=

Efficient Training of
Language Models to Fill
in the Middle

220803

(—)
CETY

s @

Mohammad Bavarian

Openal
openai.com®] 0|0l 2telg - 2ro|x|
Machine Learning and Distr...

Evaluating large language models trained on code
M Chen, J Tworek, H Jun, Q Yuan, HPO Pinto, J Kaplan, H Edwards, ...
20y proorint o

Authors

Heewoo jJun
OpenAl

Names

Heewoo Jun (Preferred)

Emails

*rer@pm.me

Personal Links
DBLP Semantic Scholar
Education & Career History
Researcher OpenAl (openaicom)
Researcher

WS student

Undergrad student

Baidu (baidu.com)
Stanford University (stanford.edu)
University of Toronto (toronto.edu)

I
T 2821t MZ}

New GPT-3 Capabilities: Edit & Insert

We've released new versions of GPT-3 and Codex which can edit or insert
content nto existing text, rather than just completing existing text. These new
capabilities make it practical to use the OpenAT APT to revise existing
content, such as rewriting a paragraph of text or refactoring code. This
unlocks new use cases and improves existing ones; for example, insertion s
already being piloted in GitHub Copilot with promising early results.

0 READ EOIT DOCUMENTATION
0 READ INSERT DOCUMENTATION

2 TRY IN PLAYGROUND.

def fib(n)
ifn

return 1
return fib(n-1) + fib(n-2)

fib(10)

Mohammad Bavarian « Heewoo Junx
Nikolas Tezak John Schulman Christine

McLeavey Jerry Tworek Mark Chen

OpenA

2019 Present
2015- 2019
20132015
20082013

02
05

TABLE OF CONTENTS

Introduction

Evaluation

Finetuning results

Related work

03 FIM training & inference

04 Pretraining results

AR

06 Discussion

08 conclusion

Overview & Abstract

free-form generationS %t ARTEC] infilling T =&
Input =
=ME 3S=0iM middle sectionS 2= HLIM &I& (FIM)

FIME XE0Hx AR lossOil S FAI 2= R 22
(FIM-for-free-property 8X)

= =ME FIM AEIAZ HIEZ| B3ols LE U
Oi2Hel AR LM2 FIMS 2 5ot Mgt

/%%
* Recursive Fibonacci function with memoization.
* @param {number} n
* @returns {number}
*/
function fibonacci(n) {

var memo = {};

return (function fib(n, memo) {

return n in memo ? memo([n] : (memo[n] = n

fib(n-2, memo));

})(n, memo);
¥

<=171: fib(n-1, memo) +

INTRODUCTION

T A0 DketM

infilling S80I A2tzl= W =00t ‘

Introduction

PE X0 IH infilling SEAI%!

- Left-to-right 2EI2 prefix0il 2=

- Encoder-only. encoder-decode= suffix’t =
& UXI2L trainingAl infill regions®l HOITH &S

ApplicationOiiAi= & H context 25 EZ0H0}

- Coding assistant
= Docstring generation
- Import statement generation
- Completing a partially written function

&

Introduction

Our goal in this work

to address this limitation by capability to causal
decoder-based language models

Points

= JEFSt SHSHIOIE MEMC=E AR T EI0I infilling HISHAM
left-to-right capability K4l
> — document — (prefix. middle, suffix) — (prefix. suffix. middie)

— = =e
RandomotHl 35= (PRE) prefix (SUF) suffix (MID) middle
= Token-level

= Char-level (1 =
= trained jointly on a Mixture of FIM & ordinary left-to-right data 7t €

Introduction
Contributions

® FIM-for-free property

(TIZ AR loss0il 3 2t)

® Best practices for FIM in pretraining
(FIM rate Z0H:H)

® Finetuning inefficiency
(finetuning22 ot112 pretraining?i2 228

® New infilling benchmarks
(random span infilling and random span infilling light THE!)

® Need for sampling evaluations
(FIM test loss 7t 2t 2T sampling based benchmark0liA] Zt0It (A4&47]85)

Introduction

FIM-for-free property

® 22 FIOIEE
FIM 28 S8 Uil

® |eft-to-right loss 1t S &l

® 50% timeBIS= T
left-to-right loss =& + New capa =

® FIM loss= FIM rate 0.57t &8 O =

Language

3x10°
2.8x10°

2.6 x 10°

Test loss

2.4 x10°

22x10°

108 10° 108
Non-embedding parameters Non-embedding parameters

Figure 1: FIM can be learned for free. We pretrain language models with 50% and 0% FIM rates
on two domains, natural language and code, and evaluate the test loss of all the final snapshots. All
models are trained on 100B tokens of data. We observe that

See Figure 3 for more evidence for the
FIM-for-free property.

Language

Test FIM loss

108 10° 108 10°

Non-embedding parameters Non-embedding parameters

Figure 2: Evaluation of infilling capabilities of the same model scans from Figure 1 using FIM
test losses. Models trained with FIM (yellow) obtain lower FIM test loss than baseline (purple)
AR models. This shows that the FIM models are indeed learning to condition on the suffix while
predicting the middle section allowing them to achieve lower test loss on FIM test set. Figures'1'and

2

Evaluation

Evaluation

Sample-based
AR loss FIM loss benchmark

Cross entropy 100% FIM use nucleus
on normal transformed sampling (0.95)
left-to-right data data

Evaluation
Autoregressive evaluation

® [HEE benchmarke few-shot prompting2=E T} (DROP. QuAc 7iI2))

® Code= HumanEval pass rateAl3

Infilling evaluation

® middle span token loss HI

iddle | prefix. suffix) for FIM models and P(middle | prefix) for AR models
ative infilling capabilities S&
de= open ended generationOIGT ZEIT THS0HM codeZ0ll 28 =

Evaluation
Infilling evaluation

® middie span token loss HI

P (middle | prefix. suffix) for FIM models and P(middle | prefix) for AR
models

® generative infilling capabilities S&
codet= open ended generationOIIE ZEHHIT THSOHM codeS0ll XE U=

® sampling based infilling benchmarks

ingle-line. multi-line. random span infilling (0l AiZEIE)

def unique(l: list):

_) PSM SPM """Return sorted unique elements in a list
O >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123])

[0, 2, 3, 5, 9, 123]

return sorted(list(set(1)))

S

FIM training and inference

FIM training and inference

Training & inference format

® Document level

- split prior to tokenization. when the document is sfill a sequence of characters.

(E22lotTl X0l 3SE28ICH

- FIMOIE AROIE EAIAI0IE (EOT) E2 =Tt & E0HE ((EoT) E22 signalE AI=TIM SH&6H0E)

<PRE> o Enc(prefix) o <SUF> o Enc(suffix) o <MID> o Enc(middle), (PSM)

where o denotes concatenation. The different documents, whether FIM or AR, then are concatenated
with <EOT> and are given to the model during training. We

learning signall Preliminary experiments, although not reported here, suggest that this choice is

crucial for the FIM-for-free property to hold. This property does not change whether the sentinels are
masked or not; however, it is important to always train on the <EOT> tokens as it signals a successful
join to the suffix.

For inference, we encode the given prefix and suffix and prompt the model with

<PRE> o Enc(prefix) o <SUF> o Enc(suffix) o <MID>.’ (PSM inference)

We continue sampling from the model until it generates the <EOT> token which is how the model '
communicates it has connected the prefix and the suffix. |

If the model fails to generate an <EOT> token within a reasonable allotted inference token budget, it is
often a sign the model is having a difficult time connecting the prefix and the suffix, and the resulting

samples often will be of worse quality, which motivates the procedure of EOT aware best-of-n
sampling. See Appendix H for more discussion.

FIM training and inference
SPM mode

® variant of PSM

- SPM improved key-value caching during inference

- appending tokens to the prefix no longer invalidates the keys and values computed
in the suffix section

- apply the FIM transformation with 50% probability in PSM mode and with 50%
probability in SPM mode. so the model is able to handle both types of formatting in
inference

Train distribution FIMrate Single-line Multi-line Random span
PSM SPM PSM SPM PSM SPM

Joint 0.5 0.550 0.595 0.265 0.293 0.367 0.379
Joint 0.9 0.616 0.622 0.290 0.305 0.397 0.420
PSM 0.9 0.583 0.625 0.273 0.305 0.362 0.274
SPM 0.9 0.023 0.586 0.008 0.301 0.007 0.386

Table 1: Comparison of FIM performance when trained and evaluated in various SPM, SPM settings.
All the joint runs put 50% of the total FIM rate on PSM and 50% on SPM. All results are obtained
with temperature 0.2 and 100 samples per task.

FIM training and inference

SPM mode

D Details of SPM encoding

As mentioned in Section 3, in SPM we use the ordering [suffix, prefix, middle]. In this section, we
briefly discuss the choices regarding the sentinel tokens in SPM mode. A natural choice of encoding
for SPM data would be to use

<SUF> o Enc(suffix) o <PRE> o Enc(prefix) o <MID> o Enc(middle) o <EOT>. (SPM variant 1)
However, the encoding of SPM we use in this work is

<PRE> o0 <SUF> o Enc(suffix) o <MID> o Enc(prefix) o Enc(middle) o <EOT>. (SPM variant 2)

The reason that we do not use the former is that it creates a separation between PSM and SPM, which
may result to less transfer between SPM and PSM. To understand, note that with the second variant
SPM data occurs naturally as part of PSM training since when we split a document uniformly at
random, sometimes the chosen prefix will be empty. This is the reason pure PSM runs achieve strong
performance when evaluated in SPM mode as in Table 1.

Despite this, we note that the first SPM variant has its own advantages. In particular, it can be stronger
in handling of subtokens at the end of prefix. Hence, the choice of which variant of SPM to use
may depend on application in mind. As such, especially when training in pure SPM mode, it could
be preferable to use the former simpler form. However, in this work, due to our emphasis on joint
training of PSM and SPM and to maximize transfer between them, we opt for the second variant.

Training & inference format

® Context level

FIM training and inference

- H0ITE &S Al model context lengthOll 2Hl boundary tokenE E#E0lA
chunkingote ME0IM prefix or suffix1t E2iLIZ & 22 (fragmented FIM data)

= Chunking step 0I=0il FIM Z120l=1Hl context level FIM (8S [£8)

- (EOT)E &2ctAN FiMotal CiAl (EOT)=E ®OITI

def token_level_psm_fim(document: str, vocab: Vocab) —-> List[int]:
tokens = vocab.encode(document)
prefix, middle, suffix = randomly_split(tokens)
return [
vocab.sentinel("prefix"), xprefix,
vocab.sentinel("suffix"), *suffix,
vocab.sentinel("middle"), *middle,
1

def character_level_psm_fim(document: str, vocab: Vocab) —> List[int]:
prefix, middle, suffix = randomly_split(document)
return [
vocab.sentinel("prefix"), xvocab.encode(prefix),
vocab.sentinel("suffix"), *vocab.encode(suffix),
vocab.sentinel("middle"), *vocab.encode(middle),

4

Pretraining results

~y

Pretraining results

Evaluation of In downstream benchmarks

@® train a series of models from 50M to 6.9B
parameters from scratch with and without
50% FIM augmentation on natural language
and code domains

HellaSwag LAMBADA StoryCloze

107 108 10° 107 108 10° 107 108 10° 107 108 10°

Non-embedding parameters Non-embedding parameters Non-embedding parameters Non-embedding parameters

(a) Comparison of natural language results. We report F1 for Drop and QuAC and accuracy for the rest.

HumankEval pass@1 HumankEval pass@10

108 10° 108 10°
Non-embedding parameters Non-embedding parameters

(b) Comparison of code results. We use temperature 0.8 and 400 samples per task for both pass @k.

Figure 3: Comparison of performance on standard benchmarks for the natural language (top) and
code (bottom) domains. Joint training of next-token prediction and FIM allows the model to learn
the new infilling task without affecting the original capabilities. This provides further evidence for
FIM-for-free property.

T~y

Pretraining results
FIM rate

Left-to-right loss FIM loss

® FIM rate even up to 90% does not cause
any degradation in left-to-right capabilities.
However. there is a clear signh of degradation
in ordinary AR test loss with 100% FIM rate

Test loss

1 2
Elapsed tokens lelo Elapsed tokens lelo

. FIM rate does Significa ntly affECf infi"ing Figure 4: Comparison of the learning curves of large (see Table 3) models trained with different FIM

rates for 50B tokens. A FIM rate even up to 90% does not have a noticeable effect on left-to-right

capabilities_ Even though the gain in FIM test loss; however, at a FIM rate of 100% there is degradation. We can also see the stronger FIM

property in the left figure: all runs with FIM rates less than 100% follow very closely to the original

perplexity in Figure 4 due to a higher FIM rate EZ=TEits
iS negligible HumanEval Random span infilling light

Pass rate

Elapsed tokens lel0 Elapsed tokens lel0

Figure 5: In-run evaluation of coding benchmarks with temperature 0.8 and 25 samples per task.
Using higher FIM rates do not have a noticeable effect on HumanEval performance. A higher FIM
rate shows stronger infilling capabilities on the light random span infilling benchmark.

T~y

Pretraining results
SPM vs PSM vs joint SPM+PSM training

Single-line infilling Multi-line infilling Random span infilling

@® in SPM. there is =

. This makes
it more natural for the model to continue

from the prefix in contrast to PSM where w e w w e w w o w o
- . . - Non-embedding parameters Non-embedding parameters Non-embedding parameters
attention has to first identify where the spanQ . . -
- Figure 6: SPM mode shows a slight advantage in performance across scale. All the evaluations in
fo ke NnIsS. this plot are at temperature 0.2 and 100 samples per task for single-line and multi-line infilling and

200 samples per task for random span infilling.

® Not only is joint pretraining the most —— p— -
efficient. but it also yields the most flexible rin dsrbuion TINXe M SPM PSM SPM. PSM. SPM
model with two inference modes. Joint 05 0550 0595 0265 0293 0367 0379

Joint 0.9 0.616 0.622 0290 0.305 0.397 0.420
PSM 0.9 0.583 0.625 0273 0.305 0.362 0.274
SPM 0.9 0.023 0.586 0.008 0.301 0.007 0.386

Table 1: Comparison of FIM performance when trained and evaluated in various SPM, SPM settings.
All the joint runs put 50% of the total FIM rate on PSM and 50% on SPM. All results are obtained
with temperature 0.2 and 100 samples per task.

~y

Pretraining results

ConteXt-IeveI Vs docu ment- Ievel FI M Single-line infilling Multi-line infilling Random span infilling

—&— context
~o— doc

o
o

o evaluation
the gains in the sampling] ,
performance 107 108 10° 107 108 10° 107 108 10°

Non-embedding parameters Non-embedding parameters Non-embedding parameters

. Figure 8 (Ie‘ft) Shows fhaf fraining (0] g fhes Figure 7: Applying FIM at the context level consistently outperforms document level FIM. All
. . . benchmarks are evaluated with temperature 0.2 and 200 samples/task.
invalid examples in

Pass rate
o
S

o
N

Henc = Left-to-right loss FIM loss
practitioners might still sometimes prefer | piliig
document-level FIM due to its simpler |
implementation.

= =
o -

Test loss

4
©

108 10®
Non-embedding parameters Non-embedding parameters

Figure 8: Comparison of losses with different FIM implementations. While document level FIM
introduces partially broken data into training, it does not hurt the autoregressive loss (left). We also
find that the reduction in FIM perplexity (right) is not commensurate to the gain in pass rate shown in
Figure 7.

N 4 :
‘ Pretraining results

Middle span selection

® important consideration in FIM training is the

@ Character levelOl ZLI (no train-test mismatch)

Training middle span Single-line infilling Multi-line infilling Random span infilling

Line-level random span 0.586 0.269 0.015
Token-level random span 0.548 0.242 0.102
Character-level random span 0.557 0.250 0.321

Table 2: Pass rates of medium models pretrained with various middle span selection strategies.
Training on line-based spans improves the single- and multi-line infilling metrics reported in InCoder,
but line- and token-level spans used in previous works can not robustly handle real life use cases
where the span starts or ends in subtokens. Overall, character-level random span run dominates in
random span benchmark while it is also not far behind in single and multi line infilling.

O

Finetuning results

Finetuning results

Single-line infilling Multi-line infilling Random span infilling

Pretraining > finetuning E=

Pass rate

® finetuning™ 50B tokens& 90% FIM=
oHOF 1L Ok H LOHZICH (HIOIEIC] S| CIAD

0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
Learning rate Learning rate Learning rate

(a) 25B tokens of FIM finetuning.

Single-line infilling Multi-line infilling Random span infilling

9]
=
©
i
n
s
a

0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
Learning rate Learning rate Learning rate

(b) 50B tokens of FIM finetuning.

Figure 9: Evaluation of the final snapshots of fiiodels’pretrained for 100B tokens without FIM and
then finetuned for 25B (row a) and 50B (row b) tokens with FIM. The x-axis shows the learning rate
multiplier relative to the pretraining learning rate. The dashed line indicates the baseline performance
of the model pretramed for 100B tokens w1th a FIM rate of 50% w1th no additional ﬁnetumng.

temperature 0.2 and 100 sampler per task.

6

Discussion

Pretraining vs finetuning

® even though FIM data is locally
identical to autoregressive data.
FIM does impose a

® show the causal attention mask
of a FIM document in Figure 10.
These new attention pattern could
be the reason why it takes a
relatively long tfoken horizon and a
high learning rate fo learn FIM in
finetuning

Discussion

prefix suffix i prefix middle suffix

key key

Figure 10: Visualization of causal attention pattern of FIM data. Unraveling both the query and key
embeddings back in the canonical left-to-right order shows that FIM allows the transformer to attend
to future context when decoding the middle section without complex architectural changes. One

FIM1l 7IZ ARE ¥ attention pattern0l
CIELI 8501 4 Hel=H O 2l =&
HZEL2 suffix 1t middleS HAl ROICH .7

Discussion
FIM loss, AR loss, and the difficulty of FIM task

® FIMOI left-to-right generation=Ll [0idiE & ULl

® prefixe=2I OlLIZt S& suffix0ll &= middle® generationol=Hl &Zl 211 SA2l6t 11
= EOHAF 3pirn A (-]
01 é Et (E _II i 'rrlmoIEi 0"’!' ':n When | was young, | only liked to play video games. Over time, | started thinking if it'd be
possible to make bots to play better than any human can ever play these games. |
eventually decided | liked working on the latter more than playing the games themselves
and that’s how first | got interested in Al research.

When | was young, | only liked to play video games. | would play sometimes more than 13

hours per day. The rush, novelty, and variety were beyond anything real life could offer. |
loved the challenge and | excelled at it. | would often skip classes iand go to and that's how
first | got interested in Al research.

Discussion
FIM loss, AR loss, and the difficulty of FIM task

H.1 Successful infilling examples

1

o
02
OH

1:“ OI N FIM enables a model to process information from both before and after the point of generation. This
— unlocks new capabilities that previously required specialized models finetuned on specific tasks. For
example, unlike Codex [Chen et al., 2021] that trained a separate docstring model, we now have a
single model that can infer the import modules, function names, arguments, docstrings, definitions,
and many more. We show one such example below that is impossible to complete unless the model
can read the entire source code. This example is also interesting in that the prefix “from sym” and
the suffix both contain subtokens, which are known to cause traditional language models trained
without techniques like stochastic BPE [Provilkov et al., 2019] to fail.

from sympy import isprime

def largest_prime_factor(n):
wun

Return the largest prime factor of n.
win
ans = 1
for num in range(2, n + 1):
if n % num == 0 and isprime(num):
ans = num
return ans

The benefits are not limited to coding. The model can adapt to the existing writing style and complete
the passage in a natural way that takes the ending into consideration.

Dolphins are very intelligent animals. They are mammals and breathe air. They live in the
sea and are related to whales and porpoises. Dolphins are very playful animals.

The commercial diver finally thought he’d snagged a big catch when he saw something
white. But then he quickly realized it wasn't a fish —— he was wrangling an alligator.

Wikipedia is a free, web-based, collaborative, multilingual encyclopedia. It is overseen by
the nonprofit Wikimedia Foundation. Wikipedia uses a collaborative software known as wiki
that facilitates the creation and development of articles.

Discussion
FIM loss, AR loss, and the difficulty of FIM task

H.2 Limitations

Difficult prompts. Unlike completing text from the end, infilling needs to infer the missing span that
connects the prefix to the suffix. When the suffix is completely unrelated, the model can generate very

. A A long middle sections. We consider this behavior as the model’s attempt at coming up with a plausible
trajectory that joins the ending. Because the context size is limited, the model usually fails to join.
However, given that even people have trouble infilling some of these prompts in a short passage, this
failure demonstrates how challenging of a task FIM can be.

Below, we show one such difficult prompt where the model typically fails to connect entirely or join
in a seamless way. Even when the model writes a seemingly plausible middle section, the quality can
often vary.

The dentist looked me in the eyes and said, "I'm going to have to take all of your teeth out."
| was stunned. | said, "All my teeth? Isn’t there something else we could do?" He said, "No
, I'm afraid not."

No one can predict the future.
The Ottomans were defeated in World War | and the French were defeated at Waterloo.

Deciding when to stop. The model is trained to predict the <EOT> token when it thinks it has joined
the suffix. Even when the prompts are seemingly straightforward, deciding when to end can still be a
challenge in practice. Because there are many equally valid completions with varying lengths, the
probability of outputting the <EOT> is discounted by other longer candidates and is often smaller
than expected. This is further exacerbated by the fact that the terminal symbol can simply be missed
due to sampling. This results in a behavior where the model does not seem to end in a timely manner
and generates a valid, but spurious content in the middle. In the process, the model can choose to
write its own ending to the prefix, effectively ignoring the given suffix.

Dogs are friendly animals.
Koalas are pleasant animals.
Monkeys are playful animals.
Whales are enormous animals.
Owls are wise animals.
Penguins are graceful animals.
Crocodiles are ferocious animals.

‘While the general problem of not knowing when to stop applies to normal left-to-right completion as
well, this has not been as big a problem as infilling because there is no constraint to join the suffix.

Repetition. When the model fails to generate an <EOT> and copies the suffix, the model’s ability to
match patterns leads it to lock on and repeat the prompt indefinitely. Surprisingly, even large models
are susceptible to this mode of failure. The example below ends with “the the heart,” because the
model has failed to generate the terminal symbol and is still in the middle of filling in the missing
span which unfortunately will not stop.

The way is not in the sky. The way the heart.
The way is not in the sky. The way the heart.
The way is not in the sky. The way is in the heart.
The way is not in the sky. The way is in the the heart.

Discussion
FIM loss, AR loss, and the difficulty of FIM task

H.3 Mitigations

. E:’J 7.“ OI N Like GPT-3 [Brown et al., 2020] where the performance depends on the quality of prompts, some

— of the failures in the earlier sections can be alleviated with prompt engineering. Namely, providing

hints to constrain the output can dramatically improve the model’s ability to generate the <EOT>

- numbered items E PJ E ot -’ I token and connect to the suffix within a reasonable token budget as the model has a more concrete
understanding of how long the middle section should be.

One such idea is to provide examples both in the beginning and the end with numbered items.
This makes the model internally keep track of the position, pay attention to the desired prefix and
suffix, and generally abstain from generating spurious content as shown below. Providing leading
examples alone without any explicit cues can often worsen the problem because it does not resolve
the ambiguity in whether the model should join to the beginning of the suffix or consider it as part of
a new example.

1. Dogs are friendly animals.
2. Koalas are sleepy animals.
3. Lions are regal animals.

Section 1:
1. The way is not in the sky. The way is in the heart.
2. Peace comes from within. Do not seek it without.
Section 2:

It is important to note that the numbered few-shot prompting helps considerably but does not
completely fix the problem, as the model can still accidentally start a new list of items.

In general, as the model can simply miss sampling the <EOT> token, we recommend generating
multiple samples and preferring samples that end with <EOT>, as this increases the chance of
choosing a sample that actually joins the ending. When multiple samples end in <EOT>, they can be
reranked by the likelihood or other heuristics of interest. We call this EOT-aware best-of-n sampling.

Discussion

FIM loss, AR loss, and the difficulty of FIM task

® PPLX AREL! FIMOI O =LCHOE)

- model2 25 FIMOI1l test loss2 M
- FIM1l left-to-right 01N SIS3ZICT
left-to-righti® [&oli FIVE [K&
(HAA M Mol CHOHA)
- middle section FIMOI 4 &8

The difficulty of FIM task compared to AR task is also reflected in the loss associated with each task.
To see this, in Figure 11, we compare the FIM loss with the AR loss over a suite of FIM models all
with 50% FIM rate. To remove confounders, we ensure the documents that underlie the AR test set
are the same documents that are transformed through FIM to make up the FIM test set. We find the
FIM perplexity is consistently higher than the AR perplexity across scale. That is, on average

Pepvi([prefix, suffix, middle]) < Pag ([prefix, middle, suffix]),
which means the models have a harder time modelling the same document in FIM format than AR
format.
Over all sections Over the middle section only

—8— left-to-right
—o— fim

w
2
ke
P
b
<

108 10° 108 10°
Non-embedding parameters Non-embedding parameters

Figure 11: Comparison of the overall (left) and middle span (right) loss of 50% FIM code mod-
els. In the left plot, we see that the AR loss is consistently lower than the FIM loss suggesting
that next-token prediction is inherently more compressible than infilling in the middle. The right
figure evaluates the conditional loss of the middle span given the surrounding context showing that
Pepy (middle|prefix, suffix) > P,g(middle|prefix). Here, FIM attains a lower loss because it can
attend to the suffix. We emphasize that

They refer rather to the type of test loss used in evaluation.

7/

Related work

Related work

similar to this work,
@ utilize left-to-right autoregressive modeling to the
end of context. with regions separated by sentinels

- GLM: General Language Model Pretraining with Autoregressive Blank Infilling

= CM3: A CAUSAL MASKED MULTIMODAL MODEL OF THE INTERNET (Facebook Al Research)

- InCoder: A Generative Model for Code Infilling and Synthesis

8

Conclusion

Conclusion

® left-to-right. FIM HIOIE1 M0iAl causal decoderT &1&01% document S A& & ULk
® FIM-for-free property® WHRLI (pretrainAl HIOIE ¥ 3261H FIME 2R= & & ALH
® best FIM performance 20HA= finetuning2tl pretraining £

® perplexity= true infilling performance SI6IZ] REICI (ke

® FIM rate= 100% OI5t= GHAt (50~90%) " Smarter span selection

¢ Steerable generation

o F|ME character |eve|§ '('ﬂxl- ¢ Further examination of the FIM-for-free property
¢ Multiple infilling slots

¢ Improving natural language FIM performance
¢ Role of bidirectionality and attention

L

§

Thank you

Y \

