
Importing external or additional TLS certi�cates to Che
Contents

At Che installation time

On already-running Che installations

Veri�cation

Network communications between the components of a Che installation and the started workspaces, are all secured through the TLS protocol, and
thus require the use of trusted certi�cate authorities.

In some cases it can be necessary to add TLS certi�cates to the Che installation, so that every Che component will consider them as signed by a
trusted CA.

Typical cases that may require this addition are:

when the underlying Kubernetes cluster uses TLS certi�cates signed by a CA that is not trusted,

when Che server or workspace components connect to external services such as Keycloak or a Git server that use TLS certi�cates signed by an
untrusted CA.

To store those certi�cates, Che uses a dedicated Con�gMap. Its default name is ca-certs but Che allows con�guring its name. On OpenShift, the
Che operator even injects cluster trusted certi�cates into this Con�gMap automatically.

At Che installation time

Prerequisites
The kubectl tool is available.

You are ready to create CheCluster custom resource.

 Eclipse Che Documentation

https://www.eclipse.org/che/docs

Procedure
1. Save the certi�cates you need to import, to a local �le system.

2. Create a new Con�gMap with the required TLS certi�cates:

$ kubectl create configmap ca-certs --from-file=<certificate-file-path> -n=<che-namespace-name>

To apply more than one certi�cate, add another --from-file=<certificate-file-path> option to the above command.

3. During the installation process, when creating the CheCluster custom resource, take care of con�guring the right name for the created
Con�gMap.

For a Che Operator deployment, ensure you add the spec.server.ServerTrustStoreConfigMapName �eld with the name of the
Con�gMap, to the CheCluster Custom Resource you will create during the installation:

Certi�cate �les are typically stored as Base64 ASCII �les, such as .pem , .crt , .ca-bundle . But, they can also be binary-encoded, for example, as
.cer �les. All Secrets that hold certi�cate �les should use the Base64 ASCII certi�cate rather than the binary-encoded certi�cate.

Che already uses some reserved �le names to automatically inject certi�cates into the Con�gMap, so you should avoid using the following reserved �le
names to save your certi�cates:

ca-bundle.crt

ca.crt

CAUTION

spec:
 server:
 ...
 spec.server.ServerTrustStoreConfigMapName: ca-certs

YAML

https://docs.openshift.com/container-platform/latest/operators/olm-what-operators-are.html

For a Che Helm Chart deployment, ensure you override the global.tls.serverTrustStoreConfigMapName Helm Chart property with the
name of the Con�gMap when installing the Che Helm Chart. For this you should add the following arguments to the Helm command line:

--set global.tls.serverTrustStoreConfigMapName=ca-certs

On already-running Che installations

Prerequisites
The kubectl tool is available.

You should �rst de�ne the name of the Con�gMap you will use to import certi�cates:

On instances of Che deployed with the Che Operator, retrieve the name of the Con�gMap by reading the
spec.server.ServerTrustStoreConfigMapName CheCluster Custom Resource property:

$ get checluster eclipse-che -n <che-namespace-name> -o json-path --jsonpath=
{.spec.server.serverTrustStoreConfigMapName}

On instances of Che deployed with the Che Helm Chart deployment, retrieve the name of the Con�gMap by reading the
global.tls.serverTrustStoreConfigMapName property from the Helm Chart:

$ helm get values che --all --output json | jq -r '.global.tls.serverTrustStoreConfigMapName'

If the existing installation did not de�ne any name for the Con�gMap, just use ca-certs .

NOTE

https://helm.sh/
https://docs.openshift.com/container-platform/latest/operators/olm-what-operators-are.html
https://helm.sh/

Procedure
1. Save the certi�cates you need to import, to a local �le system.

2. Add the required TLS certi�cates in the Con�gMap:

$ kubectl create configmap <config-map-name> --from-file=<certificate-file-path> -n=<che-namespace-name> -o yaml --
dry-run | kubectl apply -f -

To apply more than one certi�cate, add another --from-file=<certificate-file-path> option to the above command.

3. Con�gure the Che installation to use the Con�gMap:

For a Che Operators deployment:

1. Edit the spec.server.ServerTrustStoreConfigMapName CheCluster Custom Resource property to match the name of the
Con�gMap:

$ kubectl patch checluster eclipse-che -n <che-namespace-name> --type=json -p '[{"op": "replace", "path":
"/spec/server/serverTrustStoreConfigMapName", "value": "<config-map-name>"}]'

For a Che Helm Chart deployment:

Certi�cate �les are typically stored as Base64 ASCII �les, such as .pem , .crt , .ca-bundle . But, they can also be binary-encoded, for example, as
.cer �les. All Secrets that hold certi�cate �les should use the Base64 ASCII certi�cate rather than the binary-encoded certi�cate.

Che already uses some reserved �le names to automatically inject certi�cates into the Con�gMap, so you should avoid using the following reserved �le
names to save your certi�cates:

ca-bundle.crt

ca.crt

CAUTION

https://docs.openshift.com/container-platform/latest/operators/olm-what-operators-are.html
https://helm.sh/

1. Clone the che project.

2. Go to the deploy/kubernetes/helm/che directory.

3. Update the name of the con�gMap Che will use, by editing the global.tls.serverTrustStoreConfigMapName Helm Chart property
to match the created or updated Con�gMap:

$ helm upgrade che -n che --set global.tls.serverTrustStoreConfigMapName=<config-map-name> \
 --set global.ingressDomain=<kubernetes-cluster-domain> .

When using Minikube to run Che, substitute <kubernetes-cluster-domain> with $(minikube ip).nip.io .

4. Restart the Che operator, the Che server and Keycloak to load the new certi�cates:

$ kubectl rollout restart -n <che-namespace-name> deployment/che-operator
$ kubectl rollout restart -n <che-namespace-name> deployment/che/keycloak
$ kubectl rollout restart -n <che-namespace-name> deployment/che

Veri�cation

If you added the certi�cates without error, the Che server starts and obtains Keycloak con�guration over HTTPS. Otherwise here is a list of things to
verify:

In case of a Che Operator deployment, the CheCluster attribute serverTrustStoreConfigMapName value matches the name of the
Con�gMap. Get the value using the following command :

$ kubectl get -o json checluster/eclipse-che -n <che-namespace-name> | jq .spec.server.serverTrustStoreConfigMapName

Che Pod Volumes list contains one Volume that uses the Con�gMap as data-source. To get the list of Volumes of the Che Pod:

https://github.com/eclipse/che
https://docs.openshift.com/container-platform/latest/operators/olm-what-operators-are.html

$ kubectl get pod -o json <che-pod-name> -n <che-namespace-name> | jq .spec.volumes

Che mounts certi�cates in folder /public-certs/ of the Che server container. This command returns the list of �les in that folder:

$ kubectl exec -t <che-pod-name> -n <che-namespace-name> -- ls /public-certs/

In the Che server logs there is a line for every certi�cate added to the Java truststore, including con�gured Che certi�cates.

$ kubectl logs <che-pod-name> -n <che-namespace-name>
(...)
Found a custom cert. Adding it to java trust store based on /usr/lib/jvm/java-1.8.0/jre/lib/security/cacerts
(...)

$Che server Java trustore contains the certi�cates. The certi�cates SHA1 �ngerpints are among the list of the SHA1 of the certi�cates included
in the trustore returned by the following command:

$ kubectl exec -t <che-pod-name> -n che -- keytool -list -keystore /home/che/cacerts
Your keystore contains 141 entries

(...)

To get the SHA1 hash of a certi�cate on the local �lesystem:

$ openssl x509 -in <certificate-file-path> -fingerprint -noout
SHA1 Fingerprint=3F:DA:BF:E7:A7:A7:90:62:CA:CF:C7:55:0E:1D:7D:05:16:7D:45:60

Contents

At Che installation time

On already-running Che installations

Veri�cation

Eclipse Foundation | Privacy Policy | Terms of Use | Eclipse Public License | Legal Resources

https://www.eclipse.org/
https://www.eclipse.org/legal/privacy.php
https://www.eclipse.org/legal/termsofuse.php
https://www.eclipse.org/legal/epl-2.0/
https://www.eclipse.org/legal

