
Issues for the Calculation of Bayes Factors

John Maindonald

5-7 minutes

Choice of prior and of analysis method.

To keep the discussion simple, I propose to limit attention to the one-sample
comparison, using as an example the sleep dataset from the datasets package.
When the needed account is taken of pairing, this better illustrates issues that
arise for comparison between different priors and parameter settings than when
the analysis (wrongly) treats this as a two-sample problem.

Normal prior versus Cauchy prior

What has guided the choice of a normal prior as the default, mostly, in the
vignettes? Why prefer it to use of a Cauchy prior? As implemented in the
BayesFactor package (Morey and Rouder 2018), this uses a numerical
approximation that avoids the convergence issues that arise for Markov Chain
Monte Carlo. I cannot see why one would want to use Cauchy as implemented in
bayestestR (Makowski, Ben-Shachar, and Lüdecke 2019). I would use
bayestestR with a Normal prior only if provided with a good reason to prefer,
in a specific analysis, that to Cauchy. What reasons might be adduced? The choice
of prior, and issues with convergence, appear to me to trump differences that
arise from different approaches to scaling. Accordingly, I regard these as
secondary.

Use of bayestestR with a Cauchy prior

library(rstanarm)
library(bayestestR)
library(logspline)
sleep1 <- data.frame(ID=levels(sleep$ID),
 diffs=with(sleep, extra[group==1]-
extra[group==2]))
modelc <- stan_glm(formula = diffs~1, data = sleep1,
prior=cauchy(),
 chains = 10, iter = 5000, warmup = 1000,
verbose=FALSE,

 refresh=FALSE)
NB: The argument `refresh=FALSE` deserves to be better

advertised
bf0 <- bayestestR::bf_parameters(modelc, null = 0)
returned 18.9; 17.4; no convergence (see below); 20.7

print(c('This run:'=exp(as.data.frame(bf0)[['log_BF']])),
quote=F)

This run:
31.69117

bf30 <- bayestestR::bf_parameters(modelc, null =
c(-0.5,0.5))
print(c('This run:'=exp(as.data.frame(bf30)[['log_BF']])),
quote=F)

This run:
15.2739

returned run 1: 8.9, run 2: 9.9; no convergence (see
below)
Sampling priors, please wait...
Error in oldlogspline(x) : * no convergence

Setting of autoscale appears not to make much difference

An issue is that convergence failures are relatively common.
It then becomes a matter of trying again. When there is convergence, the Bayes
Factors that are returned appear fairly consistent. As will be seen, the same level
of consistency appears harder to achieve when a Normal prior is specified.

Use of bayestestR with a Normal prior

modeln <- stan_glm(formula = diffs~1, data = sleep1,
verbose=FALSE,
 prior = normal(), chains = 10, iter = 5000, warmup =
1000,
 refresh=FALSE)
bfn0 <- bayestestR::bf_parameters(modeln, null = 0)
print(c('This run:'=exp(as.data.frame(bfn0)[['log_BF']])),
quote=F)

This run:
24.48475

(autoscale=FALSE) 30.0; 29.8; 28.3; 24.3; 20.2; 24.6
(autoscale=TRUE) 35.5; 20.1; 27.4; 30.2; 20.5; 25.4

bfn30 <- bayestestR::bf_parameters(modeln, null =
c(-0.5,0.5))
print(c('This run:'=exp(as.data.frame(bfn30)[['log_BF']])),
quote=F)

This run:
13.73161

returned 17.4; 17.5 17.6, 16.0.

Note that the Bayes Factor corresponding to a point NULL was in each case
greater than 28.

The upper limit given in Sellke, Bayarri, and Berger (2001) for a p-value that
equals 0.00283 is:

−1/(𝑒𝑥𝑝(1) ∗ 0.00283 ∗ 𝑙𝑜𝑔(0.00283)) = 22.15

Does the Sellke formula apply, for the normal prior as implemented in
bayestestR? If so, why does the calculated Bayes Factor that is returned usually
greater than the Sellke upper limit? If chains and/or iter and/or warmup need
to be increased, is the best recourse just to, e.g., double them all.

Comparison with BayesFactor (Cauchy prior)

There is no variation of consequence from one run to another.

library(BayesFactor)
Start by checking different made by rscale setting, first
for NULL
rnames <- c('medium','wide','ultrawide')
bfval <- numeric(3)
for (i in 1:3)
 bfval[i] <- with(sleep1, ttestBF(sleep1$diffs,
nullInterval=NULL,
 rscale=rnames[i]))
setNames(round(bfval,2), rnames)

medium wide ultrawide
17.26 18.42 18.02

For use of a NULL interval, note that a standardized
dfference of
Effect size that corresponds to a 30-minute difference
eff <- mean(sleep1$diffs)*30/60/sqrt(var(sleep1$diffs))
bfval <- matrix(nrow=2, ncol=3)
for (j in 1:3){

 bfall <- with(sleep1,
 ttestBF(sleep1$diffs, nullInterval=c(-eff,eff),
rscale=rnames[j]))
 bfval[, j] <- as.data.frame(bfall)[['bf']]
 }
setNames(apply(bfval, 2, function(x)round(x[2]/x[1],2)),
rnames)

medium wide ultrawide
5.02 4.34 3.65

Packages noted in the Bayesian task view

There is a wide choice. Which of them have functions that calculate Bayes
Factors?

References

Makowski, Dominique, Mattan S. Ben-Shachar, and Daniel Lüdecke. 2019.
“bayestestR: Describing Effects and Their Uncertainty, Existence and Significance
Within the Bayesian Framework.” Journal of Open Source Software 4 (40): 1541.
https://doi.org/10.21105/joss.01541.

Morey, Richard D., and Jeffrey N. Rouder. 2018. BayesFactor: Computation of
Bayes Factors for Common Designs. https://CRAN.R-project.org
/package=BayesFactor.

Sellke, Thomas, MJ Bayarri, and James O Berger. 2001. “Calibration of 𝜌 Values

for Testing Precise Null Hypotheses.” The American Statistician 55 (1): 62–71.

https://doi.org/10.21105/joss.01541
https://doi.org/10.21105/joss.01541
https://cran.r-project.org/package=BayesFactor
https://cran.r-project.org/package=BayesFactor
https://cran.r-project.org/package=BayesFactor
https://cran.r-project.org/package=BayesFactor

