(N, s, d, p);
if (d[t] == INF)

break;

// find max flow on that path
int f = K - flow;
int cur = t;
while (cur != s) {
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f = min(f, capacity[p[cur]][cur]);
cur = p[cur];

}

// apply flow
flow += f;
cost += f * d[t];
cur = t;
while (cur != s) {

capacity[p[cur]][cur] -= f;
capacity[cur][p[cur]] += f;
cur = p[cur];

}
}

if (flow < K)
return -1;

else
return cost;

}
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33.8 Solving assignment problem using min-cost-flow
The assignment problem has two equivalent statements:

• Given a square matrix A[1..N, 1..N ], you need to select N elements in it so
that exactly one element is selected in each row and column, and the sum
of the values of these elements is the smallest.

• There are N orders and N machines. The cost of manufacturing on each
machine is known for each order. Only one order can be performed on each
machine. It is required to assign all orders to the machines so that the total
cost is minimized.

Here we will consider the solution of the problem based on the algorithm for
finding the minimum cost flow (min-cost-flow), solving the assignment problem
in O(N5).

33.8.1 Description
Let’s build a bipartite network: there is a source S, a drain T , in the first part
there are N vertices (corresponding to rows of the matrix, or orders), in the
second there are also N vertices (corresponding to the columns of the matrix, or
machines). Between each vertex i of the first set and each vertex j of the second
set, we draw an edge with bandwidth 1 and cost Aij . From the source S we draw
edges to all vertices i of the first set with bandwidth 1 and cost 0. We draw an
edge with bandwidth 1 and cost 0 from each vertex of the second set j to the
drain T .

We find in the resulting network the maximum flow of the minimum cost.
Obviously, the value of the flow will be N . Further, for each vertex i of the first
segment there is exactly one vertex j of the second segment, such that the flow
Fij = 1. Finally, this is a one-to-one correspondence between the vertices of the
first segment and the vertices of the second part, which is the solution to the
problem (since the found flow has a minimal cost, then the sum of the costs of
the selected edges will be the lowest possible, which is the optimality criterion).

The complexity of this solution of the assignment problem depends on the
algorithm by which the search for the maximum flow of the minimum cost
is performed. The complexity will be O(N5) using Dijkstra or O(N6) using
Bellman-Ford.

33.8.2 Implementation
The implementation given here is long, it can probably be significantly reduced.
It uses the SPFA algorithm for finding shortest paths.

const int INF = 1000 * 1000 * 1000;

vector<int> assignment(vector<vector<int>> a) {
int n = a.size();
int m = n * 2 + 2;
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vector<vector<int>> f(m, vector<int>(m));
int s = m - 2, t = m - 1;
int cost = 0;
while (true) {

vector<int> dist(m, INF);
vector<int> p(m);
vector<bool> inq(m, false);
queue<int> q;
dist[s] = 0;
p[s] = -1;
q.push(s);
while (!q.empty()) {

int v = q.front();
q.pop();
inq[v] = false;
if (v == s) {

for (int i = 0; i < n; ++i) {
if (f[s][i] == 0) {

dist[i] = 0;
p[i] = s;
inq[i] = true;
q.push(i);

}
}

} else {
if (v < n) {

for (int j = n; j < n + n; ++j) {
if (f[v][j] < 1 && dist[j] > dist[v] + a[v][j - n]) {

dist[j] = dist[v] + a[v][j - n];
p[j] = v;
if (!inq[j]) {

q.push(j);
inq[j] = true;

}
}

}
} else {

for (int j = 0; j < n; ++j) {
if (f[v][j] < 0 && dist[j] > dist[v] - a[j][v - n]) {

dist[j] = dist[v] - a[j][v - n];
p[j] = v;
if (!inq[j]) {

q.push(j);
inq[j] = true;

}
}

}
}

}
}

int curcost = INF;
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for (int i = n; i < n + n; ++i) {
if (f[i][t] == 0 && dist[i] < curcost) {

curcost = dist[i];
p[t] = i;

}
}
if (curcost == INF)

break;
cost += curcost;
for (int cur = t; cur != -1; cur = p[cur]) {

int prev = p[cur];
if (prev != -1)

f[cur][prev] = -(f[prev][cur] = 1);
}

}

vector<int> answer(n);
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
if (f[i][j + n] == 1)

answer[i] = j;
}

}
return answer;

}
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Chapter 34

Matchings and related
problems

34.1 Check whether a graph is bipartite
A bipartite graph is a graph whose vertices can be divided into two disjoint sets
so that every edge connects two vertices from different sets (i.e. there are no
edges which connect vertices from the same set). These sets are usually called
sides.

You are given an undirected graph. Check whether it is bipartite, and if it is,
output its sides.

34.1.1 Algorithm
There exists a theorem which claims that a graph is bipartite if and only if all
its cycles have even length. However, in practice it’s more convenient to use a
different formulation of the definition: a graph is bipartite if and only if it is
two-colorable.

Let’s use a series of breadth-first searches, starting from each vertex which
hasn’t been visited yet. In each search, assign the vertex from which we start
to side 1. Each time we visit a yet unvisited neighbor of a vertex assigned to
one side, we assign it to the other side. When we try to go to a neighbor of
a vertex assigned to one side which has already been visited, we check that is
has been assigned to the other side; if it has been assigned to the same side,
we conclude that the graph is not bipartite. Once we’ve visited all vertices and
successfully assigned them to sides, we know that the graph is bipartite and we
have constructed its partitioning.

34.1.2 Implementation
int n;
vector<vector<int>> adj;

vector<int> side(n, -1);
bool is_bipartite = true;
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queue<int> q;
for (int st = 0; st < n; ++st) {

if (side[st] == -1) {
q.push(st);
side[st] = 0;
while (!q.empty()) {

int v = q.front();
q.pop();
for (int u : adj[v]) {

if (side[u] == -1) {
side[u] = side[v] ˆ 1;
q.push(u);

} else {
is_bipartite &= side[u] != side[v];

}
}

}
}

}

cout << (is_bipartite ? "YES" : "NO") << endl;

Practice problems:

• SPOJ - BUGLIFE
• Codeforces - Graph Without Long Directed Paths
• Codeforces - String Coloring (easy version)
• CSES : Building Teams

http://www.spoj.com/problems/BUGLIFE/
https://codeforces.com/contest/1144/problem/F
https://codeforces.com/contest/1296/problem/E1
https://cses.fi/problemset/task/1668
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34.2 Kuhn’s Algorithm for Maximum Bipartite
Matching

34.2.1 Problem
You are given a bipartite graph G containing n vertices and m edges. Find the
maximum matching, i.e., select as many edges as possible so that no selected
edge shares a vertex with any other selected edge.

34.2.2 Algorithm Description

Required Definitions

• A matching M is a set of pairwise non-adjacent edges of a graph (in other
words, no more than one edge from the set should be incident to any vertex
of the graph M). The cardinality of a matching is the number of edges in
it. The maximum (or largest) matching is a matching whose cardinality is
maximum among all possible matchings in a given graph. All those vertices
that have an adjacent edge from the matching (i.e., which have degree
exactly one in the subgraph formed by M) are called saturated by this
matching.

• A path of length k here means a simple path (i.e. not containing repeated
vertices or edges) containing k edges, unless specified otherwise.

• An alternating path (in a bipartite graph, with respect to some matching)
is a path in which the edges alternately belong / do not belong to the
matching.

• An augmenting path (in a bipartite graph, with respect to some matching)
is an alternating path whose initial and final vertices are unsaturated, i.e.,
they do not belong in the matching.

• The symmetric difference (also known as the disjunctive union) of
sets A and B, represented by A⊕B, is the set of all elements that belong to
exactly one of A or B, but not to both. That is, A⊕B = (A−B)∪(B−A) =
(A ∪B)− (A ∩B).

Berge’s lemma

This lemma was proven by the French mathematician Claude Berge in 1957,
although it already was observed by the Danish mathematician Julius Petersen
in 1891 and the Hungarian mathematician Denés Kőnig in 1931.

Formulation A matching M is maximum ⇔ there is no augmenting path
relative to the matching M .
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Proof Both sides of the bi-implication will be proven by contradiction.

1. A matching M is maximum ⇒ there is no augmenting path relative to the
matching M .

Let there be an augmenting path P relative to the given maximum matching
M . This augmenting path P will necessarily be of odd length, having one more
edge not in M than the number of edges it has that are also in M . We create a
new matching M ′ by including all edges in the original matching M except those
also in the P , and the edges in P that are not in M . This is a valid matching
because the initial and final vertices of P are unsaturated by M , and the rest of
the vertices are saturated only by the matching P ∩M . This new matching M ′
will have one more edge than M , and so M could not have been maximum.

Formally, given an augmenting path P w.r.t. some maximum matching M ,
the matching M ′ = P ⊕M is such that |M ′| = |M |+ 1, a contradiction.

2. A matching M is maximum ⇐ there is no augmenting path relative to the
matching M .

Let there be a matching M ′ of greater cardinality than M . We consider the
symmetric difference Q = M ⊕M ′. The subgraph Q is no longer necessarily a
matching. Any vertex in Q has a maximum degree of 2, which means that all
connected components in it are one of the three - * an isolated vertex * a (simple)
path whose edges are alternately from M and M ′ * a cycle of even length whose
edges are alternately from M and M ′

Since M ′ has a cardinality greater than M , Q has more edges from M ′ than
M . By the Pigeonhole principle, at least one connected component will be a path
having more edges from M ′ than M . Because any such path is alternating, it
will have initial and final vertices unsaturated by M , making it an augmenting
path for M , which contradicts the premise. �

Kuhn’s algorithm

Kuhn’s algorithm is a direct application of Berge’s lemma. It is essentially
described as follows: > First, we take an empty matching. Then, while the
algorithm is able to find an augmenting path, we update the matching by
alternating it along this path and > repeat the process of finding the augmenting
path. As soon as it is not possible to find such a path, we stop the process - the
current matching is the maximum.

It remains to detail the way to find augmenting paths. Kuhn’s algorithm
simply searches for any of these paths using depth-first or breadth-first traversal.
The algorithm looks through all the vertices of the graph in turn, starting each
traversal from it, trying to find an augmenting path starting at this vertex.

The algorithm is more convenient to describe if we assume that the input
graph is already split into two parts (although, in fact, the algorithm can be
implemented in such a way that the input graph is not explicitly split into two
parts).
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The algorithm looks at all the vertices v of the first part of the graph:
v = 1 . . . n1. If the current vertex v is already saturated with the current
matching (i.e., some edge adjacent to it has already been selected), then skip this
vertex. Otherwise, the algorithm tries to saturate this vertex, for which it starts
a search for an augmenting path starting from this vertex.

The search for an augmenting path is carried out using a special depth-
first or breadth-first traversal (usually depth-first traversal is used for ease of
implementation). Initially, the depth-first traversal is at the current unsaturated
vertex v of the first part. Let’s look through all edges from this vertex. Let
the current edge be an edge (v, to). If the vertex to is not yet saturated with
matching, then we have succeeded in finding an augmenting path: it consists of
a single edge (v, to); in this case, we simply include this edge in the matching
and stop searching for the augmenting path from the vertex v. Otherwise, if to
is already saturated with some edge (to, p), then will go along this edge: thus we
will try to find an augmenting path passing through the edges (v, to), (to, p), . . ..
To do this, simply go to the vertex p in our traversal - now we try to find an
augmenting path from this vertex.

So, this traversal, launched from the vertex v, will either find an augmenting
path, and thereby saturate the vertex v, or it will not find such an augmenting
path (and, therefore, this vertex v cannot be saturated).

After all the vertices v = 1 . . . n1 have been scanned, the current matching
will be maximum.

Running time

Kuhn’s algorithm can be thought of as a series of n depth/breadth-first traversal
runs on the entire graph. Therefore, the whole algorithm is executed in time
O(nm), which in the worst case is O(n3).

However, this estimate can be improved slightly. It turns out that for Kuhn’s
algorithm, it is important which part of the graph is chosen as the first and which
as the second. Indeed, in the implementation described above, the depth/breadth-
first traversal starts only from the vertices of the first part, so the entire algorithm
is executed in time O(n1m), where n1 is the number of vertices of the first part.
In the worst case, this is O(n2

1n2) (where n2 is the number of vertices of the
second part). This shows that it is more profitable when the first part contains
fewer vertices than the second. On very unbalanced graphs (when n1 and n2 are
very different), this translates into a significant difference in runtimes.

34.2.3 Implementation

Standard implementation

Let us present here an implementation of the above algorithm based on depth-first
traversal and accepting a bipartite graph in the form of a graph explicitly split
into two parts. This implementation is very concise, and perhaps it should be
remembered in this form.
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Here n is the number of vertices in the first part, k - in the second part,
g[v] is the list of edges from the top of the first part (i.e. the list of numbers of
the vertices to which these edges lead from v). The vertices in both parts are
numbered independently, i.e. vertices in the first part are numbered 1 . . . n, and
those in the second are numbered 1 . . . k.

Then there are two auxiliary arrays: mt and used. The first - mt - contains
information about the current matching. For convenience of programming, this
information is contained only for the vertices of the second part: mt[i] - this is
the number of the vertex of the first part connected by an edge with the vertex i
of the second part (or −1, if no matching edge comes out of it). The second array
is used: the usual array of “visits” to the vertices in the depth-first traversal (it
is needed just so that the depth-first traversal does not enter the same vertex
twice).

A function try_kuhn is a depth-first traversal. It returns true if it was able to
find an augmenting path from the vertex v, and it is considered that this function
has already performed the alternation of matching along the found chain.

Inside the function, all the edges outgoing from the vertex v of the first
part are scanned, and then the following is checked: if this edge leads to an
unsaturated vertex to, or if this vertex to is saturated, but it is possible to find
an increasing chain by recursively starting from mt[to], then we say that we have
found an augmenting path, and before returning from the function with the result
true, we alternate the current edge: we redirect the edge adjacent to to to the
vertex v.

The main program first indicates that the current matching is empty (the list
mt is filled with numbers −1). Then the vertex v of the first part is searched by
try_kuhn, and a depth-first traversal is started from it, having previously zeroed
the array used.

It is worth noting that the size of the matching is easy to get as the number
of calls try_kuhn in the main program that returned the result true. The desired
maximum matching itself is contained in the array mt.

int n, k;
vector<vector<int>> g;
vector<int> mt;
vector<bool> used;

bool try_kuhn(int v) {
if (used[v])

return false;
used[v] = true;
for (int to : g[v]) {

if (mt[to] == -1 || try_kuhn(mt[to])) {
mt[to] = v;
return true;

}
}
return false;

}
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int main() {
//... reading the graph ...

mt.assign(k, -1);
for (int v = 0; v < n; ++v) {

used.assign(n, false);
try_kuhn(v);

}

for (int i = 0; i < k; ++i)
if (mt[i] != -1)

printf("%d %d\n", mt[i] + 1, i + 1);
}

We repeat once again that Kuhn’s algorithm is easy to implement in such a
way that it works on graphs that are known to be bipartite, but their explicit
splitting into two parts has not been given. In this case, it will be necessary to
abandon the convenient division into two parts, and store all the information for
all vertices of the graph. For this, an array of lists g is now specified not only for
the vertices of the first part, but for all the vertices of the graph (of course, now
the vertices of both parts are numbered in a common numbering - from 1 to n).
Arrays mt and are used are now also defined for the vertices of both parts, and,
accordingly, they need to be kept in this state.

Improved implementation

Let us modify the algorithm as follows. Before the main loop of the algorithm, we
will find an arbitrary matching by some simple algorithm (a simple heuristic
algorithm), and only then we will execute a loop with calls to the try_kuhn()
function, which will improve this matching. As a result, the algorithm will work
noticeably faster on random graphs - because in most graphs, you can easily
find a matching of a sufficiently large size using heuristics, and then improve the
found matching to the maximum using the usual Kuhn’s algorithm. Thus, we
will save on launching a depth-first traversal from those vertices that we have
already included using the heuristic into the current matching.

For example, you can simply iterate over all the vertices of the first part,
and for each of them, find an arbitrary edge that can be added to the matching,
and add it. Even such a simple heuristic can speed up Kuhn’s algorithm several
times.

Please note that the main loop will have to be slightly modified. Since when
calling the function try_kuhn in the main loop, it is assumed that the current
vertex is not yet included in the matching, you need to add an appropriate check.

In the implementation, only the code in the main() function will change:

int main() {
// ... reading the graph ...

mt.assign(k, -1);
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vector<bool> used1(n, false);
for (int v = 0; v < n; ++v) {

for (int to : g[v]) {
if (mt[to] == -1) {

mt[to] = v;
used1[v] = true;
break;

}
}

}
for (int v = 0; v < n; ++v) {

if (used1[v])
continue;

used.assign(n, false);
try_kuhn(v);

}

for (int i = 0; i < k; ++i)
if (mt[i] != -1)

printf("%d %d\n", mt[i] + 1, i + 1);
}

Another good heuristic is as follows. At each step, it will search for the
vertex of the smallest degree (but not isolated), select any edge from it and add
it to the matching, then remove both these vertices with all incident edges from
the graph. Such greed works very well on random graphs; in many cases it even
builds the maximum matching (although there is a test case against it, on which
it will find a matching that is much smaller than the maximum).

34.2.4 Notes
• Kuhn’s algorithm is a subroutine in theHungarian algorithm, also known

as the Kuhn-Munkres algorithm.
• Kuhn’s algorithm runs in O(nm) time. It is generally simple to implement,

however, more efficient algorithms exist for the maximum bipartite matching
problem - such as the Hopcroft-Karp-Karzanov algorithm, which runs
in O(

√
nm) time.
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Chapter 35

Miscellaneous

35.1 Topological Sorting
You are given a directed graph with n vertices and m edges. You have to number
the vertices so that every edge leads from the vertex with a smaller number
assigned to the vertex with a larger one.

In other words, you want to find a permutation of the vertices (topological
order) which corresponds to the order defined by all edges of the graph.

Topological order can be non-unique (for example, if the graph is empty; or
if there exist three vertices a, b, c for which there exist paths from a to b and
from a to c but not paths from b to c or from c to b).

Topological order may not exist at all if the graph contains cycles (because
there is a contradiction: there is a path from a to b and vice versa).

A common problem in which topological sorting occurs is the following. There
are n variables with unknown values. For some variables we know that one of
them is less than the other. You have to check whether these constraints are
contradictory, and if not, output the variables in ascending order (if several
answers are possible, output any of them). It is easy to notice that this is exactly
the problem of finding topological order of a graph with n vertices.

35.1.1 The Algorithm
To solve this problem we will use depth-first search.

Let’s assume that the graph is acyclic, i.e. there is a solution. What does the
depth-first search do? When started from some vertex v, it tries to run along
all edges outgoing from v. It fails to run along the edges for which the opposite
ends have been visited previously, and runs along the rest of the edges and starts
from their ends.

Thus, by the time of the call dfs(v) is ended, all vertices that are reachable
from v either directly (via one edge) or indirectly are already visited by the search.
Therefore, if at the time of exit from dfs(v) we add vertex v to the beginning of
a certain list, in the end this list will store a topological ordering of all vertices.

These explanations can also be presented in terms of time of exit from DFS
routine. Exit time for vertex v is the time at which dfs(v) finished work (the
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times can be numbered from 1 to n). It is easy to understand that exit time
of any vertex v is always greater than exit time of any vertex reachable from
it (since they were visited either before the call dfs(v) or during it). Thus, the
desired topological ordering is sorting vertices in descending order of their exit
times.

35.1.2 Implementation
Here is an implementation which assumes that the graph is acyclic, i.e. the desired
topological ordering exists. If necessary, you can easily check that the graph is
acyclic, as described in the article on depth-first search.

C++ implementation

int n; // number of vertices
vector<vector<int>> adj; // adjacency list of graph
vector<bool> visited;
vector<int> ans;

void dfs(int v) {
visited[v] = true;
for (int u : adj[v]) {

if (!visited[u])
dfs(u);

}
ans.push_back(v);

}

void topological_sort() {
visited.assign(n, false);
ans.clear();
for (int i = 0; i < n; ++i) {

if (!visited[i])
dfs(i);

}
reverse(ans.begin(), ans.end());

}

The main function of the solution is topological_sort, which initializes
DFS variables, launches DFS and receives the answer in the vector ans.

35.1.3 Practice Problems
• SPOJ TOPOSORT - Topological Sorting [difficulty: easy]
• UVA 10305 - Ordering Tasks [difficulty: easy]
• UVA 124 - Following Orders [difficulty: easy]
• UVA 200 - Rare Order [difficulty: easy]
• Codeforces 510C - Fox and Names [difficulty: easy]
• SPOJ RPLA - Answer the boss!
• CSES - Couse Schedule
• CSES - Longest Flight Route

http://www.spoj.com/problems/TOPOSORT/
https://onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1246
https://onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=60
https://onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=136
http://codeforces.com/problemset/problem/510/C
https://www.spoj.com/problems/RPLA/
https://cses.fi/problemset/task/1679
https://cses.fi/problemset/task/1680
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• CSES - Game Routes

https://cses.fi/problemset/task/1681
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35.2 Edge connectivity / Vertex connectivity

35.2.1 Definition
Given an undirected graph G with n vertices and m edges. Both the edge
connectivity and the vertex connectivity are characteristics describing the graph.

Edge connectivity

The edge connectivity λ of the graph G is the minimum number of edges that
need to be deleted, such that the graph G gets disconnected.

For example an already disconnected graph has an edge connectivity of 0, a
connected graph with at least one bridge has an edge connectivity of 1, and a
connected graph with no bridges has an edge connectivity of at least 2.

We say that a set S of edges separates the vertices s and t, if, after removing
all edges in S from the graph G, the vertices s and t end up in different connected
components.

It is clear, that the edge connectivity of a graph is equal to the minimum size
of such a set separating two vertices s and t, taken among all possible pairs (s, t).

Vertex connectivity

The vertex connectivity κ of the graph G is the minimum number of vertices
that need to be deleted, such that the graph G gets disconnected.

For example an already disconnected graph has the vertex connectivity 0,
and a connected graph with an articulation point has the vertex connectivity
1. We define that a complete graph has the vertex connectivity n− 1. For all
other graphs the vertex connectivity doesn’t exceed n− 2, because you can find
a pair of vertices which are not connected by an edge, and remove all other n− 2
vertices.

We say that a set T of vertices separates the vertices s and t, if, after
removing all vertices in T from the graph G, the vertices end up in different
connected components.

It is clear, that the vertex connectivity of a graph is equal to the minimal size
of such a set separating two vertices s and t, taken among all possible pairs (s, t).

35.2.2 Properties

The Whitney inequalities

The Whitney inequalities (1932) gives a relation between the edge connectivity
λ, the vertex connectivity κ and the smallest degree of the vertices δ:

κ ≤ λ ≤ δ

Intuitively if we have a set of edges of size λ, which make the graph discon-
nected, we can choose one of each end point, and create a set of vertices, that
also disconnect the graph. And this set has size ≤ λ.
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And if we pick the vertex and the minimal degree δ, and remove all edges
connected to it, then we also end up with a disconnected graph. Therefore the
second inequality λ ≤ δ.

It is interesting to note, that the Whitney inequalities cannot be improved:
i.e. for any triple of numbers satisfying this inequality there exists at least one
corresponding graph. One such graph can be constructed in the following way:
The graph will consists of 2(δ + 1) vertices, the first δ + 1 vertices form a clique
(all pairs of vertices are connected via an edge), and the second δ+1 vertices form
a second clique. In addition we connect the two cliques with λ edges, such that
it uses λ different vertices in the first clique, and only κ vertices in the second
clique. The resulting graph will have the three characteristics.

The Ford-Fulkerson theorem

The Ford-Fulkerson theorem implies, that the biggest number of edge-disjoint
paths connecting two vertices, is equal to the smallest number of edges separating
these vertices.

35.2.3 Computing the values

Edge connectivity using maximum flow

This method is based on the Ford-Fulkerson theorem.
We iterate over all pairs of vertices (s, t) and between each pair we find the

largest number of disjoint paths between them. This value can be found using a
maximum flow algorithm: we use s as the source, t as the sink, and assign each
edge a capacity of 1. Then the maximum flow is the number of disjoint paths.

The complexity for the algorithm using Edmonds-Karp is O(V 2V E2) =
O(V 3E2). But we should note, that this includes a hidden factor, since it is
practically impossible to create a graph such that the maximum flow algorithm
will be slow for all sources and sinks. Especially the algorithm will run pretty
fast for random graphs.

Special algorithm for edge connectivity

The task of finding the edge connectivity if equal to the task of finding the global
minimum cut.

Special algorithms have been developed for this task. One of them is the
Stoer-Wagner algorithm, which works in O(V 3) or O(V E) time.

Vertex connectivity

Again we iterate over all pairs of vertices s and t, and for each pair we find the
minimum number of vertices that separates s and t.

By doing this, we can apply the same maximum flow approach as described
in the previous sections.

We split each vertex x with x 6= s and x 6= t into two vertices x1 and x2. We
connect these to vertices with a directed edge (x1, x2) with the capacity 1, and
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replace all edges (u, v) by the two directed edges (u2, v1) and (v2, u1), both with
the capacity of 1. The by the construction the value of the maximum flow will
be equal to the minimum number of vertices that are needed to separate s and t.

This approach has the same complexity as the flow approach for finding the
edge connectivity.
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35.3 Paint the edges of the tree
This is a fairly common task. Given a tree G with N vertices. There are two
types of queries: the first one is to paint an edge, the second one is to query the
number of colored edges between two vertices.

Here we will describe a fairly simple solution (using a segment tree) that
will answer each query in O(logN) time. The preprocessing step will take O(N)
time.

35.3.1 Algorithm
First, we need to find the LCA to reduce each query of the second kind (i, j) into
two queries (l, i) and (l, j), where l is the LCA of i and j. The answer of the
query (i, j) will be the sum of both subqueries. Both these queries have a special
structure, the first vertex is an ancestor of the second one. For the rest of the
article we will only talk about these special kind of queries.

We will start by describing the preprocessing step. Run a depth-first search
from the root of the tree and record the Euler tour of this depth-first search
(each vertex is added to the list when the search visits it first and every time we
return from one of its children). The same technique can be used in the LCA
preprocessing.

This list will contain each edge (in the sense that if i and j are the ends of
the edge, then there will be a place in the list where i and j are neighbors in
the list), and it appear exactly two times: in the forward direction (from i to j,
where vertex i is closer to the root than vertex j) and in the opposite direction
(from j to i).

We will build two lists for these edges. The first one will store the color of
all edges in the forward direction, and the second one the color of all edges in
the opposite direction. We will use 1 if the edge is colored, and 0 otherwise.
Over these two lists we will build each a segment tree (for sum with a single
modification), let’s call them T1 and T2.

Let us answer a query of the form (i, j), where i is the ancestor of j. We
need to determine how many edges are painted on the path between i and j.
Let’s find i and j in the Euler tour for the first time, let it be the positions p
and q (this can be done in O(1) if we calculate these positions in advance during
preprocessing). Then the answer to the query is the sum T1[p..q − 1] minus the
sum T2[p..q − 1].

Why? Consider the segment [p; q] in the Euler tour. It contains all edges of
the path we need from i to j but also contains a set of edges that lie on other
paths from i. However there is one big difference between the edges we need and
the rest of the edges: the edges we need will be listed only once in the forward
direction, and all the other edges appear twice: once in the forward and once in
the opposite direction. Hence, the difference T1[p..q − 1]− T2[p..q − 1] will give
us the correct answer (minus one is necessary because otherwise, we will capture
an extra edge going out from vertex j). The sum query in the segment tree is
executed in O(logN).
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Answering the first type of query (painting an edge) is even easier - we just
need to update T1 and T2, namely to perform a single update of the element
that corresponds to our edge (finding the edge in the list, again, is possible in
O(1), if you perform this search during preprocessing). A single modification in
the segment tree is performed in O(logN).

35.3.2 Implementation
Here is the full implementation of the solution, including LCA computation:

const int INF = 1000 * 1000 * 1000;

typedef vector<vector<int>> graph;

vector<int> dfs_list;
vector<int> edges_list;
vector<int> h;

void dfs(int v, const graph& g, const graph& edge_ids, int cur_h = 1) {
h[v] = cur_h;
dfs_list.push_back(v);
for (size_t i = 0; i < g[v].size(); ++i) {

if (h[g[v][i]] == -1) {
edges_list.push_back(edge_ids[v][i]);
dfs(g[v][i], g, edge_ids, cur_h + 1);
edges_list.push_back(edge_ids[v][i]);
dfs_list.push_back(v);

}
}

}

vector<int> lca_tree;
vector<int> first;

void lca_tree_build(int i, int l, int r) {
if (l == r) {

lca_tree[i] = dfs_list[l];
} else {

int m = (l + r) >> 1;
lca_tree_build(i + i, l, m);
lca_tree_build(i + i + 1, m + 1, r);
int lt = lca_tree[i + i], rt = lca_tree[i + i + 1];
lca_tree[i] = h[lt] < h[rt] ? lt : rt;

}
}

void lca_prepare(int n) {
lca_tree.assign(dfs_list.size() * 8, -1);
lca_tree_build(1, 0, (int)dfs_list.size() - 1);

first.assign(n, -1);
for (int i = 0; i < (int)dfs_list.size(); ++i) {
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int v = dfs_list[i];
if (first[v] == -1)

first[v] = i;
}

}

int lca_tree_query(int i, int tl, int tr, int l, int r) {
if (tl == l && tr == r)

return lca_tree[i];
int m = (tl + tr) >> 1;
if (r <= m)

return lca_tree_query(i + i, tl, m, l, r);
if (l > m)

return lca_tree_query(i + i + 1, m + 1, tr, l, r);
int lt = lca_tree_query(i + i, tl, m, l, m);
int rt = lca_tree_query(i + i + 1, m + 1, tr, m + 1, r);
return h[lt] < h[rt] ? lt : rt;

}

int lca(int a, int b) {
if (first[a] > first[b])

swap(a, b);
return lca_tree_query(1, 0, (int)dfs_list.size() - 1, first[a], first[b]);

}

vector<int> first1, first2;
vector<char> edge_used;
vector<int> tree1, tree2;

void query_prepare(int n) {
first1.resize(n - 1, -1);
first2.resize(n - 1, -1);
for (int i = 0; i < (int)edges_list.size(); ++i) {

int j = edges_list[i];
if (first1[j] == -1)

first1[j] = i;
else

first2[j] = i;
}

edge_used.resize(n - 1);
tree1.resize(edges_list.size() * 8);
tree2.resize(edges_list.size() * 8);

}

void sum_tree_update(vector<int>& tree, int i, int l, int r, int j, int delta) {
tree[i] += delta;
if (l < r) {

int m = (l + r) >> 1;
if (j <= m)

sum_tree_update(tree, i + i, l, m, j, delta);
else
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sum_tree_update(tree, i + i + 1, m + 1, r, j, delta);
}

}

int sum_tree_query(const vector<int>& tree, int i, int tl, int tr, int l, int r) {
if (l > r || tl > tr)

return 0;
if (tl == l && tr == r)

return tree[i];
int m = (tl + tr) >> 1;
if (r <= m)

return sum_tree_query(tree, i + i, tl, m, l, r);
if (l > m)

return sum_tree_query(tree, i + i + 1, m + 1, tr, l, r);
return sum_tree_query(tree, i + i, tl, m, l, m) +

sum_tree_query(tree, i + i + 1, m + 1, tr, m + 1, r);
}

int query(int v1, int v2) {
return sum_tree_query(tree1, 1, 0, (int)edges_list.size() - 1, first[v1], first[v2] - 1) -

sum_tree_query(tree2, 1, 0, (int)edges_list.size() - 1, first[v1], first[v2] - 1);
}

int main() {
// reading the graph
int n;
scanf("%d", &n);
graph g(n), edge_ids(n);
for (int i = 0; i < n - 1; ++i) {

int v1, v2;
scanf("%d%d", &v1, &v2);
--v1, --v2;
g[v1].push_back(v2);
g[v2].push_back(v1);
edge_ids[v1].push_back(i);
edge_ids[v2].push_back(i);

}

h.assign(n, -1);
dfs(0, g, edge_ids);
lca_prepare(n);
query_prepare(n);

for (;;) {
if () {

// request for painting edge x;
// if start = true, then the edge is painted, otherwise the painting
// is removed
edge_used[x] = start;
sum_tree_update(tree1, 1, 0, (int)edges_list.size() - 1, first1[x],

start ? 1 : -1);
sum_tree_update(tree2, 1, 0, (int)edges_list.size() - 1, first2[x],
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start ? 1 : -1);
} else {

// query the number of colored edges on the path between v1 and v2
int l = lca(v1, v2);
int result = query(l, v1) + query(l, v2);
// result - the answer to the request

}
}

}
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35.4 2 - SAT
SAT (Boolean satisfiability problem) is the problem of assigning Boolean values
to variables to satisfy a given Boolean formula. The Boolean formula will usually
be given in CNF (conjunctive normal form), which is a conjunction of multiple
clauses, where each clause is a disjunction of literals (variables or negation of
variables). 2-SAT (2-satisfiability) is a restriction of the SAT problem, in 2-SAT
every clause has exactly two literals. Here is an example of such a 2-SAT problem.
Find an assignment of a, b, c such that the following formula is true:

(a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ ¬c)

SAT is NP-complete, there is no known efficient solution known for it. However
2SAT can be solved efficiently in O(n+m) where n is the number of variables
and m is the number of clauses.

35.4.1 Algorithm:
First we need to convert the problem to a different form, the so-called implicative
normal form. Note that the expression a∨ b is equivalent to ¬a⇒ b∧¬b⇒ a (if
one of the two variables is false, then the other one must be true).

We now construct a directed graph of these implications: for each variable
x there will be two vertices vx and v¬x. The edges will correspond to the
implications.

Let’s look at the example in 2-CNF form:

(a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ ¬c)

The oriented graph will contain the following vertices and edges:

¬a⇒ ¬b a⇒ b a⇒ ¬b ¬a⇒ ¬c
b⇒ a ¬b⇒ ¬a b⇒ ¬a c⇒ a

You can see the implication graph in the following image:
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It is worth paying attention to the property of the implication graph: if there
is an edge a⇒ b, then there also is an edge ¬b⇒ ¬a.

Also note, that if x is reachable from ¬x, and ¬x is reachable from x, then
the problem has no solution. Whatever value we choose for the variable x, it will
always end in a contradiction - if x will be assigned true then the implication tell
us that ¬x should also be true and visa versa. It turns out, that this condition is
not only necessary, but also sufficient. We will prove this in a few paragraphs
below. First recall, if a vertex is reachable from a second one, and the second one
is reachable from the first one, then these two vertices are in the same strongly
connected component. Therefore we can formulate the criterion for the existence
of a solution as follows:

In order for this 2-SAT problem to have a solution, it is necessary and sufficient
that for any variable x the vertices x and ¬x are in different strongly connected
components of the strong connection of the implication graph.

This criterion can be verified in O(n+m) time by finding all strongly connected
components.

The following image shows all strongly connected components for the example.
As we can check easily, neither of the four components contain a vertex x and
its negation ¬x, therefore the example has a solution. We will learn in the
next paragraphs how to compute a valid assignment, but just for demonstration
purposes the solution a = false, b = false, c = false is given.

Now we construct the algorithm for finding the solution of the 2-SAT problem
on the assumption that the solution exists.

Note that, in spite of the fact that the solution exists, it can happen that ¬x
is reachable from x in the implication graph, or that (but not simultaneously)
x is reachable from ¬x. In that case the choice of either true or false for x will
lead to a contradiction, while the choice of the other one will not. Let’s learn
how to choose a value, such that we don’t generate a contradiction.

Let us sort the strongly connected components in topological order
(i.e. comp[v] ≤ comp[u] if there is a path from v to u) and let comp[v] denote
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the index of strongly connected component to which the vertex v belongs. Then,
if comp[x] < comp[¬x] we assign x with false and true otherwise.

Let us prove that with this assignment of the variables we do not arrive at a
contradiction. Suppose x is assigned with true. The other case can be proven in
a similar way.

First we prove that the vertex x cannot reach the vertex ¬x. Because we
assigned true it has to hold that the index of strongly connected component of x
is greater than the index of the component of ¬x. This means that ¬x is located
on the left of the component containing x, and the later vertex cannot reach the
first.

Secondly we prove that there doesn’t exist a variable y, such that the vertices
y and ¬y are both reachable from x in the implication graph. This would cause
a contradiction, because x = true implies that y = true and ¬y = true. Let us
prove this by contradiction. Suppose that y and ¬y are both reachable from x,
then by the property of the implication graph ¬x is reachable from both y and
¬y. By transitivity this results that ¬x is reachable by x, which contradicts the
assumption.

So we have constructed an algorithm that finds the required values of variables
under the assumption that for any variable x the vertices x and ¬x are in different
strongly connected components. Above showed the correctness of this algorithm.
Consequently we simultaneously proved the above criterion for the existence of a
solution.

35.4.2 Implementation:
Now we can implement the entire algorithm. First we construct the graph of im-
plications and find all strongly connected components. This can be accomplished
with Kosaraju’s algorithm in O(n+m) time. In the second traversal of the graph
Kosaraju’s algorithm visits the strongly connected components in topological
order, therefore it is easy to compute comp[v] for each vertex v.

Afterwards we can choose the assignment of x by comparing comp[x] and
comp[¬x]. If comp[x] = comp[¬x] we return false to indicate that there doesn’t
exist a valid assignment that satisfies the 2-SAT problem.

Below is the implementation of the solution of the 2-SAT problem for the
already constructed graph of implication g and the transpose graph gᵀ (in which
the direction of each edge is reversed). In the graph the vertices with indices
2k and 2k + 1 are the two vertices corresponding to variable k with 2k + 1
corresponding to the negated variable.

int n;
vector<vector<int>> g, gt;
vector<bool> used;
vector<int> order, comp;
vector<bool> assignment;

void dfs1(int v) {
used[v] = true;
for (int u : g[v]) {
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if (!used[u])
dfs1(u);

}
order.push_back(v);

}

void dfs2(int v, int cl) {
comp[v] = cl;
for (int u : gt[v]) {

if (comp[u] == -1)
dfs2(u, cl);

}
}

bool solve_2SAT() {
order.clear();
used.assign(n, false);
for (int i = 0; i < n; ++i) {

if (!used[i])
dfs1(i);

}

comp.assign(n, -1);
for (int i = 0, j = 0; i < n; ++i) {

int v = order[n - i - 1];
if (comp[v] == -1)

dfs2(v, j++);
}

assignment.assign(n / 2, false);
for (int i = 0; i < n; i += 2) {

if (comp[i] == comp[i + 1])
return false;

assignment[i / 2] = comp[i] > comp[i + 1];
}
return true;

}

35.4.3 Practice Problems
• UVA: Rectangles
• Codeforces: The Door Problem
• Codeforces : Radio Stations
• CSES : Giant Pizza

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3081
http://codeforces.com/contest/776/problem/D
https://codeforces.com/problemset/problem/1215/F
https://cses.fi/problemset/task/1684
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35.5 Heavy-light decomposition
Heavy-light decomposition is a fairly general technique that allows us to
effectively solve many problems that come down to queries on a tree .

35.5.1 Description
Let there be a tree G of n vertices, with an arbitrary root.

The essence of this tree decomposition is to split the tree into several
paths so that we can reach the root vertex from any v by traversing at most
logn paths. In addition, none of these paths should intersect with another.

It is clear that if we find such a decomposition for any tree, it will allow us to
reduce certain single queries of the form “calculate something on the path from a
to b” to several queries of the type ”calculate something on the segment [l, r] of
the kth path”.

Construction algorithm

We calculate for each vertex v the size of its subtree s(v), i.e. the number of
vertices in the subtree of the vertex v including itself.

Next, consider all the edges leading to the children of a vertex v. We call an
edge heavy if it leads to a vertex c such that:

s(c) ≥ s(v)
2 ⇐⇒ edge (v, c) is heavy

All other edges are labeled light.
It is obvious that at most one heavy edge can emanate from one vertex

downward, because otherwise the vertex v would have at least two children of size
≥ s(v)

2 , and therefore the size of subtree of v would be too big, s(v) ≥ 1 + 2 s(v)
2 >

s(v), which leads to a contradiction.
Now we will decompose the tree into disjoint paths. Consider all the vertices

from which no heavy edges come down. We will go up from each such vertex
until we reach the root of the tree or go through a light edge. As a result, we will
get several paths which are made up of zero or more heavy edges plus one light
edge. The path which has an end at the root is an exception to this and will not
have a light edge. Let these be called heavy paths - these are the desired paths
of heavy-light decomposition.

Proof of correctness

First, we note that the heavy paths obtained by the algorithm will be disjoint .
In fact, if two such paths have a common edge, it would imply that there are two
heavy edges coming out of one vertex, which is impossible.

Secondly, we will show that going down from the root of the tree to an
arbitrary vertex, we will change no more than logn heavy paths along the
way . Moving down a light edge reduces the size of the current subtree to half
or lower:
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s(c) < s(v)
2 ⇐⇒ edge (v, c) is light

Thus, we can go through at most logn light edges before subtree size reduces
to one.

Since we can move from one heavy path to another only through a light edge
(each heavy path, except the one starting at the root, has one light edge), we
cannot change heavy paths more than logn times along the path from the root
to any vertex, as required.

The following image illustrates the decomposition of a sample tree. The heavy
edges are thicker than the light edges. The heavy paths are marked by dotted
boundaries.

35.5.2 Sample problems
When solving problems, it is sometimes more convenient to consider the heavy-
light decomposition as a set of vertex disjoint paths (rather than edge disjoint
paths). To do this, it suffices to exclude the last edge from each heavy path if it
is a light edge, then no properties are violated, but now each vertex belongs to
exactly one heavy path.

Below we will look at some typical tasks that can be solved with the help of
heavy-light decomposition.

Separately, it is worth paying attention to the problem of the sum of numbers
on the path, since this is an example of a problem that can be solved by simpler
techniques.
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Maximum value on the path between two vertices

Given a tree, each vertex is assigned a value. There are queries of the form (a, b),
where a and b are two vertices in the tree, and it is required to find the maximum
value on the path between the vertices a and b.

We construct in advance a heavy-light decomposition of the tree. Over each
heavy path we will construct a segment tree, which will allow us to search for a
vertex with the maximum assigned value in the specified segment of the specified
heavy path in O(logn). Although the number of heavy paths in heavy-light
decomposition can reach n− 1, the total size of all paths is bounded by O(n),
therefore the total size of the segment trees will also be linear.

In order to answer a query (a, b), we find the lowest common ancestor of a
and b as l, by any preferred method. Now the task has been reduced to two
queries (a, l) and (b, l), for each of which we can do the following: find the heavy
path that the lower vertex lies in, make a query on this path, move to the top of
this path, again determine which heavy path we are on and make a query on it,
and so on, until we get to the path containing l.

One should be careful with the case when, for example, a and l are on the
same heavy path - then the maximum query on this path should be done not on
any prefix, but on the internal section between a and l.

Responding to the subqueries (a, l) and (b, l) each requires going through
O(logn) heavy paths and for each path a maximum query is made on some
section of the path, which again requires O(logn) operations in the segment tree.
Hence, one query (a, b) takes O(log2 n) time.

If you additionally calculate and store maximums of all prefixes for each
heavy path, then you get a O(logn) solution because all maximum queries are
on prefixes except at most once when we reach the ancestor l.

Sum of the numbers on the path between two vertices

Given a tree, each vertex is assigned a value. There are queries of the form (a, b),
where a and b are two vertices in the tree, and it is required to find the sum of
the values on the path between the vertices a and b. A variant of this task is
possible where additionally there are update operations that change the number
assigned to one or more vertices.

This task can be solved similar to the previous problem of maximums with
the help of heavy-light decomposition by building segment trees on heavy paths.
Prefix sums can be used instead if there are no updates. However, this problem
can be solved by simpler techniques too.

If there are no updates, then it is possible to find out the sum on the path
between two vertices in parallel with the LCA search of two vertices by binary
lifting — for this, along with the 2k-th ancestors of each vertex it is also necessary
to store the sum on the paths up to those ancestors during the preprocessing.

There is a fundamentally different approach to this problem - to consider
the Euler tour of the tree, and build a segment tree on it. This algorithm is
considered in an article about a similar problem. Again, if there are no updates,
storing prefix sums is enough and a segment tree is not required.

https://en.wikipedia.org/wiki/Lowest_common_ancestor
https://en.wikipedia.org/wiki/Euler_tour_technique
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Both of these methods provide relatively simple solutions taking O(logn) for
one query.

Repainting the edges of the path between two vertices

Given a tree, each edge is initially painted white. There are updates of the form
(a, b, c), where a and b are two vertices and c is a color, which instructs that
all the edges on the path from a to b must be repainted with color c. After all
repaintings, it is required to report how many edges of each color were obtained.

Similar to the above problems, the solution is to simply apply heavy-light
decomposition and make a segment tree over each heavy path.

Each repainting on the path (a, b) will turn into two updates (a, l) and (b, l),
where l is the lowest common ancestor of the vertices a and b.
O(logn) per path for O(logn) paths leads to a complexity of O(log2 n) per
update.

35.5.3 Implementation
Certain parts of the above discussed approach can be modified to make imple-
mentation easier without losing efficiency.

• The definition of heavy edge can be changed to the edge leading to
the child with largest subtree, with ties broken arbitrarily. This may
result is some light edges being converted to heavy, which means some
heavy paths will combine to form a single path, but all heavy paths will
remain disjoint. It is also still guaranteed that going down a light edge
reduces subtree size to half or less.

• Instead of a building segment tree over every heavy path, a single segment
tree can be used with disjoint segments allocated to each heavy path.

• It has been mentioned that answering queries requires calculation of the
LCA. While LCA can be calculated separately, it is also possible to integrate
LCA calculation in the process of answering queries.

To perform heavy-light decomposition:

vector<int> parent, depth, heavy, head, pos;
int cur_pos;

int dfs(int v, vector<vector<int>> const& adj) {
int size = 1;
int max_c_size = 0;
for (int c : adj[v]) {

if (c != parent[v]) {
parent[c] = v, depth[c] = depth[v] + 1;
int c_size = dfs(c, adj);
size += c_size;
if (c_size > max_c_size)

max_c_size = c_size, heavy[v] = c;
}
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}
return size;

}

void decompose(int v, int h, vector<vector<int>> const& adj) {
head[v] = h, pos[v] = cur_pos++;
if (heavy[v] != -1)

decompose(heavy[v], h, adj);
for (int c : adj[v]) {

if (c != parent[v] && c != heavy[v])
decompose(c, c, adj);

}
}

void init(vector<vector<int>> const& adj) {
int n = adj.size();
parent = vector<int>(n);
depth = vector<int>(n);
heavy = vector<int>(n, -1);
head = vector<int>(n);
pos = vector<int>(n);
cur_pos = 0;

dfs(0, adj);
decompose(0, 0, adj);

}

The adjacency list of the tree must be passed to the init function, and
decomposition is performed assuming vertex 0 as root.

The dfs function is used to calculate heavy[v], the child at the other end
of the heavy edge from v, for every vertex v. Additionally dfs also stores the
parent and depth of each vertex, which will be useful later during queries.

The decompose function assigns for each vertex v the values head[v] and
pos[v], which are respectively the head of the heavy path v belongs to and the
position of v on the single segment tree that covers all vertices.

To answer queries on paths, for example the maximum query discussed, we
can do something like this:
int query(int a, int b) {

int res = 0;
for (; head[a] != head[b]; b = parent[head[b]]) {

if (depth[head[a]] > depth[head[b]])
swap(a, b);

int cur_heavy_path_max = segment_tree_query(pos[head[b]], pos[b]);
res = max(res, cur_heavy_path_max);

}
if (depth[a] > depth[b])

swap(a, b);
int last_heavy_path_max = segment_tree_query(pos[a], pos[b]);
res = max(res, last_heavy_path_max);
return res;

}
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35.5.4 Practice problems
• SPOJ - QTREE - Query on a tree

https://www.spoj.com/problems/QTREE/
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Chapter 36

Sequences

36.1 Range Minimum Query
You are given an array A[1..N ]. You have to answer incoming queries of the form
(L,R), which ask to find the minimum element in array A between positions L
and R inclusive.

RMQ can appear in problems directly or can be applied in some other tasks,
e.g. the Lowest Common Ancestor problem.

36.1.1 Solution
There are lots of possible approaches and data structures that you can use to
solve the RMQ task.

The ones that are explained on this site are listed below.
First the approaches that allow modifications to the array between answering

queries.

• Sqrt-decomposition - answers each query in O(
√
N), preprocessing done in

O(N). Pros: a very simple data structure. Cons: worse complexity.
• Segment tree - answers each query in O(logN), preprocessing done in O(N).

Pros: good time complexity. Cons: larger amount of code compared to the
other data structures.

• Fenwick tree - answers each query in O(logN), preprocessing done in
O(N logN). Pros: the shortest code, good time complexity. Cons: Fenwick
tree can only be used for queries with L = 1, so it is not applicable to many
problems.

And here are the approaches that only work on static arrays, i.e. it is not
possible to change a value in the array without recomputing the complete data
structure.

• Sparse Table - answers each query in O(1), preprocessing done in
O(N logN). Pros: simple data structure, excellent time complexity.

• Sqrt Tree - answers queries in O(1), preprocessing done in O(N log logN).
Pros: fast. Cons: Complicated to implement.
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• Disjoint Set Union / Arpa’s Trick - answers queries in O(1), preprocessing
in O(n). Pros: short, fast. Cons: only works if all queries are known in
advance, i.e. only supports off-line processing of the queries.

• Cartesian Tree and Farach-Colton and Bender algorithm - answers queries
in O(1), preprocessing in O(n). Pros: optimal complexity. Cons: large
amount of code.

Note: Preprocessing is the preliminary processing of the given array by
building the corresponding data structure for it.

36.1.2 Practice Problems
• SPOJ: Range Minimum Query
• CODECHEF: Chef And Array
• Codeforces: Array Partition

http://www.spoj.com/problems/RMQSQ/
https://www.codechef.com/problems/FRMQ
https://codeforces.com/contest/1454/problem/F
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36.2 Longest increasing subsequence
We are given an array with n numbers: a[0 . . . n − 1]. The task is to find the
longest, strictly increasing, subsequence in a.

Formally we look for the longest sequence of indices i1, . . . ik such that

i1 < i2 < · · · < ik, a[i1] < a[i2] < · · · < a[ik]

In this article we discuss multiple algorithms for solving this task. Also we
will discuss some other problems, that can be reduced to this problem.

36.2.1 Solution in O(n2) with dynamic programming
Dynamic programming is a very general technique that allows to solve a huge
class of problems. Here we apply the technique for our specific task.

First we will search only for the length of the longest increasing subsequence,
and only later learn how to restore the subsequence itself.

Finding the length

To accomplish this task, we define an array d[0 . . . n− 1], where d[i] is the length
of the longest increasing subsequence that ends in the element at index i. We
will compute this array gradually: first d[0], then d[1], and so on. After this array
is computed, the answer to the problem will be the maximum value in the array
d[].

So let the current index be i. I.e. we want to compute the value d[i] and all
previous values d[0], . . . , d[i− 1] are already known. Then there are two options:

• d[i] = 1: the required subsequence consists of only the element a[i].
• d[i] > 1: then in the required subsequence is another number before the

number a[i]. Let’s focus on that number: it can be any element a[j] with
j = 0 . . . i − 1 and a[j] < a[i]. In this fashion we can compute d[i] using
the following formula: If we fixate the index j, than the longest increasing
subsequence ending in the two elements a[j] and a[i] has the length d[j] + 1.
All of these values d[j] are already known, so we can directly compute d[i]
with:

d[i] = max
j=0...i−1
a[j]<a[i]

(d[j] + 1)

If we combine these two cases we get the final answer for d[i]:

d[i] = max

1, max
j=0...i−1
a[j]<a[i]

(d[j] + 1)
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Implementation

Here is an implementation of the algorithm described above, which computes the
length of the longest increasing subsequence.

int lis(vector<int> const& a) {
int n = a.size();
vector<int> d(n, 1);
for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {
if (a[j] < a[i])

d[i] = max(d[i], d[j] + 1);
}

}

int ans = d[0];
for (int i = 1; i < n; i++) {

ans = max(ans, d[i]);
}
return ans;

}

Restoring the subsequence

So far we only learned how to find the length of the subsequence, but not how to
find the subsequence itself.

To be able to restore the subsequence we generate an additional auxiliary
array p[0 . . . n− 1] that we will compute alongside the array d[]. p[i] will be the
index j of the second last element in the longest increasing subsequence ending
in i. In other words the index p[i] is the same index j at which the highest value
d[i] was obtained. This auxiliary array p[] points in some sense to the ancestors.

Then to derive the subsequence, we just start at the index i with the maximal
d[i], and follow the ancestors until we deduced the entire subsequence, i.e. until
we reach the element with d[i] = 1.

Implementation of restoring

We will change the code from the previous sections a little bit. We will compute
the array p[] alongside d[], and afterwards compute the subsequence.

For convenience we originally assign the ancestors with p[i] = −1. For
elements with d[i] = 1, the ancestors value will remain −1, which will be slightly
more convenient for restoring the subsequence.

vector<int> lis(vector<int> const& a) {
int n = a.size();
vector<int> d(n, 1), p(n, -1);
for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {
if (a[j] < a[i] && d[i] < d[j] + 1) {

d[i] = d[j] + 1;



Miscellaneous, Chapter 36. Sequences 646

p[i] = j;
}

}
}

int ans = d[0], pos = 0;
for (int i = 1; i < n; i++) {

if (d[i] > ans) {
ans = d[i];
pos = i;

}
}

vector<int> subseq;
while (pos != -1) {

subseq.push_back(a[pos]);
pos = p[pos];

}
reverse(subseq.begin(), subseq.end());
return subseq;

}

Alternative way of restoring the subsequence

It is also possible to restore the subsequence without the auxiliary array p[]. We
can simply recalculate the current value of d[i] and also see how the maximum
was reached.

This method leads to a slightly longer code, but in return we save some
memory.

36.2.2 Solution in O(n log n) with dynamic programming and
binary search

In order to obtain a faster solution for the problem, we construct a different
dynamic programming solution that runs in O(n2), and then later improve it to
O(n logn).

We will use the dynamic programming array d[0 . . . n]. This time d[i] will be
the element at which a subsequence of length i terminates. If there are multiple
such sequences, then we take the one that ends in the smallest element.

Initially we assume d[0] = −∞ and for all other elements d[i] =∞.
We will again gradually process the numbers, first a[0], then a[1], etc, and in

each step maintain the array d[] so that it is up to date.
After processing all the elements of a[] the length of the desired subsequence

is the largest l with d[l] <∞.

int lis(vector<int> const& a) {
int n = a.size();
const int INF = 1e9;
vector<int> d(n+1, INF);
d[0] = -INF;
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for (int i = 0; i < n; i++) {
for (int j = 1; j <= n; j++) {

if (d[j-1] < a[i] && a[i] < d[j])
d[j] = a[i];

}
}

int ans = 0;
for (int i = 0; i <= n; i++) {

if (d[i] < INF)
ans = i;

}
return ans;

}

We now make two important observations.
The array d will always be sorted: d[i− 1] ≤ d[i] for all i = 1 . . . n. And also

the element a[i] will only update at most one value d[j].
Thus we can find this element in the array d[] using binary search in O(logn).

In fact we are simply looking in the array d[] for the first number that is strictly
greater than a[i], and we try to update this element in the same way as the above
implementation.

Implementation

int lis(vector<int> const& a) {
int n = a.size();
const int INF = 1e9;
vector<int> d(n+1, INF);
d[0] = -INF;

for (int i = 0; i < n; i++) {
int j = upper_bound(d.begin(), d.end(), a[i]) - d.begin();
if (d[j-1] < a[i] && a[i] < d[j])

d[j] = a[i];
}

int ans = 0;
for (int i = 0; i <= n; i++) {

if (d[i] < INF)
ans = i;

}
return ans;

}

Restoring the subsequence

It is also possible to restore the subsequence using this approach. This time we
have to maintain two auxiliary arrays. One that tells us the index of the elements
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in d[]. And again we have to create an array of “ancestors” p[i]. p[i] will be the
index of the previous element for the optimal subsequence ending in element i.

It’s easy to maintain these two arrays in the course of iteration over the array
a[] alongside the computations of d[]. And at the end it is not difficult to restore
the desired subsequence using these arrays.

36.2.3 Solution in O(n log n) with data structures
Instead of the above method for computing the longest increasing subsequence
in O(n logn) we can also solve the problem in a different way: using some simple
data structures.

Let’s go back to the first method. Remember that d[i] is the value d[j] + 1
with j < i and a[j] < a[i].

Thus if we define an additional array t[] such that

t[a[i]] = d[i],

then the problem of computing the value d[i] is equivalent to finding the maxi-
mum value in a prefix of the array t[]:

d[i] = max (t[0 . . . a[i]− 1] + 1)

The problem of finding the maximum of a prefix of an array (which changes)
is a standard problem that can be solved by many different data structures. For
instance we can use a Segment tree or a Fenwick tree.

This method has obviously some shortcomings: in terms of length and
complexity of the implementation this approach will be worse than the method
using binary search. In addition if the input numbers a[i] are especially large, then
we would have to use some tricks, like compressing the numbers (i.e. renumber
them from 0 to n−1), or use an implicit Segment tree (only generate the branches
of the tree that are important). Otherwise the memory consumption will be too
high.

On the other hand this method has also some advantages: with this method
you don’t have to think about any tricky properties in the dynamic programming
solution. And this approach allows us to generalize the problem very easily (see
below).

36.2.4 Related tasks
Here are several problems that are closely related to the problem of finding the
longest increasing subsequence.

Longest non-decreasing subsequence

This is in fact nearly the same problem. Only now it is allowed to use identical
numbers in the subsequence.

The solution is essentially also nearly the same. We just have to change the
inequality signs, and make a slightly modification to the binary search.
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Number of longest increasing subsequences

We can use the first discussed method, either the O(n2) version or the version
using data structures. We only have to additionally store in how many ways we
can obtain longest increasing subsequences ending in the values d[i].

The number of ways to form a longest increasing subsequences ending in a[i]
is the sum of all ways for all longest increasing subsequences ending in j where
d[j] is maximal. There can be multiple such j, so we need to sum all of them.

Using a Segment tree this approach can also be implemented in O(n logn).
It is not possible to use the binary search approach for this task.

Smallest number of non-increasing subsequences covering a sequence

For a given array with n numbers a[0 . . . n− 1] we have to colorize the numbers
in the smallest number of colors, so that each color forms a non-increasing
subsequence.

To solve this, we notice that the minimum number of required colors is equal
to the length of the longest increasing subsequence.

Proof : We need to prove the duality of these two problems.
Let’s denote by x the length of the longest increasing subsequence and by y

the least number of non-increasing subsequences that form a cover. We need to
prove that x = y.

It is clear that y < x is not possible, because if we have x strictly increasing
elements, than no two can be part of the same non-increasing subsequence.
Therefore we have y ≥ x.

We now show that y > x is not possible by contradiction. Suppose that
y > x. Then we consider any optimal set of y non-increasing subsequences.
We transform this in set in the following way: as long as there are two such
subsequences such that the first begins before the second subsequence, and the
first sequence start with a number greater than or equal to the second, then we
unhook this starting number and attach it to the beginning of second. After a
finite number of steps we have y subsequences, and their starting numbers will
form an increasing subsequence of length y. Since we assumed that y > x we
reached a contradiction.

Thus it follows that y = x.
Restoring the sequences: The desired partition of the sequence into

subsequences can be done greedily. I.e. go from left to right and assign the
current number or that subsequence ending with the minimal number which is
greater than or equal to the current one.

36.2.5 Practice Problems
• ACMSGURU - “North-East”
• Codeforces - LCIS
• Codeforces - Tourist
• SPOJ - DOSA
• SPOJ - HMLIS

http://codeforces.com/problemsets/acmsguru/problem/99999/521
http://codeforces.com/problemset/problem/10/D
http://codeforces.com/contest/76/problem/F
https://www.spoj.com/problems/DOSA/
https://www.spoj.com/problems/HMLIS/
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• SPOJ - ONEXLIS
• SPOJ - SUPPER
• Topcoder - AutoMarket
• Topcoder - BridgeArrangement
• Topcoder - IntegerSequence
• UVA - Back To Edit Distance
• UVA - Happy Birthday
• UVA - Tiling Up Blocks

https://www.spoj.com/problems/ONEXLIS/
http://www.spoj.com/problems/SUPPER/
https://community.topcoder.com/stat?c=problem_statement&pm=3937&rd=6532
https://community.topcoder.com/stat?c=problem_statement&pm=2967&rd=5881
https://community.topcoder.com/stat?c=problem_statement&pm=5922&rd=8075
https://onlinejudge.org/external/127/12747.pdf
https://onlinejudge.org/external/120/12002.pdf
https://onlinejudge.org/external/11/1196.pdf
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36.3 Search the subarray with the maximum/minimum
sum

Here, we consider the problem of finding a subarray with maximum sum, as well
as some of its variations (including the algorithm for solving this problem online).

36.3.1 Problem statement
Given an array of numbers a[1 . . . n]. It is required to find a subarray a[l . . . r]
with the maximal sum:

max
1≤l≤r≤n

r∑
i=l

a[i].

For example, if all integers in array a[] were non-negative, then the answer
would be the array itself. However, the solution is non-trivial when the array can
contain both positive and negative numbers.

It is clear that the problem of finding the minimum subarray is essentially
the same, you just need to change the signs of all numbers.

36.3.2 Algorithm 1
Here we consider an almost obvious algorithm. (Next, we’ll look at another
algorithm, which is a little harder to come up with, but its implementation is
even shorter.)

Algorithm description

The algorithm is very simple.
We introduce for convenience the notation: s[i] = ∑i

j=1 a[j]. That is, the
array s[i] is an array of partial sums of array a[]. Also, set s[0] = 0.

Let us now iterate over the index r = 1 . . . n, and learn how to quickly find
the optimal l for each current value r, at which the maximum sum is reached on
the subarray [l, r].

Formally, this means that for the current r we need to find an l (not exceeding
r), so that the value of s[r]− s[l − 1] is maximal. After a trivial transformation,
we can see that we need to find in the array s[] a minimum on the segment
[0, r − 1].

From here, we immediately obtain a solution: we simply store where the
current minimum is in the array s[]. Using this minimum, we find the current
optimal index l in O(1), and when moving from the current index r to the next
one, we simply update this minimum.

Obviously, this algorithm works in O(n) and is asymptotically optimal.

Implementation

To implement it, we don’t even need to explicitly store an array of partial sums
s[] — we will only need the current element from it.
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The implementation is given in 0-indexed arrays, not in 1-numbering as
described above.

We first give a solution that finds a simple numerical answer without finding
the indices of the desired segment:

int ans = a[0], sum = 0, min_sum = 0;

for (int r = 0; r < n; ++r) {
sum += a[r];
ans = max(ans, sum - min_sum);
min_sum = min(min_sum, sum);

}

Now we give a full version of the solution, which additionally also finds the
boundaries of the desired segment:

int ans = a[0], ans_l = 0, ans_r = 0;
int sum = 0, min_sum = 0, min_pos = -1;

for (int r = 0; r < n; ++r) {
sum += a[r];
int cur = sum - min_sum;
if (cur > ans) {

ans = cur;
ans_l = min_pos + 1;
ans_r = r;

}
if (sum < min_sum) {

min_sum = sum;
min_pos = r;

}
}

36.3.3 Algorithm 2
Here we consider a different algorithm. It is a little more difficult to understand,
but it is more elegant than the above, and its implementation is a little bit shorter.
This algorithm was proposed by Jay Kadane in 1984.

Algorithm description

The algorithm itself is as follows. Let’s go through the array and accumulate the
current partial sum in some variable s. If at some point s is negative, we just
assign s = 0. It is argued that the maximum all the values that the variable s is
assigned to during the algorithm will be the answer to the problem.

Proof:
Consider the first index when the sum of s becomes negative. This means

that starting with a zero partial sum, we eventually obtain a negative partial
sum — so this whole prefix of the array, as well as any suffix, has a negative sum.
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Therefore, this subarray never contributes to the partial sum of any subarray of
which it is a prefix, and can simply be dropped.

However, this is not enough to prove the algorithm. In the algorithm, we
are actually limited in finding the answer only to such segments that begin
immediately after the places when s < 0 happened.

But, in fact, consider an arbitrary segment [l, r], and l is not in such a “critical”
position (i.e. l > p+ 1, where p is the last such position, in which s < 0). Since
the last critical position is strictly earlier than in l− 1, it turns out that the sum
of a[p+ 1 . . . l− 1] is non-negative. This means that by moving l to position p+ 1,
we will increase the answer or, in extreme cases, we will not change it.

One way or another, it turns out that when searching for an answer, you
can limit yourself to only segments that begin immediately after the positions in
which s < 0 appeared. This proves that the algorithm is correct.

Implementation

As in algorithm 1, we first gave a simplified implementation that looks for only a
numerical answer without finding the boundaries of the desired segment:

int ans = a[0], sum = 0;

for (int r = 0; r < n; ++r) {
sum += a[r];
ans = max(ans, sum);
sum = max(sum, 0);

}

A complete solution, maintaining the indexes of the boundaries of the corre-
sponding segment:

int ans = a[0], ans_l = 0, ans_r = 0;
int sum = 0, minus_pos = -1;

for (int r = 0; r < n; ++r) {
sum += a[r];
if (sum > ans) {

ans = sum;
ans_l = minus_pos + 1;
ans_r = r;

}
if (sum < 0) {

sum = 0;
minus_pos = r;

}
}
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36.3.4 Related tasks

Finding the maximum/minimum subarray with constraints

If the problem condition imposes additional restrictions on the required segment
[l, r] (for example, that the length r − l + 1 of the segment must be within the
specified limits), then the described algorithm is likely to be easily generalized to
these cases — anyway, the problem will still be to find the minimum in the array
s[] with the specified additional restrictions.

Two-dimensional case of the problem: search for maximum/minimum
submatrix

The problem described in this article is naturally generalized to large dimensions.
For example, in a two-dimensional case, it turns into a search for such a submatrix
[l1 . . . r1, l2 . . . r2] of a given matrix, which has the maximum sum of numbers in
it.

Using the solution for the one-dimensional case, it is easy to obtain a solution
in O(n3) for the two-dimensions case: we iterate over all possible values of l1 and
r1, and calculate the sums from l1 to r1 in each row of the matrix. Now we have
the one-dimensional problem of finding the indices l2 and r2 in this array, which
can already be solved in linear time.

Faster algorithms for solving this problem are known, but they are not
much faster than O(n3), and are very complex (so complex that many of them
are inferior to the trivial algorithm for all reasonable constraints by the hidden
constant). Currently, the best known algorithm works in O

(
n3 log3 logn

log2 n

)
time (T.

Chan 2007 “More algorithms for all-pairs shortest paths in weighted graphs”)
This algorithm by Chan, as well as many other results in this area, actually

describe fast matrix multiplication (where matrix multiplication means modi-
fied multiplication: minimum is used instead of addition, and addition is used
instead of multiplication). The problem of finding the submatrix with the largest
sum can be reduced to the problem of finding the shortest paths between all pairs
of vertices, and this problem, in turn, can be reduced to such a multiplication of
matrices.

Search for a subarray with a maximum/minimum average

This problem lies in finding such a segment a[l, r], such that the average value is
maximal:

max
l≤r

1
r − l + 1

r∑
i=l

a[i].

Of course, if no other conditions are imposed on the required segment [l, r],
then the solution will always be a segment of length 1 at the maximum element
of the array. The problem only makes sense, if there are additional restrictions
(for example, the length of the desired segment is bounded below).
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In this case, we apply the standard technique when working with the
problems of the average value: we will select the desired maximum average value
by binary search.

To do this, we need to learn how to solve the following subproblem: given
the number x, and we need to check whether there is a subarray of array a[] (of
course, satisfying all additional constraints of the problem), where the average
value is greater than x.

To solve this subproblem, subtract x from each element of array a[]. Then
our subproblem actually turns into this one: whether or not there are positive
sum subarrays in this array. And we already know how to solve this problem.

Thus, we obtained the solution for the asymptotic O(T (n) logW ), where W
is the required accuracy, T (n) is the time of solving the subtask for an array
of length n (which may vary depending on the specific additional restrictions
imposed).

Solving the online problem

The condition of the problem is as follows: given an array of n numbers, and a
number L. There are queries of the form (l, r), and in response to each query, it
is required to find a subarray of the segment [l, r] of length not less than L with
the maximum possible arithmetic mean.

The algorithm for solving this problem is quite complex. KADR (Yaroslav
Tverdokhleb) described his algorithm on the Russian forum.

http://e-maxx.ru/forum/viewtopic.php?id=410
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36.4 K-th order statistic in O(N)
Given an array A of size N and a number K. The challenge is to find K-th
largest number in the array, i.e., K-th order statistic.

The basic idea - to use the idea of quick sort algorithm. Actually, the algorithm
is simple, it is more difficult to prove that it runs in an average of O(N), in
contrast to the quick sort.

36.4.1 Implementation (not recursive):
template <class T>
T order_statistics (std::vector<T> a, unsigned n, unsigned k)
{

using std::swap;
for (unsigned l=1, r=n; ; )
{

if (r <= l+1)
{

// the current part size is either 1 or 2, so it is easy to find the answer
if (r == l+1 && a[r] < a[l])

swap (a[l], a[r]);
return a[k];

}

// ordering a[l], a[l+1], a[r]
unsigned mid = (l + r) >> 1;
swap (a[mid], a[l+1]);
if (a[l] > a[r])

swap (a[l], a[r]);
if (a[l+1] > a[r])

swap (a[l+1], a[r]);
if (a[l] > a[l+1])

swap (a[l], a[l+1]);

// performing division
// barrier is a[l + 1], i.e. median among a[l], a[l + 1], a[r]
unsigned

i = l+1,
j = r;

const T
cur = a[l+1];

for (;;)
{

while (a[++i] < cur) ;
while (a[--j] > cur) ;
if (i > j)

break;
swap (a[i], a[j]);

}

// inserting the barrier
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a[l+1] = a[j];
a[j] = cur;

// we continue to work in that part, which must contain the required element
if (j >= k)

r = j-1;
if (j <= k)

l = i;
}

}

To note, in the standard C ++ library, this algorithm has already been
implemented - it is called nth_element.

36.4.2 Practice Problems
• CODECHEF: Median

https://www.codechef.com/problems/CD1IT1
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Chapter 37

Game Theory

37.1 Games on arbitrary graphs
Let a game be played by two players on an arbitrary graph G. I.e. the current
state of the game is a certain vertex. The players perform moves by turns, and
move from the current vertex to an adjacent vertex using a connecting edge.
Depending on the game, the person that is unable to move will either lose or win
the game.

We consider the most general case, the case of an arbitrary directed graph
with cycles. It is our task to determine, given an initial state, who will win the
game if both players play with optimal strategies or determine that the result of
the game will be a draw.

We will solve this problem very efficiently. We will find the solution for all
possible starting vertices of the graph in linear time with respect to the number
of edges: O(m).

37.1.1 Description of the algorithm
We will call a vertex a winning vertex, if the player starting at this state will
win the game, if they play optimally (regardless of what turns the other player
makes). Similarly, we will call a vertex a losing vertex, if the player starting at
this vertex will lose the game, if the opponent plays optimally.

For some of the vertices of the graph, we already know in advance that they
are winning or losing vertices: namely all vertices that have no outgoing edges.

Also we have the following rules:

• if a vertex has an outgoing edge that leads to a losing vertex, then the
vertex itself is a winning vertex.

• if all outgoing edges of a certain vertex lead to winning vertices, then the
vertex itself is a losing vertex.

• if at some point there are still undefined vertices, and neither will fit the
first or the second rule, then each of these vertices, when used as a starting
vertex, will lead to a draw if both player play optimally.



37.1. Games on arbitrary graphs 659

Thus, we can define an algorithm which runs in O(nm) time immediately.
We go through all vertices and try to apply the first or second rule, and repeat.

However, we can accelerate this procedure, and get the complexity down to
O(m).

We will go over all the vertices, for which we initially know if they are winning
or losing states. For each of them, we start a depth first search. This DFS will
move back over the reversed edges. First of all, it will not enter vertices which
already are defined as winning or losing vertices. And further, if the search goes
from a losing vertex to an undefined vertex, then we mark this one as a winning
vertex, and continue the DFS using this new vertex. If we go from a winning
vertex to an undefined vertex, then we must check whether all edges from this
one leads to winning vertices. We can perform this test in O(1) by storing the
number of edges that lead to a winning vertex for each vertex. So if we go from
a winning vertex to an undefined one, then we increase the counter, and check
if this number is equal to the number of outgoing edges. If this is the case, we
can mark this vertex as a losing vertex, and continue the DFS from this vertex.
Otherwise we don’t know yet, if this vertex is a winning or losing vertex, and
therefore it doesn’t make sense to keep continuing the DFS using it.

In total we visit every winning and every losing vertex exactly once (undefined
vertices are not visited), and we go over each edge also at most one time. Hence
the complexity is O(m).

37.1.2 Implementation
Here is the implementation of such a DFS. We assume that the variable adj_rev
stores the adjacency list for the graph in reversed form, i.e. instead of storing
the edge (i, j) of the graph, we store (j, i). Also for each vertex we assume that
the outgoing degree is already computed.

vector<vector<int>> adj_rev;

vector<bool> winning;
vector<bool> losing;
vector<bool> visited;
vector<int> degree;

void dfs(int v) {
visited[v] = true;
for (int u : adj_rev[v]) {

if (!visited[u]) {
if (losing[v])

winning[u] = true;
else if (--degree[u] == 0)

losing[u] = true;
else

continue;
dfs(u);

}
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}
}

37.1.3 Example: “Policeman and thief”
Here is a concrete example of such a game.

There is m × n board. Some of the cells cannot be entered. The initial
coordinates of the police officer and of the thief are known. One of the cells is the
exit. If the policeman and the thief are located at the same cell at any moment,
the policeman wins. If the thief is at the exit cell (without the policeman also
being on the cell), then the thief wins. The policeman can walk in all 8 directions,
the thief only in 4 (along the coordinate axis). Both the policeman and the thief
will take turns moving. However they also can skip a turn if they want to. The
first move is made by the policeman.

We will now construct the graph. For this we must formalize the rules of
the game. The current state of the game is determined by the coordinates of the
police offices P , the coordinates of the thief T , and also by whose turn it is, let’s
call this variable Pturn (which is true when it is the policeman’s turn). Therefore
a vertex of the graph is determined by the triple (P, T, Pturn) The graph then
can be easily constructed, simply by following the rules of the game.

Next we need to determine which vertices are winning and which are losing
ones initially. There is a subtle point here. The winning / losing vertices
depend, in addition to the coordinates, also on Pturn - whose turn it. If it is the
policeman’s turn, then the vertex is a winning vertex, if the coordinates of the
policeman and the thief coincide, and the vertex is a losing one if it is not a
winning one and the thief is on the exit vertex. If it is the thief’s turn, then a
vertex is a losing vertex, if the coordinates of the two players coincide, and it is a
winning vertex if it is not a losing one, and the thief is at the exit vertex.

The only point before implementing is not, that you need to decide if you
want to build the graph explicitly or just construct it on the fly. On one
hand, building the graph explicitly will be a lot easier and there is less chance of
making mistakes. On the other hand, it will increase the amount of code and the
running time will be slower than if you build the graph on the fly.

The following implementation will construct the graph explicitly:

struct State {
int P, T;
bool Pstep;

};

vector<State> adj_rev[100][100][2]; // [P][T][Pstep]
bool winning[100][100][2];
bool losing[100][100][2];
bool visited[100][100][2];
int degree[100][100][2];

void dfs(State v) {
visited[v.P][v.T][v.Pstep] = true;
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for (State u : adj_rev[v.P][v.T][v.Pstep]) {
if (!visited[u.P][u.T][u.Pstep]) {

if (losing[v.P][v.T][v.Pstep])
winning[u.P][u.T][u.Pstep] = true;

else if (--degree[u.P][u.T][u.Pstep] == 0)
losing[u.P][u.T][u.Pstep] = true;

else
continue;

dfs(u);
}

}
}

int main() {
int n, m;
cin >> n >> m;
vector<string> a(n);
for (int i = 0; i < n; i++)

cin >> a[i];

for (int P = 0; P < n*m; P++) {
for (int T = 0; T < n*m; T++) {

for (int Pstep = 0; Pstep <= 1; Pstep++) {
int Px = P/m, Py = P%m, Tx = T/m, Ty = T%m;
if (a[Px][Py]=='*' || a[Tx][Ty]=='*')

continue;

bool& win = winning[P][T][Pstep];
bool& lose = losing[P][T][Pstep];
if (Pstep) {

win = Px==Tx && Py==Ty;
lose = !win && a[Tx][Ty] == 'E';

} else {
lose = Px==Tx && Py==Ty;
win = !lose && a[Tx][Ty] == 'E';

}
if (win || lose)

continue;

State st = {P,T,!Pstep};
adj_rev[P][T][Pstep].push_back(st);
st.Pstep = Pstep;
degree[P][T][Pstep]++;

const int dx[] = {-1, 0, 1, 0, -1, -1, 1, 1};
const int dy[] = {0, 1, 0, -1, -1, 1, -1, 1};
for (int d = 0; d < (Pstep ? 8 : 4); d++) {

int PPx = Px, PPy = Py, TTx = Tx, TTy = Ty;
if (Pstep) {

PPx += dx[d];
PPy += dy[d];

} else {
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TTx += dx[d];
TTy += dy[d];

}

if (PPx >= 0 && PPx < n && PPy >= 0 && PPy < m && a[PPx][PPy] != '*' &&
TTx >= 0 && TTx < n && TTy >= 0 && TTy < m && a[TTx][TTy] != '*')

{
adj_rev[PPx*m+PPy][TTx*m+TTy][!Pstep].push_back(st);
++degree[P][T][Pstep];

}
}

}
}

}

for (int P = 0; P < n*m; P++) {
for (int T = 0; T < n*m; T++) {

for (int Pstep = 0; Pstep <= 1; Pstep++) {
if ((winning[P][T][Pstep] || losing[P][T][Pstep]) && !visited[P][T][Pstep])

dfs({P, T, (bool)Pstep});
}

}
}

int P_st, T_st;
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
if (a[i][j] == 'P')

P_st = i*m+j;
else if (a[i][j] == 'T')

T_st = i*m+j;
}

}

if (winning[P_st][T_st][true]) {
cout << "Police catches the thief" << endl;

} else if (losing[P_st][T_st][true]) {
cout << "The thief escapes" << endl;

} else {
cout << "Draw" << endl;

}
}
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37.2 Sprague-Grundy theorem. Nim

37.2.1 Introduction
This theorem describes the so-called impartial two-player game, i.e. those in
which the available moves and winning/losing depends only on the state of the
game. In other words, the only difference between the two players is that one of
them moves first.

Additionally, we assume that the game has perfect information, i.e. no
information is hidden from the players (they know the rules and the possible
moves).

It is assumed that the game is finite, i.e. after a certain number of moves,
one of the players will end up in a losing position — from which they can’t move
to another position. On the other side, the player who set up this position for
the opponent wins. Understandably, there are no draws in this game.

Such games can be completely described by a directed acyclic graph: the
vertices are game states and the edges are transitions (moves). A vertex without
outgoing edges is a losing vertex (a player who must make a move from this
vertex loses).

Since there are no draws, we can classify all game states as either winning
or losing. Winning states are those from which there is a move that causes
inevitable defeat of the other player, even with their best response. Losing
states are those from which all moves lead to winning states for the other player.
Summarizing, a state is winning if there is at least one transition to a losing state
and is losing if there isn’t at least one transition to a losing state.

Our task is to classify the states of a given game.
The theory of such games was independently developed by Roland Sprague

in 1935 and Patrick Michael Grundy in 1939.

37.2.2 Nim
This game obeys the restrictions described above. Moreover, any perfect-
information impartial two-player game can be reduced to the game of Nim.
Studying this game will allow us to solve all other similar games, but more on
that later.

Historically this game was popular in ancient times. Its origin is probably
in China — or at least the game Jianshizi is very similar to it. In Europe the
earliest references to it are from the 16th century. The name was given by Charles
Bouton, who in 1901 published a full analysis of this game.

Game description

There are several piles, each with several stones. In a move a player can take
any positive number of stones from any one pile and throw them away. A player
loses if they can’t make a move, which happens when all the piles are empty.

The game state is unambiguously described by a multiset of positive integers.
A move consists of strictly decreasing a chosen integer (if it becomes zero, it is
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removed from the set).

The solution

The solution by Charles L. Bouton looks like this:
Theorem. The current player has a winning strategy if and only if the xor-

sum of the pile sizes is non-zero. The xor-sum of a sequence a is a1⊕a2⊕ . . .⊕an,
where ⊕ is the bitwise exclusive or.

Proof. The key to the proof is the presence of a symmetric strategy for
the opponent. We show that a once in a position with the xor-sum equal to
zero, the player won’t be able to make it non-zero in the long term — if they
transition to a position with a non-zero xor-sum, the opponent will always have
a move returning the xor-sum back to zero.

We will prove the theorem by mathematical induction.
For an empty Nim (where all the piles are empty i.e. the multiset is empty)

the xor-sum is zero and the theorem is true.
Now suppose we are in a non-empty state. Using the assumption of induction

(and the acyclicity of the game) we assume that the theorem is proven for all
states reachable from the current one.

Then the proof splits into two parts: if for the current position the xor-sum
s = 0, we have to prove that this state is losing, i.e. all reachable states have
xor-sum t 6= 0. If s 6= 0, we have to prove that there is a move leading to a state
with t = 0.

• Let s = 0 and let’s consider any move. This move reduces the size of a pile
x to a size y. Using elementary properties of ⊕, we have

t = s⊕ x⊕ y = 0⊕ x⊕ y = x⊕ y

Since y < x, y ⊕ x can’t be zero, so t 6= 0. That means any reachable state is
a winning one (by the assumption of induction), so we are in a losing position.

• Let s 6= 0. Consider the binary representation of the number s. Let d be
the number of its leading (biggest value) non-zero bit. Our move will be
on a pile whose size’s bit number d is set (it must exist, otherwise the bit
wouldn’t be set in s). We will reduce its size x to y = x ⊕ s. All bits at
positions greater than d in x and y match and bit d is set in x but not set
in y. Therefore, y < x, which is all we need for a move to be legal. Now we
have:

t = s⊕ x⊕ y = s⊕ x⊕ (s⊕ x) = 0
This means we found a reachable losing state (by the assumption of induction)

and the current state is winning.
Corollary. Any state of Nim can be replaced by an equivalent state as long

as the xor-sum doesn’t change. Moreover, when analyzing a Nim with several
piles, we can replace it with a single pile of size s.
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37.2.3 The equivalence of impartial games and Nim (Sprague-
Grundy theorem)

Now we will learn how to find, for any game state of any impartial game, a
corresponding state of Nim.

Lemma about Nim with increases

We consider the following modification to Nim: we also allow adding stones
to a chosen pile. The exact rules about how and when increasing is allowed
do not interest us, however the rules should keep our game acyclic. In later
sections, example games are considered.

Lemma. The addition of increasing to Nim doesn’t change how winning and
losing states are determined. In other words, increases are useless, and we don’t
have to use them in a winning strategy.

Proof. Suppose a player added stones to a pile. Then his opponent can
simply undo his move — decrease the number back to the previous value. Since
the game is acyclic, sooner or later the current player won’t be able to use an
increase move and will have to do the usual Nim move.

Sprague-Grundy theorem

Let’s consider a state v of a two-player impartial game and let vi be the states
reachable from it (where i ∈ {1, 2, . . . , k}, k ≥ 0). To this state, we can assign a
fully equivalent game of Nim with one pile of size x. The number x is called the
Grundy value or nim-value of state v.

Moreover, this number can be found in the following recursive way:

x = mex {x1, . . . , xk},

where xi is the Grundy value for state vi and the function mex (minimum
excludant) is the smallest non-negative integer not found in the given set.

Viewing the game as a graph, we can gradually calculate the Grundy values
starting from vertices without outgoing edges. Grundy value being equal to zero
means a state is losing.

Proof. We will use a proof by induction.
For vertices without a move, the value x is the mex of an empty set, which is

zero. That is correct, since an empty Nim is losing.
Now consider any other vertex v. By induction, we assume the values xi

corresponding to its reachable vertices are already calculated.
Let p = mex {x1, . . . , xk}. Then we know that for any integer i ∈ [0, p) there

exists a reachable vertex with Grundy value i. This means v is equivalent to
a state of the game of Nim with increases with one pile of size p. In
such a game we have transitions to piles of every size smaller than p and possibly
transitions to piles with sizes greater than p. Therefore, p is indeed the desired
Grundy value for the currently considered state.
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37.2.4 Application of the theorem
Finally, we describe an algorithm to determine the win/loss outcome of a game,
which is applicable to any impartial two-player game.

To calculate the Grundy value of a given state you need to:

• Get all possible transitions from this state

• Each transition can lead to a sum of independent games (one game
in the degenerate case). Calculate the Grundy value for each independent
game and xor-sum them. Of course xor does nothing if there is just one
game.

• After we calculated Grundy values for each transition we find the state’s
value as the mex of these numbers.

• If the value is zero, then the current state is losing, otherwise it is winning.

In comparison to the previous section, we take into account the fact that
there can be transitions to combined games. We consider them a Nim with pile
sizes equal to the independent games’ Grundy values. We can xor-sum them just
like usual Nim according to Bouton’s theorem.

37.2.5 Patterns in Grundy values
Very often when solving specific tasks using Grundy values, it may be beneficial
to study the table of the values in search of patterns.

In many games, which may seem rather difficult for theoretical analysis, the
Grundy values turn out to be periodic or of an easily understandable form. In
the overwhelming majority of cases the observed pattern turns out to be true
and can be proved by induction if desired.

However, Grundy values are far from always containing such regularities and
even for some very simple games, the problem asking if those regularities exist is
still open (e.g. “Grundy’s game”).

37.2.6 Example games

Crosses-crosses

The rules. Consider a checkered strip of size 1 × n. In one move, the player
must put one cross, but it is forbidden to put two crosses next to each other (in
adjacent cells). As usual, the player without a valid move loses.

The solution. When a player puts a cross in any cell, we can think of
the strip being split into two independent parts: to the left of the cross and to
the right of it. In this case, the cell with a cross, as well as its left and right
neighbours are destroyed — nothing more can be put in them. Therefore, if we
number the cells from 1 to n then putting the cross in position 1 < i < n breaks
the strip into two strips of length i − 2 and n − i − 1 i.e. we go to the sum of
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games i−2 and n− i−1. For the edge case of the cross being marked on position
1 or n, we go to the game n− 2.

Thus, the Grundy value g(n) has the form:

g(n) = mex
(
{g(n− 2)} ∪ {g(i− 2)⊕ g(n− i− 1) | 2 ≤ i ≤ n− 1}

)
.

So we’ve got a O(n2) solution.
In fact, g(n) has a period of length 34 starting with n = 52.
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Chapter 38

Schedules

38.1 Scheduling jobs on one machine
This task is about finding an optimal schedule for n jobs on a single machine,
if the job i can be processed in ti time, but for the t seconds waiting before
processing the job a penalty of fi(t) has to be paid.

Thus the task asks to find such an permutation of the jobs, so that the total
penalty is minimal. If we denote by π the permutation of the jobs (π1 is the first
processed item, π2 the second, etc.), then the total penalty is equal to:

F (π) = fπ1(0) + fπ2(tπ1) + fπ3(tπ1 + tπ2) + · · ·+ fπn

(
n−1∑
i=1

tπi

)

38.1.1 Solutions for special cases

Linear penalty functions

First we will solve the problem in the case that all penalty functions fi(t) are
linear, i.e. they have the form fi(t) = ci · t, where ci is a non-negative number.
Note that these functions don’t have a constant term. Otherwise we can sum up
all constant term, and resolve the problem without them.

Let us fixate some permutation π, and take an index i = 1 . . . n − 1. Let
the permutation π′ be equal to the permutation π with the elements i and i+ 1
switched. Let’s see how much the penalty changed.

F (π′)− F (π) =

It is easy to see that the changes only occur in the i-th and (i+ 1)-th summands:

= cπ′i ·
i−1∑
k=1

tπ′
k

+ cπ′i+1
·

i∑
k=1

tπ′
k
− cπi ·

i−1∑
k=1

tπk − cπi+1 ·
i∑

k=1
tπk

= cπi+1 ·
i−1∑
k=1

tπ′
k

+ cπi ·
i∑

k=1
tπ′
k
− cπi ·

i−1∑
k=1

tπk − cπi+1 ·
i∑

k=1
tπk

= cπi · tπi+1 − cπi+1 · tπi
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It is easy to see, that if the schedule π is optimal, than any change in it leads
to an increased penalty (or to the identical penalty), therefore for the optimal
schedule we can write down the following condition:

c · tπi+1 − cπi+1 · tπi ≥ 0 ∀i = 1 . . . n− 1

And after rearranging we get:
cπi
tπi
≥
cπi+1

tπi+1

∀i = 1 . . . n− 1

Thus we obtain the optimal schedule by simply sorting the jobs by the
fraction ci

ti
in non-ascending order.

It should be noted, that we constructed this algorithm by the so-called
permutation method: we tried to swap two adjacent elements, calculated
how much the penalty changed, and then derived the algorithm for finding the
optimal method.

Exponential penalty function

Let the penalty function look like this:

fi(t) = ci · eα·t,

where all numbers ci are non-negative and the constant α is positive.
By applying the permutation method, it is easy to determine that the jobs

must be sorted in non-ascending order of the value:

vi = 1− eα·ti
ci

Identical monotone penalty function

In this case we consider the case that all fi(t) are equal, and this function is
monotone increasing.

It is obvious that in this case the optimal permutation is to arrange the jobs
by non-ascending processing time ti.

38.1.2 The Livshits-Kladov theorem
The Livshits-Kladov theorem establishes that the permutation method is only
applicable for the above mentioned three cases, i.e.:

• Linear case: fi(t) = ci(t) + di, where ci are non-negative constants,
• Exponential case: fi(t) = ci ·eα·t+di, where ci and α are positive constants,
• Identical case: fi(t) = φ(t), where φ is a monotone increasing function.

In all other cases the method cannot be applied.
The theorem is proven under the assumption that the penalty functions are

sufficiently smooth (the third derivatives exists).
In all three case we apply the permutation method, through which the desired

optimal schedule can be found by sorting, hence in O(n logn) time.
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38.2 Scheduling jobs on two machines
This task is about finding an optimal schedule for n jobs on two machines. Every
item must first be processed on the first machine, and afterwards on the second
one. The i-th job takes ai time on the first machine, and bi time on the second
machine. Each machine can only process one job at a time.

We want to find the optimal order of the jobs, so that the final processing
time is the minimum possible.

This solution that is discussed here is called Johnson’s rule (named after S.
M. Johnson).

It is worth noting, that the task becomes NP-complete, if we have more than
two machines.

38.2.1 Construction of the algorithm
Note first, that we can assume that the order of jobs for the first and the second
machine have to coincide. In fact, since the jobs for the second machine become
available after processing them at the first, and if there are several jobs available
for the second machine, than the processing time will be equal to the sum of their
bi, regardless of their order. Therefore it is only advantageous to send the jobs
to the second machine in the same order as we sent them to the first machine.

Consider the order of the jobs, which coincides with their input order
1, 2, . . . , n.

We denote by xi the idle time of the second machine immediately before
processing i. Our goal is to minimize the total idle time:

F (x) =
∑

xi → min

For the first job we have x1 = a1. For the second job, since it gets sent to
the machine at the time a1 + a2, and the second machine gets free at x1 + b1, we
have x2 = max ((a1 + a2)− (x1 + b1), 0). In general we get the equation:

xk = max
(

k∑
i=1

ai −
k−1∑
i=1

bi −
k−1∑
i=1

xi, 0
)

We can now calculate the total idle time F (x). It is claimed that it has the
form

F (x) = max
k=1...n

Ki,

where

Ki =
k∑
i=1

ai −
k−1∑
i=1

bi.

This can be easily verified using induction.
We now use the permutation method: we will exchange two neighboring

jobs j and j + 1 and see how this will change the total idle time.
By the form of the expression of Ki, it is clear that only Kj and Kj+1 change,

we denote their new values with K ′j and K ′j+1.
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If this change from of the jobs j and j + 1 increased the total idle time, it
has to be the case that:

max(Kj ,Kj+1) ≤ max(K ′j ,K ′j+1)

(Switching two jobs might also have no impact at all. The above condition is
only a sufficient one, but not a necessary one.)

After removing ∑j+1
i=1 ai −

∑j−1
i=1 bi from both sides of the inequality, we get:

max(−aj+1,−bj) ≤ max(−bj+1,−aj)

And after getting rid of the negative signs:

min(aj , bj+1) ≤ min(bj , aj+1)

Thus we obtained a comparator: by sorting the jobs on it, we obtain
an optimal order of the jobs, in which no two jobs can be switched with an
improvement of the final time.

However you can further simplify the sorting, if you look at the comparator
from a different angle. The comparator can be interpreted in the following way:
If we have the four times (aj , aj+1, bj , bj+1), and the minimum of them is a time
corresponding to the first machine, then the corresponding job should be done
first. If the minimum time is a time from the second machine, then it should go
later. Thus we can sort the jobs by min(ai, bi), and if the processing time of the
current job on the first machine is less then the processing time on the second
machine, then this job must be done before all the remaining jobs, and otherwise
after all remaining tasks.

One way or another, it turns out that by Johnson’s rule we can solve the
problem by sorting the jobs, and thus receive a time complexity of O(n logn).

38.2.2 Implementation
Here we implement the second variation of the described algorithm.

struct Job {
int a, b, idx;

bool operator<(Job o) const {
return min(a, b) < min(o.a, o.b);

}
};

vector<Job> johnsons_rule(vector<Job> jobs) {
sort(jobs.begin(), jobs.end());
vector<Job> a, b;
for (Job j : jobs) {

if (j.a < j.b)
a.push_back(j);

else
b.push_back(j);
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}
a.insert(a.end(), b.rbegin(), b.rend());
return a;

}

pair<int, int> finish_times(vector<Job> const& jobs) {
int t1 = 0, t2 = 0;
for (Job j : jobs) {

t1 += j.a;
t2 = max(t2, t1) + j.b;

}
return make_pair(t1, t2);

}

All the information about each job is store in struct. The first function sorts
all jobs and computes the optimal schedule. The second function computes the
finish times of both machines given a schedule.
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38.3 Optimal schedule of jobs given their deadlines
and durations

Suppose, we have a set of jobs, and we are aware of every job’s deadline and its
duration. The execution of a job cannot be interrupted prior to its ending. It is
required to create such a schedule to accomplish the biggest number of jobs.

38.3.1 Solving
The algorithm of the solving is greedy. Let’s sort all the jobs by their deadlines
and look at them in descending order. Also, let’s create a queue q, in which we’ll
gradually put the jobs and extract one with the least run-time (for instance, we
can use set or priority_queue). Initially, q is empty.

Suppose, we’re looking at the i-th job. First of all, let’s put it into q. Let’s
consider the period of time between the deadline of i-th job and the deadline of
i− 1-th job. That is the segment of some length T . We will extract jobs from q
(in their left duration ascending order) and execute them until the whole segment
T is filled. Important: if at any moment of time the extracted job can only be
partly executed until segment T is filled, then we execute this job partly just as
far as possible, i.e., during the T -time, and we put the remaining part of a job
back into q.

On the algorithm’s completion we’ll choose the optimal solution (or, at least,
one of several solutions). The running time of algorithm is O(n logn).

38.3.2 Implementation
The following function takes a vector of jobs (consisting of a deadline, a duration,
and the job’s index) and computes a vector containing all indices of the used jobs
in the optimal schedule. Notice that you still need to sort these jobs by their
deadline, if you want to write down the plan explicitly.

struct Job {
int deadline, duration, idx;

bool operator<(Job o) const {
return deadline < o.deadline;

}
};

vector<int> compute_schedule(vector<Job> jobs) {
sort(jobs.begin(), jobs.end());

set<pair<int,int>> s;
vector<int> schedule;
for (int i = jobs.size()-1; i >= 0; i--) {

int t = jobs[i].deadline - (i ? jobs[i-1].deadline : 0);
s.insert(make_pair(jobs[i].duration, jobs[i].idx));
while (t && !s.empty()) {

auto it = s.begin();
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if (it->first <= t) {
t -= it->first;
schedule.push_back(it->second);

} else {
s.insert(make_pair(it->first - t, it->second));
t = 0;

}
s.erase(it);

}
}
return schedule;

}
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Chapter 39

Miscellaneous

39.1 Josephus Problem

39.1.1 Statement
We are given the natural numbers n and k. All natural numbers from 1 to n are
written in a circle. First, count the k-th number starting from the first one and
delete it. Then k numbers are counted starting from the next one and the k-th
one is removed again, and so on. The process stops when one number remains.
It is required to find the last number.

This task was set by Flavius Josephus in the 1st century (though in a
somewhat narrower formulation: for k = 2).

This problem can be solved by modeling the procedure. Brute force modeling
will work O(n2). Using a Segment Tree, we can improve it to O(n logn). We
want something better though.

39.1.2 Modeling a O(n) solution
We will try to find a pattern expressing the answer for the problem Jn,k through
the solution of the previous problems.

Using brute force modeling we can construct a table of values, for example,
the following:

n \ k 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 2 1 2 1 2 1 2 1 2 1
3 3 3 2 2 1 1 3 3 2 2
4 4 1 1 2 2 3 2 3 3 4
5 5 3 4 1 2 4 4 1 2 4
6 6 5 1 5 1 4 5 3 5 2
7 7 7 4 2 6 3 5 4 7 5
8 8 1 7 6 3 1 4 4 8 7
9 9 3 1 1 8 7 2 3 8 8
10 10 5 4 5 3 3 9 1 7 8
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And here we can clearly see the following pattern:

Jn,k = ((Jn−1,k + k − 1) mod n) + 1

J1,k = 1

Here, 1-indexing makes for a somewhat messy formula; if you instead number
the positions from 0, you get a very elegant formula:

Jn,k = (Jn−1,k + k) mod n

So, we found a solution to the problem of Josephus, working in O(n) opera-
tions.

39.1.3 Implementation
Simple recursive implementation (in 1-indexing)

int josephus(int n, int k) {
return n > 1 ? (josephus(n-1, k) + k - 1) % n + 1 : 1;

}

Non-recursive form :

int josephus(int n, int k) {
int res = 0;
for (int i = 1; i <= n; ++i)
res = (res + k) % i;

return res + 1;
}

This formula can also be found analytically. Again here we assume 0-indexing.
After we delete the first number, we have n−1 numbers left. When we repeat the
procedure, we will start with the number that had originally the index k mod m.
Jn−1,k would be the answer for the remaining circle, if we start counting at 0,
but because we actually start with k we have Jn,k = (Jn−1,k + k) mod n.

39.1.4 Modeling a O(k log n) solution
For relatively small k we can come up with a better solution than the above
recursive solution in O(n). If k is a lot smaller than n, then we can delete multiple
numbers (bnk c) in one run without looping over. Afterwards we have n − bnk c
numbers left, and we start with the (bnk c · k)-th number. So we have to shift
by that many. We can notice that bnk c · k is simply −n mod k. And because we
removed every k-th number, we have to add the number of numbers that we
removed before the result index. Which we can compute by dividing the result
index by k − 1.

Also, we need to handle the case when n becomes less than k. In this case,
the above optimization would cause an infinite loop.

Implementation (for convenience in 0-indexing):
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int josephus(int n, int k) {
if (n == 1)

return 0;
if (k == 1)

return n-1;
if (k > n)

return (josephus(n-1, k) + k) % n;
int cnt = n / k;
int res = josephus(n - cnt, k);
res -= n % k;
if (res < 0)

res += n;
else

res += res / (k - 1);
return res;

}

Let us estimate the complexity of this algorithm. Immediately note that
the case n < k is analyzed by the old solution, which will work in this case for
O(k). Now consider the algorithm itself. In fact, after every iteration, instead of
n numbers, we are left with n

(
1− 1

k

)
numbers, so the total number of iterations

x of the algorithm can be found roughly from the following equation:

n

(
1− 1

k

)x
= 1,

on taking logarithm on both sides, we obtain:

lnn+ x ln
(

1− 1
k

)
= 0,

x = − lnn
ln
(
1− 1

k

) ,
using the decomposition of the logarithm into Taylor series, we obtain an

approximate estimate:

x ≈ k lnn

Thus, the complexity of the algorithm is actually O(k logn).

39.1.5 Analytical solution for k = 2
In this particular case (in which this task was set by Josephus Flavius) the
problem is solved much easier.

In the case of even n we get that all even numbers will be crossed out, and
then there will be a problem remaining for n

2 , then the answer for n will be
obtained from the answer for n

2 by multiplying by two and subtracting one (by
shifting positions):

J2n,2 = 2Jn,2 − 1
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Similarly, in the case of an odd n, all even numbers will be crossed out, then
the first number, and the problem for n−1

2 will remain, and taking into account
the shift of positions, we obtain the second formula:

J2n+1,2 = 2Jn,2 + 1

We can use this recurrent dependency directly in our implementation. This
pattern can be translated into another form: Jn,2 represents a sequence of all
odd numbers, “restarting” from one whenever n turns out to be a power of two.
This can be written as a single formula:

Jn,2 = 1 + 2
(
n− 2blog2 nc

)
39.1.6 Analytical solution for k > 2
Despite the simple form of the problem and a large number of articles on this and
related problems, a simple analytical representation of the solution of Josephus’
problem has not yet been found. For small k, some formulas are derived, but
apparently they are all difficult to apply in practice (for example, see Halbeisen,
Hungerbuhler “The Josephus Problem” and Odlyzko, Wilf “Functional iteration
and the Josephus problem”).
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39.2 15 Puzzle Game: Existence Of The Solution
This game is played on a 4× 4 board. On this board there are 15 playing tiles
numbered from 1 to 15. One cell is left empty (denoted by 0). You need to get
the board to the position presented below by repeatedly moving one of the tiles
to the free space:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 0

The game “15 Puzzle” was created by Noyes Chapman in 1880.

39.2.1 Existence Of The Solution
Let’s consider this problem: given a position on the board, determine whether a
sequence of moves which leads to a solution exists.

Suppose we have some position on the board:

a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

where one of the elements equals zero and indicates an empty cell az = 0
Let’s consider the permutation:

a1a2...az−1az+1...a15a16

i.e. the permutation of numbers corresponding to the position on the board
without a zero element

Let N be the number of inversions in this permutation (i.e. the number of
such elements ai and aj that i < j, but ai > aj).

Suppose K is an index of a row where the empty element is located (i.e. using
our convention, K = (z − 1)÷ 4 + 1).

Then, the solution exists iff N +K is even.

39.2.2 Implementation
The algorithm above can be illustrated with the following program code:

int a[16];
for (int i=0; i<16; ++i)

cin >> a[i];

int inv = 0;
for (int i=0; i<16; ++i)

if (a[i])
for (int j=0; j<i; ++j)
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if (a[j] > a[i])
++inv;

for (int i=0; i<16; ++i)
if (a[i] == 0)

inv += 1 + i / 4;

puts ((inv & 1) ? "No Solution" : "Solution Exists");

39.2.3 Proof
In 1879 Johnson proved that if N + K is odd, then the solution doesn’t exist,
and in the same year Story proved that all positions when N +K is even have a
solution.

However, all these proofs were quite complex.
In 1999 Archer proposed a much simpler proof (you can download his article

here).

39.2.4 Practice Problems
• Hackerrank - N-puzzle

http://www.cs.cmu.edu/afs/cs/academic/class/15859-f01/www/notes/15-puzzle.pdf
https://www.hackerrank.com/challenges/n-puzzle
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39.3 The Stern-Brocot tree and Farey sequences

39.3.1 Stern-Brocot tree
The Stern-Brocot tree is an elegant construction to represent the set of all positive
fractions. It was independently discovered by German mathematician Moritz
Stern in 1858 and by French watchmaker Achille Brocot in 1861. However, some
sources attribute the discovery to ancient Greek mathematician Eratosthenes.

The construction starts at the zeroth iteration with the two fractions

0
1 ,

1
0

where it should be noted that the second quantity is not strictly a fraction,
but it can be interpreted as an irreducible fraction representing infinity.

At every subsequent iteration, consider all adjacent fractions a
b and c

d and
insert their mediant a+c

b+d between them.
The first few iterations look like this:

0
1 ,

1
1 ,

1
0

0
1 ,

1
2 ,

1
1 ,

2
1 ,

1
0

0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1 ,

3
2 ,

2
1 ,

3
1 ,

1
0

Continuing this process to infinity this covers all positive fractions. Addition-
ally, all fractions will be unique and irreducible. Finally, the fractions will also
appear in ascending order.

Before proving these properties, let us actually show a visualization of the
Stern-Brocot tree, rather than the list representation. Every fraction in the tree
has two children. Each child is the mediant of the closest ancestor on the left
and closest ancestor to the right.

https://en.wikipedia.org/wiki/Mediant_(mathematics)
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39.3.2 Proofs
Ordering. Proving ordering is simple. We note that the mediant of two fractions
is always in-between the fractions

a

b
≤ a+ c

b+ d
≤ c

d

given that

a

b
≤ c

d
.

The two inequalities can be easily shown by rewriting the fractions with
common denominators.

As the ordering is ascending in the zeroth iteration, it will be maintained at
every subsequent iteration.

Irreducibility. To prove this we will show that for any two adjacent fractions
a
b and c

d we have that

bc− ad = 1.

Recall that a Diophantine equation with two variables ax + by = c has a
solution iff c is a multiple of gcd(a, b). In our case this implies that gcd(a, b) =
gcd(c, d) = 1, which is what we want to show.

Clearly at the zeroth iteration bc − ad = 1. What remains to be shown is
that mediants retain this property.

Assume our two adjacent fractions uphold bc− ad = 1, after the mediant is
added to the list

a

b
,
a+ c

b+ d
,
c

d

the new expressions become

b(a+ c)− a(b+ d) = 1
c(b+ d)− d(a+ c) = 1

which, using that bc− ad = 1, can be easily shown to be true.
From this we see that the property is always maintained and thus all fractions

are irreducible.
The presence of all fractions. This proof is closely related to locating a

fraction in the Stern-Brocot tree. From the ordering property we have that left
subtree of a fraction contains only fractions smaller than the parent fraction, and
the right subtree contains only fractions larger than the parent fraction. This
means we can search for a fraction by traversing the tree from the root, going left
if the target is smaller than the fraction and going right if the target is larger.

Pick an arbitrary positive target fraction x
y . It is obviously between 0

1 and
1
0 , so the only way for the fraction to not be in the tree is if it takes an infinite
number of steps to get to it.
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If that is the case we would at all iterations have

a

b
<
x

y
<
c

d

which (using the fact than an integer z > 0 ⇐⇒ z ≥ 1) can be rewritten as

bx− ay ≥ 1
cy − dx ≥ 1.

Now multiply the first inequality by c+ d and the second with a+ b and add
them to get

(c+ d)(bx− ay) + (a+ b)(cy − dx) ≥ a+ b+ c+ d.

Expanding this and using the previously shown property bc− ad = 1 we get
that

x+ y ≥ a+ b+ c+ d.

And given that at every iteration at least one of a, b, c, d will increase, the
fraction searching process will contain no more than x + y iterations. This
contradicts the assumption that the path to x

y was infinite and hence x
y must be

part of the tree.

39.3.3 Tree Building Algorithm
To build any subtree of the Stern-Brocot tree, it suffices to know the left and right
ancestor. On the first level, the left and right ancestors are 0

1 and 1
0 respectively.

Using these, we calculate the mediant and proceed one level deeper, with the
mediant replacing the right ancestor in the left subtree, and vice versa.

This pseudocode tries to build the entire infinite tree:

void build(int a = 0, int b = 1, int c = 1, int d = 0, int level = 1) {
int x = a + c, y = b + d;

... output the current fraction x/y at the current level in the tree

build(a, b, x, y, level + 1);
build(x, y, c, d, level + 1);

}

39.3.4 Fraction Search Algorithm
The search algorithm was already described in the proof that all fractions appear
in the tree, but we will repeat it here. The algorithm is a binary search algorithm.
Initially we stand at the root of the tree and we compare our target with the
current fraction. If they are the same we are done and stop the process. If our
target is smaller we move to the left child, otherwise we move to the right child.
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Here is an implementation that returns the path to a given fraction x
y as a

sequence of 'L' and 'R' characters, meaning traversal to the left and right child
respectively. This sequence of characters uniquely defines all positive fractions
and is called the Stern-Brocot number system.

string find(int x, int y, int a = 0, int b = 1, int c = 1, int d = 0) {
int m = a + c, n = b + d;
if (x == m && y == n)

return "";
if (x*n < y*m)

return 'L' + find(x, y, a, b, m, n);
else

return 'R' + find(x, y, m, n, c, d);
}

Irrational numbers in the Stern-Brocot number system corresponds to infinite
sequences of characters. Along the endless path towards the irrational number
the algorithm will find reduced fractions with gradually increasing denominators
that provides increasingly better approximations of the irrational number. So by
taking a prefix of the infinite sequence approximations with any desired precision
can be achieved. This application is important in watch-making, which explains
why the tree was discovered in that domain.

39.3.5 Farey Sequence
The Farey sequence of order n is the sorted sequence of fractions between 0 and
1 whose denominators do not exceed n.

The sequences are named after English geologist John Farey, who in 1816
conjectured that any fraction in a Farey sequence is the mediant of its neighbors.
This was proven some time later by Cauchy, but independent of both of them,
the mathematician Haros had come to almost the same conclusion in 1802.

The Farey sequences have many interesting properties on their own, but
the connection to the Stern-Brocot tree is the most obvious. In fact, the Farey
sequences can be obtained by trimming branches from the tree.

From the algorithm for building the Stern-Brocot tree, we get an algorithm
for the Farey sequences. Start with the list of fractions 0

1 ,
1
0 . At every subsequent

iteration, insert the mediant only if the denominator does not exceed n. At some
point the list will stop changing and the desired Farey sequence will have been
found.

Length of a Farey Sequence

A Farey sequence of order n contains all elements of the Farey sequence of order
n − 1 as well as all irreducible fractions with denominator n, but the latter is
just the totient ϕ(n). So the length Ln of the Farey sequence of order n is

Ln = Ln−1 + ϕ(n)

or equivalently, by unraveling the recursion we get
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Ln = 1 +
n∑
k=1

ϕ(k).
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