This repository has been archived by the owner. It is now read-only.
Pythonic Bayesian Belief Network Package, supporting creation of and exact inference on Bayesian Belief Networks specified as pure python functions.
License
eBay/bayesian-belief-networks
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
master
Could not load branches
Nothing to show
Could not load tags
Nothing to show
{{ refName }}
default
Code
-
Clone
Use Git or checkout with SVN using the web URL.
Work fast with our official CLI. Learn more.
- Open with GitHub Desktop
- Download ZIP
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching GitHub Desktop
If nothing happens, download GitHub Desktop and try again.
Launching Xcode
If nothing happens, download Xcode and try again.
Launching Visual Studio Code
Your codespace will open once ready.
There was a problem preparing your codespace, please try again.
Latest commit
… in the domain of that variable.
23c3e3c
Git stats
Files
Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
Pythonic Bayesian Belief Network Framework ------------------------------------------ Allows creation of Bayesian Belief Networks and other Graphical Models with pure Python functions. Where tractable exact inference is used. Currently four different inference methods are supported with more to come. Graphical Models Supported -------------------------- - Bayesian Belief Networks with discrete variables - Gaussian Bayesian Networks with continous variables having gaussian distributions Inference Engines ----------------- - Message Passing and the Junction Tree Algorithm - The Sum Product Algorithm - MCMC Sampling for approximate inference - Exact Propagation in Gaussian Bayesian Networks Other Features -------------- - Automated conversion to Junction Trees - Inference of Graph Structure from Mass Functions - Automatic conversion to Factor Graphs - Seemless storage of samples for future use - Exact inference on cyclic graphs - Export of graphs to GraphViz (dot language) format - Discrete and Continuous Variables (with some limitations) - Minimal dependancies on non-standard library modules. Please see the short tutorial in the docs/tutorial directory for a short introduction on how to build a Bayesian Belief Network. There are also many examples in the examples directory. Installation ------------ $ python setup.py install $ pip install -r requirements.txt Building The Tutorial $ pip install sphinx $ cd docs/tutorial $ make clean $ make html Unit Tests: To run the tests in a development environment: $ PYTHONPATH=. py.test bayesian/test Resources ========= http://www.fil.ion.ucl.ac.uk/spm/course/slides10-vancouver/08_Bayes.pdf http://www.ee.columbia.edu/~vittorio/Lecture12.pdf http://www.csse.monash.edu.au/bai/book/BAI_Chapter2.pdf http://www.comm.utoronto.ca/frank/papers/KFL01.pdf http://www.snn.ru.nl/~bertk/ (Many real-world examples listed) http://www.cs.ubc.ca/~murphyk/Bayes/Charniak_91.pdf http://www.sciencedirect.com/science/article/pii/S0888613X96000692 http://arxiv.org/pdf/1301.7394v1.pdf Junction Tree Algorithm: http://www.inf.ed.ac.uk/teaching/courses/pmr/docs/jta_ex.pdf http://ttic.uchicago.edu/~altun/Teaching/CS359/junc_tree.pdf http://eniac.cs.qc.cuny.edu/andrew/gcml/lecture10.pdf http://leo.ugr.es/pgm2012/proceedings/eproceedings/evers_a_framework.pdf Guassian Bayesian Networks: http://www.cs.ubc.ca/~murphyk/Teaching/CS532c_Fall04/Lectures/lec17x4.pdf http://webdocs.cs.ualberta.ca/~greiner/C-651/SLIDES/MB08_GaussianNetworks.pdf http://people.cs.aau.dk/~uk/papers/castillo-kjaerulff-03.pdf
About
Pythonic Bayesian Belief Network Package, supporting creation of and exact inference on Bayesian Belief Networks specified as pure python functions.
Resources
License
Code of conduct
Stars
Watchers
Forks
Packages 0
No packages published