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Abstract
There are many situations in which researchers perform multiple hypothesis
tests simultaneously. It is important that the results of these tests are cor-
rected for multiplicity. If this correction is not performed, it is likely that
some null hypotheses will be falsely rejected. There are various different
methods for performing multiplicity corrections, dependent on the specific
type of multiple testing. If you find yourself in the frequentist camp and
wish to conduct pairwise comparisons following a one-way ANOVA you are
in luck, as methods to do so are readily available to researchers. On the
other hand, a Bayesian is hard-pressed to find an appropriate correction
method in this case. In this thesis we evaluate two Bayesian methods that
allow pairwise comparisons while protecting against false positive results.
We demonstrate the importance of dealing with the dependence structure
that exists among pairwise comparisons. To aid researchers with their sta-
tistical inference our aim is to implement these methods in the statistics
software JASP.

Keywords: Bayesian inference, multiplicity, pairwise comparisons, depen-
dency

The Salmo salar — more commonly referred to as the Atlantic salmon — is a popular
target for recreational and commercial fishermen. A little known fact is that these fish are
surprisingly diverse; not only can they navigate to their place of birth from thousands of kilo-
meters away, they can even perform psychological tasks designed for humans. Researchers
discovered this when they placed an Atlantic salmon in an fMRI scanner and recorded brain
activation as the salmon performed a mentalizing task (Bennett, Baird, Miller, & Wolford,
2009). The salmon had to view photographs of human individuals and then determine
which emotion someone was experiencing. Several active voxel clusters were observed in
the salmon’s brain, showing task engagement. Particularly salient was the fact that the
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salmon they used was not alive at the time of scanning. The purpose of this study was not
to investigate the Atlantic salmon or show that fMRI studies are inherently flawed. Rather,
Bennett et al. (2009) wanted to demonstrate the dangers of ignoring multiple comparisons.
In a typical fMRI study over 100,000 pairwise comparisons are performed to determine
which brain areas are activated. Some of these tests will yield a result purely by chance.
This problem is not unique to fMRI studies; it can occur any time multiple inferences are
made on a dataset. Consequently, it is not bound to just one research field; the problem
is encountered in various different areas of science. In genetics ofttimes hundreds of thou-
sands of tests are performed to determine associations between genotype and phenotype
(e.g., Storey & Tibshirani, 2003). In economics, researchers are faced with finding the best
trading strategy out of a large number of options (e.g., Romano & Wolf, 2005). While any
clinical trial run in the field of medicine often investigates various different treatments to
determine which has the greatest efficacy (e.g., Fleming, 1982).

To illustrate one does not need to perform thousands of tests for multiplicity to become
an issue, suppose we have 20 hypotheses we wish to test simultaneously. In frequentist
statistics we would set some significance threshold α — usually to .05. The probability of
observing at least one significant result purely by chance would then be 1−(1− .05)20 ≈ .64;
quite a bit higher than what was originally intended. This probability of detecting an effect
that is not present is usually referred to as the probability of committing a Type-I error.
Directly related to this is the Type-II error, which is the probability of not being able to
detect an effect when it is in fact present.

Dealing with multiplicity. There are different methods of dealing with the mul-
tiplicity problem. Researchers can find a plethora of options in the frequentist literature.
The main differences reside in the type of error rate one wishes to control. The two most
common error rates will be discussed with reference to Table 1. Firstly, there is the Family-
Wise Error Rate (FWER), which is the probability of at least one Type-I error in the family
of comparisons — p(V ≥ 1) (Hochberg & Tamhane, 1987). This error-rate is controlled by
the popular, but conservative Bonferroni procedure (Bonferroni, 1936). The procedure is
conservative because of its very strict criterion and the fact that dependency between hy-
potheses is ignored. A second error-rate, more liberal than the FWER is the False Discovery
Rate (FDR); this error rate was popularized by Benjamini and Hochberg (1995). It is de-
fined as E(VR ), or the proportion of erroneously rejected null hypotheses; this proportion is
controlled by the Hochberg-Benjamini procedure. Various other error rates and procedures
to control them exist, but they are beyond the scope of this thesis (see e.g., Shaffer, 1995).
Generally, the frequentist post-hoc solutions share the same goal: to identify pairwise dif-
ferences between sample means while guarding against falsely rejecting the null hypothesis
(Maxwell, 1980).
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In Bayesian statistics, explicit multiplicity control is not always needed. If a researcher
has specific expectations about the plausibility of each hypothesis under consideration, it is
possible to express these expectations directly in the prior model probabilities. This sub-
jective assignment of probability results in automatic multiplicity control as noise driven,
random coincidences are unlikely to get a high prior probability. However, this situation
is entirely reliant on prior knowledge of the researcher and quickly becomes unmanageable
as more hypotheses need to be taken into account. For example, if an experimental study
examines how well ten treatments work, a total of

(
10
2

)
= 45 different pairwise compar-

isons can be made with their own hypotheses. It is clear that the number of hypotheses
can quickly explode and for such situations a different approach must be taken. We can
generally distinguish two methods, hierarchical models and objective adjustment of prior
model probabilities; they are discussed in the next sections.

Hierarchical models. Gelman, Hill, and Yajima (2012) argued that the correction
for multiplicity is inherent to Bayesian hierarchical analyses. Hierarchical models guard
against multiplicity through shrinkage of the estimates towards the group mean (Kruschke
& Liddell, 2017). However, performance of this approach is heavily dependent on sample
size and variance in the samples (Gelman & Loken, 2013). Another issue is the fact that
an estimated model in itself does not translate directly to a test of hypotheses.

Objective adjustment of prior model probabilities. As previously noted, sub-
jectively setting individual prior model probabilities controls for multiplicity. This approach
can be contrasted with an objective assignment of model probabilities, which assumes no
specific information about the individual hypotheses. It is important to note that in order
to correct for multiplicity, the assignment of the probabilities must depend on the number
of hypotheses m. For example, say we are interested in a variable inclusion problem and

Table 1
Possible situations encountered when performing m hypothesis tests (Benjamini
& Hochberg, 1995). Rows show the true situation and columns what hypothesis
tests indicated. In m comparisons there are a maximum of m0 true alternative
hypotheses. The number of true null hypotheses is then simply what remains:
m−m0. Hypothesis tests can give false positive results denoted as S and false
negative results denoted as U .

Declared non-true signal Declared true signal Total

True signal U V m0
Non-true signal T S m−m0
Total m−R R m
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assign prior probability of p(H0) = ξ0 = 1
2 to each hypothesis µi = 0, where i ∈ {1, ...,m}.

For simplicity’s sake these hypotheses are assumed to be independent. We can compute the
a priori expected model size and its standard deviation with the moments of a Bernoulli
random variable. As each inclusion is independent we can simply sum over the inclusions to
obtain the expected size:

∑m
i ξ0 = m

2 with a standard deviation of
√∑m

i ξ0(1− ξ0) =
√

m
4 .

Note that as additional noise is added, the standard deviation does not grow proportional
with m. Consequently, the expected proportion of included µ’s becomes tightly coupled
around 1

2 . It is clear that no multiplicity control is provided by these prior probabilities.
Rather, assignment of the prior model probabilities should be considered with regard to the
entire model space. We will now turn to three different methods for objective adjustment.

Null control. The first method is based on keeping the total prior probability of finding
no difference in a set of k comparisons equal to 0.5 (Jeffreys, 1938). In this approach the
prior model probability that is assigned to the null hypotheses can be obtained by solving
(ξ0)k = 1

2 , which is ξ0 = 2−
1
k . This method was employed by Williams, Heathcote, Nesbitt,

and Eidels (2016) to perform multiple post-hoc comparisons after a one-way ANOVA. A
connection can be drawn to the frequentist Bonferroni correction — which also places one
penalty on the family of hypotheses; in the case of k pairwise comparisons the p-value
would have to exceed the inequality p < α

k to be deemed significant. Westfall, Johnson, and
Utts (1997) showed that the Bayesian and frequentist approaches are similar; in fact they
noted that when alternative hypotheses are likely to be true and the number of hypotheses
is large, the Bonferroni’s adjusted p-value and Bayesian posterior probabilities are both
proportional to their respective unadjusted value multiplied by a constant dependent on k.

Single proportion. The second method relates to the situation where you have a
specific belief about the ratio of signal to noise in your data. This is somewhat similar
to the fully subjective Bayesian approach, however you specify your belief in an overall
proportion of signal to noise, rather than assigning belief to each individual hypothesis.
This approach was employed by Stephens and Balding (2009) to correct for the many
comparisons performed in genetic studies. They set the prior model probabilities of finding
an effect to 10−4 reflecting earlier research on the topic. This method seems to share
similarities with the FDR insomuch they both depend on the proportion of tests that are
null, but not on the number of tests itself.

Distribution of proportions. The final method assumes a distribution on the propor-
tion with a single hyperparameter controlling all comparisons. Consequently, the separate
hypotheses are no longer independent from one another. This method has been applied to
the problem of variable inclusion and edge inclusion in graphs, in genetic studies and regres-
sion models, as well as multiple comparisons between means (Bogdan, Ghosh, & Tokdar,
2008; Carvalho & Scott, 2009; Q. Li & Shang, 2015; Mitra, Mueller, & Ji, 2017; Scott &
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Berger, 2006, 2010). Scott and Berger (2006) showed that as an increasing number of noise
coefficients were taken into account, the posterior probabilities were shrunk towards zero.
This penalty was more severe for signal coefficients which lay close to zero than those that
were more clearly different from zero. As such the distribution placed on the proportion
automatically corrects for multiplicity. This method will henceforth be denoted as SB.

Accessibility of Bayesian multiplicity control. Even though there are several
ways of dealing with the multiplicity problem in Bayesian statistics, these methods are not
readily available to researchers. This is not surprising as Bayesian statistics are playing
catch-up with its frequentist counterpart, which — due to its popularity among researchers
— is blessed with many R packages and graphical software solutions. Recent developments
have attempted to close this gap; among these attempts we find noteworthy software such
as the R packages BAS (Clyde, 2017) and BayesFactor (Morey & Rouder, 2015) and the
free statistical software JASP (JASP Team, 2017). As a result, certain Bayesian techniques
have become much more accessible (e.g., ANOVA, t-test, regression); however, much func-
tionality is still lacking. Even a simple one-way ANOVA cannot be further scrutinized using
standard post-hoc analyses. In this thesis we intend to address that problem. Specifically,
we are interested in evaluating the null control and SB methods for pairwise comparisons;
the single distribution method requires too much prior knowledge to be widely applicable.
Furthermore, we seek to gain more insight in how the different methods relate to each other
and to the frequentist solutions. We set out to implement the two methods for use as
post-hoc analyses in JASP.

This thesis is outlined as follows, we will first go over some preliminaries: definition of
the models we use with their marginal likelihoods and priors. We turn to a brief discussion
of pairwise comparisons and its associated problems. The first method we then discuss is
null control, followed by the SB method; for both methods we show a practical example of
their implementation.

Preliminaries

Given a set of m groups we can perform a total of k =
(
m

2

)
pairwise comparisons,

where k is the binomial coefficient. So when we have m = 5 groups there are k =
(

5
2

)
= 10

possible pairs. A common hypothesis test for pairwise comparisons is the t-test. Jeffreys
(1948) proposed a Bayes factor equivalent to the frequentist version of the t-test. The Bayes
factor contrasts the marginal likelihoods of the data under the null hypothesis H0 and its
alternative H1. To compare two groups of observations x and z it is assumed that the
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observations can be modeled as

xi ∼ Normal
(
µ− ω

2 , σ
2
)
, (1)

zj ∼ Normal
(
µ+ ω

2 , σ
2
)
, (2)

for i = 1, ..., nx and j = 1, ..., nz. Here µ is the grand mean and ω is the effect. H0 specifies
that ω = 0, while H1 allows it to vary. Generally, ω is reparameterized in terms of effect
size d = ω

σ . This reparameterization makes the effect of interest dimensionless and as a
result the Bayes factor is the same regardless of the unit of measurement (e.g., milligram
or kilogram). Considering d is fixed to zero in H0, the priors are slightly different between
the models. For π(θ | H0) we use,

µ = 1, (3)

σ2 ∼ 1
σ2 , (4)

and the prior π(θ | H1) is specified as

(5)

µ = 1, (6)

σ2 ∼ 1
σ2 , (7)

d ∼ Normal(0, σ2
d), (8)

σ2
d ∼ inverse chi-squared(1). (9)

Liang et al. (2008) noted that integrating out the variance in a design where the effect size
is normal and the variance an inverse chi-square distribution is equivalent to stating:

d ∼ Cauchy. (10)

The marginal likelihoods in the Bayes factor are defined as:

p(y | Hi) =
∫
f(y | θ,Hi)π(θ | Hi)dθ, (11)

where y denotes the data and f(y | θ,Hi) is the likelihood function. The marginal likelihood
for each hypothesis combined with the prior model probabilities translates to the posterior
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odds:
p(H0 | y)
p(H1 | y)︸ ︷︷ ︸

posterior
odds

=
p(H0)
p(H1)︸ ︷︷ ︸
prior
odds

×
p(y | H0)
p(y | H1)︸ ︷︷ ︸

Bayes
factor

. (12)

Note that if H0 is specified in the numerator, posterior odds greater than 1 indicate prefer-
ence for the null hypothesis.

For a more elaborate discussion of the model and its priors we refer the interested
reader to Ly, Verhagen, and Wagenmakers (2016) and Rouder, Speckman, Sun, Morey, and
Iverson (2009).

Pairwise comparisons and dependency

Consider the simplest case possible for multiple comparisons — m = 3 and k =
(

3
2

)
=

3 — and label the three groups A, B and C. We quickly find that these comparisons are
not independent from one another. To exemplify this, assume we discovered that A and B
are equal, while A and C were not. Consequently, without performing any more tests, we
may conclude that the means of B and C must also be unequal. Now, when we perform a
correction for the number of tests and we assume these tests are independent it means we are
being overly conservative. In the case of k = 3 it would make more sense to correct for two
tests, as the last one is not an independent inference on the data, but in essence it is given
for free. This is one reason that corrections such as the Bonferroni are overly conservative;
while they maintain the Type-I error rate at some specified threshold α (e.g., .05), the
Type-II error rate rises quickly. Additionally, the correction may be too conservative when
only a few null hypotheses are true, in this specific case the actual FWER may be less than
α (Westfall, 1997).

To increase the power of post-hoc tests, the following frequentist procedures have been
proposed: (1) single step correction procedures such as Tukey’s range test, which is similar
to a t-test except uses information from all tests to calculate a q-statistic and so accounts
for dependency while controlling the FWER (Tukey, 1949); (2) multi-step procedures such
as Holm-Bonferroni method (Holm, 1979), which sort the p-values and then compare each
to a decreasing α based on the numbers of steps taken, instead of comparing every p-value
against one threshold corrected for k. Note that some Bayesian equivalents to these multi-
step procedures have been proposed, with the aim to narrow the rapidly expanding model
search — for example in linear regression — often encountered (Abramovich & Angelini,
2006; Chen & Sarkar, 2004).
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Null control

With the marginal likelihood defined and the dependency problem in the back of
our mind, we now turn to the prior model probabilities. Recall that the method of null
control is based on keeping the total prior probability of finding no differences in a set
of k comparisons equal to 1

2 . To illustrate why this is desirable, suppose we have k = 6
comparisons. If we assigned each null hypothesis a prior model probability of 1

2 , then a
priori we state that the chance of finding no effect in all comparisons is

(
1
2

)6
= .016 which

might be much lower than what we really believe. This probability drops quickly when
more noise variables are added to the mix.

The implementation of Jeffreys

There are two implementations of null control we may consider. The one proposed by
Jeffreys (1938) is derived as follows. Suppose we have k alternative hypotheses each with
prior probability ξA of being true and let’s call the disjunction of these hypotheses HA. We
assign equal probability to event HA and the event that HA does not occur — H0:

p(H0) = p(HA) = 1
2 . (13)

The probability of all individual alternative hypotheses HAi being false, is (1− ξA)k. And
so, as this coincides with p(H0) we find the inequality

(1− ξA)k = 1
2 , (14)

ξA = 1− 0.5
1
k . (15)

And so for any p(HAi) we find

p(HAi) = ξA (16)

= 1− 0.5
1
k . (17)

Equally, p(H0i) is now easy to compute:

p(H0i) = 1− ξA (18)

= 0.5
1
k . (19)

The problem with this approach is much the same as for Bonferroni’s procedure. It does
not take into account the dependency between the tests and would be too conservative.
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The implementation of Westfall

The second approach to null control was established by Westfall et al. (1997). They
extended Jeffreys method to account for dependency by shifting the problem from the k
comparisons to the m underlying groups and their means. This shift was based on the
following notion. Consider a model with a grand mean µ wherein each µi of the m different
groups can be:

µi =

µ, with probability τ,

∼ G, with probability 1− τ,
(20)

where G is some continuous distribution — which is important as it follows that the µi’s
from G can never exactly equal each other. The probability that some µj and µl are equal
to µ, or p(H0jl), is simply τ2. We can extend this to p(H0) = p(allµi = µ) = τm. Solving
for τ we get:

p(H0) = τm, (21)

τ = p(H0)
1
m , (22)

and when we now substitute τ in the null hypothesis of a single comparison

p(H0i) = τ2 (23)

= (p(H0)
1
m )2 (24)

= p(H0)
2
m . (25)

As an example consider m = 4 and consequently k =
(

4
2

)
= 6. If we use p(H0) = 0.5, then

with Jeffreys we find p(H0i) = 0.5
1
6 = 0.891 and with Westfall we find p(H0i) = 0.5

2
4 =

0.707. Both methods default back to p(H0i) = 1
2 when m = 2 (and k = 1). In Figure

1 a comparison is plotted between the methods of Jeffreys and Westfall. It is clear that
ignoring dependency results in a more conservative procedure.

A simulation

What remains of interest is to evaluate the performance of Westfall’s implementation
of null control. As we would like to draw a link between null control and the frequentist
Bonferroni correction, we need a way to determine false positives for both tests. The
problem is that there is no all-or-none significance testing in Bayesian statistics. There is
only the continuous evidence of the alternative hypothesis over the null. Some guidelines as
to what constitutes evidence for a hypothesis have been proposed (see Table 2). However,
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Figure 1 . The prior model probability for an individual null
hypothesis using the method of null control. This method as-
signs 1

2 to the total prior probability of finding no effect in a set
of pairwise comparisons. Jeffreys (red) is calculated assuming
pairwise comparisons are independent, Westfall (blue) accounts
for the dependency. Based on the number of groups the number
of comparisons is obtained by the binomial coefficient, e.g., with
30 groups there are

(
30
2

)
= 435 pairwise comparisons.

these values do not have any direct link to the α threshold. It is unclear if an α of .05
coincides with anecdotal evidence, or decisive evidence. Consequently, instead of using these
guidelines, our approach was to use the value for α and convert this to a new threshold for
the Bayes factors. To this purpose we use the work of Sellke, Bayarri, and Berger (2001)
who proposed a procedure to convert p-values to Bayes factors. Specifically, they provided
a formula to obtain an upper bound on the Bayes factor BFA0 given p:

V S(p) = − 1
e p log(p) , (26)

when p < 1
e . Now, given p must be smaller than .05 to be deemed significant, we may

use this value to threshold the Bayes factor. Doing so gives us a value of V S(.05) = 2.46.
Consequently, if BFA0 is larger than 2.46 we deem this as significant. We may now define
false positives as the noise to noise comparisons for which we obtain p < .05 or BFA0 > 2.46.
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Table 2
Commonly used interpretation categories of the Bayes factor (Lee &
Wagenmakers, 2013, p. 105). An alternative table may be found in
Kass and Raftery (1995). Shown is the Bayes factor for the marginal
likelihood of the null model divided by that of an alternative model.
BFA0 Interpretation

> 100 Extreme evidence for HA
30− 100 Very strong evidence for HA
10− 30 Strong evidence for HA
3− 10 Moderate evidence for HA
1− 3 Anecdotal evidence for HA
1 No evidence
1/3− 1 Anecdotal evidence for H0
1/10− 1/3 Moderate evidence for H0
1/30− 1/10 Strong evidence for H0
1/100− 1/30 Very strong evidence for H0
< 1/100 Extreme evidence for H0

The Bayes factor and p-value for each pairwise comparison were computed with the
Bayesian and frequentist t-tests as implemented in the BayesFactor and stats packages.
We recorded both the uncorrected outcome and the Bonferroni or null control corrected
results. The combination of the t-test outcome with the α and BFA0 threshold allowed
us to calculate the FDR. Recall that this requires dividing the number of false positive
results by the total number of significant results (VR in Table 1). The False Omission Rate
(FOR) was calculated by dividing the number of false negative results by the total number
of non-significant results ( U

m−R).
The data in our simulation was generated in R version 3.3.3 (R Core Team, 2017).

We used a normal distribution with σ fixed to one or two. The normal distribution suits
our purpose as sample normality is an assumption under the Student’s t-test, as is equality
of variances. We used four non-zero µ’s and an increasing number of noise variables drawn
from a zero-centered normal distribution. Noise was added in increments of 5 to a total of
30 noise variables. The parameters we chose for n and our signal µ’s were based on the
work of Bakker, van Dijk, and Wicherts (2012), they reported on 13 meta analytic studies
performed in the field of psychology. The effect size across the studies ranged from .04 to
1.78. The parameters of our simulation reflected this range; we set the four µ’s to .5, 1,
1.5 and 2. These values for µ — in addition to the zero-centered noise — allow the effect
size to range from 0 to 2 and 0 to 1 for sd fixed to 1 and 2, respectively. The number of
observations we choose were n = 25 and n = 50, these values approximate (1) the smallest
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number of participants included in any of the studies and (2) the median number of included
participants across studies. We intended to cover the studies with a low to average number
of participants, a setting in which errors are more likely to occur.

We performed 500 repetitions for each unique combination of values for n and sd; the
calculated FDR and FOR were averaged over the repetitions. The results of the simulation
can be found in Figure 2. As expected, the FDR for the uncorrected frequentist t-test grows
linearly with the number of added noise variables. A similar outcome is observed for the
uncorrected Bayesian t-test, be it at a lower rate. The fact that the FDR is overall lower
reflects that the Vovk-Sellke conversion from p-value to a Bayes factor provides an upper
bound on the evidence. Ofttimes the Bayes factor will report less evidence for a difference
between groups. After correction we find that the FDR rate diminishes for every combi-
nation of sample size and sd. This result is similar for both the Bayesian and frequentist
approaches. The FDR is not quite zero, but approaches it closely as is evident in Figure 2
(lowest value reached is .10% for the Bayesian approach and .03% for the frequentist). The
results show the effectiveness of these post-hoc methods as means of correcting for multi-
plicity. As is customary, when the Type-I error diminishes, the Type-II error increases; both
procedures show a similar increase in the FOR after correction. The frequentist correction
results in a slightly larger FOR across all situations.
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Figure 2 . Pairwise comparisons of four signal variables (µ = .5, 1, 1.5 and 2) with an
increasing number of noise variables. Displayed are the FDR (left) and FOR (right)
generated by frequentist and Bayesian t-tests. Each figure has uncorrected values:
solid lines in blue (frequentist) and red (Bayesian), and corrected values: dashed
blue (frequentist) and dotted red (Bayesian). FDR is calculated by dividing the
number of false positives by the total number of positives. The FOR is calculated by
dividing the number of false negatives by the total number of negatives. Significance
threshold was α = .05 and BFA0 = −1/(e · α · log(α)) ≈ 2.46. The displayed results
were averaged over 500 iterations per condition.
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Distribution of proportions

Before transitioning to pairwise comparisons we provide a quick introduction to the
general method of SB (Scott & Berger, 2006, 2010). The method is geared towards re-
gression and variable inclusion, and our aim is to adapt this method to pairwise comparisons.

Overview

In the case of variable inclusion or regression, each of m variables/coefficients can be
independently included or excluded. This leads to a large possible model space with 2m

variations. To achieve multiplicity control it is important that the prior model probabilities
are not uniformly assigned over models. Assigning 2−m to each model is equivalent to
assigning each variable/coefficient a prior probability of 1

2 of being included. As we saw
earlier in the example of variable inclusion, this provides no multiplicity control. Instead of
assigning probability uniformly, Scott and Berger (2006, 2010) define a hierarchical structure
over the model space. We will briefly discuss their implementation for regression.

Given a vector y of n responses and an n x m design matrix X, the regression model
for the ith participant is given by

yi = β0 +Xijβj + ...+Ximβm + εi, (27)

here j = 1, ...,m and i = 1, ..., n. εi denotes a zero-centered noise term with unknown
variance σ2. All models include intercept term β0. We denote the null model with only
the intercept term as M0 and the full model with all covariates as Mm. Each model is
indexed by a binary vector γ of length m indicating the included and excluded regression
coefficients:

γj =

0, if βj = 0,
1, if βj 6= 1.

(28)

The marginal likelihood used in their model was based on the null-based g-priors by Zellner
(1986). As the regression analysis itself is not the focus of this study, we refer the interested
reader to the appendix in Scott and Berger (2010) for further details.

We now turn to the part of their paper that is more relevant to us, the specification
of prior model probabilities. Inclusion of every βj is treated as a Bernoulli trial, where
parameter q denotes the overall expected proportion of included coefficients:

p(Mγ | q) =
m∏
j=1

qγj (1− q)1−γj (29)

= qkγ (1− q)m−kγ , (30)
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where kγ is the number of included coefficients in a modelMγ and m is the total number
of coefficients under consideration. There are several options for specification of q, one
option is to fix it to a specific value as we discussed earlier. But given that we have no
subjective knowledge about q, we place a distribution on q instead; the usual choice is the
Beta distribution:

q ∼ Beta(a, b). (31)

Although, in the Beta distribution itself it is again possible to express some belief in the
proportion of included coefficients through the values of a and b. To this purpose Scott and
Berger (2006) proposed the use of Beta(1, b):

π(q) = b(1− q)b−1. (32)

Figure 3 shows how this prior behaves for different values of b. Higher values would indicate
that fewer coefficients are expected to be included. Setting b to 1 is the same as using a
uniform distribution. For a further discussion of the influence of a and b as well as different
priors on q see Li and Sivaganesan (2016).

Returning to the regular Beta distribution on q, we can obtain the prior model prob-
abilities as follows:

p(Mγ) =
∫ 1

0
p(Mγ | q)π(q) dq (33)

= B(a+ kγ , b+m− kγ)
B(a, b) , (34)

where B(·) is the beta function. Now, if we have no prior knowledge and specify that
a = b = 1, then the prior on q reduces to a uniform distribution. If we then integrate
out q we find that this results in a simple partitioning of the prior probability over the
dimensionality of the models:

p(Mγ) = 1
m+ 1

(
m

kγ

)−1

. (35)

The intuition behind this formula is that the prior model probability is first evenly
shared across model classes of varying dimensionality (e.g., classes with models that have
one β, two β’s, etc.) and then within each of these classes across the number of possible
configurations (e.g., only β1 included, only β2, etc.). Figure 4 shows how such partitions
are made; Figure 5 shows the trade-off between the number of models and the probability
each model receives.
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Figure 3 . The expected proportion of signal to noise using a Beta(1, b)
distribution. A high value for b indicates an a priori expectation of mostly
noise and few signal variables. If b is set to 1 the distribution defaults to
a uniform distribution where every proportion value is equally likely.

Pairwise comparisons: Prior model probability

We now turn to pairwise comparisons in relation to the SB setup. Our interest shifts
from inclusion of the regression coefficients βi to the pairwise differences δi. Note also that
Equation 35 changes slightly in this context, as there are not m pairwise comparisons we
are interested in, but k =

(
m

2

)
. And so,

p(Mγ) = 1
k + 1

(
k

kγ

)−1

. (36)

As an example, suppose we have 3 independent samples (m = 3) which leads to
k =

(
3
2

)
= 3 pairwise comparisons. If we assume the δ’s are also independent then the prior

model probability would be partitioned as follows (where the subscript denotes the number
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m = 3

M3 β0, β1, β2, β3

M2

β0, β2, β3

β0, β1, β3

β0, β1, β2

M1

β0, β3

β0, β2

β0, β1

M0 β0

Figure 4 . The model space for a regression model with
three possible β coefficients. This diagram shows the in-
tuition behind the partitioning of the prior model prob-
ability. From left to right: (1) number of regression co-
efficients under consideration, (2) classes of varying di-
mensionality and (3) possible model configurations within
each class.

of included δ’s):

p(M0) = 1
3 + 1

(
3
0

)−1

= 1
4 , (37)

p(M1) = 1
3 + 1

(
3
1

)−1

= 1
12 , (38)

p(M2) = 1
3 + 1

(
3
2

)−1

= 1
12 , (39)

p(M3) = 1
3 + 1

(
3
3

)−1

= 1
4 . (40)

There are three models in the dimension classes one and two, and so the total prior
probability sums to one.
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Figure 5 . The trade-off between the number of models in a
dimensionality class and the prior model probability each model
receives. The dimensionality indicates the number of included
β coefficients (out of a maximum of six) in a given model. The
prior model probability is calculated using SB with a uniform
prior on the proportion.

The problem with the method above is the same as for the Jeffreys correction: it
does not take into account the dependency between pairwise comparisons. As such the
partitioning of the prior probability over the model space is overly conservative. There is
an additional concern that needs to be put to rest first; in the regression setup of SB, the
assumption is that as the true number of non-zero regression coefficients remains constant
in the face of ever increasing noise, q will tend to zero. In the case of pairwise differences,
the true number of non-zero pairwise comparisons increases together with the added noise.
What does this mean for q as more noise is added? To prove that this is of no concern,
suppose we denote a fixed number of signal variables as x and an increasing number of noise
variables y. Comparisons which show a true effect are those between two x variables and
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between a x and y variable. The proportion of signal-to-noise q is then

q =
xy +

(x
2
)(x+y

2
) . (41)

Clearly, as the size of y increases while x remains fixed, Equation 41 tends to zero; conse-
quently, the idea underlying regression holds for pairwise comparisons.

The problem of dependence is more difficult to address. To accomplish null control
we could test the difference between any two groups in isolation of other groups; group
A did not influence the comparison between B and C. With the SB method, however, we
jointly model the differences between all groups. Just as we reasoned in terms of µ in the
method for null control, we must again walk down this road — when we reason from the
state of the groups (µ) we can infer which differences (δ) exist. One way to accomplish
this is to treat groups and their differences as networks. In these networks nodes represent
groups and edges represent differences between groups. To exemplify this procedure, we
turn to the situation where m = k = 3. In Figure 6 we see that there are three possible
dimension classes (zero, two or three edges). This stands in contrast with the four classes
we get when independence is assumed, as we did in Equations 37-40. When we take into
account the dependence between the δ’s it becomes evident that we should only partition
the prior model probability over possible models. Manually redistributing the previously
calculated probability over three classes would result in:

p(M0) = 1
3 , (42)

p(M2) = 1
9 , (43)

p(M3) = 1
3 . (44)

Where the class with dimensionality two still has the same three possible configurations,
butM1 has been excluded. The total prior probability again sums to one.

It is evident that when we fail to consider dependency we assign probability to im-
possible models. This dependency can be shown graphically as a network. However, as the
number of comparisons k grows, it quickly becomes infeasible to use these networks to de-
termine model plausibility. A more convenient method is to determine logically constrained
subsets of hypotheses based on equivalence relationships (Shaffer, 1986). This process is
shown in the Table 3. It involves generating every possible equivalence relationship between
the m groups. Say we reject the hypothesis H01 that some two groups are equal on the basis
of an equivalence relationship. We then consider the largest collection of null hypotheses
that could still be true, conditional onH01 being rejected. This process provides the possible
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Figure 6 . Pairwise comparisons for three sample means µ displayed as a
network. Each µ is represented as a node and each difference between two
means (δ) as an edge. The assumption here is that if (1) µ1 and µ2 6= 0 or (2)
µ1 6= 0 and µ2 = 0, then δ12 6= 0 and if µ1 and µ2 = 0, then δ12 = 0. The color
indicates whether nodes are zero (white) or not (gray). We find eight distinct
colorings of the nodes, but only five networks with unique edges (networks 1
to 5).
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classes of hypotheses we may consider. Shaffer (1986) provided a recursion formula:

S(m) =
m⋃
i


(
i

2

)
+ x : x ∈ S(m− i)

 , (45)

where S(m) is the set of possible dimensionality classes for the null hypotheses, for m ≥ 2
and given S(0) = S(1) = {0}. Note that we are not interested in the set of null hypotheses
(δ = 0), but the set of alternative hypotheses (δ 6= 0). Consequently, we must subtract
the set from k to obtain the classes for the alternative hypotheses (displayed in the third
column of Table 3). To better understand the algorithm, we apply it to m = 3 groups. As
the formula is recursive we first have to calculate S(2):

S(2)j=1 =


(

1
2

)
+ S(1)

 = {0}, (46)

S(2)j=2 =


(

2
2

)
+ S(0)

 = {1}, (47)

S(2) = {0, 1}. (48)

And so for S(3) we get:

S(3)j=1 =


(

1
2

)
+ S(2)

 = {0, 1}, (49)

Table 3
Finding possible subsets of the model space (m = 4) based on logically constrained rela-
tionships (Shaffer, 1986). For more details on the calculations in the rightmost column see
Equation 59.
Partition Number of δ = 0 Number of δ 6= 0 Number of configurations

(µ1, µ2, µ3, µ4)
(

4
2

)
= 6 6 - 6 = 0 4!

4! = 1

(µ1, µ2, µ3)(µ4)
(

3
2

)
+
(

1
2

)
= 3 6 - 3 = 3 4!

3!1! = 4

(µ1, µ2)(µ3, µ4)
(

2
2

)
+
(

2
2

)
= 2 6 - 2 = 4 4!

(2!)3 = 3

(µ1, µ2)(µ3)(µ4)
(

2
2

)
+
(

1
2

)
+
(

1
2

)
= 1 6 - 1 = 5 4!

(2!)2(1!)2 = 6

(µ1)(µ2)(µ3)(µ4)
(

1
2

)
+
(

1
2

)
+
(

1
2

)
+
(

1
2

)
= 0 6 - 0 = 6 4!

(1!)44! = 1
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S(3)j=2 =


(

2
2

)
+ S(1)

 = {1}, (50)

S(3)j=3 =


(

3
2

)
+ S(0)

 = {3}, (51)

S(3) = {0, 1, 3}. (52)

We then proceed to subtract this set from k — which for m = 3 is
(

3
2

)
= 3:

k − S(3) = 3− {0, 1, 3} = {0, 2, 3}. (53)

And so we obtain the possible classes (zero, two and three possible δ’s) as shown in Figure 6.
With the algorithm we have a way of obtaining the set of classes that are logically possible.

Previously, for the method of null control, we showed the difference between ignoring
and correcting for dependence. Similarly, it would be interesting to know how many models
are pruned when we take the dependency into account with SB. For this we need the number
of distinct hypotheses — and so, how many models — a given set of classes provides. For
example, looking at the difference between Equations 37-40 and 42-44 we find a reduction
of three models across the classes. As it turns out, the total number of distinct hypotheses
we obtain for some m is equal to the Bell number (Berry & Christensen, 1979). More
information about the Bell number can be found in Box 1. Its recursive formula is

Bnm+1 =
m∑
i=0

(
m

i

)
Bni. (54)

So for m = 3 we find Bn(3) = 5, which is equal to the unique configurations of edges —
although there are eight networks, the last four have identical edges — we saw in Figure 6.
With Shaffer’s formula and the Bell number we can compute the constrained set of possible
models and classes; the results are displayed in Figure 7. We observe a strong reduction
in size when considering the constrained subset instead of the full set, which shows the
importance of not assuming independence between hypotheses.

It would seem that the only remaining challenge is to integrate Shaffer’s subsets with
SB. This is fairly straightforward, as we are interested in a simple redistribution of the prior
model probabilities over the new model space. This redistribution is proportional to the
size difference between the logically constrained subset S(m) and the unconstrained model
space. When we include this proportion term in SB we get:

p(Mγ) = k + 1
|S(m)| ·

1
k + 1

(
k

kγ

)−1

(55)
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= 1
|S(m)|

(
k

kγ

)−1

, (56)

where kγ ∈ k−S(m). However, the problem of dependence is not solved entirely by taking
into account the restrained subset of classes. To exemplify this, consider m = 4 and so
k =

(
4
2

)
= 6. From Shaffer we obtain the set S(4) = {0, 3, 4, 5, 6} — see also Table 3. The

total number of models in this set is Bn(4) = 15. Now, if we compute the prior model
probability for a model that has four out of the six possible δ’s:

p(M4) = 1
5

(
6
4

)−1

= 1
75 , (57)

we find that every model in this class receives ξA = 1
75 . Recall that the SB method first

distributes prior probability over the possible classes and then over the different model
configurations within classes. With 5 classes, it would mean that M4 has 15 different
configurations. However, the Bell number showed us there were a total of 15 models across
all sets; this would mean that for k = 6 we only have models with 4 δ’s. Obviously this is

Box 1. The idea behind the Bell number.

The Bell number, named after Eric Temple Bell, counts the ways a set of elements
can be split into subsets (Bell, 1934). The splits of a set must result in nonempty,
mutually disjoint subsets. The union of the subsets is the set once more. The first
10 Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140 and 21147. We exemplify the
basic mechanism with a set containing the three elements A, B and C. The different
ways we can split this set into subsets are the following:

(1) { {A}, {B}, {C} },
(2) { {A}, {B, C} },
(3) { {B}, {A, C} },
(4) { {C}, {A, B} },
(5) { {A, B, C} }.

Consequently, based on a set of size three, we find five different ways of split-
ting the set.
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Figure 7 . The number of model classes (left) and the size of the model space (right) as
a function of the number of groups under consideration. The unconstrained number of
classes and models (blue) assumes independence between pairwise comparisons. When we
account for dependence between comparisons we obtain the constrained sets (red). These
constrained sets are calculated by using equivalence relationships of the groups underlying
the comparisons (equal to the Bell number). The figure shows an increasing difference
between the two lines, meaning an increase in logically impossible models and classes.

not the case, and indeed, if we look atM5:

p(M5) = 1
5

(
6
5

)−1

= 1
30 , (58)

it becomes clear there are an additional
(

6
5

)
= 6 models. The 15 models in M4 (and 6

models inM3) only exist when we once more assume independence between each δ. Given
independence there are

(
6
4

)
= 15 ways of choosing 4 δ’s out of 6. It is clear that Equation

56 does not solve the problem of dependence.

It is only possible to compute the number of model configurations in a class when we
know the underlying state of the µ’s. In Table 3 we find that the state of the µ’s underlying
classM4 is based on (µ1 = µ2) 6= (µ3 = µ4). Now, using the logic of partitioning a set of
size m in u unordered subsets with r elements (where u · r = m), we find that there are
three possible configurations:

m!
u!(r!)u = 4!

2!(2!)2 = 3. (59)
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The partitions in this specific case are: (µ1 = µ2) 6= (µ3 = µ4), (µ1 = µ3) 6= (µ2 = µ4)
and (µ1 = µ4) 6= (µ2 = µ3). Each of these configurations leads to four non-zero δ’s. In the
final column of Table 3 we can find the number of configurations for the remaining classes.
When we sum over this column we find the 15 models we obtained earlier with the Bell
number. It is clear that the issue of dependence is not yet overcome by simply combining
SB with Shaffer. Only for m = k = 3 does Equation 56 provide a satisfactory answer, for
m > 3 additional computations are required. Fortunately, it seems these computations can
be made by a combination of Shaffer’s method and the additional combinatorics shown in
Equation 59:

p(Mγ) = 1
|S(m)|

(
m!

u!(r!)u

)−1

. (60)

Note that Equation 60 requires us to know the u subsets and the r elements in the subsets
that contribute to a class Mγ . If we have this information, we know how to assign prior
model probabilities while accounting for dependency.

Pairwise comparisons: Marginal likelihood

Giving the prior model probabilities a rest we turn to the marginal likelihood. Earlier
we defined the t-test and were able to utilize this for the method of null control. How-
ever, this is no longer possible, as we will often have to compare more than two groups
simultaneously. This becomes apparent when we look at m = k = 3; we will not be able to
calculate the evidence for the model in classM3 with a t-test, as this involves µ1 6= µ2 6= µ3.
Now, we may utilize the model as specified by Scott and Berger (2006), however, it uses a
different set of priors than the t-test. To keep our implementation consistent we turn to the
Bayesian one-way ANOVA instead (Rouder, Morey, Speckman, & Province, 2012). It is a
direct extension to the t-test in the sense that an ANOVA on two groups returns identical
results to the t-test. The linear model is

yij = µ+ ωi + εij , (61)

for i = 1, ...,m levels in a factor, with j = 1, ..., n observations in each. µ is the grand mean
and ωi the effect of the ith level of the factor; εi is the zero-centered error term. A problem
with this model is that more parameters contribute to the mean of each level, than there are
actual levels. The result of this problem is that parameters cannot be uniquely identified.
The approach Rouder et al. (2012) took was to add a sums-to-zero constraint (

∑
ωi = 0).

Just as for the t-test the model terms ωi are reparameterized in terms of the effect
size di = ωi

σ . Priors for parameters common in all models receive the same uninformative
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prior:

π(µ, σ2) ∝ 1
σ2 . (62)

Models that include a d parameter are specified much like the t-test:

di ∼ Normal(0, σ2
d), (63)

σ2
d ∼ inverse chi-square(1). (64)

Which, as noted earlier, reduces to a Cauchy distribution after integrating out the variance

di ∼ Cauchy. (65)

Of course, we are interested in inferences on δ and not on d. Using the ANOVA
model as is, would provide us no information about any particular pairwise difference. The
ANOVA only tests whether all groups are equal or not. But then, how should the linear
model be defined to allow for inferences on δ and not d? Furthermore, should the δ’s then
sum to zero? Would a sums-to-zero constraint have any real interpretation in this context?
At present we have no answers to these questions. Fortunately, a different route exists
which avoids these pitfalls — relabeling.

Let’s again consider the situation where m = k = 3. Now, say that our hypotheses
were the following: δ12 = 0 and both δ13, δ23 6= 0. In essence we would be saying that
because δ12 = 0 there exists no difference between group 1 and group 2. So, referring
to group 1 as group 2 and vice versa does not change any of the inferences in this set of
hypotheses. If the two are interchangeable in this regard, assigning all observations of these
two groups to one joint group would also be valid. The only comparison of interest would
then be δ{12}3, which can be evaluated with a one-way ANOVA (or simply a t-test in this
case). This is in line with the notion of Rouder et al. (2012, p. 363):

"In ANOVA designs, researchers are sometimes concerned about additional con-
trasts, such as whether any two levels differ. For instance suppose a factor has
three levels and the main-effect Bayes factor indicates that the full model is
preferred to the null model. Then, three intermediate models may be proposed
where any two levels equal each other. Each of these models can be implemented
with a simple two-column design matrix and tested with the above methodol-
ogy. The resulting pattern of Bayes factors across these models, as well as that
across the full model, may be compared in analysis."

This method, where equality between means is obtained by a simple relabeling, has been
applied in a number of Bayesian studies that looked at pairwise comparisons (e.g., Gopalan
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& Berry, 1998; Neath & Cavanaugh, 2006). If we return to our m = k = 3 scenario, its
Bayes factors can then be calculated as follows:

BFM0
00 = 1, (66)

BFM2
A0 =



p(y | µ{12}, µ3)
p(y | µ1 = µ2 = µ3) ,

p(y | µ{13}, µ2)
p(y | µ1 = µ2 = µ3) ,

p(y | µ{23}, µ1)
p(y | µ1 = µ2 = µ3) ,

(67)

(68)

(69)

BFM3
A0 = p(y | µ1, µ2, µ3)

p(y | µ1 = µ2 = µ3) . (70)

Pairwise comparisons: An example

We work out a simple example to demonstrate the SB method in combination with
the Rouder et al. (2012) framework — we use a dataset with m = 4 groups and k =

(
4
2

)
= 6

pairwise comparisons between groups. Note that this situation coincides with the situation
we showed in Table 3 and for some calculations we refer to this table. The 4 groups in the
dataset each had n = 50 observations and were drawn from a normal distribution with a
standard deviation of 1. Only the first group had a non-zero µ, which was set to .5.

We first turn to the prior probabilities. With Shaffer we get the set of possible model
classes S(4) = {0, 3, 4, 5, 6}. Using Equation 59 we find that models are distributed across
the classes as follows (for calculations see the last column in Table 3): one inM0, four in
M3, three inM4, six inM5 and one inM6. Consequently, the SB corrected prior model
probabilities for each class are obtained with Equation 60:

p(M0) = 1
5

4!
4! = 1

5 , (71)

p(M3) = 1
5

4!
3!1! = 1

20 , (72)

p(M4) = 1
5

4!
(2!)3 = 1

15 , (73)

p(M5) = 1
5

4!
(2!)2(1!)2 = 1

30 , (74)

p(M6) = 1
5

4!
(1!)44! = 1

5 . (75)

The uncorrected prior probabilities for each model are obtained by simply dividing the
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probability equally among the models. The total number of possible models can be found
with the Bell number, Bn(4) = 15. And so each model regardless of its class receives 1

15 in
the uncorrected situation.

The Bayes factor BFA0 for each model was obtained with a Bayesian ANOVA from
the BayesFactor package (Morey & Rouder, 2015). Each of these models was defined by
relabeling groups according to the left column in Table 3. As an example, (µ1 = µ2) 6=
(µ3 = µ4) resulted in the relabeled groups {12} and {34} with the Bayes factor

BFM4,z
A0 =

p(y | µ{12}, µ{23})
p(y | µ1 = µ2 = µ3 = µ4) , (76)

where z signifies this particular model configuration in class M4. The relabeling method
provided us with 15 Bayes factors. To obtain the posterior odds, the prior model probabil-
ities calculated earlier were turned to prior odds and then multiplied by the Bayes factors.
Continuing with the example of model z in classM4:

p(M4,z | y)
p(M0 | y) = p(M4)

p(M0)BF
M4,z
A0 , (77)

where the subscript denoting the specific model in M0 was omitted, as there is only one
possibility. Subsequently, we computed the posterior probability for each model; to do so
we divided the posterior odds of each model by the sum of all posterior odds. For model z
we compute

p(M4,z | y) =
p(M4,z |y)
p(M0|y)∑|S(4)|

i=0
∑|Mi|
j=1

p(Mi,j |y)
p(M0|y)

, (78)

where |S(·)| is the number of model classes obtained with Shaffer and |Mi| is the number
of models in class i. Note that this conversion from Bayes factors to posterior probabilities
may be employed when all Bayes factors have the same denominator model and so each
Bayes factor states the evidence relative to that fixed model.

The final step required us to obtain posterior inclusion probabilities for the effects.
This required a sum of the posterior probabilities of the models that included a given effect.
As an example, model z contributed to the evidence for the effects δ13, δ14, δ23 and δ24. In a
similar way we obtained the prior inclusion probabilities by summing over the prior model
probabilities of relevant models. Calculating the change from prior inclusion to posterior
inclusion probabilities gave us the inclusion Bayes factors.

The entire procedure was repeated 500 times to reduce the influence of the random
data sampling on the results. The prior inclusion probabilities, median posterior inclusion
probabilities and inclusion Bayes factors can be found in Table 4. To determine which effects
should be included in the model a common cut-off value for the posterior inclusion proba-
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Table 4
Inclusion probabilities for the differences between four groups. The first group was normally
distributed with µ = .5, while the other groups were normally distributed around zero. Un-
corrected models received equal probability, corrected models received probability according to
the SB method. We used the median outcome over 500 repetitions for the posterior inclusion
probability and inclusion Bayes factor.

Uncorrected Corrected
Effect Prior incl. Post. incl. Inclusion BF Prior incl. Post. incl. Inclusion BF

δ12 .667 .910 1.366 .600 .853 1.421
δ13 .667 .910 1.365 .600 .854 1.424
δ14 .667 .911 1.366 .600 .856 1.427
δ23 .667 .417 .626 .600 .412 .686
δ24 .667 .424 .636 .600 .409 .682
δ34 .667 .417 .626 .600 .413 .689

bilities is .5 Using this cut-off, it is clear that the relabeling procedure correctly identified
the true δ’s: all comparisons to the first group have posterior inclusion probabilities greater
than .5 — both uncorrected and corrected. The noise to noise comparisons failed to reach
.5 and were correctly rejected. When we then compare the SB method and the uncorrected
situation, we note a couple of differences. Firstly, the prior inclusion probabilities are lower,
meaning that each δ receives less probability of being included a priori. Secondly, we find a
difference between the posterior inclusion probabilities. There is a decrease in the posterior
probabilities for all δ’s under SB. Clearly, this is what would be expected when we correct
for multiplicity. However, no conclusions may be drawn from this; more noise groups would
have to be added to see if the current implementation of the SB method truly corrects for
multiplicity.

Discussion

For this thesis we set a number of goals; first and foremost we wanted to make it
easier to deal with the multiplicity problem in Bayesian statistics — specifically in relation
to pairwise comparisons after a one-way ANOVA. We evaluated two methods both based
on adjusting prior model probabilities. The first method, null control, was shown to be
an effective way of dealing with multiplicity. Extending Jeffreys’ method by accounting
for dependency made the method less conservative, while retaining its underlying idea of
keeping the probability of no effects to .5. It proved as effective as a frequentist Bonferroni
correction, while being slightly less conservative. For the second method we examined, a
successful translation to pairwise comparisons proved more complicated. We showed the
importance of dealing with dependence in this context, as a large number of models are
otherwise considered which are logically impossible. We ultimately succeeded in adapting
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the method by different means of combinatorics. However, while the method of null control
has been implemented in JASP and can be used for an arbitrary number of levels in a
factor, this is not the case for the SB method. If we are working with m levels, we must
first obtain all possible equivalence relationships. Only then, based on these relationships
and the partitions they create, can we obtain the prior model probabilities for each model.
Consequently, it will require additional work to make the SB method more generally appli-
cable. And, more importantly, while the validity of SB has been shown in various different
applications (Bogdan et al., 2008; Carvalho & Scott, 2009; Q. Li & Shang, 2015; Mitra et
al., 2017; Scott & Berger, 2006, 2010), we were unable to do so as of yet in the ANOVA
context. As a consequence, we could also not numerically compare both methods in this
study.

One difference between the two methods is rather apparent, though, without extensive
simulation; namely, the assumption we make when we account for dependence. To achieve
null control under dependence, we assumed each µi may either be equal to the grand mean or
be different altogether: a value drawn from a continuous distribution. As such if two groups
are not equal to the grand mean they may not be equal to each other. This assumption
is more stringent than the one we considered for SB. In obtaining our subset of models
through equivalence relationships, we do allow two groups to equal each other, even when
they are different from the grand mean. Which approach is better is debatable, however, it
would be interesting to explore the impact of this difference between the methods.

There are two notions about the methods that we feel are necessary to put forth
at this point. The first is that we used the idea of SB, but not necessarily the common
implementation. SB as proposed by Scott and Berger (2006, 2010) can accommodate any
prior on the proportion of included effects (Li & Sivaganesan, 2016). If this prior is uniform
their implementation and ours coincide, prior probability is distributed over the classes and
then over the configurations in the classes. However, as our implementation deviates because
of the dependency problem, we cannot easily make the transition to a different prior on the
proportion of included effects. This may not be a large obstacle in the current context, as
post-hoc comparisons following a one-way ANOVA are often exploratory, without specific
hypotheses defined a priori. The second notion is more philosophical in nature and relates
to the method of null control. The core idea behind it is that we value — and therefore must
protect — the possibility of an invariance among our set of hypotheses. However, if we are
to believe Cohen (1994) then true invariance does not exist, nothing is ever exactly equal to
zero. This is a view shared by Schmidt (1992) who, as a result, claims Type-I error cannot
occur and simply hinders the scientific focus on development of cumulative knowledge.
Should we then assign this event of complete invariance such high probability? Maybe
not, but as we saw in our simulation, failing to account for the possibility of invariance
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leads to an increased number of false positives. This is an issue that is of great concern,
considering the growing consensus that reliability of published research is poor at best. In
a recent survey by Nature involving 1,576 researchers a total of 52% respondents reported
that science is suffering a significant reproducibility crisis (Baker, 2016). It is clear that the
number of published false positives must be addressed for researchers to regain confidence
in the scientific principles. Methods such as null control make a necessary contribution to
this cause.

In summary, we looked at the implementation of two methods for multiplicity control.
We showed that the method of null control is able to protect against Type-I errors and is on
a similar footing to the famous frequentist Bonferroni procedure. The SB method requires
some work, but the essentials have been given in this thesis. Null control will be made
available through the graphical software JASP. It is another tool researchers can use to
to guard themselves against false positive results. With some luck this will remove the
necessity to do any additional research on these poor, dead salmon.
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